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Specific neutral and charged black holes in f(R) gravitational theory
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With the successes of f(R) theory as a neutral modification of Einstein’s general relativity (GR), we
continue our study in this field and attempt to find general neutral and charged black hole (BH) solutions. In
the previous papers [Phys. Rev. D 102, 124022 (2020); Phys. Lett. B 820, 136475 (2021)], we applied the

field equation of the f(R) gravity to a spherically symmetric space-time ds®> = —U(r)dt* + ‘il(rrz) +

r?(d6* + sin” Od¢?*) with unequal metric potentials U(r) and V(r) and with and without electric charge.
Then we have obtained equations which include all the possible static solutions with spherical symmetry.
To ensure the closed form of system of the resulting differential equations in order to obtain specific
solutions, we assumed the derivative of the f(R) with respect to the scalar curvature R to have a form

Fi(r) = 45000 — oty

solutions for n > 2 but we show that the n = 2 case is not allowed. This form of F(r) could be the most
acceptable physical form that we can generate from it physical metric potentials that can have a well-known
asymptotic form and we obtain the metric of the Einstein general relativity in the limit of Fy — n — 3. We
show that the form of the electric charge depends on # and that n # 2. Our study shows that the power # is
sensitive and why we should exclude the case n = 2 for the choice of F' (r) presented in this study. We also
study the physics of these black hole solutions by calculating their thermodynamical quantities, like
entropy, the Hawking temperature and Gibb’s free energy, and derive the stability conditions by using
geodesic deviations. In the standard Reissner-Nordstrom space-time which is the charged black hole
solution in GR, there appear two black hole horizons, that is, inner horizon and outer horizon. When the
radii of the two horizons coincide with each other, which is called the extremal limit, the absolute value
of the charge equals to the mass and the Hawking temperature vanishes. In our model, however, the
absolute value of the charge is not equal to the mass in the limit although the Hawking temperature
vanishes.

with a constant Fj and show that we can generate asymptotically GR BH
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I. INTRODUCTION

The f(R) gravity is a modified gravitational theory
where the action is given in a generic function of scalar
curvature, R, and the f(R) gravity may describe the early
and late cosmological evolution. The f(R) theory can
describe dark energy and dark matter consistently without
imposing any new material that has not yet been revealed
by experiments [1-6]. Amending the Lagrangian of general
relativity (GR) not only influences the dynamical system of
the Universe, but it can also change the dynamical system at
the galactic or solar system scales. Thus, amended theories
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of gravity with higher-order curvature corrections provide a
deeper understanding of gravity.

The Einstein-Hilbert action, which reproduces the field
equation of GR, is linear to the Ricci scalar R. By changing
the action to include the nonlinear terms, the Ricci
curvature, and/or Riemann curvatures, many viable modi-
fied gravitational theories are presented by the scientific
society to describe the cosmic evolution in early times.
Most of those theories use a gravitational Lagrangian which
contains some of the four possible second-order curvature
invariants. Moreover, many models that use higher-order
invariants as a function of R are introduced in the
gravitational action and different f(R) gravitational models
are obtained [7—19]. Aside from the ability of these theories
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to eliminate the contributions of curvature invariants other

than the Ricci scalar R, they could also prevent the
Ostrogradsky issue [20], which is a problem that character-
izes any higher derivative theories [21].

The earliest modification of GR could be the one
presented in [22]. A natural extension of GR is to include
expressions such as R" with a constant n similar to the
Starobinsky model f(R) = R + eR?, where ¢ is also a
constant [23]. When n < 0, the contribution of R" could
investigate the late epoch and describe self-accelerating
vacuum solutions [24-27]. Nevertheless, such solutions
suffer from instabilities [28,29] and have strong limitations
from the solar system test [30]. To avoid the previously
mentioned issues, scientists have considered the f(R)
gravitational theory, which can accommodate a wide range
of phenomena. Many applications carried use the framework
of the f(R) gravitational theory such as gravitational wave
detection [31,32], early-time inflation [33], cosmological
phases [34-37], the singularity problem [38], stability of
solutions [39—41], and other different issues [42].

Many black hole (BH) solutions in the f(R) theory
coincide with the BH solutions of GR or differ from them.
Among these solutions, the authors in [43] derived static
spherically symmetric solutions and showed that the de
Sitter (dS)-Schwarzschild metric is a solution to the field
equations of the f(R) theory. Moreover, spherically sym-
metric solutions are derived in [44] by involving a perfect
fluid. The BH solution with and without electric charge is
presented in [45]. Many analytic spherically symmetric
solutions are derived in [46-57]. Analytic charged D-
dimensional BH solutions are derived and discussed in
[58]. Moreover, analytic spherically symmetric BH solu-
tions with and without electric charge are derived in [59,60].
Those BH solutions were different from the BH solutions of
GR and coincide with them under certain special conditions.
The study in this paper aims to generalize this special
condition and derive analytic BH solutions with and without
electric charge in the f(R) gravitational theory.

This paper is organized as follows: In Sec. II, we give the
building block of the f(R) gravitational theory and obtain
its field equations including the contribution from the
Maxwell field. In Sec. III, we apply the charged field
equations of the f(R) gravity to a space-time having
spherically symmetric and unequal metric potentials. We
present the nonlinear differential equations which are
composed of five nonlinear differential equations having
four unknown functions; one is the electric potential, one is
the derivative f'(R) of the f(R), and the other two are
related to the metric potentials. We study special cases that
give a consistent BH solution which was derived in the
previous literature. Then we study the general case and
divide it into two classes: The first class is the one without
charge and we derive an original new BH solution assum-
ing the first derivative of f(R) concerning R to has the form

f(R)=1- w where n can be any value. The second

class is the one with the electric charge, and we derive a
new charged BH solution assuming that the derivative
f'(R) is not changed from that in the case without electric
charge. In Sec. IV, we study the physical properties of these
new BH solutions with and without charge by giving the
form of the metric potentials in asymptotic form and show
that they are different from GR metric potentials either the
Schwarzschild or the Reissner-Nordstrém space-time due
to the contribution of the nonlinear curvature scalar terms.
We also study the scalar invariants made of curvatures of
the BH solution and show that its singularity is softer than
that of GR for the case with an electric charge. In Sec. V, we
present the stability constraints of those BH solutions by
using geodesic deviation and investigate the regions of
stability graphically. In Sec. VI, we evaluate the basic
thermodynamical expressions, that is, the Hawking temper-
ature, entropy, quasilocal energy, heat capacity, and Gibb’s
free energy, related to our new BH solutions and show that
the solutions are physically acceptable. Our charged BH
corresponds to the Reissner-Nordstrom space-time, which
is the charged BH solution in GR. In the solution, there
appear two black hole horizons, which are called the inner
horizon and the outer horizon. The extremal limit is the
limit when the radii of the two horizons coincide with each
other. In the limit, the absolute value of the charge coincides
with the mass, and the Hawking temperature vanishes. In
our model, however, the absolute value of the charge does
not equal the mass in the limit although the Hawking
temperature vanishes. In Sec. VI B, we explain that the new
BH solutions fulfill the first law of thermodynamics. In the
final section, we discuss our derived results.

II. f(R) AMENDED THEORY

If f(R)# R, then we have a modified gravitational
theory that is unlike GR. The four-dimensional action of
the f(R) gravitational theory takes the following form
[1,25-27,61-65]:

=y [ e ® + [ Ex/TGlen (1)

with g being the determinant of the metric and x being the
Newtonian gravitational constant. The Maxwell electro-
magnetic field Lagrangian L., is given by L., = 1 F?=
F, F*, where F,, = d,n,—0,n, and n=n,dx" is the
electromagnetic Maxwell gauge potential 1-form [66].

Using the variations principle of the action (1), we
obtain the field equations of the f(R) gravity in the
following form [67]:

1 1
R/u/fR - Egm/f(R) + [g;w[l - vﬂvu]fR = _EKTZTﬂ (2)

where [ is the d’Alembertian operator and fr = % and
Ty} is the energy-momentum tensor of the Maxwell field
defined as
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1
T;rzfl = F/mFya - Zg;sz' (3)

Furthermore, by the variation of Eq. (1) with respect to the
gauge potential 7,, we obtain

9, (v=gF") = 0. (4)
Taking the trace of Eq. (2), we find
30fr + Rfr —2f(R) = 0. (5)
Using Eq. (5), we obtain the form of the f(R) as follows:
1
f(R) :§[3DfR+RfR]- (6)

From Egs. (2) and (6), we obtain [68]

R(r) =

VU - UUV -2°20VU" - 4rUVU - UV 44U (1 - V)

1 1 1
R, fr —ZgnyfR +Zgﬂl/|:|fR -V, V., fr +§’<Tf¢rzfl =0. (7)

Therefore, a significant step is to test Egs. (4) and (7) to a
spherically symmetric space-time whose line element has
two different unknown functions.

III. SPHERICALLY SYMMETRIC BH SOLUTIONS

The spherically symmetric line element is assumed to be
given by

ds* = ~U(r)dr + 2 4 Pag
V(r) ’
dQ? = r?(d6* + sin’d¢?), (8)

where U(r) and V(r) are two unknowns of r. For the space-
time (8), the Ricci scalar is evaluated as

; ©)

where U = U(r), V

= ar

27202

V(r), U =44 y" = LY and V' = 4V Plugging Eqs. (5) and (7) with Eq. (8) and by using Eq. (9),

we obtain the (7, 1), (r,r), and (0, 6) [or (¢, $)] components of the f(R) equation given by

1
= o {r2 [VFI W2 —3WF\V'W' = 2WVF\W" = 2W?F V" = 3WVW'F| = 2W?V'F + 2VW2F’1’}
r
—4rWV[F\W' — WF] = 4W?F[1 - V] - 8Wr217’2}, (10)
1
0=crs {r2 [VFIW’Z —3WF VW = 2WVF W' =2W?F V" + WWW'F| = 2W*V'F| — 6VW2F’,’}
r
+4rWVIE\W' + WF|] —4W?F 1 - V] - 8Wr2;7’2}, (11)
= 32 {rz [3WF1V’W’ +2WVF,W" + 2W2F V" = VE,W"? + WVW'F|, + 2W2V'F| + 2VW2F’{}
r
—4rW2VF, + 4W2F | [1 - V] + 8Wr2;1’2}. (12)
Other components of the f(R) equation vanish.
The trace of the field equation f(R), given by Eq. (5), takes the form
0=>707 {r2 [6W2V'F’, —3WF\V'W = 2WVFW" —=2W?F V" + VF\W"? + 3WVW'F} + 6VW2F’1’}
r
+4rWBWVF| — F\VW' = 2F \WV'] +4W?F|[1 = V] — 4r*W2f(r) } (13)

where W(r) = Y F\ = F (r) = LRW) pr 4010 pr

d*F\(r)

and F' = d}F—S(’). The Maxwell field equations have

v(r)
the following form:

dR(r) > dr

W —4wW] = 2rwy” _

1
dr* dr

2rWw?

0, (14)

where 77 is the component of the electric field, i.e., n, = ((r),0,0,0). Using Egs. (10) and (11), i.e., (10) minus (11), we obtain
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0= r’[-4WVW'F| + 8VW?F| - 8rWW'VF,. (15)
Moreover, Egs. (10) and (12), i.e., (10) plus (12), give
0=-2r"WVW'F| + 4rVW?F! —4rWW'VF,. (16)

Equations (15) and (16) coincide with each other. Therefore
we derive two independent equations from Egs. (10)-(12).
From the above calculations, it is easy to prove that Eq. (10) is
equal to Eq. (11) with minus sign and equal minus two times
Eq. (12). Hence, Egs. (10) and (16) are independent equa-
tions, which include all the possible solutions. Now we have
four unknown functions V, W, 5, and F'{, which is the reason
J

why we are not able to determine one function.' In order to
obtain concrete and specific solutions and investigate the
physical properties of the solutions in order to show that
Egs. (10) and (16) include physically reasonable and natural
solutions, we make an assumption of the form on F; in the
following.
In our previous studies, we showed that when W = 1 and
providing V # 0, we get from Eq. (15)
F{ =0, thatleads to F| = f, + f3r. (17)

From Eqgs. (10) and (17), we obtain

0 = r2[-2F V" =2V'F|] + 4rVF| — 4F|[1 = V] — 8r’y*
= =21%(fy + f3r)V" =217 f3V' + 4(f, + 2f3r)V = 4(f + f3r) = 8. (18)

Assuming f3 = 0, Eq. (18) gives
0= fo[rPV" =2V + 2] + 4r2y%. (19)

From Eq. (19) after using Eq. (14), we obtain the following
solution:

1% 1% VV
V=1+24Vvi2 -2, p=Y2, (20)
r far

where V,, V,, and V, are integration constants. Equa-
tion (20) is the well-known Reissner-Nordstrom—(anti—)de
Sitter space-time.

We studied the case f, = 0 in which Eq. (18) gives

0==2r2f3rV" =212 f3V' +8f3rV—4f;r—8r2n%.  (21)

The solution of Eq. (21) together with Eq. (14) has the
following solution:

[
1 ‘7072 ‘71 ‘72

V=- VATEZY (22)

2T TR Ty

Here V,, V,, and V, are integration constants, again.
Equation (22) corresponds to the solution derived in [69,70].

In [69,70], we also solved the system of differential
equations (13) by assuming F; =1+ 5. In the present
paper, we solve such a system by assuming

. (23)

where n can take any value and F|, is a constant. In the
nominator of the second term in the rhs of (23), (n — 3) can
be absorbed into the redefinition of F, but we use the form
of (23) for later convenience.

Using Eq. (23) in the system (10)—(12), we obtain

0=r(r"=Fo+n=3)2WV" + 2VWW" = VW 4 3WV'W'] + 4W>(1 = V)r" + 8Wr*t"y?
+W[Ar"+ Bn—4)(Fy—n+3)][ViW + 2W?(Fg—n+3)[nrV' = (2= (n> = n+2)V)], (24)

r2(r" = Fo+n=3)RW2V" + 2VWW" — VW2 + 3WV'W'] + 4W2(1 = V)r" + 8Wr*
~W[Ar" + (n—4)(Fy —n+3)|[ViW +2W?(Fy —n + 3)[nrV' — {2 + (3n? + 5n = 2)V}], (25)

0=r*(r"=Fo+n=3)2WV" + 2VWW" = VW? + 3WV'W'] + 4W3(1 = V)r"
+8Wr2H + W(Fg = n + 3)[nVrW' + 2W{nrV' = (2 + (n* +3n = 2)V)}]. (26)

We then solve the above system of differential equations in cases # = 0 and 5 # 0.

'Note that Eq. (14) can determine the unknown 7.
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A. The case of =0

The analytic solution of the above system takes the following form:

ntl

% Xn—Z
A X7 XX, XX
V(r)=—m |+ [ z=,drla =2 | —modr) +2 re=rmng B
XI,,T ri2X, cyr Cc3F =2
2n(n 2n+1) Fo—(n-3
W) = X U = wve),  F=1-= 023 @7)
r

where X (r) = FO(;_Q) - <”_2>2("_3> + r"and X,(r) = Fy — n + 3 — r". Because there appear the fractional powers of X in
the expressions of V and W (and U), if we require X; > O for any r to avoid that the complex number appears in V and W,
we find Fo— (n—3) > 0.

As Eq. (27) shows, the case of n = 2 is not allowed. However this case was studied in [59] and we obtained

3¢y 3cy 3cy

207 22H 22 r’H
V(r) = i He, +H ey + 2H]r3/ 622 dr — 2H/ c ; F dr p,

r[(201H2 - 37" H)H] - 2C1HH3] (2CIH2 - 37" H)H] - 2C1HH3
Ur)=e?,  W(r)=N(rB(r), F =1+ (28)
r

where H = HeunC(z,z, % % r—;) H, = HeunC( -3 O,g 8,—%), H, = HeunCPrlme(g,;,O,g,S,—%), and
H; = HeunCane( 0,% g,—i) Therefore, as Eqgs. (27) and (28) show the case of n =2 is defined by the

function HeunC while the case of n # 2 is defined by (27). We will discuss this case in detail below.
Using Eq. (27) in (13), we derive the form of f(r) as follows:

n+l
ntl " n—=2

X D' f dr
12 n2 20— 2 —_ 4 n 2 r7r;L8
1) =2 e ) - S0 i [ ARy
PXX, 2 Fa

n+l

Xm X” 2X c 2n2=n+1) @) [ X ZX 1 n
_/ ~1 dr[/ L 224r _l} — P (Fy—n+3)(n+ 1)—r”)X1” 2/ l,,a,, Zdr — - X7 X,?
ri2X, Foa 2 3r oz 6

1 2n2+20-2) n? —4)m 1 2n2—n1) _ 20l
+§czr =) XZ{{fl(nz—1)—%}fl—r2"]+6clr = X (fi(n+1)=7") 5, (29)

where 1 = Fy —n + 3. Using Eq. (29) in Eq. (9), we obtain the Ricci scalar in the form

*The special function HeunC is defined as the solution of the Heun confluent equation, that has the form

Xu(r)_1+ﬂ_(a_ﬁ_7_2)r_r2a

a(l48) =y == (1t )p=r@s+ 2ty h)
r(r—1)

X'(r) = 2r(r—1) (r)=0.

The above differential equation has the following solution: HeunC(a, 8, 7, 8,1, r). Interested readers can check [71,72] for more details.
The special function HeunCPrime is defined as the derivative of the Heun confluent function.
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ntl

=)

ntl Xn
X X"’Zf—dr
12 22 420 -1 4 201 J I
A r +2 ] {f1<n )(n i ) +2r" }X% / n(2n-1) — dr
2 n@2n-1)

N
r2X,i_2X2 2 r n=2
XL@X Xn_zl 4 @n-1) X"_+ZIX
T T 2(n“=n 2n—1 n—.
- |:/ nl(z,,_l)z dr— ﬁ]/ 7,,_:5 dr y —r /1—2+] (M 2rn)X1"‘2 / ln(zn_i dr
r g rﬁx2 2 3r =z
1 3 1 w2 2= -1 4 1 W2onil)  2n=1 4
- X%{EX?_Z - §C2r2 :22 = |:f1(n 2)(71 + ) + 2r":| }—I—gcer( ”_2+1)X1n_2 <% — 2r”> . (30)

B. The case of  # 0

Now we are going to find an analytic solution of the system (24)—(26) in the case of # # 0 and obtain

+

=)
2(n?+2n-2) il ntl X X f dr
o X ) X"’2X3 3 7:_ 8X
V(r) = o | €2 +/ Tn— 8 dr(cl _2/ ! w(2n-1) dr ) / (r2n ) ——dr|,
Xln—z rn= 2X2 C3r n=2 C3r =2
Fo—(n—3) X
2n(n+1) 2("_+1) 0— n— n—"
W(r) = c3r = X7, U(r) =WwW(r)vV(r), Fi=1 s n(r) = c4 + 65/7(n_11)<n+4> dr, (31)
r  n=2

where X3 = ¢3X, — 2c§r"‘2. Equation (31) reduces to (27) when n = 0. As Eq. (31) shows the case n = 2 is not allowed,
again. However, this case was also studied in [60], where we obtained

?al

3a
e e H[2 + 13a,]

Ha, + H oH d
P { ay +H,ra; + 2Hr /r(r2+al)[(2a1H2—3r2H)H1—201HH3] ’

V(r) =

_3% 2 2
—2H/ i e >*r*H[r 2—{—13a1] ar\
(r +a1)[(2a1H2—3r H)Hl —ZalHH3]
6611
. 32
2r (32)
3

Using Eq. (31) in the trace equation given by Eq. (13), we obtain the following form of f(r) as

n+l

3a;

W(r)=e 7, U(r) =V(r)W(r), n=ay+ \/Eerf[

ntl

XX [
12 n% 420~ 2_4)m 3 T8
f(r) _ _ rz( +2 -2) |: 2(1’[ _ 1) ( )r fl _ r2n:| ){2 / (2: - 2X2 di"
32X X, 2 rer

ntl
(2n-1)

n+l
X’HZ XHX CcaC 2 X n 2X
_[X dr[/ HES YA 1} AE X (Fy=n+3)(n+1) = M)X l“/i; Zodr

7n=8 n(2n—1
= 2X2 r 2 2 r n=2

2n—1

l - 1 n”+2n— 4 1 n-—n+
—EX"32X2X4+2c2r2< [{fl(n —1)—7< )r }f —rz”}+6clc3r2<nzIX”Z(f](n+1)—r) . (33)

The functions f(r) given by Egs. (29) and (33) are constrained by the condition that their first derivative

0 af(r c
o= U = R 1
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where X, = ¢3X, — c¢2r"~2. Using Eq. (31) in Eq. (9), we obtain the Ricci scalar in the following form

ntl

ntl Xn—2
- X3 X7 [ zks—dr
R—_ 12z }”2(”2:-22"_2) fl(n 1)(1’1 + 4) Lo X2 r:,,z X, dr
3n 2 2 n(2n—1)
= r =2

o= n+1
Xn_ZX Xn 2 n —n 4 (2n— l Xn ZX
[ | [ar p- (BE o) [ R

re 2 e 2X2 2 v n-2

1 =21 1 +2n— -1 4 1 n?—n+ ==t 4
— X2{§X4X'fz _ 562C3r2 rz—zz 2x [ 1(n 2)(71 +4) + 2r”] }+6C1C3V%X21"21 (f—] (n2—|— ) - 27’") - (34)

In the following section, we will study the physics beyond the BH solutions with and without charge given by Eqgs. (27)
and (31).

IV. INHERENT PHYSICS OF THE BH SOLUTIONS (27) AND (31)

An important detail to emphasize is that when Fy = n — 3, we recover the GR BH, as Eqgs. (27) and (31) show. Now we

extract the inherent physics of the BH solutions (27) and (31). We therefore concentrate on the case n = 4 and write the
metric potentials of the neutral BH solution (27) as

Fo—1+47r") 5
R T et Lcd i
)= Fo = 1477 T o= 157 Ch/rmwb—l—r> 2 Y 4

Fo—1+r3(Fy—1-r* Fo—1+474)
_2/(0 + r*)2(Fo r)dr/$00 +”)4dr’
r9(Fyg—1-1%)

C3(F0 -1 + I’A)S

w(r) ) . U(n)

r

(35)
We should note that Fy — 1 should not be negative in order that (Fo — 1 + r4)% should be a real number for any value of r
The asymptotic forms of the metric potentials when r is large given by Eq. (35) take the following forms

5 4 7 15¢(Fy—1
WAZ&TH+%_W_UP2 Ter _15¢,(Fo—1) m}
r

2 AT er r®
¢ I ¢ 26(Fy-1)
U(r) = 72 1+ (Fy=1) =+ Ly 20 36
(r)=rc, + +3r+(0 )[r4+2’5+ 35,3 (36)
where we have chosen c; = 1. Using Eq. (36) in Eq. (8), we obtain the line element in the form
2m 1 3m 26(Fy—1)
dS2N—{rzl\eff—f—1—T+(F0—1>|:F—F+T dfz
d 2

n 4 + o2, (37)

r Aeft + (F — 1)|: eff _|_ 4 7m +90m(F0—l)

where m = — and ¢, = Ay

124054-7



G.G.L. NASHED and SHIN’ICHI NOJIRI

PHYS. REV. D 104, 124054 (2021)

Equation (37) shows that the line element expresses the
asymptotic anti—de Sitter (A)dS space-time and is not
identical with the Schwarzschild space-time due to the
contribution of the extra terms of the higher-order curvature
of the f(R) gravity. Equation (37) ensures what we have
stated in the introduction, that is, in the f(R) gravity,
one can derive a space-time that is different from the
Schwarzschild-(A)dS one and when Fy =1, ie., F; =1,
we recover the Schwarzschild (A)dS metric [73] as usual.
In conclusion, at a higher-order curvature, we can obtain a
neutral space-time that is unlike the Schwarzschild solution
and coincides with the Schwarzschild (A)dS at a lower
order of f(R) = R + const.

Now we use Eq. (36) in Eq. (9) and obtain®

36(Fg—1
R(r)%—lZAeff—%
6'P[(R + 12A)° (1 = Fy)]'/¢
=7r R) = < ) 38
(R) R T 12, (38)

where we have omitted the other terms in Ricci scalar to be
able to write the radial coordinate r as a function of Ricci
scalar, i.e., 7(R). From Eq. (38), we can clearly see that
when F, = 1, we obtain a constant value of the Ricci scalar
because when F; = 1 and fy = const. The asymptote of
f(r) given by Eq. (29) becomes

36(Fy—1) 96m(Fy—1
F(r) m —6Ays — (’?6 >+ m(7° ). (39)

r

R

144Aeff(F0 - 1) + 48m2

Using Eq. (38) in (39), we obtain

12m6*/3R7/°

27(1=F,)'/®
168mA6*3RY®  168mA 26>/
C21(1=Fo)'/6  27(1-F,)VoRS/6

f(R)~6A 4+ R~

(40)

Equation (40) shows that f(R) includes the term with the
higher positive power of R than the Einstein-Hilbert term,
which may dominate when R is large, and also the term
with negative power, which may dominate when R is small.

The expression of Eq. (40) might look strange because
there is a divergence in the limit of Fy — 1, which should
correspond to the standard Einstein-Hilbert action with a
cosmological constant. This occurs because we have used
an expansion assuming that r is large in Eq. (39), but after
that, if we consider the limit of F(, — 1, the scalar curvature
R becomes a constant, which means that R is independent
of r and therefore we cannot solve r with respect to R. Then
it is natural if the expression (40), which is obtained by
combining (38) and (39), becomes singular in the limit that
of Fy — 1. The singularity is rather an artificial one coming
from the noncommutability of the two limits that r — oo
and Fy, — 1 but the behavior makes the situations ambigu-
ous and often uncontrollable. In order to avoid this
difficulty, we also use the numerical calculations.

Using Eq. (36), we obtain the curvature invariants of
solution (27) as

384Aeffm(F0 - 1) + 48m2 _ IZOAgff(FO - 1)2

wpoRP = R R = 24A % + %

36(Fy—1 32m(Fy—1
(06 )+ m(F, )+

!

R=—12Ay —

r7 }"8 ’

(41)

where (R, ,,R"?°, R, R, R) are the Kretschmann scalar, the Ricci tensor square and the Ricci scalar, respectively, and all
of them have a true singularity when r = 0. An important detail to highlight is the fact that F, is the main reason of the
differentiation of the present study from the (A)dS Schwarzschild BH solution of GR whose invariants behave as

(R
(R

uv po

MUV pC 700,60 ,0

RWre R, R*™ R) = (24A* + “Sr—’é”z ,36A2,12A). Equation (41) shows that the leading order of the scalars
RMP? R, R, R) is (l(, ! l) which coincides with that of the (A)dS Schwarzschild BH solution whose leading

term of the Kretschmann is (riﬁ) Thus, Eq. (41) shows that the singularity of the Kretschmann coincides with the (A)dS

Schwarzschild BH solution of GR.

Now we apply the same procedure that was used for the neutral case to the charged one. The analytic solution (31) in the

case n = 4 takes the form

“The asymptote of Ricci scalar is given as

12(Fy = 1)

R(r) = _12Aeff - r6
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722 (F0—1+r4)% (FO_I+r4)%[c3(F0—1—r4)—2c§r2]
V(r):m €2C3 +C1C3/’J()(I:()_I_;A)dr—2/ =E dr
oty leFom1=r) 28R A ]
X/Wdr+2/ 14 dr p,
& (Fo=147)7 Fo—1 F —]—|—r %
W(r)zﬁorfo), U =WV, Fi=1-"1 —C4+05/( 0 a2)

Equation (42) reduces to Eq. (35) when the constant ¢5 = 0 which makes the electric charge n(r) = const. To further
examine this charged solution, we calculate its asymptotic form and obtain

5c 4 Tey 3[c2—=5c(Fy—1
V(r)~ e, + 145 +——(FO—1)L22+—4+—1+[5 1(Fo )]+---],

3r rt6r ro
- Cq C5 1 Cq 2C§ 26(F0— 1)
U(r)~r2C2+1+§+ﬁ+(F0—1)|:F+ﬁ+F+T+"' s (43)

where we use c; = 1. Using Eq. (43) in Eq. (8), we obtain the line element in the following form:

2m  q* 1 3m 2¢*> 26(Fy—1)
2 ~ 2 2
ds N_{rAeff+1_7+7+(F0_1)|:F_F+7+T dt

d 2
+ 4 + Q2. (44)
Pl +1 =244 (Fy— 1) {# +4 - In A +30nFonl)] *30’;’“7“‘1”]

X

where g = c¢s, A, and m have the same values given in the neutral case.

Equation (44) shows that the line element is asymptotic to (A)dS and is not equivalent to the Reissner-Nordstrom
space-time in respect of the contribution of the extra terms of the higher-order curvature of the f(R) gravity.
Equation (44) shows clearly that in the f(R) gravity, one can obtain a space-time that is different from the Reissner-
Nordstrom space-time and when the constant Fjy = 1, we recover the Reissner-Nordstrom (A)dS metric [73]. We
can summarize the results of this section by saying that at a higher-order curvature, we can obtain a charged space-time
that is unlike Reissner-Nordstrom space-time and reduces to the Reissner-Nordstrom one (A)dS at a lower order
of f(R)=R

Using Eq. (43), we obtain the invariants of solution (31) as

144A 5 (Fo — 1) +48m*  384A Fy—1) +96mg?
RMDPGRWPGZRWRW:24Aeff2+ efi ( 0r6 ) +48m _ et ( 07 ) + 96mq

;
120A%(Fo = 1)* + 56¢°[¢* + 30m(F — 1)]
_ k
.
36(Fo—1)  32m(Fy -1 180A 1 (Fy — 1) + 604>
R=—12Ay — (roﬁ )4 m(r;’ ) ¢ (Fy — 1) 180en( - ) +60a" . (45)

Equation (45) shows that all the invariants suffer a true singularity when r = 0. A substantial detail to highlight is that F, is
the origin that make the above results unlike the Reissner-Nordstrom (A)dS BH solution of GR whose scalars behave as

(R poR*7°, R, R* R) = (24N + 4%—@42 ,36A% + 4ris4, 12A). Equation (45) shows that the leading expression of the scalars
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(R poR*?°, R, R* R) is (r%,r%,%), which does not
coincide with the form of the Reissner-Nordstrom (A)dS
BH solution whose leading expressions of the Kretschmann
and the Ricci tensor squared are (716,%) Thus, Eq. (45)
shows that the singularity of the Ricci tensor squared is
much milder than that of the Reissner-Nordstrom (A)dS
BH solution of GR.

V. STABILITY OF THE BHS USING GEODESIC
DEVIATION

The geodesic equations take the form [73]

d?x

a ) dxP dx?
i T\ pp [ de de
D

where ¢ is the affine connection parameter. The geodesic
deviation equations take the form [74,75]

d?e° o ) dxtde* c dx* dx?
+2 —_— 4 — e’ =0,
de? uv ) de de u ), de de

(47)

with e” being the four-vector deviation. Plugging Eqs. (46)
and (47) into Eq. (8), we obtain

d’t 1, [dr\? dp\?
?—O, 2U(r)<dg> —r(d€> —O,

d*6 d?
=0, 745 -0,
de

de? (48)

and for the geodesic deviation the line element (8) gives

d*e! dt de° dpde®* 1 dr\? dp\?
— S V(U (1) == 2rV(r) ===+ | (U (V' (r) + V(U (")) [ 5] = (V V(i) (=-) |e' =0,
e VOV G5 =2V P+ oV Ve (5) - e+ v () e
d*e®  V'(r) dt de' d*e? dp\? d*e*  2dgde!
& (r)drde’ _ e, L ANERY de 2dpde. (49)
de V(r) de de de de de rde dr
where U(r) and V(r) are given in Eq. (36) or Eq. (43) and a dp\?> U'(r)
prime is the derivative with respect to the radial coordinate de ) rR2U(r) = rU'(r)]’
r. From the condition of a circular orbit, we can obtain dr\ 2 ’
i U A 51
p_® b dr_, s (dE) 20(r) = rU'(r) ey
2w w80
The use of Eq. (50) in Eq. (48) leads to We can rewrite Eq. (49) as
d*e! dt de° de’ 1 dtr\?2
T UV 5 -2V G S0P+ Ul () - 06) + el =
d*e? d*e®  U'(r) dt de' d*e*  2de!
_€2+€2:0’ _52 (r) di de” _ , _€2+_i: (52)
d¢ d¢ U(r) d¢ do d¢=  rde
From the second of Eq. (52), we can show that we have a Cyor
simple harmonic motion, which is the stability condition of Cr=- 2 (54)

the plane @ = 7z /2. The remaining equations of (52) assume
the following solutions:

€)= ¢t el =¢e?, and € = e, (53)
where £, {,, and {3 are constants and @ is an unknown
function. Using the values of ¢!, and €* given by Eq. (53) in
the fourth equation of Eq. (52), we get

Then substituting the values of €°, and €' given by Eq. (53)
into the third equation of Eq. (52) and using Eq. (54), we
obtain

2_:3\/ 2U'r3

U (55)

G =
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15
i e Fy=1,4=0, M=0.1
o] i --Fy=5,¢=0, M=0.

i — Fy=13,4=0.M=0.I

&*>0  Stable

-15 -

Vo Fy=1,4=09, M=6
T\ \--Fy=5,4=09, M=6
"N\ —F,=13,¢=09,M=6

T

(a) Stability of the BH for the case ¢ = 0 and (b) Stability of the BH for the case q # 0 and

Acgr = 0 of Eq. (56)

FIG. 1.

Substituting (53), after using Egs. (54) and (55) into
the first equation of Eq. (52), we obtain the stability
condition as

3UVU - c2UU = 2rVU™? + rUVU"
U’ ~

) _3UVU = 2rVU2 + rUVU"
uu’ ‘

0

=0

(56)

We depict Eq. (56) in Fig. 1 using specific values of the model.
The case g = 0 is drawn in Fig. 1(a), and the case g # O is
drawn in Fig. 1(b) for the inequality of Eq. (56). These figures
exhibit the unshaded and shaded zones where the BHs are
stable and not stable, respectively.

VI. THERMODYNAMICS OF THE
BH SOLUTIONS (27) AND (31)

In this section, we will investigate the thermodynamical
properties of the BH solutions (27) and (3 1). The tempera-
ture of a BH is defined as [76-82]

"2 ~ ey

, (57)
477,'7‘(1’2)2

T =

where r(; ) represents the inner and outer horizons of the
space-time. The Hawking entropy of the horizons is defined as

Aegr = 0 of Eq. (56)

Plot of Eq. (56) against the coordinate r for the BHs (36) and (43).

1
Vi) = ZA(1,2)fR’ (58)

with A ») being the area of the horizons. The quasilocal
energy is defined as [76-79,83,84]

1
Eq) = 1/ |:2er(1,2) + r%l,z){Fo(R(r(l,z)))
_R(r(l,Z))er(l,Z)}] d”(l,z)- (59)
Finally, the Gibbs free energy is defined as [84,85]

G(1,2) = E(1,2) - T(1,2)V/(1,2)- (60)

A. Thermodynamics of the BH (43)
that has asymptotic flatness

In this subsection, we study the thermodynamics of the
BH (43) which is characterized by the mass m, F, and the
constant g. We only consider the asymptotically flat
solution where ¢, =0. When Fy, =1, we obtain the
Reissner-Nordstrom BH of GR. To derive the horizons
of the BH (43), we set U(r) = 0 [82], whose solutions give
two real positive roots that have the form

°In this study, we will not address the BH solutions (27)and (31) because one cannot easily find their explicit roots. Therefore, we will

use Ay = 0 and study these solutions up to O(%).
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F

1 Y+ 12(Fp -1
"= 3m+3\/q_|— (Fo )+m2+

where

1 Y 12(Fy -1
= am gy [T 2E D o
6 F,

2¢> F
MRS
3 9
1/2
2mq*(1 + m)
Foetneh e 24 1y
2¢> F
A
3 9
1/2

2mg*(1 + m)
A1 12(Fy—1) 27 | F ’
\/qF7]°+m2+%+g'

(61)

F = 3(6\/(1 — F)[18¢% + 3m?q® + 24(1 — Fy)q* + 108¢°m*(1 — Fy)] + 48(1 — 3F, — 3F3)

—q® 4+ 364%(Fy — 1) + 54m>(Fy — 1))'/3.

The metric potentials of the BH (43) are plotted in Fig. 2(a).
Figure 2(a) shows that we have two positive horizons of the
metric potential U(r) when F # 1. The degenerate horizon
of U(r) occurred at (F,m,q,r)=(2,0.77,0.53,1.22)
where the radii of the two horizons coincides with each
other, r| = r,. The behavior of the degenerate is indicated
in Fig. 2(b) which shows that r; < r;. As we observe from
Fig. 2(b), as g decreases, we enter a parameter region where
no horizon exists, and, thus, the central singularity becomes
a naked singularity. The behaviors of the two horizons
with respect to mass are drawn in Figs. 2(c) and 2(d) when
Fy=1and F, # 1.1, respectively. The interesting point is
that the mass is not equal to the absolute value of the charge
m # |g| in the extremal limit where the radii of the two
horizons coincide with each other, r; = r,. In the case of
the Reissner-Nordstrom BH of GR, the mass equals the
absolute value of the charge m =|g|. As clear from
Eq. (57), the Hawking temperature vanishes in the extremal
limit.

|

. 21"(1’2)9 + (FO - 1)[7"(1’2)5 - 126q2r(1’2)3 + 54r(1‘2)(F0 - 1) - 126m(F0 - 1)]

From Eq. (57) the Hawking temperature of the BH (43)
is calculated and drawn in Figs. 2(e) and 2(f) for Fy =1
and Fy = 1.1, respectively. These figures show that
T, > T,. Figures 2(e) and 2(f) also indicate that 7', has
an increasing positive value whereas 7, has a decreasing
negative one.

From Eq. (58), the entropy of BH (43) takes the form

Fo—1

The plot of the entropy (62) when Fy = 1 and Fy = 1.1 is
drawn in Figs. 2(g) and 2(h), respectively, which indicate
an increasing value for y; and decreasing value for y,.
From Eq. (59), we evaluate the local energy of BH (43) and
obtain

Eqp) =

Equation (63) shows that, when Fy = 1, we obtain E(; 5) =
% which is the energy of a spherically symmetric space-
time. The plot of Eq. (63) when Fy =1 and F, = 1.1 is

427‘(1’2)8

(63)

drawn in Figs. 2(i) and 2(j), respectively, which also
indicates positive increasing values for E; 5). Figures 2(i)

and 2(j) also show E| > E,. Finally, by using Egs. (57),
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(j) The quasilocal energy of the
BH (43) when Fy = 1.1

(k) The free energy of the BH
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(43) when Fp = 1.1

FIG. 2. Plots of thermodynamical quantities of the BH solution Eq. (43): (a) shows the behavior of the metric potential U for F, = 1
and F # 1 when m = 1 and g = 0.5. (b) Typical behavior of the horizons, degenerate and nonhorizon of the metric potential U(r) given
by Eq. (43) when m = 0.77 and F = 2. (c) Typical behavior of the horizons with mass given by Eq. (43) when ¢ = 0.05 and F, = 1.
(d) Typical behavior of the horizons with mass given by Eq. (43) when ¢ = 0.05 and F = 2. (e),(f) The behavior of the Hawking
temperature (57), showing 7’| has a positive decreasing value whereas 7, has a negative increasing value when F, = 1 and Fy = 1.1.
(g),(h) The behavior of the Hawking entropy (62), which indicates y, », always has positive values, y and increases with M while y,
has a positive decreasing value. (i),(j) The behavior of quasilocal energy (63), which indicates that £, 5) has positive increasing values
and also E; > E,. (k),(1) The behavior of Gibb’s free energy which indicates the behavior of G; which is positive while G, starts with a
positive value that becomes negative as M increases.

124054-13



G.G.L. NASHED and SHIN’ICHI NOJIRI

PHYS. REV. D 104, 124054 (2021)

(62), and (63) in (60), we evaluate Gibbs’ free energies. The
plot of these energies is drawn in Figs. 2(k) and 2(j) when
Fy = 1and F, = 1.1, respectively. These figures indicate a
positive increasing value for G; and also G; > G».

B. First law of thermodynamics of the
BH solutions (36) and (43)

An important step for any BH solution is to check its
validity of the first law of thermodynamics. Therefore, for
the charged BH the Smarr formula and the differential form
for the first law of thermodynamics, in the frame of the
f(R) gravity, can be expressed as [86,87]

M=2(Ty—PV)+nQ, dE=Tdy+ndQ+PdV, (64)

where y is the Hawking entropy, 7 is the Hawking
temperature, 7 is the electric potential P is the radial

component of the stress-energy tensor that is used as a
thermodynamic pressure, i.e., P =T,"|,, V is the geo-
metric volume and M = m, Q = ¢q. The pressure, in the
context of the f(R) gravity, is determined as [86]

1 ( F 1 1/2F
P:—g{ ]2+§(f(R)—RF1)}+Z(—1+F’,>T.

F(1.2) (12)
(65)
Using Eq. (44), we get
1 q* Fo—1
M:—(r(Lz)—‘-——(Oi.j)). (66)
2 rp2) 2’”(12)

By calculating the necessary components of Eq. (64), we
obtain

rant — ¢ ran’ +3(Fo—1)

Py = . Ty~ )
" 6r(12) " 4rr(1a)’
zlragyt = (Fo—1)] q (Fy—1)q 4 3
W) ~ ' , Ni12) & - , V=cnrgs’. (67)
" ro)’ TR 30

Using Eq. (67) in Eq. (64), we can prove that the first law of
the flat space-times (36) and (43) is verified.

VII. DISCUSSION AND CONCLUSIONS

This study focuses on deriving spherically symmetric
BH solutions with and without charge in the context of the
f(R) modified gravity theory. The f(R) gravity is known as
a theory whose field equation includes fourth-order deriva-
tive thereby making the derivation of the analytic solution
difficult. Therefore, we used the trace equation of the f(R)
equation and solved it with respect to f(R). Using this
solution, we rewrote the charged field equations of the f(R)
gravity and applied them to a spherically symmetric space-
time that has two unknown functions of radial coordinate.
The resulting nonlinear differential equations were solved
under two cases: the case of vanishing the electric
charge and the case of nonvanishing electric charge. In
these two cases, we assumed the derivative of the F(R),

Fi(r) = 46 _ | — e

previously mentioned assumption that when Fy =n — 3,
we obtained F(r) = 1, which is the case of GR. In the
frame of the above assumption of F'(r), we solved the field
equations of the f(R) gravity with and without the electric
charge analytically and derived the exact form of the metric
potentials and the electric charge.

To understand the physics of these BH solutions, we
gave the asymptotic form of the metric potentials, when
n = 4, with and without charge. From such asymptote, we

, where n > 0. By using the

|
have shown explicitly that our BH solutions are different
from GR BH solutions and coincide with them when
Fo=1. Then we wrote the line element of such BHs
and have shown that they asymptotically behave as (A)dS
space-time. We calculated the asymptotic form of f(R)
when r is large and have shown that f(R) could include the
terms with the positive power of R higher than the Einstein-
Hilbert term and terms with negative power. We also
calculated the curvature invariants of these BHs with
and without charge and have shown that the singularity
of the Ricci squared tensor in the charged case is milder
than that of the GR BHs. Moreover, we studied the
geodesic deviations of these BHs and derived the condition
of stability analytically and graphically, as shown in Fig. 1.
To further examine the physics of these BHs we consid-
ered the thermodynamical quantities such as Hawking
temperature, entropy, quasilocal energy, and Gibb’s free
energy and investigate their behavior analytic and graphi-
cally. In the case of the asymptotically flat solution, there
exists the extremal limit, where the radii of the two BH
horizons, that is, inner horizon and outer horizon, coincide
with each other and the Hawking temperature vanishes. In
the case of the Reissner-Nordstrom BH of GR, the mass
equals to the absolute value of the charge in the extremal
limit. It could be interesting that in our model the mass is not
equal to the absolute value of the charge in the limit, where
the radii of the two horizons coincide with each other.
Because the Hawking temperature vanishes, it is often
considered that the extremal limit might be the remnant
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after the BH evaporation by the Hawking radiation. Then it
may give any clue for solving the information loss problem
in the black hole because the disagreement of the mass and
the charge may include some information lost in GR.
Moreover, we tested the first law of thermodynamics and
have shown in detail that such BHs satisfy this law. If we
apply the results of odd perturbation presented in [70], we
can prove that the BHs presented in this study are stable.
In summary, we derived new BHs with and without
charge in the frame of f(R) and showed that their Ricci

scalars are not constant. These BHs are original ones, and
their originality comes from the constant that involves F,.
This constant comes from the assumption of the first

derivative of f(R), i.e., Fy(r) = %&)) =1 —w.
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