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With the successes of fðRÞ theory as a neutral modification of Einstein’s general relativity (GR), we
continue our study in this field and attempt to find general neutral and charged black hole (BH) solutions. In
the previous papers [Phys. Rev. D 102, 124022 (2020); Phys. Lett. B 820, 136475 (2021)], we applied the

field equation of the fðRÞ gravity to a spherically symmetric space-time ds2 ¼ −UðrÞdt2 þ dr2
VðrÞ þ

r2ðdθ2 þ sin2 θdϕ2Þ with unequal metric potentials UðrÞ and VðrÞ and with and without electric charge.
Then we have obtained equations which include all the possible static solutions with spherical symmetry.
To ensure the closed form of system of the resulting differential equations in order to obtain specific
solutions, we assumed the derivative of the fðRÞ with respect to the scalar curvature R to have a form

F1ðrÞ ¼ dfðRðrÞÞ
dRðrÞ ¼ 1 − F0−ðn−3Þ

rn with a constant F0 and show that we can generate asymptotically GR BH

solutions for n > 2 but we show that the n ¼ 2 case is not allowed. This form of F1ðrÞ could be the most
acceptable physical form that we can generate from it physical metric potentials that can have a well-known
asymptotic form and we obtain the metric of the Einstein general relativity in the limit of F0 → n − 3. We
show that the form of the electric charge depends on n and that n ≠ 2. Our study shows that the power n is
sensitive and why we should exclude the case n ¼ 2 for the choice of F1ðrÞ presented in this study. We also
study the physics of these black hole solutions by calculating their thermodynamical quantities, like
entropy, the Hawking temperature and Gibb’s free energy, and derive the stability conditions by using
geodesic deviations. In the standard Reissner-Nordström space-time which is the charged black hole
solution in GR, there appear two black hole horizons, that is, inner horizon and outer horizon. When the
radii of the two horizons coincide with each other, which is called the extremal limit, the absolute value
of the charge equals to the mass and the Hawking temperature vanishes. In our model, however, the
absolute value of the charge is not equal to the mass in the limit although the Hawking temperature
vanishes.

DOI: 10.1103/PhysRevD.104.124054

I. INTRODUCTION

The fðRÞ gravity is a modified gravitational theory
where the action is given in a generic function of scalar
curvature, R, and the fðRÞ gravity may describe the early
and late cosmological evolution. The fðRÞ theory can
describe dark energy and dark matter consistently without
imposing any new material that has not yet been revealed
by experiments [1–6]. Amending the Lagrangian of general
relativity (GR) not only influences the dynamical system of
the Universe, but it can also change the dynamical system at
the galactic or solar system scales. Thus, amended theories

of gravity with higher-order curvature corrections provide a
deeper understanding of gravity.
The Einstein-Hilbert action, which reproduces the field

equation of GR, is linear to the Ricci scalar R. By changing
the action to include the nonlinear terms, the Ricci
curvature, and/or Riemann curvatures, many viable modi-
fied gravitational theories are presented by the scientific
society to describe the cosmic evolution in early times.
Most of those theories use a gravitational Lagrangian which
contains some of the four possible second-order curvature
invariants. Moreover, many models that use higher-order
invariants as a function of R are introduced in the
gravitational action and different fðRÞ gravitational models
are obtained [7–19]. Aside from the ability of these theories
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to eliminate the contributions of curvature invariants other
than the Ricci scalar R, they could also prevent the
Ostrogradsky issue [20], which is a problem that character-
izes any higher derivative theories [21].
The earliest modification of GR could be the one

presented in [22]. A natural extension of GR is to include
expressions such as Rn with a constant n similar to the
Starobinsky model fðRÞ ¼ Rþ ϵR2, where ϵ is also a
constant [23]. When n < 0, the contribution of Rn could
investigate the late epoch and describe self-accelerating
vacuum solutions [24–27]. Nevertheless, such solutions
suffer from instabilities [28,29] and have strong limitations
from the solar system test [30]. To avoid the previously
mentioned issues, scientists have considered the fðRÞ
gravitational theory, which can accommodate a wide range
of phenomena.Many applications carried use the framework
of the fðRÞ gravitational theory such as gravitational wave
detection [31,32], early-time inflation [33], cosmological
phases [34–37], the singularity problem [38], stability of
solutions [39–41], and other different issues [42].
Many black hole (BH) solutions in the fðRÞ theory

coincide with the BH solutions of GR or differ from them.
Among these solutions, the authors in [43] derived static
spherically symmetric solutions and showed that the de
Sitter (dS)–Schwarzschild metric is a solution to the field
equations of the fðRÞ theory. Moreover, spherically sym-
metric solutions are derived in [44] by involving a perfect
fluid. The BH solution with and without electric charge is
presented in [45]. Many analytic spherically symmetric
solutions are derived in [46–57]. Analytic charged D-
dimensional BH solutions are derived and discussed in
[58]. Moreover, analytic spherically symmetric BH solu-
tions with and without electric charge are derived in [59,60].
Those BH solutions were different from the BH solutions of
GR and coincidewith them under certain special conditions.
The study in this paper aims to generalize this special
condition and derive analytic BH solutions with andwithout
electric charge in the fðRÞ gravitational theory.
This paper is organized as follows: In Sec. II, we give the

building block of the fðRÞ gravitational theory and obtain
its field equations including the contribution from the
Maxwell field. In Sec. III, we apply the charged field
equations of the fðRÞ gravity to a space-time having
spherically symmetric and unequal metric potentials. We
present the nonlinear differential equations which are
composed of five nonlinear differential equations having
four unknown functions; one is the electric potential, one is
the derivative f0ðRÞ of the fðRÞ, and the other two are
related to the metric potentials. We study special cases that
give a consistent BH solution which was derived in the
previous literature. Then we study the general case and
divide it into two classes: The first class is the one without
charge and we derive an original new BH solution assum-
ing the first derivative of fðRÞ concerning R to has the form

f0ðRÞ ¼ 1 − F0−ðn−3Þ
rn , where n can be any value. The second

class is the one with the electric charge, and we derive a
new charged BH solution assuming that the derivative
f0ðRÞ is not changed from that in the case without electric
charge. In Sec. IV, we study the physical properties of these
new BH solutions with and without charge by giving the
form of the metric potentials in asymptotic form and show
that they are different from GR metric potentials either the
Schwarzschild or the Reissner-Nordström space-time due
to the contribution of the nonlinear curvature scalar terms.
We also study the scalar invariants made of curvatures of
the BH solution and show that its singularity is softer than
that of GR for the case with an electric charge. In Sec. V, we
present the stability constraints of those BH solutions by
using geodesic deviation and investigate the regions of
stability graphically. In Sec. VI, we evaluate the basic
thermodynamical expressions, that is, the Hawking temper-
ature, entropy, quasilocal energy, heat capacity, and Gibb’s
free energy, related to our new BH solutions and show that
the solutions are physically acceptable. Our charged BH
corresponds to the Reissner-Nordström space-time, which
is the charged BH solution in GR. In the solution, there
appear two black hole horizons, which are called the inner
horizon and the outer horizon. The extremal limit is the
limit when the radii of the two horizons coincide with each
other. In the limit, the absolute value of the charge coincides
with the mass, and the Hawking temperature vanishes. In
our model, however, the absolute value of the charge does
not equal the mass in the limit although the Hawking
temperature vanishes. In Sec. VI B, we explain that the new
BH solutions fulfill the first law of thermodynamics. In the
final section, we discuss our derived results.

II. f ðRÞ AMENDED THEORY

If fðRÞ ≠ R, then we have a modified gravitational
theory that is unlike GR. The four-dimensional action of
the fðRÞ gravitational theory takes the following form
[1,25–27,61–65]:

S ≔
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p
fðRÞ þ

Z
d4x

ffiffiffiffiffiffi
−g

p
Lem; ð1Þ

with g being the determinant of the metric and κ being the
Newtonian gravitational constant. The Maxwell electro-
magnetic field Lagrangian Lem is given by Lem ¼ 1

4
F2≡

FμνFμν, where Fμν ¼ ∂μην − ∂νημ and η ¼ ημdxμ is the
electromagnetic Maxwell gauge potential 1-form [66].
Using the variations principle of the action (1), we

obtain the field equations of the fðRÞ gravity in the
following form [67]:

RμνfR −
1

2
gμνfðRÞ þ ½gμν□ −∇μ∇ν�fR ¼ −

1

2
κTem

μν ; ð2Þ

where □ is the d’Alembertian operator and fR ¼ df
dR and

Tem
μν is the energy-momentum tensor of the Maxwell field

defined as
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Tem
μν ¼ FμαFν

α −
1

4
gμνF2: ð3Þ

Furthermore, by the variation of Eq. (1) with respect to the
gauge potential ημ, we obtain

∂νð
ffiffiffiffiffiffi
−g

p
FμνÞ ¼ 0: ð4Þ

Taking the trace of Eq. (2), we find

3□fR þ RfR − 2fðRÞ ¼ 0: ð5Þ

Using Eq. (5), we obtain the form of the fðRÞ as follows:

fðRÞ ¼ 1

2
½3□fR þ RfR�: ð6Þ

From Eqs. (2) and (6), we obtain [68]

RμνfR−
1

4
gμνRfRþ

1

4
gμν□fR−∇μ∇νfRþ

1

2
κTem

μν ¼0: ð7Þ

Therefore, a significant step is to test Eqs. (4) and (7) to a
spherically symmetric space-time whose line element has
two different unknown functions.

III. SPHERICALLY SYMMETRIC BH SOLUTIONS

The spherically symmetric line element is assumed to be
given by

ds2 ¼ −UðrÞdt2 þ dr2

VðrÞ þ r2dΩ2;

dΩ2 ¼ r2ðdθ2 þ sin2dϕ2Þ; ð8Þ

whereUðrÞ and VðrÞ are two unknowns of r. For the space-
time (8), the Ricci scalar is evaluated as

RðrÞ ¼ r2VU02 − r2UU0V 0 − 2r2UVU00 − 4rU½VU0 −UV 0� þ 4U2ð1 − VÞ
2r2U2

; ð9Þ

where U ≡UðrÞ, V ≡ VðrÞ, U0 ¼ dU
dr , U

00 ¼ d2U
dr2 , and V

0 ¼ dV
dr . Plugging Eqs. (5) and (7) with Eq. (8) and by using Eq. (9),

we obtain the ðt; tÞ, ðr; rÞ, and ðθ; θÞ [or ðϕ;ϕÞ] components of the fðRÞ equation given by

0 ¼ 1

8r2W2

�
r2
�
VF1W02 − 3WF1V 0W0 − 2WVF1W00 − 2W2F1V00 − 3WVW0F0

1 − 2W2V 0F0
1 þ 2VW2F00

1

�

−4rWV½F1W0 −WF0
1� − 4W2F1½1 − V� − 8Wr2η02

�
; ð10Þ

0 ¼ 1

8r2W2

�
r2
�
VF1W02 − 3WF1V 0W0 − 2WVF1W00 − 2W2F1V 00 þWVW0F0

1 − 2W2V 0F0
1 − 6VW2F00

1

�

þ4rWV½F1W0 þWF0
1� − 4W2F1½1 − V� − 8Wr2η02

�
; ð11Þ

0 ¼ 1

8r2W2

�
r2
�
3WF1V 0W0 þ 2WVF1W00 þ 2W2F1V 00 − VF1W02 þWVW0F0

1 þ 2W2V 0F0
1 þ 2VW2F00

1

�

−4rW2VF0
1 þ 4W2F1½1 − V� þ 8Wr2η02

�
: ð12Þ

Other components of the fðRÞ equation vanish.
The trace of the field equation fðRÞ, given by Eq. (5), takes the form

0 ¼ 1

2r2W2

�
r2
�
6W2V 0F0

1 − 3WF1V 0W0 − 2WVF1W00 − 2W2F1V 00 þ VF1W02 þ 3WVW0F0
1 þ 6VW2F00

1

�

þ4rW½3WVF0
1 − F1VW0 − 2F1WV 0� þ 4W2F1½1 − V� − 4r2W2fðrÞ

�
; ð13Þ

where WðrÞ ¼ UðrÞ
VðrÞ, F1 ≡ F1ðrÞ ¼ dfðRðrÞÞ

dRðrÞ , F0
1 ¼ dF1ðrÞ

dr , F00
1 ¼ d2F1ðrÞ

dr2 , and F000
1 ¼ d3F1ðrÞ

dr3 . The Maxwell field equations have

the following form:

η0½rW0 − 4W� − 2rWη00

2rW2
¼ 0; ð14Þ

where η is the component of the electric field, i.e., ηα ¼ ðηðrÞ; 0; 0; 0Þ. Using Eqs. (10) and (11), i.e., (10) minus (11), we obtain
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0 ¼ r2½−4WVW0F0
1 þ 8VW2F00

1� − 8rWW0VF1: ð15Þ

Moreover, Eqs. (10) and (12), i.e., (10) plus (12), give

0 ¼ −2r2WVW0F0
1 þ 4r2VW2F00

1 − 4rWW0VF1: ð16Þ

Equations (15) and (16) coincide with each other. Therefore
we derive two independent equations from Eqs. (10)–(12).
From the above calculations, it is easy to prove that Eq. (10) is
equal to Eq. (11) with minus sign and equal minus two times
Eq. (12). Hence, Eqs. (10) and (16) are independent equa-
tions, which include all the possible solutions. Now we have
four unknown functions V,W, η, andF1, which is the reason

why we are not able to determine one function.1 In order to
obtain concrete and specific solutions and investigate the
physical properties of the solutions in order to show that
Eqs. (10) and (16) include physically reasonable and natural
solutions, we make an assumption of the form on F1 in the
following.
In our previous studies, we showed that whenW ¼ 1 and

providing V ≠ 0, we get from Eq. (15)

F00
1 ¼ 0; that leads to F1 ¼ f2 þ f3r: ð17Þ

From Eqs. (10) and (17), we obtain

0 ¼ r2½−2F1V 00 − 2V 0F0
1� þ 4rVF0

1 − 4F1½1 − V� − 8r2η02

¼ −2r2ðf2 þ f3rÞV 00 − 2r2f3V 0 þ 4ðf2 þ 2f3rÞV − 4ðf2 þ f3rÞ − 8r2η02: ð18Þ

Assuming f3 ¼ 0, Eq. (18) gives

0 ¼ f2½r2V 00 − 2V þ 2� þ 4r2η02: ð19Þ

From Eq. (19) after using Eq. (14), we obtain the following
solution:

V ¼ 1þ V0

r
þ V1r2 −

V2

f2r2
; η ¼

ffiffiffiffiffiffi
V2

p
r

; ð20Þ

where V0, V1, and V2 are integration constants. Equa-
tion (20) is the well-known Reissner-Nordström–(anti–)de
Sitter space-time.
We studied the case f2 ¼ 0 in which Eq. (18) gives

0¼−2r2f3rV 00−2r2f3V 0 þ8f3rV−4f3r−8r2η02: ð21Þ

The solution of Eq. (21) together with Eq. (14) has the
following solution:

V ¼ 1

2
þ Ṽ0r2

20
þ Ṽ1

r2
−
Ṽ2

r3
; η ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
5f3Ṽ2

p
2r

: ð22Þ

Here Ṽ0, Ṽ1, and Ṽ2 are integration constants, again.
Equation (22) corresponds to the solution derived in [69,70].
In [69,70], we also solved the system of differential

equations (13) by assuming F1 ¼ 1þ c
r2. In the present

paper, we solve such a system by assuming

F1 ¼ 1 −
F0 − ðn − 3Þ

rn
; ð23Þ

where n can take any value and F0 is a constant. In the
nominator of the second term in the rhs of (23), (n − 3) can
be absorbed into the redefinition of F0 but we use the form
of (23) for later convenience.
Using Eq. (23) in the system (10)–(12), we obtain

0 ¼ r2ðrn − F0 þ n − 3Þ½2W2V 00 þ 2VWW00 − VW02 þ 3WV 0W0� þ 4W2ð1 − VÞrn þ 8Wr2þnη02

þW½4rn þ ð3n − 4ÞðF0 − nþ 3Þ�VrW0 þ 2W2ðF0 − nþ 3Þ½nrV 0 − ð2 − ðn2 − nþ 2ÞVÞ�; ð24Þ

r2ðrn − F0 þ n − 3Þ½2W2V 00 þ 2VWW00 − VW02 þ 3WV 0W0� þ 4W2ð1 − VÞrn þ 8Wr2þnη02

−W½4rn þ ðn − 4ÞðF0 − nþ 3Þ�VrW0 þ 2W2ðF0 − nþ 3Þ½nrV 0 − f2þ ð3n2 þ 5n − 2ÞVg�; ð25Þ

0 ¼ r2ðrn − F0 þ n − 3Þ½2W2V 00 þ 2VWW00 − VW02 þ 3WV 0W0� þ 4W2ð1 − VÞrn
þ 8Wr2þnη02 þWðF0 − nþ 3Þ½nVrW0 þ 2WfnrV 0 − ð2þ ðn2 þ 3n − 2ÞVÞg�: ð26Þ

We then solve the above system of differential equations in cases η ¼ 0 and η ≠ 0.

1Note that Eq. (14) can determine the unknown η.
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A. The case of η= 0

The analytic solution of the above system takes the following form:

VðrÞ ¼ r
2ðn2þ2n−2Þ

n−2

X
2ðnþ1Þ
n−2
1

2
664c2 þ

Z
X

nþ1
n−2
1

r
7n−8
n−2X2

dr

�
c1 − 2

Z
X

nþ1
n−2
1 X2

c3r
nð2n−1Þ
n−2

dr

�
þ 2

Z X2X
nþ1
n−2
1

R X
nþ1
n−2
1

r
7n−8
n−2 X2

dr

c3r
nð2n−1Þ
n−2

dr

3
775;

WðrÞ ¼ c3r
2nðnþ1Þ
2−n X

2ðnþ1Þ
n−2
1 ; UðrÞ ¼ WðrÞVðrÞ; F1 ¼ 1 −

F0 − ðn − 3Þ
rn

; ð27Þ

where X1ðrÞ ¼ F0ðn−2Þ
2

− ðn−2Þðn−3Þ
2

þ rn and X2ðrÞ ¼ F0 − nþ 3 − rn. Because there appear the fractional powers of X1 in
the expressions of V andW (and U), if we require X1 > 0 for any r to avoid that the complex number appears in V andW,
we find F0 − ðn − 3Þ ≥ 0.
As Eq. (27) shows, the case of n ¼ 2 is not allowed. However this case was studied in [59] and we obtained

VðrÞ ¼ e
3c1
2r2

r

8<
:Hc2 þ H1r3c3 þ 2H1r3

Z
e−

3c1
2r2H

r½ð2c1H2 − 3r2HÞH1 − 2c1HH3�
dr − 2H

Z
e−

3c1
2r2r2H1

ð2c1H2 − 3r2HÞH1 − 2c1HH3

dr

9=
;;

UðrÞ ¼ e
3c1
2r2 ; WðrÞ ¼ NðrÞBðrÞ; F1 ¼ 1þ c1

r2
; ð28Þ

where H ¼ HeunCð3
2
; 3
2
; 0; 3

8
; 9
8
;− c1

r2Þ, H1 ¼ HeunCð3
2
;− 3

2
; 0; 3

8
; 9
8
;− c1

r2Þ, H2 ¼ HeunCPrimeð3
2
; 3
2
; 0; 3

8
; 9
8
;− c1

r2Þ, and
H3 ¼ HeunCPrimeð3

2
;− 3

2
; 0; 3

8
; 9
8
;− c1

r2Þ.2 Therefore, as Eqs. (27) and (28) show the case of n ¼ 2 is defined by the
function HeunC while the case of n ≠ 2 is defined by (27). We will discuss this case in detail below.
Using Eq. (27) in (13), we derive the form of fðrÞ as follows:

fðrÞ ¼ 12

rnþ2X
3n
n−2
1 X2

8>><
>>:r

2ðn2þ2n−2Þ
n−2

�
f21ðn2 − 1Þ − ðn2 − 4Þrn

2
f1 − r2n

�
X2

8>><
>>:
Z X

nþ1
n−2
1 X2

R X
nþ1
n−2
1

r
7n−8
n−2 X2

dr

r
nð2n−1Þ
n−2

dr

−
Z

X
nþ1
n−2
1

r
7n−8
n−2X2

dr

�Z
X

nþ1
n−2
1 X2

r
nð2n−1Þ
n−2

dr −
c1
2

�9>>=
>>; − r

2ðn2−nþ1Þ
n−2 ððF0 − nþ 3Þðnþ 1Þ − rnÞX

ð2n−1Þ
n−2
1

Z
X1

nþ1
n−2X2

3r
nð2n−1Þ
n−2

dr −
1

6
X

3n
n−2
1 X2

2

þ 1

2
c2r

2ðn2þ2n−2Þ
n−2 X2

��
f1ðn2 − 1Þ − ðn2 − 4Þrn

2

�
f1 − r2n

�
þ 1

6
c1r

2ðn2−nþ1Þ
n−2 X

2n−1
n−2
1 ðf1ðnþ 1Þ − rnÞ

9>>=
>>;; ð29Þ

where f1 ¼ F0 − nþ 3. Using Eq. (29) in Eq. (9), we obtain the Ricci scalar in the form

2The special function HeunC is defined as the solution of the Heun confluent equation, that has the form

X00ðrÞ − 1þ β − ðα − β − γ − 2Þr − r2α
rðr − 1Þ X0ðrÞ − αð1þ βÞ − γ − 2η − ð1þ γÞβ − rð2δþ ½2þ γ þ β�Þ

2rðr − 1Þ XðrÞ ¼ 0:

The above differential equation has the following solution: HeunCðα; β; γ; δ; η; rÞ. Interested readers can check [71,72] for more details.
The special function HeunCPrime is defined as the derivative of the Heun confluent function.
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R ¼ −
12

r2X
3n
n−2
1 X2

2

8>><
>>:r

2ðn2þ2n−2Þ
n−2

�
f1ðn − 1Þðnþ 4Þ

2
þ 2rn

�
X2
2

8>><
>>:
Z X2X

nþ1
n−2
1

R X
nþ1
n−2
1

r
7n−8
n−2 X2

dr

r
nð2n−1Þ
n−2

dr

−
�Z

X
nþ1
n−2
1 X2

r
nð2n−1Þ
n−2

dr −
c1
2

�Z
X

nþ1
n−2
1

r
7n−8
n−2X2

dr

9>>=
>>; − r

2ðn2−nþ1Þ
n−2

�
f1ðnþ 4Þ

2
− 2rn

�
X

ð2n−1Þ
n−2
1

Z
X

nþ1
n−2
1 X2

3r
nð2n−1Þ
n−2

dr

− X2
2

�
1

3
X

3n
n−2
1 −

1

2
c2r

2ðn2þ2n−2Þ
n−2

�
f1ðn − 1Þðnþ 4Þ

2
þ 2rn

��
þ 1

6
c1r

2ðn2−nþ1Þ
n−2 X

2n−1
n−2
1

�
f1ðnþ 4Þ

2
− 2rn

�9>>=
>>;: ð30Þ

B. The case of η ≠ 0

Now we are going to find an analytic solution of the system (24)–(26) in the case of η ≠ 0 and obtain

VðrÞ ¼ r
2ðn2þ2n−2Þ

n−2

X
2ðnþ1Þ
n−2
1

2
664c2 þ

Z
X

nþ1
n−2
1

r
7n−8
n−2X2

dr

�
c1 − 2

Z
X

nþ1
n−2
1 X3

c3r
nð2n−1Þ
n−2

dr

�
þ 2

Z X3X
nþ1
n−2
1

R X
nþ1
n−2
1

r
7n−8
n−2 X2

dr

c3r
nð2n−1Þ
n−2

dr

3
775;

WðrÞ ¼ c3r
2nðnþ1Þ
2−n X

2ðnþ1Þ
n−2
1 ; UðrÞ ¼ WðrÞVðrÞ; F1 ¼ 1 −

F0 − ðn − 3Þ
rn

; ηðrÞ ¼ c4 þ c5

Z
X

nþ1
n−2
1

r
ðn−1Þðnþ4Þ

n−2

dr; ð31Þ

where X3 ¼ c3X2 − 2c25r
n−2. Equation (31) reduces to (27) when η ¼ 0. As Eq. (31) shows the case n ¼ 2 is not allowed,

again. However, this case was also studied in [60], where we obtained

VðrÞ ¼ e
3a1
2r2

r

(
Ha2 þ H1r3a3 þ 2H1r3

Z
e−

3a1
2r2H½r2 þ 13a1�

rðr2 þ a1Þ½ð2a1H2 − 3r2HÞH1 − 2a1HH3�
dr

−2H
Z

e−
3a1
2r2r2H1½r2 þ 13a1�

ðr2 þ a1Þ½ð2a1H2 − 3r2HÞH1 − 2a1HH3�
dr

)
;

WðrÞ ¼ e−
3a1
r2 ; UðrÞ ¼ VðrÞWðrÞ; η ¼ a0 þ

ffiffiffi
π

p
erf

� ffiffiffiffiffiffiffi
6a1

p
2r

�
: ð32Þ

Using Eq. (31) in the trace equation given by Eq. (13), we obtain the following form of fðrÞ as3

fðrÞ¼ 12

c3rnþ2X
3n
n−2
1 X2

8>><
>>:r

2ðn2þ2n−2Þ
n−2

�
f21ðn2−1Þ−ðn2−4Þrn

2
f1−r2n

�
X2

8>><
>>:
Z X

nþ1
n−2
1 X3

R X
nþ1
n−2
1

r
7n−8
n−2 X2

dr

r
nð2n−1Þ
n−2

dr

−
Z

X
nþ1
n−2
1

r
7n−8
n−2X2

dr

�Z
X

nþ1
n−2
1 X3

r
nð2n−1Þ
n−2

dr−
c3c1
2

�9>>=
>>;−r

2ðn2−nþ1Þ
n−2 ×ððF0−nþ3Þðnþ1Þ−rnÞX

ð2n−1Þ
n−2
1

Z
X1

nþ1
n−2X3

3r
nð2n−1Þ
n−2

dr

−
1

6
X

3n
n−2
1 X2X4þ

1

2
c2r

2ðn2þ2n−2Þ
n−2 X2

��
f1ðn2−1Þ−ðn2−4Þrn

2

�
f1−r2n

�
þ1

6
c1c3r

2ðn2−nþ1Þ
n−2 X

2n−1
n−2
1 ðf1ðnþ1Þ−rnÞ

9>>=
>>;; ð33Þ

3The functions fðrÞ given by Eqs. (29) and (33) are constrained by the condition that their first derivative
fR ¼ ∂fðRÞ

∂R ¼ ∂fðrÞ
∂r × ∂r

∂R ¼ FðrÞ ¼ 1þ c1
r2.
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where X4 ¼ c3X2 − c25r
n−2. Using Eq. (31) in Eq. (9), we obtain the Ricci scalar in the following form:

R ¼ −
12

c3r2X
3n
n−2
1 X2

2

8>><
>>:r

2ðn2þ2n−2Þ
n−2

�
f1ðn − 1Þðnþ 4Þ

2
þ 2rn

�
X2
2

8>><
>>:
Z X3X

nþ1
n−2
1

R X
nþ1
n−2
1

r
7n−8
n−2 X2

dr

r
nð2n−1Þ
n−2

dr

−
�Z

X
nþ1
n−2
1 X3

r
nð2n−1Þ
n−2

dr −
c1
2

�Z
X

nþ1
n−2
1

r
7n−8
n−2X2

dr

9>>=
>>; − r

2ðn2−nþ1Þ
n−2

�
f1ðnþ 4Þ

2
− 2rn

�
X

ð2n−1Þ
n−2
1

Z
X

nþ1
n−2
1 X3

3r
nð2n−1Þ
n−2

dr

− X2

�
1

3
X4X

3n
n−2
1 −

1

2
c2c3r

2ðn2þ2n−2Þ
n−2 X2

�
f1ðn − 1Þðnþ 4Þ

2
þ 2rn

��
þ 1

6
c1c3r

2ðn2−nþ1Þ
n−2 X

2n−1
n−2
1

�
f1ðnþ 4Þ

2
− 2rn

�9>>=
>>;: ð34Þ

In the following section, we will study the physics beyond the BH solutions with and without charge given by Eqs. (27)
and (31).

IV. INHERENT PHYSICS OF THE BH SOLUTIONS (27) AND (31)

An important detail to emphasize is that when F0 ¼ n − 3, we recover the GR BH, as Eqs. (27) and (31) show. Now we
extract the inherent physics of the BH solutions (27) and (31). We therefore concentrate on the case n ¼ 4 and write the
metric potentials of the neutral BH solution (27) as

VðrÞ ¼ c2r22

ðF0 − 1þ r4Þ5 þ
r22

ðF0 − 1þ r4Þ5

8>><
>>:c1

Z ðF0 − 1þ r4Þ52
r10ðF0 − 1− r4Þ5 drþ 2

Z ðF0 − 1− r4Þ
�R ðF0−1þr4Þ52

r10ðF0−1−r4Þdr
�
ðF0 − 1þ r4Þ52

r14
dr

−2
Z ðF0 − 1þ r4Þ52ðF0 − 1− r4Þ

r14
dr
Z ðF0 − 1þ r4Þ52

r10ðF0 − 1− r4Þdr

9>>=
>>;;

WðrÞ ¼ c3ðF0 − 1þ r4Þ5
r20

; UðrÞ ¼WðrÞVðrÞ; F1 ¼ 1−
F0 − 1

r4
: ð35Þ

We should note that F0 − 1 should not be negative in order that ðF0 − 1þ r4Þ52 should be a real number for any value of r.
The asymptotic forms of the metric potentials when r is large given by Eq. (35) take the following forms:

VðrÞ ¼ r2c2 þ 1þ c1
3r

− ðF0 − 1Þ
�
5c2
r2

þ 4

r4
þ 7c1

6r5
−
15c1ðF0 − 1Þ

r6
þ � � �

�
;

UðrÞ ¼ r2c2 þ 1þ c1
3r

þ ðF0 − 1Þ
�
1

r4
þ c1
2r5

þ 26ðF0 − 1Þ
35r8

þ � � �
�
; ð36Þ

where we have chosen c3 ¼ 1. Using Eq. (36) in Eq. (8), we obtain the line element in the form

ds2 ≈ −
�
r2Λeff þ 1 −

2m
r

þ ðF0 − 1Þ
�
1

r4
−
3m
r5

þ 26ðF0 − 1Þ
35r8

��
dt2

þ dr2

r2Λeff þ 1 − 2m
r − ðF0 − 1Þ

�
5Λeff
r2 þ 4

r4 −
7m
r5
þ 90mðF0−1Þ

r6

�þ dΩ2; ð37Þ

where m ¼ − c1
6
and c2 ¼ Λeff .
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Equation (37) shows that the line element expresses the
asymptotic anti–de Sitter (A)dS space-time and is not
identical with the Schwarzschild space-time due to the
contribution of the extra terms of the higher-order curvature
of the fðRÞ gravity. Equation (37) ensures what we have
stated in the introduction, that is, in the fðRÞ gravity,
one can derive a space-time that is different from the
Schwarzschild-(A)dS one and when F0 ¼ 1, i.e., F1 ¼ 1,
we recover the Schwarzschild (A)dS metric [73] as usual.
In conclusion, at a higher-order curvature, we can obtain a
neutral space-time that is unlike the Schwarzschild solution
and coincides with the Schwarzschild (A)dS at a lower
order of fðRÞ ¼ Rþ const.
Now we use Eq. (36) in Eq. (9) and obtain4

RðrÞ ≈ −12Λeff −
36ðF0 − 1Þ

r6

⇒ rðRÞ ¼ 61=3½ðRþ 12ΛeffÞ5ð1 − F0Þ�1=6
Rþ 12Λeff

; ð38Þ

where we have omitted the other terms in Ricci scalar to be
able to write the radial coordinate r as a function of Ricci
scalar, i.e., rðRÞ. From Eq. (38), we can clearly see that
when F0 ¼ 1, we obtain a constant value of the Ricci scalar
because when F1 ¼ 1 and fR ¼ const. The asymptote of
fðrÞ given by Eq. (29) becomes

fðrÞ ≈ −6Λeff −
36ðF0 − 1Þ

r6
þ 96mðF0 − 1Þ

r7
� � � : ð39Þ

Using Eq. (38) in (39), we obtain

fðRÞ≈6ΛeffþR−
12m62=3R7=6

27ð1−F0Þ1=6

−
168mΛeff6

2=3R1=6

27ð1−F0Þ1=6
−

168mΛeff
262=3

27ð1−F0Þ1=6R5=6 �� �: ð40Þ

Equation (40) shows that fðRÞ includes the term with the
higher positive power of R than the Einstein-Hilbert term,
which may dominate when R is large, and also the term
with negative power, which may dominate when R is small.
The expression of Eq. (40) might look strange because

there is a divergence in the limit of F0 → 1, which should
correspond to the standard Einstein-Hilbert action with a
cosmological constant. This occurs because we have used
an expansion assuming that r is large in Eq. (39), but after
that, if we consider the limit of F0 → 1, the scalar curvature
R becomes a constant, which means that R is independent
of r and therefore we cannot solve rwith respect to R. Then
it is natural if the expression (40), which is obtained by
combining (38) and (39), becomes singular in the limit that
of F0 → 1. The singularity is rather an artificial one coming
from the noncommutability of the two limits that r → ∞
and F0 → 1 but the behavior makes the situations ambigu-
ous and often uncontrollable. In order to avoid this
difficulty, we also use the numerical calculations.
Using Eq. (36), we obtain the curvature invariants of

solution (27) as

Rμν ρσRμν ρσ ¼ RμνRμν ¼ 24Λeff
2 þ 144ΛeffðF0 − 1Þ þ 48m2

r6
−
384ΛeffmðF0 − 1Þ þ 48m2

r7
−
120Λ2

effðF0 − 1Þ2
r8

þ � � � ;

R ¼ −12Λeff −
36ðF0 − 1Þ

r6
þ 32mðF0 − 1Þ

r7
þ � � � ; ð41Þ

where ðRμν ρσRμν ρσ; RμνRμν; RÞ are the Kretschmann scalar, the Ricci tensor square and the Ricci scalar, respectively, and all
of them have a true singularity when r ¼ 0. An important detail to highlight is the fact that F0 is the main reason of the
differentiation of the present study from the (A)dS Schwarzschild BH solution of GR whose invariants behave as
ðRμν ρσRμν ρσ; RμνRμν; RÞ ¼ ð24Λ2 þ 48M2

r6
; 36Λ2; 12ΛÞ. Equation (41) shows that the leading order of the scalars

ðRμν ρσRμν ρσ; RμνRμν; RÞ is
	

1
r6
; 1
r6
; 1
r6



which coincides with that of the (A)dS Schwarzschild BH solution whose leading

term of the Kretschmann is
	

1
r6



. Thus, Eq. (41) shows that the singularity of the Kretschmann coincides with the (A)dS

Schwarzschild BH solution of GR.
Now we apply the same procedure that was used for the neutral case to the charged one. The analytic solution (31) in the

case n ¼ 4 takes the form

4The asymptote of Ricci scalar is given as

RðrÞ ¼ −12Λeff −
12ðF0 − 1Þ

r6

�
3þ 8m

r
−
15ðF0 − 1ÞΛeff

r2
þO

�
1

r4

�
� � �

�
:
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VðrÞ¼ r22

c3ðF0−1þr4Þ5

8>><
>>:c2c3þc1c3

Z ðF0−1þr4Þ52
r10ðF0−1−r4Þdr−2

Z ðF0−1þr4Þ52½c3ðF0−1−r4Þ−2c25r
2�

r14
dr

×
Z ðF0−1þr4Þ52

r10ðF0−1−r4Þdrþ2

Z ½c3ðF0−1−r4Þ−2c25r
2�ðF0−1þr4Þ52

�R ðF0−1þr4Þ52
r10ðF0−1−r4Þdr

�
r14

dr

9>>=
>>;;

WðrÞ¼c3ðF0−1þr4Þ5
r20

; UðrÞ¼WðrÞVðrÞ; F1¼1−
F0−1

r4
; ηðrÞ¼c4þc5

Z ðF0−1þr4Þ52
r12

dr: ð42Þ

Equation (42) reduces to Eq. (35) when the constant c5 ¼ 0 which makes the electric charge ηðrÞ ¼ const. To further
examine this charged solution, we calculate its asymptotic form and obtain

VðrÞ ≈ r2c2 þ 1þ c1
3r

þ c25
r2

− ðF0 − 1Þ
�
5c2
r2

þ 4

r4
þ 7c1

6r5
þ 3½c25 − 5c1ðF0 − 1Þ�

r6
þ � � �

�
;

UðrÞ ≈ r2c2 þ 1þ c1
3r

þ c25
r2

þ ðF0 − 1Þ
�
1

r4
þ c1
2r5

þ 2c25
r6

þ 26ðF0 − 1Þ
35r8

þ � � �
�
; ð43Þ

where we use c3 ¼ 1. Using Eq. (43) in Eq. (8), we obtain the line element in the following form:

ds2 ≈ −
�
r2Λeff þ 1 −

2m
r

þ q2

r2
þ ðF0 − 1Þ

�
1

r4
−
3m
r5

þ 2q2

r6
þ 26ðF0 − 1Þ

35r8

��
dt2

þ dr2

r2Λeff þ 1 − 2m
r þ q2

r2 − ðF0 − 1Þ
�
5Λeff
r2 þ 4

r4 −
7m
r5
þ 3½q2þ30mðF0−1Þ�

r6

�þ dΩ2; ð44Þ

where q ¼ c5, Λeff , and m have the same values given in the neutral case.
Equation (44) shows that the line element is asymptotic to (A)dS and is not equivalent to the Reissner-Nordström

space-time in respect of the contribution of the extra terms of the higher-order curvature of the fðRÞ gravity.
Equation (44) shows clearly that in the fðRÞ gravity, one can obtain a space-time that is different from the Reissner-
Nordström space-time and when the constant F0 ¼ 1, we recover the Reissner-Nordström (A)dS metric [73]. We
can summarize the results of this section by saying that at a higher-order curvature, we can obtain a charged space-time
that is unlike Reissner-Nordström space-time and reduces to the Reissner-Nordström one (A)dS at a lower order
of fðRÞ ¼ R.
Using Eq. (43), we obtain the invariants of solution (31) as

Rμν ρσRμν ρσ ¼ RμνRμν ¼ 24Λeff
2 þ 144ΛeffðF0 − 1Þ þ 48m2

r6
−
384ΛeffmðF0 − 1Þ þ 96mq2

r7

−
120Λ2

effðF0 − 1Þ2 þ 56q2½q2 þ 30mðF0 − 1Þ�
r8

þ � � � ;

R ¼ −12Λeff −
36ðF0 − 1Þ

r6
þ 32mðF0 − 1Þ

r7
þ ðF0 − 1Þ 180ΛeffðF0 − 1Þ þ 60q2

r8
þ � � � : ð45Þ

Equation (45) shows that all the invariants suffer a true singularity when r ¼ 0. A substantial detail to highlight is that F0 is
the origin that make the above results unlike the Reissner-Nordström (A)dS BH solution of GR whose scalars behave as

ðRμν ρσRμν ρσ; RμνRμν; RÞ ¼ ð24Λ2 þ 48M2

r6
; 36Λ2 þ 4q4

r8 ; 12ΛÞ. Equation (45) shows that the leading expression of the scalars
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ðRμν ρσRμν ρσ; RμνRμν; RÞ is
	

1
r6
; 1
r6
; 1
r6



, which does not

coincide with the form of the Reissner-Nordström (A)dS
BH solution whose leading expressions of the Kretschmann
and the Ricci tensor squared are ð 1

r6
; 1r8Þ. Thus, Eq. (45)

shows that the singularity of the Ricci tensor squared is
much milder than that of the Reissner-Nordström (A)dS
BH solution of GR.

V. STABILITY OF THE BHS USING GEODESIC
DEVIATION

The geodesic equations take the form [73]

d2xα

dε2
þ
�
α

βρ

�
dxβ

dε
dxρ

dε
¼ 0; ð46Þ

where ε is the affine connection parameter. The geodesic
deviation equations take the form [74,75]

d2ϵσ

dε2
þ 2

�
σ

μν

�
dxμ

dε
dϵν

dε
þ
�
σ

μν

�
;ρ

dxμ

dε
dxν

dε
ϵρ ¼ 0; ð47Þ

with ϵρ being the four-vector deviation. Plugging Eqs. (46)
and (47) into Eq. (8), we obtain

d2t
dε2

¼ 0;
1

2
U0ðrÞ

�
dt
dε

�
2

− r

�
dϕ
dε

�
2

¼ 0;

d2θ
dε2

¼ 0;
d2ϕ
dε2

¼ 0; ð48Þ

and for the geodesic deviation the line element (8) gives

d2ϵ1

dε2
þ VðrÞU0ðrÞ dt

dε
dϵ0

dε
− 2rVðrÞ dϕ

dε
dϵ3

dε
þ
�
1

2
ðU0ðrÞV 0ðrÞ þ VðrÞU00ðrÞÞ

�
dt
dε

�
2

− ðVðrÞ þ rV 0ðrÞÞ
�
dϕ
dε

�
2
�
ϵ1 ¼ 0;

d2ϵ0

dε2
þ V 0ðrÞ

VðrÞ
dt
dε

dϵ1

dε
¼ 0;

d2ϵ2

dε2
þ
�
dϕ
dε

�
2

ϵ2 ¼ 0;
d2ϵ3

dε2
þ 2

r
dϕ
dε

dϵ1

dτ
¼ 0; ð49Þ

whereUðrÞ and VðrÞ are given in Eq. (36) or Eq. (43) and a
prime is the derivative with respect to the radial coordinate
r. From the condition of a circular orbit, we can obtain

θ ¼ π

2
;

dθ
dε

¼ 0;
dr
dε

¼ 0: ð50Þ

The use of Eq. (50) in Eq. (48) leads to

�
dϕ
dε

�
2

¼ U0ðrÞ
r½2UðrÞ − rU0ðrÞ� ;�

dt
dε

�
2

¼ 2

2UðrÞ − rU0ðrÞ : ð51Þ

We can rewrite Eq. (49) as

d2ϵ1

dϕ2
þ UðrÞU0ðrÞ dt

dϕ
dϵ0

dϕ
− 2rVðrÞ dϵ

3

dϕ
þ
�
1

2
½U0ðrÞ2 þUðrÞU00ðrÞ�

�
dt
dϕ

�
2

− ½UðrÞ þ rU0ðrÞ�
�
ζ1 ¼ 0;

d2ϵ2

dϕ2
þ ϵ2 ¼ 0;

d2ϵ0

dϕ2
þ U0ðrÞ

UðrÞ
dt
dϕ

dϵ1

dϕ
¼ 0;

d2ϵ3

dϕ2
þ 2

r
dϵ1

dϕ
¼ 0: ð52Þ

From the second of Eq. (52), we can show that we have a
simple harmonic motion, which is the stability condition of
the plane θ ¼ π=2. The remaining equations of (52) assume
the following solutions:

ϵ0 ¼ ζ1eiσϕ; ϵ1 ¼ ζ2eiσϕ; and ϵ3 ¼ ζ3eiσϕ; ð53Þ

where ζ1, ζ2, and ζ3 are constants and ω is an unknown
function. Using the values of ϵ1, and ϵ3 given by Eq. (53) in
the fourth equation of Eq. (52), we get

ζ2 ¼ −
ζ3σr
2

: ð54Þ

Then substituting the values of ϵ0, and ϵ1 given by Eq. (53)
into the third equation of Eq. (52) and using Eq. (54), we
obtain

ζ1 ¼
ζ3

ffiffiffiffiffiffiffiffiffiffiffiffi
2U0r3

p

2U
: ð55Þ
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Substituting (53), after using Eqs. (54) and (55) into
the first equation of Eq. (52), we obtain the stability
condition as

3UVU0 − σ2UU0 − 2rVU02 þ rUVU00

UU0 > 0

⇒ σ2 <
3UVU0 − 2rVU02 þ rUVU00

UU0 : ð56Þ

Wedepict Eq. (56) in Fig. 1 using specific values of themodel.
The case q ¼ 0 is drawn in Fig. 1(a), and the case q ≠ 0 is
drawn in Fig. 1(b) for the inequality of Eq. (56). These figures
exhibit the unshaded and shaded zones where the BHs are
stable and not stable, respectively.

VI. THERMODYNAMICS OF THE
BH SOLUTIONS (27) AND (31)

In this section, we will investigate the thermodynamical
properties of the BH solutions (27) and (31).5 The tempera-
ture of a BH is defined as [76–82]

Tð1;2Þ ¼
rð1;2Þ − rð2;1Þ
4πrð1;2Þ2

; ð57Þ

where rð1;2Þ represents the inner and outer horizons of the
space-time. TheHawking entropy of the horizons is defined as

ψ ð1;2Þ ¼
1

4
Að1;2ÞfR; ð58Þ

with Að1;2Þ being the area of the horizons. The quasilocal
energy is defined as [76–79,83,84]

Eð1;2Þ ¼
1

4

Z �
2fRrð1;2Þ þ r2ð1;2ÞfF0ðRðrð1;2ÞÞÞ

− Rðrð1;2ÞÞfRrð1;2Þg
�
drð1;2Þ: ð59Þ

Finally, the Gibbs free energy is defined as [84,85]

Gð1;2Þ ¼ Eð1;2Þ − Tð1;2Þψ ð1;2Þ: ð60Þ

A. Thermodynamics of the BH (43)
that has asymptotic flatness

In this subsection, we study the thermodynamics of the
BH (43) which is characterized by the mass m, F, and the
constant q. We only consider the asymptotically flat
solution where c2 ¼ 0. When F0 ¼ 1, we obtain the
Reissner-Nordström BH of GR. To derive the horizons
of the BH (43), we set UðrÞ ¼ 0 [82], whose solutions give
two real positive roots that have the form

5In this study, we will not address the BH solutions (27)and (31) because one cannot easily find their explicit roots. Therefore, we will
use Λeff ¼ 0 and study these solutions up to Oð 1r4Þ.

(a) (b)

FIG. 1. Plot of Eq. (56) against the coordinate r for the BHs (36) and (43).
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q4 þ 12ðF0 − 1Þ

F1

þm2 þ 2q2

3
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;

1=2
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CCA;
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1
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0
B@3mþ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q4 þ 12ðF0 − 1Þ
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s
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:2m2 þ 4q2

3
−
F1

9
−
12ðF0 − 1Þ

F1

−
q4

F
þ 2mq2ð1þmÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q4þ12ðF0−1Þ
F1

þm2 þ 2q2

3
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9

q
9=
;

1=2
1
CCA; ð61Þ

where

F1 ¼ 3ð6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − F0Þ½18q8 þ 3m2q6 þ 24ð1 − F0Þq4 þ 108q2m2ð1 − F0Þ� þ 48ð1 − 3F0 − 3F2

0Þ
q

−q6 þ 36q2ðF0 − 1Þ þ 54m2ðF0 − 1ÞÞ1=3:

The metric potentials of the BH (43) are plotted in Fig. 2(a).
Figure 2(a) shows that we have two positive horizons of the
metric potential UðrÞ when F ≠ 1. The degenerate horizon
of UðrÞ occurred at ðF;m; q; rÞ≡ ð2; 0.77; 0.53; 1.22Þ
where the radii of the two horizons coincides with each
other, r1 ¼ r2. The behavior of the degenerate is indicated
in Fig. 2(b) which shows that r1 < rd. As we observe from
Fig. 2(b), as q decreases, we enter a parameter region where
no horizon exists, and, thus, the central singularity becomes
a naked singularity. The behaviors of the two horizons
with respect to mass are drawn in Figs. 2(c) and 2(d) when
F0 ¼ 1 and F0 ≠ 1.1, respectively. The interesting point is
that the mass is not equal to the absolute value of the charge
m ≠ jqj in the extremal limit where the radii of the two
horizons coincide with each other, r1 ¼ r2. In the case of
the Reissner-Nordström BH of GR, the mass equals the
absolute value of the charge m ¼ jqj. As clear from
Eq. (57), the Hawking temperature vanishes in the extremal
limit.

From Eq. (57) the Hawking temperature of the BH (43)
is calculated and drawn in Figs. 2(e) and 2(f) for F0 ¼ 1
and F0 ¼ 1.1, respectively. These figures show that
T1 > T2. Figures 2(e) and 2(f) also indicate that T1 has
an increasing positive value whereas T2 has a decreasing
negative one.
From Eq. (58), the entropy of BH (43) takes the form

ψ ð1;2Þ ¼ πrð1;2Þ2
�
1 −

F0 − 1

rð1;2Þ4

�
: ð62Þ

The plot of the entropy (62) when F0 ¼ 1 and F0 ¼ 1.1 is
drawn in Figs. 2(g) and 2(h), respectively, which indicate
an increasing value for ψ1 and decreasing value for ψ2.
From Eq. (59), we evaluate the local energy of BH (43) and
obtain

Eð1;2Þ ¼
21rð1;2Þ9 þ ðF0 − 1Þ½7rð1;2Þ5 − 126q2rð1;2Þ3 þ 54rð1;2ÞðF0 − 1Þ − 126mðF0 − 1Þ�

42rð1;2Þ8
: ð63Þ

Equation (63) shows that, when F0 ¼ 1, we obtain Eð1;2Þ ¼
rð1;2Þ
2

which is the energy of a spherically symmetric space-
time. The plot of Eq. (63) when F0 ¼ 1 and F0 ¼ 1.1 is

drawn in Figs. 2(i) and 2(j), respectively, which also
indicates positive increasing values for Eð1;2Þ. Figures 2(i)
and 2(j) also show E1 > E2. Finally, by using Eqs. (57),
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 2. Plots of thermodynamical quantities of the BH solution Eq. (43): (a) shows the behavior of the metric potential U for F0 ¼ 1
and F ≠ 1 whenm ¼ 1 and q ¼ 0.5. (b) Typical behavior of the horizons, degenerate and nonhorizon of the metric potential UðrÞ given
by Eq. (43) when m ¼ 0.77 and F ¼ 2. (c) Typical behavior of the horizons with mass given by Eq. (43) when q ¼ 0.05 and F0 ¼ 1.
(d) Typical behavior of the horizons with mass given by Eq. (43) when q ¼ 0.05 and F ¼ 2. (e),(f) The behavior of the Hawking
temperature (57), showing T1 has a positive decreasing value whereas T2 has a negative increasing value when F0 ¼ 1 and F0 ¼ 1.1.
(g),(h) The behavior of the Hawking entropy (62), which indicates ψ ð1;2Þ always has positive values, ψ1 and increases with M while ψ2

has a positive decreasing value. (i),(j) The behavior of quasilocal energy (63), which indicates that Eð1;2Þ has positive increasing values
and also E1 > E2. (k),(l) The behavior of Gibb’s free energy which indicates the behavior of G1 which is positive while G2 starts with a
positive value that becomes negative as M increases.
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(62), and (63) in (60), we evaluate Gibbs’ free energies. The
plot of these energies is drawn in Figs. 2(k) and 2(j) when
F0 ¼ 1 and F0 ¼ 1.1, respectively. These figures indicate a
positive increasing value for G1 and also G1 > G2.

B. First law of thermodynamics of the
BH solutions (36) and (43)

An important step for any BH solution is to check its
validity of the first law of thermodynamics. Therefore, for
the charged BH the Smarr formula and the differential form
for the first law of thermodynamics, in the frame of the
fðRÞ gravity, can be expressed as [86,87]

M¼2ðTψ −PVÞþηQ; dE¼TdψþηdQþPdV; ð64Þ

where ψ is the Hawking entropy, T is the Hawking
temperature, η is the electric potential P is the radial

component of the stress-energy tensor that is used as a
thermodynamic pressure, i.e., P ¼ Tr

rj�, V is the geo-
metric volume and M ¼ m, Q ¼ q. The pressure, in the
context of the fðRÞ gravity, is determined as [86]

P¼−
1

8π

�
F1

rð1;2Þ2
þ1

2
ðfðRÞ−RF1Þ

�
þ1

4

�
2F1

rð1;2Þ
þF0

1

�
T:

ð65Þ

Using Eq. (44), we get

M ¼ 1

2

�
rð1;2Þ þ

q2

rð1;2Þ
−
ðF0 − 1Þ
2rð1;2Þ3

�
: ð66Þ

By calculating the necessary components of Eq. (64), we
obtain

Pð1;2Þ ≈ −
q2rð1;2Þ2 − 3ðF0 − 1Þ

6rð1;2Þ3
; Tð1;2Þ ≈

rð1;2Þ4 − q2rð1;2Þ2 þ 3ðF0 − 1Þ
4πrð1;2Þ5

;

ψ ð1;2Þ ≈
π½rð1;2Þ4 − ðF0 − 1Þ�

rð1;2Þ2
; ηð1;2Þ ≈

q
2rð1;2Þ

−
ðF0 − 1Þq
rð1;2Þ5

; V ¼ 4

3
πrð1;2Þ3: ð67Þ

Using Eq. (67) in Eq. (64), we can prove that the first law of
the flat space-times (36) and (43) is verified.

VII. DISCUSSION AND CONCLUSIONS

This study focuses on deriving spherically symmetric
BH solutions with and without charge in the context of the
fðRÞmodified gravity theory. The fðRÞ gravity is known as
a theory whose field equation includes fourth-order deriva-
tive thereby making the derivation of the analytic solution
difficult. Therefore, we used the trace equation of the fðRÞ
equation and solved it with respect to fðRÞ. Using this
solution, we rewrote the charged field equations of the fðRÞ
gravity and applied them to a spherically symmetric space-
time that has two unknown functions of radial coordinate.
The resulting nonlinear differential equations were solved
under two cases: the case of vanishing the electric
charge and the case of nonvanishing electric charge. In
these two cases, we assumed the derivative of the FðRÞ,
F1ðrÞ ¼ dfðRðrÞÞ

dRðrÞ ¼ 1 − F0−ðn−3Þ
rn , where n > 0. By using the

previously mentioned assumption that when F0 ¼ n − 3,
we obtained F1ðrÞ ¼ 1, which is the case of GR. In the
frame of the above assumption of F1ðrÞ, we solved the field
equations of the fðRÞ gravity with and without the electric
charge analytically and derived the exact form of the metric
potentials and the electric charge.
To understand the physics of these BH solutions, we

gave the asymptotic form of the metric potentials, when
n ¼ 4, with and without charge. From such asymptote, we

have shown explicitly that our BH solutions are different
from GR BH solutions and coincide with them when
F0 ¼ 1. Then we wrote the line element of such BHs
and have shown that they asymptotically behave as (A)dS
space-time. We calculated the asymptotic form of fðRÞ
when r is large and have shown that fðRÞ could include the
terms with the positive power of R higher than the Einstein-
Hilbert term and terms with negative power. We also
calculated the curvature invariants of these BHs with
and without charge and have shown that the singularity
of the Ricci squared tensor in the charged case is milder
than that of the GR BHs. Moreover, we studied the
geodesic deviations of these BHs and derived the condition
of stability analytically and graphically, as shown in Fig. 1.
To further examine the physics of these BHs we consid-

ered the thermodynamical quantities such as Hawking
temperature, entropy, quasilocal energy, and Gibb’s free
energy and investigate their behavior analytic and graphi-
cally. In the case of the asymptotically flat solution, there
exists the extremal limit, where the radii of the two BH
horizons, that is, inner horizon and outer horizon, coincide
with each other and the Hawking temperature vanishes. In
the case of the Reissner-Nordström BH of GR, the mass
equals to the absolute value of the charge in the extremal
limit. It could be interesting that in our model the mass is not
equal to the absolute value of the charge in the limit, where
the radii of the two horizons coincide with each other.
Because the Hawking temperature vanishes, it is often
considered that the extremal limit might be the remnant
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after the BH evaporation by the Hawking radiation. Then it
may give any clue for solving the information loss problem
in the black hole because the disagreement of the mass and
the charge may include some information lost in GR.
Moreover, we tested the first law of thermodynamics and
have shown in detail that such BHs satisfy this law. If we
apply the results of odd perturbation presented in [70], we
can prove that the BHs presented in this study are stable.
In summary, we derived new BHs with and without

charge in the frame of fðRÞ and showed that their Ricci

scalars are not constant. These BHs are original ones, and
their originality comes from the constant that involves F0.
This constant comes from the assumption of the first

derivative of fðRÞ, i.e., F1ðrÞ ¼ dfðRðrÞÞ
dRðrÞ ¼ 1 − F0−ðn−3Þ

rn .
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