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Recently, Blázquez-Salcedo, Knoll, and Radu (BSKR) have given a class of static, spherically
symmetric traversable wormhole spacetimes with Dirac and Maxwell fields. The BSKR wormholes
are obtained by joining a classical solution to the Einstein-Dirac-Maxwell (EDM) equations on the “up”
side of the wormhole (r ≥ 0) to a corresponding solution on the “down” side of the wormhole (r ≤ 0).
However, it can be seen that the BSKR metric fails to be C3 on the wormhole throat at r ¼ 0. We prove that
if the matching were done in such a way that the resulting spacetime metric, Dirac field, and Maxwell field
composed a solution to the EDM equations in a neighborhood of r ¼ 0, then all of the fields would be
smooth at r ¼ 0 in a suitable gauge. Thus, the BSKR wormholes cannot be solutions to the
EDM equations. The failure of the BSKR wormholes to solve the EDM equations arises both from
the failure of the Maxwell field to satisfy the required matching conditions (which implies the presence
of an additional shell of charged matter at r ¼ 0) and, more significantly, from the failure of the
Dirac field to satisfy required matching conditions (which implies the presence of a spurious source term
for the Dirac field at r ¼ 0).

DOI: 10.1103/PhysRevD.104.124055

I. INTRODUCTION

In a recent paper [1], Blázquez-Salcedo, Knoll, and Radu
(BSKR) have provided examples of traversable wormhole
spacetimes, which are claimed to be classical solutions to
the Einstein-Dirac-Maxwell (EDM) equations. The exist-
ence of traversable wormhole solutions without unphysical
matter would be of great interest, as it would open new
possibilities for the topology of spacetime and for causal
connections between different regions of spacetime. The
existence of a traversable wormhole would require a
violation of the averaged null energy condition [2,3],
and such a violation would be of considerable interest in
its own right.
The BSKR wormhole spacetimes have a static, spheri-

cally symmetric metric of the form

ds2 ¼ −F2
0ðrÞdt2 þ F2

1ðrÞdr2 þ F2
2ðrÞdΩ2; ð1Þ

where F2ðrÞ is taken to be of the form

F2ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr2 þ r20Þ

q
: ð2Þ

The wormhole spacetimes are constructed by finding
smooth solutions of the EDM equations separately in the
regions r ≥ 0 and r ≤ 0 and then joining these solutions
along the timelike hypersurface Σ at r ¼ 0. In order that
the resulting metric and fields solve the EDM equations
without the presence of spurious sources at Σ, it is
necessary that suitable matching conditions be satisfied.
For the metric, the matching conditions [4] are that the
induced metric of Σ and the extrinsic curvature of Σ agree.
For the electromagnetic field, the matching conditions are
that we can choose a gauge in which the 4-vector potential
Aμ and its normal derivative match. For the Dirac field, the
matching conditions are that if we work in a tetrad that is
continuous at Σ and in an electromagnetic gauge where Aμ

is continuous at Σ, the Dirac field components must match.
Failure to satisfy the matching of the induced metric would
yield a spacetime for which the normal derivative of the
metric would have a delta-function contribution at Σ, and
the resulting Einstein tensor could not even be interpreted
distributionally [5]. Failure to satisfy any of the other
matching conditions would correspond to the presence of
spurious distributional source terms at Σ in the EDM
equations.
Satisfaction of the matching conditions directly requires

that, in a suitable gauge, the spacetime metric and vector
potential must be C1 at Σ and the Dirac field must be C0 at
Σ. We will show in Sec. II that the satisfaction of the EDM
equations for r ≥ 0 and r ≤ 0 then implies that, in a suitable
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gauge, all derivatives of the metric, Maxwell field, and
Dirac field must match on Σ, so for any solution of the
EDM equations without spurious sources on Σ, all of these
fields must be smooth (C∞). However, for all of the BSKR
wormholes, the metric fails to be C3 on Σ. We therefore
conclude that none of the BSKR wormholes can be
solutions to the EDM equations; i.e., they all must contain
spurious sources on Σ.
BSKR properly impose the matching conditions for the

metric. However, as we shall see in Sec. III, they did not
impose proper matching conditions on the electromag-
netic field, resulting in the presence of an additional
charged shell at r ¼ 0. It is conceivable that such a
charged shell could be modeled by the presence of other
physical charged matter, although it is not obvious that
traversable wormhole solutions could be obtained in
this way, since any physically acceptable charged matter
also would contribute to the matter stress-energy tensor.
However, a failure of the matching conditions for the
Dirac field would be more serious, since the Dirac field
does not have any known physical sources. Therefore, it is
important to check if the matching conditions for the
Dirac field are satisfied. This is not entirely straightfor-
ward to analyze, since BSKR use a tetrad whose radial
vector ea3 points in the positive r direction for r ≥ 0 and in
the negative r direction for r ≤ 0. Thus, their tetrad is
discontinuous at r ¼ 0, and this discontinuity must be
taken into account when considering the matching con-
ditions. In Sec. III, we obtain the proper matching
conditions required for the continuity of the Dirac field.
We find that these matching conditions are not satisfied by
the BSKR wormholes.
In summary, the BSKR wormholes contain both shells of

charged matter and, more significantly, spurious sources for
the Dirac field at the wormhole throat at r ¼ 0. Therefore,
they are not solutions to the EDM equations.
Notation.—We will use lowercase latin letters from the

early part of the alphabet (i.e., a; b;…) to denote abstract
spacetime indices; e.g., the spacetime metric will be
denoted as gab. We will use greek letters from the middle
part of the alphabet (i.e., μ; ν;…) to denote coordinate
components of tensors. We also use mid-alphabet greek
letters to enumerate tetrad vectors (e.g., a tetrad will be
denoted as feaμg, with μ ¼ 0; 1; 2; 3). We will use lowercase
latin indices from the mid-part of the alphabet (i.e., i; j;…)
to denote the non-normal components of tensors in
Gaussian normal coordinates based on the timelike hyper-
surface Σ at r ¼ 0. (For Gaussian normal coordinates based
on a spacelike hypersurface, these would correspond to
spatial components, but they correspond to the nonradial
components in our case.) Finally, we will use uppercase
latin indices to denote Weyl spinors and use lowercase
greek indices from the early alphabet (i.e., α; β;…) to
denote components of Dirac spinors. Thus ϕA denotes a
Weyl spinor, and Ψα denotes a Dirac spinor.

II. SMOOTHNESS OF SOLUTIONS AT r= 0

In this section, we consider spacetimes that are obtained
by gluing solutions along a noncharacteristic (i.e., timelike
or spacelike) boundary. Our arguments and results are
extremely general, but to keep the discussion simple, we
will restrict consideration to the EDM system.
Suppose we are given a smooth (C∞) solution

ðgþab; Aþ
a ;Ψþ

α Þ to the EDM equations on a manifold Mþ.
Suppose that a boundary Σþ can be attached to Mþ such
that Mþ ∪ Σþ is a manifold with boundary. Suppose that
ðgþab; Aþ

a ;Ψþ
α Þ can be smoothly extended to Σþ and that Σþ

is everywhere noncharacteristic with respect to gþab; i.e., it is
either everywhere spacelike or everywhere timelike. In the
case of BSKR wormholes, Mþ would correspond to the
region r > 0, and Σþ would correspond to the timelike
hypersurface r ¼ 0. For definiteness, we will assume in the
following that Σþ is timelike.
Now suppose we also are given another smooth solution

ðg−ab; A−
a ;Ψ−

α Þ to the EDM equations on a manifoldM− that
smoothly extends to a timelike boundary Σ−. For the BSKR
wormholes,M− would correspond to the region r < 0, and
Σ− would correspond to the hypersurface r ¼ 0. If we
identify Σþ with Σ− and denote the identified surface as Σ,
we will obtain the enlarged spacetime M ¼ Mþ ∪ Σ ∪ M−

with fields ðgab; Aa;ΨαÞ. The BSKR wormhole spacetimes
are constructed in this manner. We wish to investigate the
conditions under which the fields ðgab; Aa;ΨαÞ satisfy the
EDM equations. In the case where they do satisfy the EDM
equations, we also wish to investigate their smoothness
properties. Obviously, satisfaction of the EDM equations
and smoothness needs to be investigated only in an
arbitrarily small neighborhood of Σ, since we have assumed
that ðgab; Aa;ΨαÞ is a smooth solution of the EDM
equations on Mþ and M−.
It is useful to make appropriate gauge choices for our

original solutions ðgþab; Aþ
a ;Ψþ

α Þ and ðg−ab; A−
a ;Ψ−

α Þ so that
any nonsmoothness in the matching will not be a gauge
artifact. It is very convenient to use Gaussian normal
coordinates ðsþ; xiþÞ on Mþ in a neighborhood of Σþ.
Gaussian normal coordinates are defined by choosing
coordinates xiþ on Σþ and extending them off of Σþ by
keeping them constant on normal geodesics. We then
define sþ to be the proper distance from Σþ along each
normal geodesic. It follows that in Gaussian normal
coordinates, we have gþss ¼ 1 and gþsi ¼ 0. Similarly, we
choose Gaussian normal coordinates on M− in a neighbor-
hood of Σ−, except that in this case we take s− to be minus
the proper distance from Σ− along the normal geodesic.
For the electromagnetic field, it is very convenient to

work in a gauge onMþ where Aþ
s ¼0, i.e., Aþ

a ð∂=∂sÞa ¼ 0.
This gauge can be achieved starting in an arbitrary gauge
by choosing any function χ0ðxiþÞ on Σþ and solving
∂χðs; xiþÞ=∂s ¼ Aþ

s with the initial condition χð0; xiþÞ ¼
χ0ðxiþÞ. The gauge transformed potential A0þ

a ¼ Aþ
a −∇aχ
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then satisfies the desired gauge condition. Similarly, we
choose A−

s ¼ 0 in a neighborhood of Σ− in M−.
Finally, for the Dirac field, we must specify a tetrad in

order to define its components. We choose a tetrad in Mþ

by choosing an orthonormal triad, feþi
0 ; eþi

1 ; eþi
2 g, on Σþ

tangent to Σþ and supplementing it with eþa
3 ¼ ð∂=∂sÞa.

We then propagate this tetrad into Mþ by parallel transport
along the normal geodesics. We choose a tetrad in M− in
the same manner. Note that since s takes negative values in
M−, e−a3 ¼ ð∂=∂sÞa points toward Σ− in M−.
As stated above, the spacetime M is obtained by

identifying Σþ and Σ−. Since our gauge choices above
do not place any restrictions on the choices of coordinates
xiþ and xi− on Σþ and Σ−, we may assume without loss of
generality that the identification is such that xiþ ¼ xi−. We
then may drop the plus and minus subscripts on xi. We then
have the following necessary conditions for ðgab; Aa;ΨαÞ to
be a solution of the EDM equations on M.
First, in order to satisfy Einstein’s equation, it is essential

that the induced metric on Σþ and Σ− match, i.e.,

gþijjs¼0 ¼ g−ijjs¼0: ð3Þ

If this were not the case, the metric would be discontinuous
on Σ. In that case, ∂gþij=∂s would have a delta-function
singularity, and, as previously mentioned, nonlinear terms
in the Einstein tensor involving this quantity could not even
be defined [5]. It also is necessary for a solution to the
Einstein portion of the EDM equations that the extrinsic
curvatures of Σþ and Σ− match, i.e., that

∂gþij
∂s

����
s¼0

¼ ∂g−ij
∂s

����
s¼0

: ð4Þ

If this condition were not satisfied, it would give rise to a
δ-function contribution to the Einstein tensor, correspond-
ing to the presence of an additional shell of matter [4].
Maxwell’s equations are first order differential equations

involving the gauge invariant field strength tensor Fμν.
Given the matching of the metric and extrinsic curvature as
specified in the previous paragraph, it is necessary that

Fþ
μνjs¼0 ¼ F−

μνjs¼0 ð5Þ

since any failure of this matching to hold would give rise to
a δ-function contribution to Maxwell’s equations, which
would correspond to the presence of an additional shell of
electric and/or magnetic charge and/or current. If this
matching condition holds, then, in particular, the tangential
components Fþ

ij and F−
ij match. Since our gauge condition

As ¼ 0 allows the freedom to perform any s-independent
gauge transformation, we may use such gauge freedom to
require matching of the vector potentials on Σ,

Aþ
i js¼0 ¼ A−

i js¼0: ð6Þ

The matching of the components Fþ
si and F−

si at s ¼ 0 then
requires

∂Aþ
i

∂s
����
s¼0

¼ ∂A−
i

∂s
����
s¼0

: ð7Þ

If Eq. (3) holds, we may choose the triad on Σþ to match
the triad on Σ−. It then follows that for a solution to the
EDM equations, the Dirac field components must match on
Σ, i.e.,

Ψþ
α js¼0 ¼ Ψ−

α js¼0 ð8Þ

since otherwise there would be a spurious delta-function
source term in the Dirac equation.
In summary, we have just shown that a necessary

condition for ðgab; Aa;ΨαÞ to satisfy the EDM equations
on M is that in Gaussian normal coordinates associated
with Σ and in the gauge As ¼ 0, further gauge choices can
be made, if necessary, so that Eqs. (3)–(8) hold. The main
result of this section is the following theorem:
Theorem 1. Let ðgab; Aa;ΨαÞ be the fields on M

obtained by gluing together solutions of the EDM
equations on Mþ and M− in the manner described
above. Suppose that in Gaussian normal coordinates on
Σ and in the gauge As ¼ 0 the fields satisfy the matching
conditions (3)–(8). Then ðgab; Aa;ΨαÞ is a solution to the
EDM equations on M. Furthermore, all of these fields are
smooth (C∞).
Proof.—We will show that, with our gauge choices, the

fields ðgab; Aa;ΨαÞ are smooth on Σ. Once smoothness is
established, it follows immediately by continuity that they
satisfy the EDM equations on Σ since, by construction,
these fields satisfy the EDM equations everywhere off of Σ.
By hypothesis, ðgþab; Aþ

a ;Ψþ
α Þ is smooth for s ≥ 0 and

ðg−ab; A−
a ;Ψ−

α Þ is smooth for s ≤ 0, so the only way
ðgab; Aa;ΨαÞ could fail to be smooth is if these quantities
or their derivatives with respect to s fail to match at s ¼ 0.
Equations (3) and (4) require matching of the metric and its
first s derivative at s ¼ 0, so the metric is at least C1.
Similarly, Eqs. (6) and (7) imply that the vector potential is
at least C1 and Eq. (8) implies that the Dirac field is at least
C0. As we shall now show, smoothness of these quantities
then follows from the basic form of the EDM equations.
In order to write the Dirac equation, we must make a

choice of tetrad. We will use the tetrad feaμg introduced
above. Since ea3 ¼ ð∂=∂sÞa and the s component of each of
the other tetrad vectors vanishes, we need only be con-
cerned with eiμ for μ ¼ 0, 1, 2. The parallel propagation
evolution law takes the form
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∂eiμ
∂s ¼ fTiμ

�
gkl;

∂gkl
∂s ; ejν

�
: ð9Þ

Here fTiμ is a smooth function of the indicated variables
together with finitely many of their xk derivatives. The
Dirac equation then takes the form

∂Ψα

∂s ¼ fDα

�
Ak;Ψα; eiμ;

∂eiμ
∂s

�
; ð10Þ

where fDα is a smooth function of the indicated variables
together with finitely many of their xk derivatives. Note that
the metric does not appear on the right side, since it can be
reconstructed from the tetrad via

gij ¼
X2
μ;ν¼0

ημνeiμe
j
ν: ð11Þ

Einstein’s equation in Gaussian normal coordinates takes
the form

∂2gij
∂s2 ¼ fEij

�
eiμ;

∂eiμ
∂s ; Ak;

∂Ai

∂s ;Ψα;
∂Ψα

∂s
�
; ð12Þ

where fEij is a smooth function of the indicated variables
together with finitely many of their xk derivatives. Finally,
Maxwell’s equations in the gauge As ¼ 0 take the form

∂2Ai

∂s2 ¼ fMi

�
eiμ;

∂eiμ
∂s ; Ak;

∂Ai

∂s ;Ψα

�
: ð13Þ

We now have all the ingredients necessary to prove
smoothness. The quantities ðgþab; Aþ

a ;Ψþ
α ; eþi

μ Þ satisfy
Eqs. (9)–(13) for s > 0, whereas ðg−ab; A−

a ;Ψ−
α ; e−iμ Þ satisfy

Eqs. (9)–(13) for s < 0. By hypothesis, the matching
conditions (3)–(8) hold on Σ. By construction, the tetrad
vectors also match on Σ. It then follows from Eq. (9) that
the normal derivatives of the tetrad vectors match on Σ, so
the tetrad isC1. It then further follows from Eq. (10) and the
matching conditions (6) and (8) that

∂Ψþ
α

∂s
����
s¼0

¼ ∂Ψ−
α

∂s
����
s¼0

: ð14Þ

Thus, Ψα is C1. It then follows immediately from Eqs. (12)
and (13) together with our matching conditions that the
metric and vector potential are C2 at s ¼ 0. We now take an
s derivative of Eqs. (9), (10), (12), and (13) and repeat the
argument to conclude that the tetrad vectors and Dirac field
are C2 and the metric and vector potential are C3. By
induction, all fields are C∞. ▪
Remark.—The fact that Σ is a noncharacteristic surface

played an essential role in the proof. If Σwere null, the field

equations would not uniquely determine derivatives trans-
verse to Σ in terms of quantities on Σ. Consequently, it can
be possible to produce nonsmooth solutions by patching
smooth solutions along a characteristic surface.
As already mentioned near the beginning of this section,

the BSKR wormholes are produced by patching solutions
together in the manner described above, so our results apply
to the BSKR wormholes. It follows that if the required
matching conditions Eqs. (3)–(8) hold, all of the fields must
be smooth when written using our gauge choices. However,
the BSKR fields are not smooth. This is most readily
seen for the metric, which must be smooth when expressed
in Gaussian normal coordinates. The Gaussian normal
coordinate s is related to the r coordinate of the metric
Eq. (1) by

sðrÞ ¼
Z

r

0

F1ðrÞdr: ð15Þ

However, in all of their solutions, dF1=dr is discontinuous
at r ¼ 0 [6]. Consequently, d2s=dr2 is discontinuous at
r ¼ 0. On the other hand, from the explicit expression (2),
it can be seen that F2ðrÞ is a smooth function of r with
dF2=dr ¼ 0 at r ¼ 0 but d2F2=dr2 ≠ 0 at r ¼ 0. Using the
chain rule, we obtain

d3F2

ds3
¼ d3F2

dr3

�
dr
ds

�
3

þ 3
d2F2

dr2
dr
ds

d2r
ds2

þ dF2

dr
d3r
ds3

: ð16Þ

The first and last terms on the right side are continuous at
r ¼ 0 but the middle term is discontinuous. Thus, we see
that the BSKR wormhole metric fails to be C3 at r ¼ 0.
This fact also can be deduced from the plots given in [1] for
the scalar curvature and the Kretschmann scalar, which can
be seen to have a discontinuous derivative at r ¼ 0. It
follows that the BSKR wormholes cannot satisfy all of the
necessary matching conditions Eqs. (3)–(8).
The fact that the scalar curvature has a discontinuous

derivative at r ¼ 0 implies that the trace of the stress-energy
tensor also has a discontinuous derivative at r ¼ 0. Since
the Maxwell stress-energy tensor has a vanishing trace, the
Dirac stress-energy tensor must have a discontinuous
derivative at r ¼ 0. This strongly suggests that the Dirac
field cannot satisfy the required matching condition (8). In
the next section, we will analyze the matching conditions
and show that this is the case.

III. MATCHING CONDITIONS FOR BSKR
WORMHOLES

We turn now to an analysis of the matching conditions
for BSKR wormholes. This will require some care for the
treatment of the Dirac field, so we first review some basic
properties of Dirac spinors (see, e.g., [7]).
In terms of Weyl spinors, a Dirac spinor is a pair

composed of a Weyl spinor ϕA and complex conjugate
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Weyl spinor ψ̄A0
. We introduce a basis oA and ιA for the

Weyl spinor space W satisfying oAιA ¼ 1 and use the
complex conjugate basis ōA

0
and ῑA

0
for the complex

conjugate spinor space W̄. From these bases, we can
construct the quantities

tAA
0 ¼ 1ffiffiffi

2
p ðoAōA0 þ ιA ῑA

0 Þ; ð17Þ

xAA
0 ¼ 1ffiffiffi

2
p ðoA ῑA0 þ ιAōA

0 Þ; ð18Þ

yAA
0 ¼ iffiffiffi

2
p ðoA ῑA0 − ιAōA

0 Þ; ð19Þ

zAA
0 ¼ 1ffiffiffi

2
p ðoAōA0 − ιA ῑA

0 Þ; ð20Þ

which can be identified with an orthonormal tetrad feaμg in
spacetime. Conversely, a choice of orthonormal tetrad feaμg
corresponds to a choice of spin basis oA, ιA up to sign.
In the presence of a vector potential Aa, the Dirac

equation for the spinors ϕA and ψ̄A0
is given by the pair

of equations

ði∇AA0 þ qAAA0 ÞϕA ¼ mψ̄A0
; ð21Þ

ði∇AA0 þ qAAA0 Þψ̄A0 ¼ mϕA: ð22Þ

We expand ψ̄A0
in the basis ōA

0
and ῑA

0
,

ψ̄A0 ¼ αōA
0 þ βῑA

0
; ð23Þ

and we expand ϕA in the dual spinor basis o�A ¼ −ιA and
ι�A ¼ oA,

ϕA ¼ γo�A þ δι�A: ð24Þ

The Dirac spinor can then be represented by the
components

Ψα ¼

2
6664
α

β

γ

δ

3
7775: ð25Þ

In flat spacetime, we can choose the spinor basis oA, ιA and
the corresponding orthonormal tetrad feaμg to be constant
(i.e., have vanishing derivative) over spacetime. The Dirac
equations (21) and (22) then take the form

γμði∂μ þ qAμÞΨ ¼ mΨ; ð26Þ

where we have omitted the Dirac spinor indices and where

γ0 ¼

2
6664
0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

3
7775; γ1 ¼

2
6664

0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0

3
7775;

γ2 ¼

2
6664

0 0 0 −i
0 0 i 0

0 i 0 0

−i 0 0 0

3
7775; γ3 ¼

2
6664

0 0 1 0

0 0 0 −1
−1 0 0 0

0 1 0 0

3
7775:

ð27Þ

This corresponds to the standard form of the Dirac equation
in the chiral representation. In curved spacetime (or in a
nonconstant basis in flat spacetime), additional terms will
arise in (26) from the derivatives of the spinor basis, which
may be computed in terms of the Ricci rotation coefficients
of the corresponding tetrad feaμg.
For the BSKR wormholes, the solution ðgþab; Aþ

a ;Ψþ
α Þ is

taken to be of the following form. The metric is assumed to
be given by Eq. (1), with Mþ taken to be the region r > 0.
The vector potential on Mþ is taken to be of the form

Aþ
a ¼ VðrÞdt: ð28Þ

The Dirac field is taken to be an incoherent superposition of
two solutions of the form

Ψþ
½1� ¼

0
BBBBB@

cosðθ
2
ÞzðrÞeiðϕ2−twÞ

iκ sinðθ
2
Þz̄ðrÞeiðϕ2−twÞ

−i cosðθ
2
Þz̄ðrÞeiðϕ2−twÞ

−κ sinðθ
2
ÞzðrÞeiðϕ2−twÞ

1
CCCCCA
;

Ψþ
½2� ¼

0
BBBBB@

i sinðθ
2
ÞzðrÞeið−tw−ϕ

2
Þ

κ cosðθ
2
Þz̄ðrÞeið−tw−ϕ

2
Þ

sinðθ
2
Þz̄ðrÞeið−tw−ϕ

2
Þ

iκ cosðθ
2
ÞzðrÞeið−tw−ϕ

2
Þ

1
CCCCCA
; ð29Þ

where κ ¼ �1. An incoherent superposition of this sort is
necessary in order to get a total current and stress-energy
that is spherically symmetric. BSKR obtain numerical
solutions to the EDM equations for ðgþab; Aþ

a ;Ψþ
α Þ on Mþ.

An obvious choice for ðg−ab; A−
a ;Ψ−

α Þ would be to take it
to be an identical copy of ðgþab; Aþ

a ;Ψþ
α Þ. In that case, the

matching conditions (3) and (6) hold automatically. In
order for the matching condition (4) to hold, it is necessary
and sufficient for the extrinsic curvature of Σþ to vanish.
This holds if and only if

∂F0

∂r
����
r¼0

¼ 0: ð30Þ
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This condition is imposed by BSKR. Similarly, in order for
(7) to hold, it is necessary and sufficient that

∂V
∂r

����
r¼0

¼ 0: ð31Þ

This condition was not imposed by BSKR [6]. The failure
of this condition to hold implies the presence of an
additional charged shell of matter at r ¼ 0.
We now consider the matching condition for the Dirac

spinor. Equation (8) applies for a continuous choice of
tetrad. However, in the matching of ðgþab; Aþ

a ;Ψþ
α Þ with its

identical copy ðg−ab; A−
a ;Ψ−

α Þ, the tetrad vector e−a3 points in
the wrong direction as compared with the continuous tetrad
choice made in the previous section. Thus, we must take the
discontinuity of the tetrad vector ea3 at r ¼ 0 into account
when formulating the matching conditions for the Dirac
field. To do so, we note that the reversal of the tetrad vector
ea3 at a point x ∈ Σ corresponds to a parity transformation
on the tetrad followed by a 180° rotation about ea3 . The
application of these transformations to the tetrad while
keeping the Dirac spinor unchanged is equivalent to
applying the inverse of these transformations to the
Dirac spinor while keeping the tetrad fixed. The parity
operator on Dirac spinors is given by

P ¼ ηγ0; ð32Þ

where one can make any of the choices η ¼ f1;−1; i;−ig.
The inverse transformation is of the same form. A 180°
rotation about ea3 is given by1

R ¼ �

0
BBBBB@

i 0 0 0

0 −i 0 0

0 0 i 0

0 0 0 −i

1
CCCCCA
; ð33Þ

and the inverse also is of the same form. Thus, for the case
where ðg−ab; A−

a ;Ψ−
α Þ is an identical copy of ðgþab; Aþ

a ;Ψþ
α Þ,

the matching condition (8) for a Dirac field becomes

Ψþjr¼0 ¼ P−1R−1Ψ−jr¼0 ¼ P−1R−1Ψþjr¼0; ð34Þ

where for the last equality we have used the equality of Ψ−

and Ψþ in the original tetrads at r ¼ 0. For the ansatz (29),
this matching condition for Ψþ

½1� yields

η

2
666664

−cosðθ
2
Þeiϕ

2
−itwz̄ð0Þ

−iκ sinðθ
2
Þeiϕ

2
−itwzð0Þ

−icosðθ
2
Þeiϕ

2
−itwzð0Þ

−κ sinðθ
2
Þeiϕ

2
−itwz̄ð0Þ

3
777775
¼

2
666664

−cosðθ
2
Þeiϕ

2
−itwzð0Þ

−iκ sinðθ
2
Þeiϕ

2
−itwz̄ð0Þ

icosðθ
2
Þeiϕ

2
−itwz̄ð0Þ

κ sinðθ
2
Þeiϕ

2
−itwzð0Þ

3
777775

ð35Þ

for some choice of η ¼ f1;−1; i;−ig. It is easily seen
that this condition cannot be satisfied for any choice of η
unless zð0Þ ¼ 0. However, the Dirac fields obtained by
BSKR have zð0Þ ≠ 0. Thus, the wormhole spacetimes
obtained by taking ðg−ab; A−

a ;Ψ−
α Þ to be an identical copy

of ðgþab; Aþ
a ;Ψþ

α Þ have a spurious delta-function source term
for the Dirac field at r ¼ 0. As noted above, they also have
a spurious charged shell of matter at r ¼ 0.
One could also consider other possible choices of

ðg−ab; A−
a ;Ψ−

α Þ that are related to ðgþab; Aþ
a ;Ψþ

α Þ by symmetry
operations that map Σ to itself. It would appear that the only
potentially viable option would be a time reflection
operation. For the metric (1), time reflection takes gþab to
gþab, but for the vector potential (28), it takes Aþ

a to −Aþ
a .

Thus the spacetime obtained joining ðgþab; Aþ
a ;Ψþ

α Þ to its
time reflection would have Vð−rÞ ¼ −VðrÞ. Since the
vector potential, Aa, flips sign between r > 0 and r < 0,
it follows fromMaxwell’s equations that the charge-current
vector Ja of the Dirac field must correspondingly flip sign.
However, the probability 4-current, Pa, of any Dirac spinor
is always a future-directed timelike vector, and the charge-
current vector is given by Ja ¼ qPa. Therefore, in order to
construct a wormhole spacetime in this manner, the Dirac
field for r < 0 must have charge that is of opposite sign2 to
that of the Dirac field for r > 0. It is unclear to us what
interpretation could be given to a quantity obtained by
combining a Dirac field of charge q for r > 0 with a Dirac
field of charge −q for r < 0, but it is clear that such a
quantity cannot in any sense be considered to be a classical
solution to the Dirac equation on the wormhole spacetime.
A final possibility along these lines would be to take

g−ab ¼ gþab and A−
a ¼ Aþ

a , but take Ψ−
α ¼ T Ψþ

α , where T is
the Dirac time reversal operator. For a vector potential of
the form (28), T Ψþ

α will satisfy the Dirac equation with the
original q. The time reversal operator reverses the spatial
components of the Dirac charge-current Ja and the time-
space components of the Dirac stress-energy tensor Tab, but
since these components vanish in the original solution
ðgþab; Aþ

a ;Ψþ
α Þ, it follows that ðgþab; Aþ

a ; T Ψþ
α Þ will satisfy

the EDM equations. For this choice of ðg−ab; A−
a ;Ψ−

α Þ, the
metric matching conditions will again be satisfied, pro-
vided that (30) has been imposed. Since Aað−rÞ ¼ AaðrÞ,
the Maxwell matching condition (7) again does not hold,
thereby requiring an additional shell of charged matter at

1We assume here that the r direction in the BSKR Dirac spinor
ansatz corresponds to what we are calling the 3-direction. (BSKR
do not explicitly say this, but any other choice would give rise to
inconsistencies in the angular dependence of the quantities being
matched.)

2This fact is undoubtedly closely related to points
raised in [8,9].
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r ¼ 0. We now consider the matching conditions for the
Dirac field.
The action of the time reversal map T on a Dirac

spinor (25) is

T

0
BBB@

αðtÞ
βðtÞ
γðtÞ
δðtÞ

1
CCCA ¼ eiρ

0
BBB@

β̄ð−tÞ
−ᾱð−tÞ
δ̄ð−tÞ
−γ̄ð−tÞ

1
CCCA; ð36Þ

where eiρ is an arbitrary phase. The required matching
condition is now

Ψþjr¼0 ¼ P−1R−1Ψ−jr¼0 ¼ P−1R−1T Ψþjr¼0: ð37Þ

If we apply this condition to Ψþ
½1� using the ansatz (29), we

find that the angular factors do not match, so (37) cannot be
satisfied. Nevertheless, we can instead try to match Ψþ

½1� to
P−1R−1Ψ−

½2� ¼ P−1R−1T Ψþ
½2� at r ¼ 0. In this case, the

angular factors do match. However, a calculation similar to

that of Eq. (35) shows that the required matching condition
holds only when zð0Þ ¼ 0, which is not satisfied by any of
the BSKR wormholes.
In summary, our analysis of the matching conditions

shows that the BSKR wormholes require the presence of an
additional shell of charged matter and, more seriously,
contain a spurious distributional source for the Dirac field
at r ¼ 0. This confirms the conclusion of Sec. II that the
BSKR wormholes are not solutions to the EDM equations.
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