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Within the context of general relativity we study in a fully covariant way the so-called Euler-Maxwell
system of equations. In particular, on decomposing the aforementioned system into its 1 temporal and 1þ 2

spatial components at the ideal magnetohydrodynamic limit, we bring it in a simplified form that favors
physical insight to the problem of a self-gravitating, magnetized fluid. Of special interest is the
decomposition of Faraday’s law which leads to a general relation governing the evolution of the magnetic
field during the motion of the highly conducting fluid. According to the latter relation, the magnetic field
generally grows or decays in proportion to the inverse cube of the scale factor (not generally implying a
cosmological setting in the first place)—associated with the continuous contraction or expansion of the
fluid, respectively. The result in question, which has remarkable implications for the motion of the whole
fluid, is subsequently applied to homogeneous (anisotropic-magnetized) cosmological models—especially
to the Bianchi I case—as well as to the study of homogeneous and anisotropic gravitational collapse in a
magnetized environment. Concerning the cosmological application, we derive the evolution equations of
Bianchi I spacetime permeated by large-scale magnetic fields. As for the application in astrophysics, our
results point out the crucial role of the electric Weyl curvature (associated with tidal forces) and the
magnetic energy density in determining the fate of gravitational implosion.
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I. INTRODUCTION

The question that triggered the present piece of work,
though not directly related to the major part of its content,
was whether the magnetized environment of a compact
stellar object or of a protogalactic cloud could favor the
inhibition of its gravitational collapse. The role that the
magnetic fields play in such problems is generally known
in astrophysics. From the relativistic point of view, how-
ever, it may be less known that magnetic fields acquire
particular interest due to their direct coupling, as vectors,
with the spacetime curvature [1–4].
Previous independent relativistic studies have supported

the following basic ideas regarding the behavior of mag-
netic fields in curved spacetimes. First, magnetic fields
have the impressive ability not to self-gravitate; in other
words, not to contract or collapse under their own gravity
independently of the latter’s strength [5,6]. Second, in the
presence of an external gravitational field, magnetic force-
lines tend to stabilize themselves by developing naturally
curvature related stresses that resist their gravitational
deformation [5,6]. Third, the key factor giving rise to
such an unconventional behavior in both cases is the
magnetic field’s tension coming from the elasticity of its
forcelines [7–9].

Given the wide presence of magnetized fluids not only
in the field of astrophysics but in cosmology as well,
a primary question comes to the surface throughout all
this past work. How does the magnetic field of a highly
conducting fluid behave quantitatively or change due to
the fluid’s self-gravitating motion? Furthermore, if know-
ing its behavior, could we use it to extract information
regarding the whole system fluid and, subsequently to
address realistic problems such as magnetized cosmo-
logical models and gravitational (astrophysical) collapse
of charged matter1? This is basically the object of the
present study.
Our proposed (covariant) approach to the problem

consists of dealing with the Euler-Maxwell system of
equations describing the motion of a magnetized fluid—
at the ideal magnetohydrodynamic limit (for a tetrad-based
approach to the problem, however, with by far different
aims, methodology, and results see, for instance, Ref. [13]).
More specifically we study the system by decomposing its
individual equations in one temporal and one plus two

1Besides, studies of collapsing charged matter have suggested
that repulsive Coulomb forces could cause a bounce of the fluid, a
change of its contraction to an expansion, preventing thus the
formation of singularities [10–12].
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spatial components (one specific spatial direction and a
two-dimensional surface orthogonal to it). The mathemati-
cal context of our method is known as 1þ 1þ 2 covariant
relativistic approach [14]. First of all, the covariant
approach to relativity differs from the more familiar
metric-based approach in that the evolution equations,
as well as the relevant constraints satisfied by the individual
components of all spacetime quantities, are derived from
the Ricci and the Bianchi identities, instead of the metric.
Therefore, due to their geometric generality, the covariant
formulas can be readily adapted to a wider spectrum of
applications. In the second place, as already mentioned, it
allows for access to details of the problem in question via
the decomposition of the various mathematical objects
(vectors, tensors, equations, etc.) in components.
Being interested in the evolution of the magnetic field

and its implications for the motion of the whole fluid, it is
sufficient for us to focus on the Euler-Maxwell system
of equations (actually supplemented by the so-called
Raychaudhuri equation) instead of the full Einstein-
Maxwell system. By referring to the latter we mean the
system consisting of the conservation laws (these are the
so-called continuity and Euler’s equations), coming from
Einstein’s field equations, and obeyed during the motion of
a charged fluid; the propagation equations and the con-
straints, coming from Maxwell equations, and satisfied
by the electric and magnetic components of the Maxwell
field; an equation of state for the fluid—since now we
have mentioned the equations which compose the Euler-
Maxwell system; the propagation equations and the con-
straints, coming from the Ricci identities for a fundamental,
timelike 4-velocity field, and satisfied by the individual
fluid dynamic quantities; finally, the propagation equations
and the constraints, coming from the Bianchi identities, and
satisfied by the individual components of the Weyl (long-
range) curvature tensor. In practice, on decomposing the
Euler-Maxwell equations in their individual temporal and
spatial components, and on considering the ideal magneto-
hydrodynamic limit, the system takes a significantly simple
form, not directly coupled with the long-range curvature
(Weyl) terms. Therefore, we can achieve a first description
of the charged fluid’s motion without taking into account
the long-range gravity effects. However, the latter are taken
directly into account, in particular the electric Weyl
curvature tensor, when studying the gravitational collapse
of a highly conducting fluid in Sec. V.
The present manuscript starts with a general presentation

of the covariant approach to relativity, initially of its 1þ 3
form and subsequently proceeds to its extended 1þ 1þ 2
form. The emphasis is put on studying the dynamics of
matter and electromagnetic fields as well as of their
coupling. Some new details and developments (not taken
from the literature) concerning the 1þ 1þ 2 decomposi-
tion make part of Appendix and provide a crucial supple-
ment to the main text. After the theoretical introduction,

we proceed to the decomposition and the detailed study of
the Euler-Maxwell system of equations. We derive the
relation describing the general evolution of the magnetic
field and discuss its implications for the motion of a highly
conducting fluid. Subsequently, we apply the latter, in the
first place to the problem of homogeneous, magnetized
cosmological models (Sec. IV). In detail, the evolution
formula for the magnetic field with respect to the scale
factor is derived and subsequently used to find the
expansion/contraction formulas of the Bianchi I cosmo-
logical model. Emphasis is given on determining the epoch
of equality between magnetic energy density and matter/
radiation in the aforementioned model. The epoch in
question turns out to significantly differ (temporally) from
its Friedmann counterpart. In parallel, the compatibility of
the magnetic density evolution with the cosmic nucleo-
synthesis constraint is examined at an initial stage. In the
second place, the magnetic field evolution formula in
combination with the Raychaudhuri equation are used to
investigate the problem of homogeneous and magnetized
gravitational collapse (Sec. V). Our study points out the
crucial role played by the magnetic energy density and the
electric Weyl curvature in establishing a criterion that
determines the fate of the collapse. Subsequently, the
aforementioned criterion is tested in the context of a
perturbed Bianchi I model of magnetized gravitational
contraction.

II. THE 1+ 3 COVARIANT RELATIVISTIC
FORMALISM

In the present section we outline the basic principles of
the 1þ 3 covariant approach (refer to the extensive
reviews of [15,16]), we introduce the kinematic quantities,
and we subsequently provide the background for the
description of a charged, conducting fluid. The covariant
approach to relativity, as described in the following, differs
from the more familiar metric-based approach in that the
evolution equations, as well as the relevant constraints
satisfied by the individual components of all spacetime
quantities, are derived from the Bianchi and the Ricci
identities, instead of the metric. Therefore, due to their
geometric generality, the covariant formulas can be readily
adapted to a wider spectrum of applications.

A. Background

In the context of the 1þ 3 covariant formalism the four-
dimensional (4D) relativistic spacetime decomposes into a
temporal direction and a three-dimensional (3D) space
orthogonal to it. This spacetime split is achieved by intro-
ducing a family of (fundamental) observers who follow
timelike orbits along curves (the so-called worldlines)
with local coordinates xa ¼ xaðτÞ where a ¼ 0, 1, 2, 3
and the parameter τ is the observer’s proper time. The
tangent (timelike) vector to the worldlines, ua ≡ dxa=dτ
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(normalized so that uaua ¼ −1), is called the observer’s
4-velocity and it defines a temporal direction. Now if gab is
the metric of the 4D spacetime, a symmetric tensor can be
defined, hab ≡ gab þ uaub, such that it projects into three-
dimensional hypersurfaces—the observers’ 3D, instanta-
neous rest space—orthogonal to ua (habub ¼ 0, haa ¼ 3,
hachbc ¼ hab). It is thus possible on using the ua field and
its tensor counterpart hab to split in a unique way any
spacetime variable, operator, or equation in its temporal and
spatial components. For instance, a given 4-vector field
(e.g., consider the electromagnetic 4-potential Pa) decom-
poses in the following way:

Pa ¼ Pua þ Pa; ð1Þ

where P ≡ −Paua is its (timelike) component that is
parallel to the 4-velocity, and Pa ≡ habPb ≡ Phai is its
projection into the 3D hypersurfaces orthogonal to ua.
Similarly, a symmetric second-rank tensor field Tab can be
split up as2

Tab ¼ tuaub þ
1

3
ðTc

c þ tÞhab þ 2uðatbÞ þ tab; ð2Þ

where t≡ Tabuaub, ta ≡ −habTbcuc, and tab≡
hhachbidTcd.

3 An example of such a second-rank tensor
field is the energy-momentum tensor of a viscous fluid
(refer to Sec. II C 1).
Furthermore, the temporal and spatial derivatives of a

general tensor field Tab���cd��� can be defined as

_Tab���
cd��� ≡ ue∇eTab���cd��� ð3Þ

and

DeTab���cd��� ≡ heshafhbphqchrd � � �∇sTfp���qr���; ð4Þ

respectively, where ∇a is the covariant differentiation
operator of the 4D spacetime. Finally, let us define
the totally antisymmetric 4D Levi-Civita pseudotensor
ηabcd via the relations ηabcdη

efpq ≡ −4!δ½aeδbfδcpδd�q

and η0123 ≡ ½− det gab�−1=2. Now the 3D Levi-Civita
pseudotensor ϵabc is defined via the contraction of its
4D counterpart along the time direction, ϵabc ≡ ηabcdud.
It follows that

ϵabcua ¼ 0 and ϵabcϵ
def ¼ 3!h½adhbehc�f: ð5Þ

B. Kinematic quantities

The motion of an observer with 4-velocity ua is
characterized by a set of irreducible kinematic quantities
that emerge from the decomposition of its velocity gradient
into its symmetric trace-free part,4 its trace, and its anti-
symmetric part,

∇bua ¼ σab þ ωab þ
1

3
Θhab − _uaub; ð6Þ

where the sum of σab ¼ Dhbuai, ωab ¼ D½bua�, and
Θ ¼ Daua, namely of the shear and the vorticity tensors
and the volume expansion/contraction scalar, respectively,
represents the spatial component of the 4-velocity gradient
[Dbua ¼ σab þ ωab þ ð1=3ÞΘhab� which describes the
relative motion of neighboring observers. On the other
hand, _uaub represents its temporal counterpart, where _ua ¼
ub∇bua is the 4-acceleration vector. The presence of the
latter is directly related to the existence of nongravitational
forces and therefore vanishes when the fluid moves along
geodesic worldlines. By construction we have σabub ¼ 0 ¼
ωabub ¼ _uaua.
On using the 3D Levi-Civita pseudotensor we can define

the vorticity vector as ωa ¼ ð1=2Þϵabcωbc. In particular, the
vorticity describes changes regarding the orientation of a
given fluid element while the shear determines how the
fluid’s shape changes leaving its volume unaffected.
Finally, the volume scalar refers to the average separation
between neighboring observers.

C. Matter and electromagnetic fields

The dynamics of the matter fields is described by the
well-known continuity and Euler’s equations. Within the
framework of general relativity these equations are derived
from the zero divergence of the energy-momentum tensor, a
consequence of the combined Einstein field equations and
the Bianchi identities. As for the electromagnetic field
dynamics, it is encoded by the familiar Maxwell equations.
We present first the relativistic (covariant) versions of the
equations in question. Second, we point out the unique
coupling of the electromagnetic fields with spacetime
curvature via the Ricci identities.

1. Fluid description

Both matter and electromagnetic fields accommodate a
fluid description that is summarized in their energy-
momentum tensor. The form of the latter depends on the
physical properties of the fields as well as on the observer’s
coordinate frame. In the case of a viscous matter fluid the
energy-momentum tensor reads

2The decomposition is based on the expansion of the ex-
pression Tab ¼ gacgbdTcd ¼ ðhac − uaucÞðhbd − ubudÞTcd.

3Round brackets denote symmetrization while square brackets
imply antisymmetrization. Angular brackets are used to describe
the symmetric and trace-free part of an orthogonally projected
second-rank tensor [e.g., Thabi ¼ TðabÞ − ð1=3ÞTc

chab].
4Note that σab ¼ Dhbuai ¼ DðbuaÞ − ð1=3ÞDcuchab.
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TðmÞ
ab ¼ ρuaub þ Phab þ 2uðaqbÞ þ πab; ð7Þ

where ρ ¼ Tabuaub is the relativistic energy density (the
rest mass density plus the total internal energy due to heat,
chemical energy, etc.), P ¼ ðhab=3ÞTab is the relativistic
isotropic pressure, qa ¼ −habTbcuc is the energy flux
relative to ua or the relativistic momentum density (due
to diffusion or heat conduction), and πab ¼ hhachbidTcd is
the relativistic anisotropic (trace-free) stress tensor (due to
viscosity or free-streaming), all measured in the funda-
mental frame. Let us note that a perfect fluid model requires
that qa ¼ 0 ¼ πab.
Similarly, in the case of an electromagnetic fluid we have

TðemÞ
ab ¼ 1

2
ðE2 þ B2Þuaub þ

1

6
ðE2 þ B2Þhab

þ 2QðaubÞ þ ΠðemÞ
ab ; ð8Þ

where Ea ¼ Fabub and Ba ¼ ð1=2ÞϵabcFbc represent the
electric and the magnetic Maxwell field components,
respectively, of the Faraday tensor,

Fab ¼ 2u½aEb� þ ϵabcBc; ð9Þ

as measured by a fundamental observer; E2 ¼ EaEa and
B2 ¼ BaBa are the square magnitudes of the individual
fields, ρðemÞ ¼ 1

2
ðE2 þ B2Þ is the energy density, PðemÞ ¼

1
6
ðE2 þ B2Þ is the isotropic pressure, Qa ¼ ϵabcEbBc is the

Poynting vector or the electromagnetic energy flux, and
Πab ¼ −EhaEbi − BhaBbi is the anisotropic pressure.5

Now the continuity equation as well as the equations of
motion for a charged, conducting fluid are derived from the
zero divergence condition (as implied by the combined
Einstein’s field equations and Bianchi identities) of the total
energy-momentum tensor

∇bTab ¼ ∇bðTðemÞ
ab þ TðmÞ

ab Þ ¼ 0; ð10Þ

where Tab ¼ TðemÞ
ab þ TðmÞ

ab and6

∇bTðemÞ
ab ¼ −FabJb ð11Þ

with Ja ¼ μua þ J a representing the electric 4-current,
μ ¼ −Jaua the electric charge, and J a ¼ habJb the
orthogonally projected electric current. In particular, the
timelike component of (10) (projection along ua) leads to
the continuity equation (or the energy conservation law)

_ρ ¼ −Θðρþ PÞ − Daqa − 2_uaqa − σabπab þ EaJ a; ð12Þ

which determines the rate of change of relativistic energy
along the worldlines. It is worth noting that the above
relativistic equation includes a term due to viscosity (the
fourth one on its right-hand side), in remarkable contrast to
its ordinary counterpart which is the same for any fluid
model, whether viscous or not.
On the other hand, the spacelike component of (10)

(projection orthogonal to ua) leads to the equations of
motion or Euler’s equations (an expression of the momen-
tum conservation law)

ðρþ PÞ _ua ¼ −DaP − _qhai −
4

3
Θqa − ðσab þ ωabÞqb

− Dbπab − πab _ub þ μEa þ ϵabcJ bBc; ð13Þ

which determines the acceleration caused by various
pressure contributions. The sum ρþ P describes the
relativistic total inertial mass of the medium. The last
two (electromagnetic) terms on the right-hand side of the
above equation represent the familiar form of the
Lorentz force.

2. Maxwell equations

The Maxwell equations are

∇bFab ¼ Ja and ∇½cFab� ¼ 0: ð14Þ

On using the definitions of the electric and magnetic field
components presented in the previous subsection, the 1þ 3
split of Maxwell equations leads to a set of two propagation
equations, and these are

_Ehai ¼ −
2

3
ΘEa þ ðσab þ ϵabcω

cÞEb

þ ϵabc _ubBc þ curlBa − J a; ð15Þ

_Bhai ¼ −
2

3
ΘBa þ ðσab þ ϵabcω

cÞBb

− ϵabc _ubEc − curlEa; ð16Þ

and the following divergence conditions:

DaEa þ 2ωaBa ¼ μ; ð17Þ

DaBa − 2ωaEa ¼ 0: ð18Þ

Equations (15), (16), (17), and (18) constitute 1þ 3
covariant versions of Ampère’s, Faraday’s, Coulomb’s,
and Gauss’s laws, respectively. For a set of Minkowski
observers ( _ua ¼ ωa ¼ σab ¼ Θ ¼ 0) the above equations
reduce to the well-known form of Maxwell’s equations.

5From the expression for ΠðemÞ
ab it becomes evident that an

electromagnetic fluid is necessarily viscous.
6Equation (11) is derived with the aid of Maxwell’s equations

—see (14) in the following subsection.
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Maxwell equations [see the first—the left one—set of
equations in (14)] together with the antisymmetry of
the Faraday tensor imply the zero divergence of the current
4-vector, ∇aJa ¼ ∇aðμua þ J aÞ ¼ 0, which leads to the
electric charge conservation law

_μ ¼ −Θμ − DaJ a − _uaJ a: ð19Þ

In the absence of spatial currents, the temporal evolution of
the charge density is determined by the volume scalar of
the fluid.

3. Matter-electromagnetic fields and spacetime curvature

Although a field theory describing both gravity and
electromagnetism in a unified context is elusive, one can
still study the interaction (or generally the coupling)
between the spacetime curvature and the electromagnetic
fields by incorporating the electromagnetic energy-momen-
tum tensor in Einstein’s field equations for gravity,

Rab −
1

2
Rgab ¼ κTab: ð20Þ

In the above Rab is the (symmetric) Ricci tensor encoding
the local gravitational field, and R ¼ Ra

a is the Ricci scalar,
which measures the mean local curvature. As we have seen
in the previous subsections, the dynamical description of a
fluid is achieved via the zero divergence of Eq. (20).
Beyond this standard description of the various energy

sources, the electromagnetic fields directly couple, due to
their vector nature, with the spacetime curvature via the
Ricci identities7 [1,4,7]

2∇½a∇b�Bc ¼ RabcdBd: ð21Þ

The latter relation is written for the magnetic vector field
and evidently a similar one holds for the electric component
of the Maxwell field. The presence of the Riemann tensor
Rabcd, which encodes the total gravitational field, on the
right-hand side of the Ricci identities implies that the
parallel transport of the vector Ba from a given spacetime
point to another depends on the geometric path followed.
Note that this special status of the electromagnetic fields,
owing to their vector nature, distinguishes them from
all the other known energy sources, such as the ordinary
matter.
On projecting Eq. (21) into the observer’s 3D, instanta-

neous rest space, where measurements are made, we
arrive at

2D½aDb�Bc ¼ −2ωab
_Bhci þRdcbaBd; ð22Þ

where Rdcba is the associated 3D Riemann tensor. In case
the fluid flow is irrotational (i.e., ωab ¼ 0) the observers’
3D tangent rest planes form (integrable) hypersurfaces of
simultaneity, orthogonal to their worldlines.

III. INTRODUCINGA 1+ 2 SPLITOF THE SPATIAL
COMPONENTS

In some cases, a further 1þ 2 decomposition of the
three-dimensional space (leading to an overall 1þ 1þ 2
spacetime splitting—see [14,17,18] for some introductory
information) in one specific spatial direction and a two-
dimensional surface orthogonal to it may reveal additional
useful information about the problem in hand. This is more
likely to happen when the geometry or the physics selects a
preferred spatial direction. For instance, one could consider
the radial component of a spherically symmetric spacetime,
or the rotation axis of a magnetized star, which may also
happen to be parallel to the direction of the magnetic
forcelines. However, a split of the spatial components may
reveal valuable information about the problem in hand
even if there are not any apparent, favorable geometric
or physical conditions (e.g., see the decomposition of
Maxwell equations in the present piece of work).

A. Background

In what follows we show how 3D mathematical objects
(vectors, tensors, equations, etc.) decompose into a com-
ponent parallel to a spatial direction and two components
lying on a 2D surface perpendicular to the aforementioned
direction [14]. Let us introduce a spacelike unit vector na

orthogonal to ua (nana ¼ 1, naua ¼ 0), which defines a
specific spatial direction. Subsequently, we can define the
symmetric tensor h̃ab ≡ hab − nanb which projects vectors
onto 2D surfaces orthogonal to na (h̃abnb ¼ 0, h̃aa ¼ 2,
h̃a

ch̃bc ¼ h̃ab). In analogy with the 1þ 3 formalism,
3-vectors, and the corresponding second-rank, symmetric
and trace-free tensors are split in their irreducible compo-
nents according to the relations

va ¼ Vna þ Va; ð23Þ

where V ≡ vana and Va ≡ h̃abvb while

vab ¼ V

�
nanb −

1

2
h̃ab

�
þ 2VðanbÞ þ Vab; ð24Þ

where V ≡ vabnanb ¼ −h̃abvab, Va ≡ h̃a
bncvbc, and

Vab ≡ ðh̃ðach̃bÞd − ð1=2Þh̃abh̃cdÞvcd. For instance, let us
consider the 1þ 1þ 2 decomposition of the energy-
momentum tensor Tab¼gacgbdTcd¼ðh̃ac−uaucþnancÞ
ðh̃bd−ubudþnbndÞ, which leads to

7In the context of our relativistic framework, we adopt a
Riemannian spacetime model—with zero torsion.
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Tab ¼ ρuaub þ ρ̃nanb þ P̃h̃ab þ 2uðaqbÞ þ 2nðaq̃bÞ þ Πab;

ð25Þ

where ρ̃≡ Tabnanb ¼ Pþ Π and P̃ ≡ ðh̃ab=2ÞTab ¼
P − Π=2 [therefore Π ¼ ð2=3Þðρ̃ − P̃)] are the analogs
of relativistic energy density and pressure defined in
reference to spacelike curves with tangent vector na.
Regarding q̃a ≡ h̃a

bncTbc ¼ Πa and Πab ≡ ðh̃ðach̃bÞd−
ð1=2Þh̃abh̃cdÞTcd, they represent the (2D) surface (normal
to na) counterparts of the energy flux vector and the
viscosity tensor, respectively [refer to Eq. (34) for the
decomposition of the anisotropic stress tensor]. We gather
here for reference all of the decomposition relations of
vectors and tensors, which we use throughout this article8

_ua ¼ Ana þAa; ð26Þ

_na ¼ Aua þ αa; ð27Þ

ωa ¼ Ωna þ Ωa; ð28Þ

qa ¼ Qna þQa; ð29Þ

Ea ¼ ϵna þ ϵa; ð30Þ

Ba ¼ Bna þ Ba; ð31Þ

J a ¼ jna þ ja; ð32Þ

σab ¼ Σ
�
nanb −

1

2
h̃ab

�
þ 2ΣðanbÞ þ Σab; ð33Þ

πab ¼ Π
�
nanb −

1

2
h̃ab

�
þ 2ΠðanbÞ þ Πab; ð34Þ

Eab ¼ E
�
nanb −

1

2
h̃ab

�
þ 2EðanbÞ þ Eab: ð35Þ

In the last equation, Eab is the electric component of the
Weyl (long-range) curvature tensor. There is also the
magnetic tensor component Hab. Weyl curvature is asso-
ciated with tidal forces and gravitational waves (e.g., refer
to [16]). The aforementioned decomposition relation will
be used only once when discussing the gravitational
collapse of a magnetized fluid in Sec. V. Finally, for some
details concerning the meaning of the shear’s individual
components see Appendix A.
Regarding the derivatives of a general tensor field

Tab���cd���, the one along na, and the other projected on the
2-surface normal to na, these are defined, respectively, as

T 0
ab���

cd��� ≡ neDeTab���cd��� ð36Þ

and

D̃eTab���cd��� ≡ h̃e
sh̃a

fh̃b
ph̃q

ch̃r
d � � �DsTfp���qr���: ð37Þ

Finally, the 2D Levi-Civita pseudotensor can be defined via
the contraction of its 3D counterpart along the spatial
direction of na, ϵab ≡ ϵabcnc. It follows that

ϵabnb ¼ 0 and ϵabϵ
cd ¼ 2h̃½ach̃b�d ð38Þ

as well as that ϵabc ¼ naϵbc − nbϵac þ ncϵab.

B. Kinematic quantities

In analogy with its 3D counterpart the motion on the 2D
surface orthogonal to na is characterized by a set of
kinematic quantities which come from the decomposition
of the gradient of na. In other words, we have

Dbna ¼ σ̃ab þ ω̃ab þ
1

2
Θ̃h̃ab þ nan0b; ð39Þ

where σ̃ab ≡ Dhbnai, ω̃ab ≡ D½bna�, and Θ̃≡ Dana are,
respectively, the shear and the vorticity tensors, the surface
expansion-contraction scalar, and n0a ≡ nbDbna the spatial
derivative of na along its own direction. The sum D̃bna ¼
σ̃ab þ ω̃ab þ 1

2
Θ̃h̃ab describes the relative motion of neigh-

boring spacelike curves orthogonal to the surface in
question.
We encourage the reader to compare the 2D version of

the shear σ̃ab ≡ Dhbnai with those of the individual 1þ 2
components of its 3D version σab ≡ Dhbuai found in
Appendix A. Concerning the 2D vorticity tensor, it has
only one independent component (i.e., it consists of a
vector along the one of the two independent directions
defining the 2D surface), so that it can be written as
ω̃ab ¼ ω̃ϵab, where ω̃2 ¼ ð1=2Þω̃abω̃ab. Finally, the con-
dition n0a ¼ 0 implies that the na field is tangent to a
congruence of spacelike geodesics.

C. 1 + 1 + 2 System of equations for a magnetized fluid

Within the framework of ordinary electrodynamics of
continuous media [19] (where Newtonian instead of rela-
tivistic gravity is adopted), the description of a conducting
fluid in a magnetic field requires, on the one hand, the fluid
dynamics equations, namely the continuity equation,
Euler’s equation of motion, and an equation of state9;

8Note that _nana ¼ 0 in Eq. (27) and therefore αana ¼ 0.

9In general, the equation of state relates the pressure, density,
and temperature of the fluid, P ¼ Pðρ; TÞ. The dependence on
the temperature requires the equation of heat transfer for the
system to be completed. However, for our purposes a barotropic
equation of state, P ¼ wρ with w ¼ const will be sufficient.
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and, on the other hand, Maxwell’s electrodynamic field
equations.
Regarding our relativistic approach, the whole Einstein-

Maxwell system of equations (which includes the long
range or Weyl gravitational fields as well) is generally
needed to fully describe the motion of a magnetized fluid.
Nevertheless, as our interest focuses particularly on the
behavior or the evolution of the magnetic field and its
implications on the motion of the fluid, we will eliminate
our attention to the Euler-Maxwell system of equations.
Besides, it turns out that the 1þ 2 decomposed Euler-
Maxwell system of equations at the ideal magnetohydro-
dynamics (MHD) limit does not involve directly the effects
of the long range gravitational field.
In the following subsections we first consider the ideal

MHD limit of the system in question and subsequently split
up its equations in their 1þ 2 spatial components. We
conduct our calculations by defining the arbitrary spacelike
vector na, which we use for making the 1þ 2 decom-
position, to be parallel to the magnetic field lines. The 1þ 2
split of the full equations as well as argumentation showing
the equivalence of the system under the alternative
assumption Ba⊥na are included for the interested reader
in Appendixes B and C respectively.

1. The magnetohydrodynamics approximation

Aiming to describe the motion of a magnetized fluid, we
need to isolate the magnetic component of the Maxwell
field. This can be achieved theoretically by adopting a
highly conducting fluid model. According to Ohm’s law
applied in the fluid’s rest frame,

J a ¼ ςEa; ð40Þ

nonzero spatial currents arise for Ea → 0 at the MHD limit
(i.e., ς → ∞, where ς is the conductivity of the medium).
For such a perfect conductor the magnetic field lines
behave as being frozen in the fluid.

2. Magnetic field equations and solution

Making use of the MHD approximation, Maxwell’s
equations (15)–(18) reduce to one propagation equation

_Bhai ¼
�
−
2

3
Θhab þ σab þ ϵabcω

c

�
Bb; ð41Þ

known as the magnetic induction equation, which shows
that the temporal evolution of the magnetic field is a direct
result of the relative motion of neighboring fluid particles;
and three constraints

J a ¼ ϵabc _ubBc þ curlBa; ð42Þ

ωaBa ¼ μ; and DaBa ¼ 0; ð43Þ

where according to (42) the magnetic field lines remain
frozen-in with the matter in the form of currents.
Subsequently, projecting Faraday’s law, Eq. (41), along
and orthogonal to an arbitrary spacelike vector na, defined
along the direction of the field lines (i.e., Ba ¼ Bna), we
arrive at

_B ¼ −ΘB and αa ¼ −2ϵacΩc ¼ u0a; ð44Þ

where we have taken into account the decomposition
relations in Sec. III A as well as that Σ ¼ −Θ=3 and Σa ¼
−ϵabΩb (see Appendix A). We observe that Eq. (44a) is a
covariant, linear, partial differential equation of first order.
It appears that our decomposition has brought Faraday’s
law into a solvable form. The latter tells us that the rate
of change of the magnetic field along the worldlines is
proportional to the expansion or contraction of a given
volume containing the worldlines. In the following we
provide a general method of solving differential equations
of the form in question. We will proceed to the solution
after writing down the decomposed constraint relations for
the magnetic field. In particular, Eq. (42) splits into

−B2Aa−2BD̃aBþB2n0a¼Bϵacjc and ω̃B¼−
j
2
: ð45Þ

As for the scalar equations (43), they are written as

ΩB ¼ μ

2
and B0 þ Θ̃B ¼ 0: ð46Þ

Both the charge density μ and the current along the
magnetic forcelines j are determined by the magnetic field
B and the value of the vorticity vector along and orthogonal
to Ba, respectively. Moreover, note the remarkable sim-
ilarity between Eqs. (44a) and (46b), namely the decom-
posed forms of Faraday’s and Gauss’ laws, respectively.
In what follows, we proceed to the solution of (44a),

which provides the paradigm for the solution of (46b). First
of all, as B is a scalar quantity, its covariant differentiation
is equivalent to its ordinary differentiation, so that

_B ¼ ua∇aB ¼ ua∂aB

¼ ðu0∂0 þ u1∂1 þ u2∂2 þ u3∂3ÞB ¼ −ΘB: ð47Þ

Now by defining new spacetime variables x̃a such that10

x̃i ¼
Z

dxi

ui
; ð48Þ

expression (47) becomes

10Note that here the repeated index i does not imply summa-
tion of components.
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ð∂̃0 þ ∂̃1 þ ∂̃2 þ ∂̃3ÞB ¼ −ΘB; ð49Þ

where ∂̃i are the new derivative operators with respect
to the variables x̃i. Let us try to solve the latter equation
by assuming variable separation: B ¼ T ðx̃0ÞUðx̃1Þ
Vðx̃2ÞWðx̃3Þ, where x̃0 is the new temporal variable and
x̃1; x̃2; x̃3 are the new spatial variables. Relation (49) takes
thus the form

∂̃0T
T

þ ∂̃1U
U

þ ∂̃2V
V

þ ∂̃3W
W

¼ −Θðx̃0; x̃1; x̃2; x̃3Þ; ð50Þ

We observe that each of the fractions in the above equation
depends on only one of the variables x̃i. Subsequently,
Eq. (50) holds if and only if Θðx̃0; x̃1; x̃2; x̃3Þ ¼
Θ0ðx̃0Þ þ Θðx̃1Þ þ Θ2ðx̃2Þ þ Θ3ðx̃3Þ. Therefore, the origi-
nal partial differential equation reduces to four ordinary
differential equations of the form ð∂̃1U=UÞ ¼ −Θ1ðx̃1Þ,
which are integrated directly to give U ¼ c1e

−
R

Θ1dx̃1 .
Hence, it is overall clear to see that the solution for B
can be written as

B ¼ Ce−
R

Θ0dx̃0−
R

Θ1dx̃1−
R

Θ2dx̃2−
R

Θ3dx̃3

¼ Ce−
R

Θ0
u0
dx0−

R
Θ1
u1
dx1−

R
Θ2
u2
dx2−

R
Θ3
u3
dx3 ; ð51Þ

where C is an arbitrary constant and we have found out that
our variables separation assumption turns out to be true.11

Equation (51), which is a solution12 of Faraday’s law at the
MHD limit, tells us that if Θiðx̃iÞ are continuous functions
in a specific closed interval ½α1; α2� of their domain and they
preserve a constant sign [e.g., Θiðx̃iÞ ≤ 0, implying con-
tinuous gravitational contraction] for every value of their
variable belonging in the interval, then

R
α2
α1

Θiðx̃iÞdx̃i < 0

and the magnetic field generally obeys an exponential type
of increase with respect to the spacetime variables. In fact,
the aforementioned exponential type behavior seems to be
outward because on defining a scale factor aðx̃0; x̃1; x̃2; x̃3Þ,
such that Θ ¼ 3_a=a [also Θ0 ¼ 3da0=ða0dx̃0Þ and
Θi ¼ 3dai=ðaidx̃iÞ], Eq. (51) reduces to

B ∝ a−3 ¼ ða0ðx̃0Þa1ðx̃1Þa2ðx̃2Þa3ðx̃3ÞÞ−3: ð52Þ

Finally, we shall keep in mind the following remarks. First,
on deriving relations (51) and (52) we have not adopted a
specific coordinate reference frame. Second, the evolution
of B in each spacetime direction is independent of its

evolution in the other directions with respect to the tilted
variables only, where B ¼ T ðx̃0ÞUðx̃1ÞVðx̃2ÞWðx̃3Þ. The
crucial equation (51), or (52), provides us the keystone for
studying magnetic fields in cosmological and astrophysical
problems (refer to the following sections).
In order to specify the constant C, we observe that the

key fluid dynamic quantity related to the magnetic field is
the volume scalar Θ. Therefore, we turn our attention
to the relation that describes its evolution, the so-called
Raychaudhuri equation (e.g., see [15]),

_Θ¼−
1

3
Θ2−

1

2
ðρþ3PþB2Þ−2ðσ2−ω2ÞþDa _uaþ _ua _ua:

ð53Þ

Considering an instant during which the fluid is found in its
equilibrium state13 (setting Θ ¼ 0 ¼ σ2 and _ua ¼ 0 ¼ ω2),
we have B ¼ C, and (53) leads to (the star index refers to
equilibrium values in the following)

C2 ¼ −ð2 _Θ� þ ρ� þ 3P�Þ; ð54Þ

which means that C is a real constant if

_Θ� < −
1

2
ðρ� þ 3P�Þ < 0: ð55Þ

In other words, the rate of change of the volume scalar in
the equilibrium has to be negative and smaller than the
gravitational mass of the system due to conventional
matter [1

2
ðρ� þ 3P�Þ > 0].

In the same way Eq. (46)b) solves to give

B ¼ Fe−
R

Θ̃0
n0
dx0−

R
Θ̃1
n1
dx1−

R
Θ̃2
n2
dx2−

R
Θ̃3
n3
dx3 ; ð56Þ

where F is a constant. According to the latter relation,
the magnetic field changes with the area scalar Θ̃
(which describes the expansion/contraction of the 2D
surface orthogonal to the magnetic forcelines) in complete
analogy with its dependence on the volume scalar Θ.
Note that the area scalar splits in components,
Θ̃ ¼ Θ̃0ðx̃0Þ þ Θ̃1ðx̃1Þ þ Θ̃2ðx̃2Þ þ Θ̃3ðx̃3Þ, in full corre-
spondence with its 3D counterpart.

3. Fluid dynamic equations

At the ideal MHD limit (qa ¼ 0 ¼ πab and Ea ¼ 0), the
equation of continuity (12) reduces to

_ρ ¼ −Θðρþ PÞ: ð57Þ11Recall that the original Eq. (44) is a partial differential one.
However, we have shown that it reduces four ordinary equations
[see (50)]. As a consequence, the general solution we have found
with Eq. (51) is actually the only solution of the original equation.

12As far as we know, it is the first time that the solution in
question appears in the literature.

13Such an instant could have been either the initial instant—
just before the collapse starts—or a transitional instant, during
which the collapse stops and the fluid starts expanding.
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It is worth noting that even if we had considered an
imperfect (viscous) fluid model, the magnetic field would
behave according to the same law—relation (51) would still
be true because Eq. (44a) would have remained essentially
the same. However, in that case, the constant C would have
been given by a far more complicated expression while in
general the comprehension as well as the application of the
system to realistic problems (see the last two sections)
would have been a far more difficult task.
Subsequently, assuming a barotropic equation of state of

the form

P ¼ wρ; ð58Þ

where 0 ≤ w ≤ 1 is a constant parameter, the continuity
equation finally becomes

_ρ ¼ −Θð1þ wÞρ: ð59Þ

The latter shows that changes in the volume scalar
determine the evolution of the matter density. In complete
analogy with (44a) and (46b), Eq. (59) solves to give

ρ ¼ De−
R

ð1þwÞΘ0
u0
dx0−

R
ð1þwÞΘ1

u1
dx1−

R
ð1þwÞΘ2

u2
dx2−

R
ð1þwÞΘ3

u3
dx3 ;

ð60Þ

where D is a constant. According to the above relation, in
the case of dust (i.e., w ¼ 0), the density of matter evolves
in the same way as the magnetic field does. On the other
hand, the density of stiff matter (i.e., w ¼ 1) evolves in the
same rate as the magnetic energy density B2 does.
Concerning Euler’s equation, the application of the ideal

MHD approximation leads to

ðρþ PÞ _ua ¼ −DaPþ ϵabcJ bBc; ð61Þ

where the pressure gradients and the magnetic Lorentz
force are the remaining causes of nongeodesic motion.
Substituting the current from (42) into the last term in the
above relation and following the operations we arrive at

ϵabcJ bBc ¼ −B2 _ua þ _ubBbBa −
1

2
DaB2 þ BbDbBa: ð62Þ

The last two terms in the right-hand side of the above
relation are due to the magnetic pressure and the magnetic
tension, respectively. Therefore, Eq. (61) transforms into

ðρþ Pþ B2Þ _ua ¼ −DaPþ _ubBbBa −
1

2
DaB2 þ BbDbBa:

ð63Þ

On projecting the above relation along and normal to na,
it decomposes into

ðρþ PÞA ¼ −P0 and

ðρþ Pþ B2ÞAa ¼ −D̃aP − BD̃aB þ B2n0a; ð64Þ

respectively. Not surprisingly, the motion along the
magnetic field lines [Eq. (64a)] is not determined by the
effect of magnetic forces. As for the motion orthogonal to
the field lines [Eq. (64b)], it is determined not only by
the associated pressure gradient but by the magnetic
pressure and tension as well.14 Now taking into account
the equation of state (58), the individual components of
Euler’s equation transform into

A ¼
�
ln ρ−

1
1þw

�0
and

Aa ¼ −
wD̃aρ

ð1þ wÞρþ B2
−

D̃aB2

2½ð1þ wÞρþ B2� þ c2An
0
a; ð67Þ

where c2A ¼ B2

ρþPþB2 represents the square of the Alfvén

velocity. In the next step, substituting the density evolution
formula (60) into (67)a) and following the operations, we
finally arrive at

A ¼ n1Θ1

u1
þ n2Θ2

u2
þ n3Θ3

u3
; ð68Þ

which shows in a direct manner that the motion along the
magnetic forcelines is determined by the fluid’s volume
expansion or contraction. Regarding the motion orthogonal
to the magnetic forcelines [see Eq. (64b)], recalling the
evolution of B and ρ, it appears that the magnetic force
terms tend to dominate over the pressure or matter density
gradient in the case of contraction (Θ < 0) while the
opposite is expected to happen in the case of expansion
(Θ > 0). This observation is based on a comparison of the
exponential terms related to ρ and B. However, the exact
behavior of the magnetic pressure term depends on the
evolution of the Θ coefficients which come from the
differentiation of B2. Besides, there is an exception to
the aforementioned observation we have when considering
a stiff matter model (w ¼ 1). In the last case both matter
and magnetic energy densities evolve at the same rate.

14Note that the equation of motion (64b) in the equilibrium
state is written as

C2n0a� ¼ D̃aP�: ð65Þ
Combining (54) and (65) one determines the value of n0a in the
equilibrium,

n0a� ¼ −
D̃aP�

2 _Θ� þ ρ� þ 3P�
: ð66Þ
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IV. COSMOLOGICAL MAGNETIC FIELDS
IN HOMOGENEOUS MODELS

In this section we make use of Eq. (51) with the aim of
studying the evolution of large-scale magnetic fields. In the
first place, we explain why the cosmic medium is expected to
satisfy the ideal MHD requirements, which entail the sub-
sequent application of (51) in homogeneous and anisotropic
cosmological spacetimes. In the second place, we focus on
the Bianchi I model, the case of which provides a specific,
indirect but clear verification of our general result within the
literature. In particular, taking into account the magnetic
energy contribution, we derive the evolution formulas of a
Bianchi I model with perfect fluid content. Finally, we
determine the epoch of equality between magnetic energy
density and radiation/matter, considering in parallel the
nucleosynthesis constraint in relation to the magnetic density
evolution, within themodel in question. Our estimation of the
aforementioned equality epoch could fortunately be used as a
reference point when studying the origin of cosmic magnetic
fields in the pre-recombination era.

A. The MHD approximation of the cosmic medium

Within the context of the standard cosmological model,
large-scale gravitational as well as electromagnetic pertur-
bations are causally produced via the inflationary mecha-
nism. In particular, spacetime distortions initially appear in
the form of quantum fluctuations during the so-called
Planck epoch. Subsequently, due to the exponential expan-
sion of the inflation era, these quantum fluctuations are
forced to pass out of the Hubble horizon, where they freeze
out in the form of classical perturbations. After inflation,
during reheating and the following radiation era, the
electrical conductivity of the initially poorly conducting
cosmic medium increases rapidly [15]. As a consequence,
the electric fields gradually vanish and the currents freeze
the magnetic fields in with the cosmic fluid. In other
words, the postinflationary universe can be causally
described by the ideal magnetohydrodynamical model,
within the Hubble scale. Besides, the adoption of the
MHD approximation in the standard cosmological frame-
work is in accordance with the fact that only large-scale
magnetic (not electric) fields have been observed. In the
following, our interest focuses on the evolution of large-
scale magnetic fields lying within the Hubble horizon.

B. Homogeneous anisotropic models
hosting large-scale magnetic fields

Let us consider the application of Eq. (51)—recall that
this relation requires that the MHD approximation is
satisfied—in homogeneous and (expanding/contracting)
anisotropic, cosmological spacetime. It simplifies to

B ¼ Ce−
R

Θ0
u0
dx0 : ð69Þ

We should note that the presence of the magnetic fields
(defining a preferable spatial direction) presupposes or
requires a certain anisotropy of their host cosmological
environment. On using comoving (unchanged by the
cosmic expansion) coordinates along the fundamental
worldlines (u0 ¼ 1, ui ¼ 0, and x0 → τ, where τ is the
fundamental observer’s proper time) and taking into
account the definition of the Hubble parameter
(Θ0 ¼ 3H ¼ 3_a=a, where a represents the average scale
factor of the anisotropic spacetime), the above expression
becomes

B ¼ Ce−3
R

da
a ¼ Ce−3 ln a → B ∝ a−3 ðx0 ≡ τÞ; ð70Þ

so that the magnetic energy density satisfies

ρB ∝ B2 ∝ a−6 ðx0 ≡ τÞ: ð71Þ

The validity of the above relation is restricted to homo-
geneous and anisotropic cosmological models that are
able to accommodate pure, large-scale magnetic fields. It
is known that of the so-called (homogeneous) Bianchi
models, there are some that potentially behave as natural
hosts of large-scale magnetic fields. In particular, these are
Bianchi I, II, III, VI−1, and VII0 in accordance with [20].
Note that Eq. (70) involves a significantly faster change of
magnetic fields with time in comparison to their evolution
in perturbed Friedmann-Robertson-Walker (FRW) models
with flat spatial sections. Recall that in the latter case, the
more familiar relation B ∝ a−2 holds instead (e.g., see
[4,7]). The reader can refer to Sec. IV C 2 for a comparison
regarding the relative evolution of magnetic fields and
radiation/dust in perturbed FRW and Bianchi I cosmologi-
cal models.

C. The Bianchi I case

Now we focus our attention specifically on the simplest
anisotropically expanding cosmological model, namely the
so-called Bianchi I, which has Euclidean spatial sections
and is known to allow for the existence of large-scale
magnetic fields. Its metric in comoving coordinates reads

ds2 ¼ −dt2 þ A2ðtÞdx2 þ B2ðtÞdy2 þ C2ðtÞdz2; ð72Þ

where the mean scale factor is a ¼ ffiffiffiffiffiffiffiffiffiffi
ABC3

p
. In covariant

terms, the only nonvanishing quantities in Bianchi I
cosmologies are the relativistic energy density and pres-
sure, the anisotropic stress tensor, the volume scalar, the
shear, and the electric Weyl tensor (i.e., ρ, P, πab, Θ, σab,
and Eab, respectively) [16]. All the remaining terms are
zero by construction, namely ωa ¼ 0 ¼ _ua ¼ qa ¼ Hab ¼
Rab (Rab represents the 3D counterpart of the Ricci tensor,
and it measures the curvature of the fundamental observers’
rest space). It is worth noting that because of their nonzero
anisotropic stress tensor (πab ≠ 0) Bianchi I models can
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generally host viscous fluids such as the electromagnetic
ones, however, under the restriction of zero momentum
density (qa ¼ 0). In the case of an electromagnetic fluid the
aforementioned limitation translates into a zero Poynting

vector, qðemÞ
a ¼ ϵabcEbBc ¼ 0, which means that on con-

sidering large-scale magnetic fields, the associated electric
components of the Maxwell field have to vanish. This
means that the Bianchi I cosmologies satisfy the MHD
approximation by construction. Finally, we mention here
for reference that the condition Rab ¼ 0 together with the
continuity equation (for a Bianchi I model) are written as

H2 ¼ 1

3

�
ρþ 1

2
B2 þ σ2

�
and

_ρ ¼ −3Hðρþ PÞ − σabπab: ð73Þ

Note that the terms in the continuity equation do not
include any contribution from the magnetic field. The
above relations will be used in the following subsections.

1. Evolution of the model

The evolution of the magnetized Bianchi I model has
been studied in detail and in various different works (e.g.,
see [21,22]). However, we have not found anywhere yet an
exact solution for the magnetic energy density coinciding
with our own. Only an indirect verification of our result
have we found in the literature, and it is mentioned below.
To begin with, in order to acquire some insight into the

effects of the magnetic fields on the evolution of the
cosmologies in question, let us assume that the anisotropy
of the model is exclusively due to the presence of the
magnetic field (i.e., matter is considered as a perfect fluid).
Mathematically speaking this assumption means that the
magnetic field has to be an eigenfunction of the shear
tensor, namely

σabBb ¼ ξBa; ð74Þ

where ξ is the associated eigenvalue. Subsequently, on
multiplying (74) by Ba and defining Ba ≡ Bna, we
determine the value of ξ to be

σabBaBb ¼ ΣB2 ¼ −
1

3
ΘB2 ¼ ξB2 → ξ ¼ −

Θ
3
: ð75Þ

It is remarkable that if we substitute our value of ξ into
Eq. (43) from Ref. [23], we restore relation (70) for the
evolution of the magnetic field [ξ ¼ −Θ=3 corresponds to
λ ¼ −Θ=2 and ζ ¼ −1=2 in (70)]. This is an important,
though indirect, verification of our result within the
literature. Besides, the magnetic field vector is in parallel
an eigenfunction of the anisotropic magnetic stress tensor,

πðMÞ
ab ¼ −BaBb þ ðB2=3Þhab, so that

πðMÞ
ab Bb ¼ −

2

3
B2Ba: ð76Þ

Combining Eqs. (74)–(76) we arrive at

σab¼
Θ
2B2

πðMÞ
ab and σ2≡1

2
σabσ

ab¼Θ2

12
¼3

4
H2: ð77Þ

With the aid of Eqs. (73) and (77) for a perfect and
barotropic fluid (P ¼ wρ), ρ ∝ a−3ð1þwÞ, we find out that
the square of the shear and the scale factor evolve in
accordance with

σ2 ¼ c1a−3ð1þwÞ þ c2a−6 and H2 ¼ c3a−3ð1þwÞ þ c4a−6;

ð78Þ

respectively, where c1 and c2 are constants. We observe
that, on the one hand, as the scale factor becomes large, the
model approaches a FRW (with flat spatial sections) type of
evolution, a ∝ t2=3ð1þwÞ. On the other hand, as we approach
the early stages of the universe, the model tends to a Kasner
type of evolution, σ ∝ a−3 and a ∝ t1=3, which is charac-
terized by the shear domination (e.g., see [16]). The
aforementioned behavior at large and small scales is in
accordance with that of a nonmagnetized Bianchi I cos-
mology with perfect fluid. Therefore, the difference
between a magnetized and a nonmagnetized model is
theoretically found in their intermediate stages of evolution.
In particular, Eq. (78)b) recasts into the solvable form

da
dt

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c1a−1−3w þ c2a−4

q

or equivalently into c5
a2daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c6a3ð1−wÞ
p ¼ dt; ð79Þ

where c5 ¼ c−1=24 and c6 ¼ c3=c4 are constants. Let us
solve the above equation for two characteristic values of the
barotropic index w, namely w ¼ 1=3 (radiation) and w ¼ 0
(dust). Specifically, the integration of (79) in the cases of
radiation and dust15 leads, respectively, to the solutions

t ¼ C1a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ C2

q
− ln j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ C2

q
þ aj þ C3 and

aðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C4t2 þ C5tþ C6

3

q
; ð80Þ

where C1;…; C6 are constants. We observe that on large
scales the square root term dominates in (79a) so that
a ∝ t1=2, which is the evolution formula during the radi-
ation era of the standard cosmological model (see also the

15We consider the scale factor as a real quantity. In the former
case (w ¼ 1=3), we make use of the substitution a ¼ c6 tan u →
u ¼ arctanða=c6Þ while in the latter case (w ¼ 0) of
u ¼ 1þ c6a3.
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following subsection). Moreover, the small-scale limit of
(79b) leads to the above-mentioned Kasner type solution
a ∝ t1=3. On the other hand, approaching large scales, the
average scale factor increases with the cosmic time in
accordance with a ∝ t2=3 [see (80b)], which is the familiar
evolution formula holding during the dust era of the
standard cosmological model (refer to the following
subsection).

2. Magnetic density–radiation/dust equality
Let us close the unit regarding magnetic fields in

cosmology by identifying the cosmic equality of magnetic
energy density and radiation/dust in a magnetized Bianchi I
model (filled with ideal fluid), and comparing it with its
counterpart in a magnetized FRW model with flat spatial
sections. In other words, we need to specify at which scales
the ratios ρB=ρrad and ρB=ρm become equal to unity in
magnetized Bianchi I models.
In the first place, let us consider a Friedmann background

model with curved spatial sections. The isotropy and
homogeneity of the model requires that all vector-tensor
quantities (electromagnetic fields are included) as well as
3D gradients vanish identically. Therefore, one has to study
electromagnetic fields in perturbed FRWmodels (e.g., for a
detailed approach see [7]). Allowing for the presence of a
weak electromagnetic field, we consider a linearly per-
turbed FRW model. Hence, to first order the equation of
continuity (12) for radiation and dust is written as16

_ρrad ¼ −4Hρrad and _ρm ¼ −3Hρm; ð81Þ

respectively, which are solved (recall thatH ¼ _a=a) to give
the well-known evolution formulas

ρrad ¼ ρrad0

�
a0
a

�
4

and ρm ¼ ρm0

�
a0
a

�
3

; ð82Þ

where the zero index corresponds to a specific cosmologi-
cal instant. Moreover, assuming that the cosmic radiation is
found in thermodynamic equilibrium, it can be approxi-
mated by the black-body radiation model. In particular, the
radiation density has to be proportional to the fourth power
of the cosmic fluid’s absolute temperature T, in accordance
with the Stefan-Boltzmann law

ρrad ¼ σSBT4; ð83Þ

where σSB ¼ 5.670 × 10−8 Wm−2 K−4 represents the
Stefan-Boltzmann constant. Note that the combination of
(82a) and (83) leads to the familiar relation T ∝ a−1, which
is valid in both FRWand Bianchi I (with ideal fluid content)
models. The radiation decays faster due to the expansion of

the universe than the dust. These rates are expected to be
modified in a Bianchi I model due to effects associated with
the shear and vorticity. However, it can easily be checked
that exactly the same relations for the density of radiation
and dust hold in a Bianchi I model with ideal fluid content
(recall that large-scale electric fields vanish by construction
in a magnetized Bianchi I model). In this case, the geo-
metric anisotropy comes exclusively from the large-scale
magnetic fields. Regarding the magnetic energy density,
it evolves according to the relations

ρFRWB ¼ ρFRWB0

�
a0
a

�
4

and ρBianchiIB ¼ ρBianchiIB0

�
a0
a

�
6

; ð84Þ

in a linearly perturbed FRW17 with flat spatial sections and
in an exact Bianchi I model, respectively. It is worth noting
that the radiation and the magnetic energy densities have
the same rate of change in the former case, whereas this is
not generally true in the latter case. In other words,
although the electromagnetic field (or simply the magnetic
field in the Bianchi I case) makes part of the radiation fluid,
it does not necessarily evolve as the associated relativistic
particles do.
Now taking into account relations (82) and (84) we

determine the ratio of the magnetic energy density over
the density of radiation or dust, at a given moment in a
Bianchi I model (with ideal fluid content) as18

ρB
ρrad

¼
�
ρB
ρrad

�
p

�
ap
a

�
2

and
ρB
ρm

¼
�
ρB
ρm

�
p

�
ap
a

�
3

; ð85Þ

where the suffix p indicates the values of the involved
quantities at the present and ap=a ¼ 1þ z, with z being the
redshift. In accordance with the above expression, magnetic
fields dominated in the past while their contribution to the
total energy density is significantly limited today. When
the two forms of energy acquire equal densities (ρrad ¼ ρm),
the corresponding scale factors (aeqðB−radÞ and aeqðB−mÞ) are

aeq ðB−radÞ ¼
�
ρB
ρrad

�
1=2

p
ap ∼ 10−9ap and

aeq ðB−mÞ ¼
�
ρB
ρm

�
1=3

p
ap ∼ 10−7.3ap; ð86Þ

namely about a billion and ten million times smaller,
respectively, than today (the associated redshifts are
1þ zeqðB−radÞ ¼ 109 and 1þ zeqðB−mÞ ¼ 107.3). In the above
calculationwe have taken into account that the present value

16Taking into account Eq. (15) note that the electromagnetic
term in (12) is of nonlinear order.

17The electric field density shares the same evolution formula
with its magnetic counterpart to first order with respect to a
Friedmann background.

18Note that a represents now the average (with respect to all
spatial directions) scale factor.
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of intergalacticmagnetic fields amounts to the order of 10−15

Gauss (e.g., refer to [24–26]). Making use of natural units
(c ¼ ℏ ¼ kB ¼ 1) the intergalactic magnetic energy density
today is expressed in terms of giga-electron volts as
ρB ∼ 4 × 10−70 GeV4, in accordance with the equivalence:
1 ðGaussÞ2=ð8πÞ ≃ 2 × 10−40 GeV4 (e.g., see the appendix
of [27]). Moreover, the density of matter today is
ρm ∼ 10−30 gr=cm3 ∼ 4 × 10−48 GeV4 (ρm ¼ Ωmh2ρcrit
with ρcrit ∼ 10−29 gr=cm3 and Ωmh2 ≃ 0.14 today [28])
while its radiation counterpart is ρrad ¼ 10−34 gr=cm3 ∼ 4 ×
10−52 GeV4 (1 GeV4 ≃ 2 × 1017 gr=cm3). Moreover, with
the aid of (84)b) and (86) we calculate the values of the
magnetic field at the aforementioned equalities and at
recombination19 to be BeqðB−radÞ∼1012G, BeqðB−mÞ∼107G
and Brec ∼ 10−6 G, respectively (the associated values of
the densities are 4 × 10−16 GeV4, 4 × 10−26.2 GeV4, and
4 × 10−52 GeV4).
Before proceeding to a comparison of our results with

their counterparts in a Friedmann model, let us raise and
take into account an issue related to the constraint that
cosmic nucleosynthesis imposes on the magnitude of the
magnetic energy density. In particular, magnetic fields are
known to increase nuclear reaction/transformation rates,20

so that the enhanced domination of the magnetic energy
density during the early Bianchi I universe (ρB ∝ a−6

instead of ρB ∝ a−4 in a Friedmann model) may potentially
be incompatible with the cosmic nucleosynthesis. We
attempt here a first approach to the question by comparing
the densities of magnetic fields and radiation during
nucleosynthesis. In practice, considering that nuclear bind-
ing energies are of the order of some mega-electron volts,
which correspond (in thermal-statistical equilibrium) to
absolute temperatures of the order TNS ∼ 1 MeV=ðkB ¼
8.61 × 10−11 MeVK−1Þ ∼ 1010 K (kB is the Boltzmann
constant), we can estimate that nucleosynthesis within
the standard cosmological model takes place at redshift

1þ zNS ¼
TNS

Tp
∼ 109; which means that aNS ∼ 10−9ap:

ð87Þ

It is straightforward to observe [comparing (86a) and (87b)]
that in the context of a Bianchi I model (with perfect fluid
content), magnetic fields and radiation share approximately
(an order of magnitude estimation) the same densities
during nucleosynthesis. At a first glance, the small differ-
ence we find in densities seems not to permit us to

derive any conclusion. However, we shall keep in mind
that our estimation depends on the value, which we have
assumed, of the intergalactic magnetic field today (i.e.,
Bp ∼ 10−15 G). For instance, a weaker magnetic field, such
as Bp ∼ 10−16 G, can lead to a ratio ðρB=ρradÞNS ∼ 10−2,
which shows a clear domination of radiation over magnetic
fields during the epoch of nucleosynthesis. Such a signifi-
cant difference (of 2 orders of magnitude) seems to favor
the answer that the presence of magnetic fields does not
disturb the cosmic creation of nuclei.
Now in analogy with relation (86), the equality of

magnetic energy density and dust in a perturbed
(magnetized) Friedmann model with flat spatial sections
takes place at aeqðB−mÞ ∼ 10−22ap (or equivalently at
1þ zeqðB−mÞ ∼ 1022), namely at a redshift about 15 orders
of magnitude greater than its Bianchi I counterpart. This
means that in a Bianchi I cosmology the magnetic energy
density of the highly conducting cosmic fluid is over-
whelmed by the energy density of dust much later during
the universe’s evolution in comparison to a Friedmann
model. As for the ratio ρB=ρrad, it remains constant through-
out the evolution of the magnetized FRW model, because
magnetic fields and radiation share the same expansion rate.
On the other hand, the equality of magnetic fields with dust
occurs after their equality with radiation, while both
equalities take place much earlier (during the radiation
era) than the recombination aswell as than the dust-radiation
equality. The aforementioned results could hopefully turn
out to be useful when examining the potential cosmological
origin of magnetic fields in the pre-recombination epoch.

V. GRAVITATIONAL COLLAPSE
OF A MAGNETIZED FLUID

The gravitational collapse of compact stellar objects, such
as white dwarfs, neutron stars, black holes, as well as that of
protogalactic clouds usually involves (weak or strong)
magnetic fields. In the context of general relativity, indepen-
dent studies have pointed out the unconventional tendency of
the B fields to resist their own gravitational implosion. The
same works have also raised the question as to whether the
magnetic presence and the resulting Lorentz forces could
actually halt the contraction of the surrounding collapsing
matter [5–9]. In addition, alternative studies of charged
collapse, this time employing the repulsive (electrostatic)
Coulomb forces, have found that the latter could also prevent
the formation of spacetime singularities [10–12]. The present
section probes the gravitational collapse of a highly con-
ductive charged medium by means of the Raychaudhauri
equation and along the lines of [7–9]. Making a step further,
we take advantage of a 1þ 2 spatial splitting and arrive at a
simple criterion that could decide the ultimate fate of
homogeneously contractingmagnetizedmedia. This criterion
is then applied to a collapsing perturbed Bianchi I spacetime
permeated by a magnetic field.

19Recombination takes place at redshift of about
1þ zrec ¼ Trec

Tp
≃ 1500, where Tp ¼ 2.7 K is the temperature of

the cosmic microwave background at present.
20Besides, magnetic fields contribute to the expansion rate of

the universe and thus indirectly affect the rate of nuclear
interactions.
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A. Using the Raychaudhuri equation

Traditionally, theoretical studies of gravitational collapse
make use of the Raychaudhuri equation, which has been
made famous as a keystone of the singularity theorems.
Besides, in general terms, the formula in question cova-
riantly describes the volume evolution of a self-gravitating
fluid element. In this first subsection, we revisit the
problem of gravitational implosion of a highly conducting
(magnetized) fluid with the aid of the Raychaudhuri
equation,21 and in light of our new knowledge regarding
the behavior of the associated magnetic field [more
specifically of relation (51)], as well as of our new
developments in the context of the 1þ 1þ 2 covariant
formalism. Unlike previous independent works, our study
builds upon past research (see [7–9]) and leads to a
remarkably simple criterion determining the fate of homo-
geneous and magnetized gravitational collapse.
Before proceeding to the analysis, let us have in mind

two crucial points. First, magnetic-line deformations are
usually caused by electrically charged particles; however,
relativistic spacetime curvature (gravity) also potentially
behaves as a deforming agent [3,9]. Second, the magnetic
tension reflects the elasticity of the field lines and their
tendency to react against any agent that distorts them from
equilibrium [7–9].
Let us start with the Raychaudhuri equation, which we

have already written in the form of (53). To proceed, we
need to calculate the 3-divergence of the acceleration vector
(i.e., Da _ua), which gives rise to magnetogeometric terms, of
crucial importance for our relativistic study. In particular,
let us consider an ideal, highly conducting fluid model.
Euler’s equation is written thus as

ðρþ Pþ B2Þ _ua ¼ −DaP −
1

2
DaB2 þ BbDbBa þ _ubBbBa;

ð88Þ

where contributions from both matter and magnetic fields
appear on its right-hand side. In order to facilitate the
analytic calculations, we assume that the contracting fluid
has nearly homogeneous matter22 and magnetic energy
density distributions (Daρ ≃ 0 ≃ DaP ≃ DaB2, where a
barotropic equation of state, P ¼ wρ with w ¼ const, has

been considered). However, we allow for BbDbBa ≠ 0, so
that we can study effects caused by distortions of the
magnetic forcelines (see the following discussion).
Subsequently, taking the 3-divergence of (88) in combi-
nation with the 3-Ricci identities [Eq. (22)] and Maxwell’s
equations [Eq. (18)] we arrive at

Da _ua ¼ c2ARabnanb þ 2ðσ2B − ω2
BÞ; ð89Þ

where the scalars σ2B ¼ DhbBaiDhbBai=2ðρþ Pþ B2Þ and
D½bBa�D½bBa�=2ðρþ Pþ B2Þ represent the magnetic ana-
logs of the shear and the vorticity, respectively. Of special
interest is the purely relativistic (magnetogeometric) term
Rabnanb which describes 3D distortions of the magnetic
forcelines due to the curvature of the host spacetime. Note
that all the terms on the right-hand side of (89) are tension
stresses triggered by the deformation of the magnetic field
lines. Each of these terms acts against the agent that caused
the deformation in the first place [e.g., the magnetovorticity
ω2
B is caused by rotational effects, ω2, and it tends to

counterbalance them; observe the opposite signs of the
pairs ω2, ω2

B and σ2, σ2B in (90)]. Substituting expression
(89) into the Raychaudhuri equation (53), the latter reads

_Θþ 1

3
Θ2 ¼ −Rabuaub þ c2ARabnanb − 2ðσ2 − σ2BÞ

þ 2ðω2 − ω2
BÞ þ _ua _ua; ð90Þ

where Rabuaub ¼ ðρþ 3Pþ B2Þ > 0 represents the total
(gravitational) energy density of the system. Note that if
_Θþ 1

3
Θ2 < 0, the above equation implies that an initially

contracting congruence of worldlines will focus at a point
(Θ → −∞) within finite proper time. Hence, positive terms
on the right-hand side of the Raychaudhuri formula act
against the gravitational collapse while negative ones act in
the inverse way.
Having in mind the strong gravity conditions that

characterize collapsing compact stellar objects [and the
counterbalancing relation of the paired terms in (90)], we
choose to focus our attention on the purely relativistic-
curvature terms23 (i.e., c2ARabnanb which is positive in all
cases of realistic gravitational collapse and thus tends to
inhibit the gravitational pull of the local matter, as encoded
in the expression Rabuaub). Regarding the magnetogeo-
metric tension stress c2ARabnanb, it is expected to grow
strong with increasing curvature distortion during the
collapse, in analogy with the resisting power of a com-
pressed elastic medium. In particular, if at some time during
the implosion the following condition holds,

21Apart from its conventional application to timelike
worldlines of real (or hypothetical) observers, the aforemen-
tioned equation has been applied to spacelike and null curves
as well (e.g., see [29,30]).

22Note that the homogeneity of the matter fields is a rather
common approximation. In fact, spatial homogeneity is a
standard assumption in all typical singularity theorems
[31,32]. Besides, the assumption of homogeneous matter dis-
tribution does not essentially affect the validity of our argument,
since gradients in the fluid and in the magnetic density distri-
bution tend to inhibit gravitational contraction, even within
Newtonian physics.

23Note that _ua _ua > 0 always, and therefore it resists contrac-
tion in any case.
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c2ARabnanb > Rabuaub; ð91Þ

we expect that the latter will be halted. Making use of the
Gauss-Codacci formula [e.g., see expression (1.3.39) in
[16] ], the above condition transforms into

2c2A

�
ρ −

1

3
Θ2

�
þ 3c2A

�
Eab −

1

3
Θσab

þ σcaσ
c
b − ωcaω

c
b

�
nanb >

3

2
ðρþ 3wρþ B2Þ; ð92Þ

where the first of the two parentheses in the left-hand side
represents the isotropic part of the tension stress while the
second represents the anisotropic. It turns out that the latter
must be nonzero, which implies that the gravitational
collapse has to be anisotropic, if the tension stress is to
outbalance the gravitational pull of the matter.

B. A noncollapse criterion

Once again we can take advantage of a 1þ 2 spatial split
as well as of our newly gained knowledge regarding the
evolution of the magnetic and the matter density fields (at
the ideal MHD limit), to acquire physical insight into
our problem. In particular, taking into account that
E ≡ Eabnanb, Σ≡ σabnanb ¼ −Θ=3, σcaσcbnanb ¼ Σ2 þ
ΣaΣa ¼ 1

9
Θ2 þ ΩaΩa [refer to expressions (A2) and (A6) in

Appendix A], ωcaω
c
bnanb ¼ ΩaΩa, and the definition of

the Alfvén speed, our condition simplifies subsequently to

ð2ρþ 3EÞc2A >
3

2
ðρþ 3wρþ B2Þ ð93Þ

and

E >
1

2
ð1þ 4wþ 3w2Þ

�
ρ

B

�
2

þ 1

3
ð1þ 6wÞρþ 1

2
B2: ð94Þ

It is worth noting that the effects of rotation, associated with
ΩaΩa, and included in the termRabnanb, exactly cancel out.
This happens because (in parallel it means that) the 3D
curvature deformation of the magnetic field lines along their
own direction is not affected by rotations (in particular,
rotations of the surface shaped by the magnetic field
direction and Ωa for the case in question). Now recall that
the continuity equation for our fluid model [refer to (59)],
accepts solution (60). According to the latter, the density of
matter increases with a rate generally smaller than that for
the magnetic energy density (i.e., 1þ w ≤ 2). Especially
in the case of stiff matter (w ¼ 1), the two growing rates are
the same.
Allowing sufficient time for the collapse to evolve, we

expect [considering relations (51) and (60)] that the
dominant term in (94) will be B2, so that

E >
1

2
B2: ð95Þ

In other words, if at some time during the collapse, the
electric Weyl tensor along the magnetic forcelines prevails
over the magnetic energy density, the collapse will turn into
expansion and the system will be prevented from reaching a
singularity.24 More specifically, recall that, on the one hand,
E encodes the tidal forces acting upon the magnetic field
lines and resisting to their spatial distortion (see also the
discussion regarding the term c2ARab in the previous
subsection). These (increasing in value) forces are triggered
by the geometric deformation of the magnetic field lines
due to the increasing gravitational energy density of the
system (−Rabuaub) during the contraction. The agent
responsible for the resistance of the magnetic forcelines
to their deformation, and consequently for the creation and
reinforcement of E, is the tension stress associated with
their elasticity. On the other side of (95), the [increasing
according to (51)] magnetic energy density ρB ¼ B2=2 acts
in the opposite way by contributing to the total gravitational
mass energy of the system and thus enhancing the collapse
process. To illustrate further our criterion, let us recall that
in terms of Newtonian gravity, Eab is associated with the
second-order derivative of the gravitational potential Φ
(precisely the Newtonian tidal tensor) or equivalently with
the first-order derivative of the tidal forces F, in accordance
with (e.g., see [15])25

EðNewtÞ
ab ¼ ∂a∂bΦ −

1

3
ð∂c∂cΦÞhab and

EðNewtÞ ¼ F 0 − Fan0a; ð96Þ

where the latter relation comes from the double projection
of the former along na and F ¼ Fana, Fan0a correspond to
tidal forces acting along and normal to the magnetic
forcelines, respectively.

24The following issue should be kept in mind when dealing
with the problem of magnetized gravitational implosion. Under
their continuous and increasing deformation during the collapse
(due to the increasing spacetime curvature), the magnetic force-
lines may lose their elastic properties and ultimately be broken.
Hence, the questions raised by such a possibility could be the
object of potential research work in the future. In particular, what
happens with the magnetic field lines at an advanced stage of the
collapse? Will they inevitably be broken and when? Will they
reconnect? Can they definitely affect or specify the fate of the
collapse before having lost their elasticity or before being
broken?

25In the context of Newtonian theory, studying tidal forces
presupposes the consideration of at least two distinctive massive
bodies. However, from a relativistic point of view, we can
envisage tidal forces as a result of the different curvature effects
(caused by the fluid’s spacetime energy distribution) experienced
by distinctive particles of the magnetized fluid.
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Predicting actually the fate of the almost homogeneous
gravitational collapse of a highly conducting fluid remains
an open question. Our results indicate that the latter
question reduces to whether the electric Weyl tensor along
the magnetic field lines increases faster than the magnetic
energy density or not. The answer seems to depend on the
geometric background in hand, and potentially on the
problem’s initial conditions.

C. Studying magnetized collapse on a perturbed
Bianchi I background

In order to put in practice our criterion for the gravita-
tional implosion of a magnetized fluid (95), we need to
adopt a specific geometric model. In the first place, an
appropriate model has to satisfy three principal require-
ments: on the one hand, to be by construction homo-
geneous and a natural host of pure, large-scale magnetic
fields26; on the other hand, to have closed spatial sections
and be contracting, if we want to establish a correspon-
dence between our model and the collapse of a stellar object
or a protogalactic cloud. In case where we adopt a model at
the perturbation level, the first two restrictions have to be
satisfied in the background geometry. This is necessary,
regarding the latter, because our relation for the evolution
of the magnetic field holds exactly at the MHD limit.
Concerning the former, the homogeneity of the background
is needed in practice for considering gauge-invariant
perturbations (quantities that remain constant or vanish
in the background) in accordance with the Stewart-Walker
lemma [33] (see the analysis below). As for the third
requirement, we do not have a specific reason for demand-
ing its satisfaction in the background. Overall, our choice
seems to be directed, at least by the first two requirements,
toward the family of the homogeneous and anisotropic
Bianchi models, some of which (namely I, II, III, VI−1,
and VII0) can accommodate constrained magnetic field
components [20]. Now of the Bianchi spacetimes only IX is
known to have positive curvature geometry (e.g., see [15]).

Therefore, none of the Bianchi models seems appropriate to
describe exactly the phenomenon of homogeneous and
magnetized gravitational collapse. The simplest available
choice coming into view is to study the Bianchi I model
(with Euclidean spatial geometry) at the linear perturbation
level, which allows us to construct closed geometric
sections.
More specifically, in what follows we consider the

propagation of the electric Weyl tensor in reference to a
(magnetized) Bianchi I type geometric background. The
basic geometric-dynamic and kinematic quantities describ-
ing a Bianchi I spacetime have been outlined in Sec. IV C.
To proceed, we need to consider the 3D Ricci tensor Rab
(consequently the spatial gradients of the magnetic field as
well—see Sec. VA) and the 4-acceleration _ua [recall
Eq. (89) and the associated analysis] as first-order pertur-
bations27 in reference to our background. Repeating the
reasoning—which remains exactly the same—described in
Secs. VA and V B, it is straightforward to conclude that the
collapse criterion (95) holds in our linearly perturbed
Bianchi I model. Moreover, we ensure that the model
has closed spatial sections by imposing the positive sign
condition of the 3D Ricci tensor Rab along every spatial
direction. Specifically, along the magnetic field lines [see
relation (94)] and regarding the 3D Ricci scalar [e.g., refer
to Eq. (1.3.40) in [16]], the aforementioned condition takes
the form

Rabnanb ¼ 2ρþ 3E > 0 ⇒ E > −
2

3
ρ and

R ¼ 2

�
ρ −

1

3
Θ2 þ σ2

�
> 0; ð97Þ

respectively. Of particular interest is the former, which sets
a lower boundary of E (given that ρ > 0). Subsequently,
aiming to focus on the evolution of the electric Weyl
curvature tensor Eab, we shall first have a look at its general
propagation equation, which is (e.g., see [16])

_Ehabi ¼ −ΘEab −
1

2
ðρþ PÞσab þ curlHab −

1

2
_πab −

1

6
Θπab −

1

2
Dhaqbi − _uhaqbi

þ 3σhac
�
Ebic −

1

6
πbic

�
þ ϵcdha

�
2_ucHbid − ωc

�
Ebid þ

1

2
πbid

��
: ð98Þ

26The latter requirement implies that the model has to be anisotropic as well. In fact, two simple and familiar models within
astrophysics and cosmology, namely the Schwarzschild and the Friedmann-Robertson-Walker geometries, could not be appropriate
candidates for our analysis, due to the aforementioned requirements.

27The magnetic Weyl tensor Hab is also a perturbation not appearing at present. See (98) in the following, where it makes its first
appearance.
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Under our homogeneity and perfect fluid assumptions the
linearization of the above equation (at the MHD limit) with
respect to the Bianchi I background leads to

_Ehabi ¼ −ΘEab −
1

2
ðρþ PÞσab −

1

2
_πab −

1

6
Θπab

þ 3σhac
�
Ebic −

1

6
πbic

�
;

where the anisotropic pressure input comes from the
magnetic field only (recall that πðmagnÞ

ab ¼ −B2nhanbi—
see Sec. II C 1). Moreover, note that the assumption of
homogeneity imposes that the magnetic Weyl component
Hab vanishes at the linear level [e.g., refer to Eq. (1.3.8) in
[16] ]. Subsequently, as we are interested in the evolution of
E ≡ Eabnanb, we project relation (99) along na (with
respect to both indices), so that it finally transforms into

_E þ 5

2
ΘE −

1

6
ð1þ wÞΘρþ 1

2
ΘB2 ¼ 0: ð99Þ

The above28 is a linear, partial differential equation (note
that E presents spatial dependence) of first order. In order to
proceed to its solution, we adopt a frame parallelly
propagated along the worldlines (or the collapsing fluid),
so that _E ¼ dE=dτ ¼ ∂E=∂τ þ ð∂iEÞui, where the last term
vanishes by making use of comoving coordinates. On
taking into account expressions (51) and (60), Eq. (99)
is solved in the standard way giving

E¼Be−
5
2

R
Θ0dτ−C2e−2

R
Θ0dτþ

�
1þw
9−6w

�
De−ð1þwÞ

R
Θ0dτ;

ð100Þ

where B, C, and D are constants [see Eqs. (51) and (60)].
Note that the above relation describes the temporal evo-
lution of E with respect to proper time τ (i.e., the parameter
of the worldlines). During the implosion (Θ0 < 0), the
electric Weyl curvature along the magnetic forcelines
increases (under the assumption of continuity, so thatR
Θ0dτ < 0) according to three different terms, which

correspond to the contributions of the magnetic and matter
energy densities, as well as of the term ð5ΘEÞ=2 in the left-
hand side of (100). The maximum variation of E comes
from the exponential term with coefficient two (recall that
the maximum value of 1þ w is two as well, w ≤ 1), which
means that it does not increase faster than B2. Therefore,
it seems that the fate of our collapse model—whether
criterion (95) is satisfied or not—basically depends on the
problem’s initial conditions.

VI. DISCUSSION

On decomposing Faraday’s equation into its 1 temporal
and 1þ 2 spatial components, we have shown that it can be
solved independently at the MHD limit leading to a
solution for the magnetic field. In particular, we have
found that the magnetic energy density generally increases
or decreases in accordance with the inverse cube of the
scale factor associated with the fluid’s continuous contrac-
tion or expansion, respectively. Alternatively, this type of
change corresponds to an exponential spacetime function
with a negative integral of the volume scalar (actually of its
individual components) in its exponent. An analogous
relation holds for the matter density of an ideal fluid.
The aforementioned solutions in combination with Euler’s
equations of motion, the continuity equation, an equation of
state, and a Raychaudhuri equation, provide a description
of the magnetic field’s behavior in relation to the motion of
the self-gravitating, highly conducting fluid. More specifi-
cally, we have pointed out that the magnetic force terms
tend to dominate over the pressure or matter density
gradient in the case of contraction (Θ < 0), determining
thus the quantity and the direction of the fluid’s motion.
Inversely, the domination of matter is expected to take place
in the case of expansion (Θ > 0). Besides, we have noted
the aforementioned conclusion holds under the assumption
that the evolution of the volume scalar Θ is of minor
importance in comparison to that of ρ and B2.
When applied to homogeneous and anisotropic (mag-

netized) cosmological models, relation (51) tells us that the
magnetic energy density—hence the total radiation density
in the MHD limit—is proportional to the inverse sixth
power of the mean, time dependent scale factor. Especially
regarding a Bianchi I model, consisting of a magnetized
perfect fluid, our field’s law of variation finds a remarkable,
indirect verification within the literature. Moreover, on
deriving the evolution formulas of the model in question
[see Eqs (80)a) and (80b)], we have found out that they
reduce to the standard cosmic radiation and dust expansion/
contraction formulas at the small- and the large-scale limits,
respectively. Another remarkable result is that as a conse-
quence of the significant difference in the rate of change
of the magnetic energy density between a magnetized
Bianchi I and a perturbed FRW model, the epoch of
magnetic energy and matter densities equality in the former
case corresponds to a redshift that is about 15 orders of
magnitude smaller than its counterpart in the latter case.
This difference should probably be taken into account
when searching for the origin of cosmic magnetic fields
during the pre-recombination era. Overall, large-scale
magnetic fields are known to constitute a real component
of the universe and thus contribute to its total energy
content. Therefore, the knowledge of their evolution for-
mula can provide a valuable tool when dealing with the
dynamics of realistic cosmological models.

28Note that it consists of a gauge-invariant equation, where no
quantity represents a perturbation.
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We have also examined an astrophysical application of
relation (51), namely the gravitational collapse of a
magnetized fluid. In particular, studying the contracting
worldlines with the aid of the Raychaudhuri formula, we
conclude that if at some time during the homogeneous (in
reference to matter and magnetic energy densities) implo-
sion, the electric Weyl tensor along the magnetic forcelines
overwhelms the magnetic energy density, then the gravi-
tational contraction will be prevented from reaching a
singularity. Our result gives rise to the following question:
which of the two rivaling terms, the electric Weyl curvature
and the magnetic energy density, increases faster, so that it
finally dominates? Given that the way B2 changes is
known, the above question reduces to determining the
evolution of E. The answer seems to depend on the
geometric background one adopts. Making a step toward
testing our implosion criterion, we have adopted an
homogeneous, linearly perturbed (so that it approximately
has closed spatial sections) Bianchi I model of magnetized
collapse. Our results show that the electric Weyl curvature
cannot increase faster than the magnetic energy density
for the model in question. As a consequence, the fate of
the collapse seems to be in principle a matter of initial
conditions. Our implosion model has the advantage of not
being restricted by many assumptions (basically homo-
geneity and perfect fluid energy content, which are stan-
dard), while perturbations are needed only to construct
closed spatial geometry. Nevertheless, it would definitely
be better if one found an exact29 (unperturbed) model for
studying the collapse of a highly conducting fluid.
The results of the present work could hopefully, on the

one hand, shed new light on the description of magnetized
compact stellar objects such as black holes, neutron stars
(of particular interest are pulsars and magnetars), and white
dwarfs. In parallel, a verification of our results could be
given by studies of the aforementioned objects. On the
other hand, in reference to the field of cosmology, our exact
(not approximate) evolution formula for the magnetic field
could fortunately refresh the question concerning the
energy contribution of large-scale magnetic fields to the
kinematics of our universe.
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APPENDIX A: THE PHYSICAL CONTENT OF
THE 1+ 2 COMPONENTS OF THE SHEAR

In what follows, we reveal some relations between the
1þ 2 components of the shear and other kinematic
quantities. These relations are of great importance when
dealing with the split calculations in Secs. III, IV, and V.
To begin with, let us consider the definition of Σ and

simply follow the operations:

Σ≡ σabnanb ≡ Dhbuainanb ¼ DðbuaÞnanb −
1

3
Θhabnanb

¼ u0ana −
1

3
Θ: ðA1Þ

Therefore, Σ is a quantity that expresses the fluid’s volume
expansion/contraction according to the relation

Σ ¼ −
1

3
Θ: ðA2Þ

In the same way, by the definition of Σa we have

Σa ≡ h̃a
bσbcnc ≡ h̃a

bncDhcubi

¼ h̃a
bncDðcubÞ −

1

3
h̃a

bncðΘhcbÞ ¼
1

2
h̃a

bu0b: ðA3Þ

Therefore, Σa is a quantity equivalent to the derivative of
the 4-velocity along the vector na according to the relation

Σa ¼
1

2
u0a: ðA4Þ

Furthermore, consider now the expression ðDaubÞnb,
which is equal to −ðDanbÞub ¼ 0 in accordance with
Leibniz’s rule, and decompose the spatial derivative of
the 4-velocity

ðDaubÞnb ¼
�
σab − ωab þ

1

3
Θhab

�
nb

¼ Σna þ Σa þ ϵacΩc þ 1

3
Θna ¼ 0: ðA5Þ

Projecting orthogonal to na the above equation becomes

Σa ¼ −ϵabΩb; ðA6Þ

which means that Σa is a vector almost equivalent to the
vorticity vectorΩa (note that the two vectors are orthogonal
to each other and have the same length), both lying on the
2-surface normal to na.

29Recall that for an analytic approach we have searched for a
homogeneous model, natural host of pure, large-scale magnetic
fields, with closed spatial sections.
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Finally, starting from the definition of Σab we have

Σab ≡
�
h̃ðach̃bÞd −

1

2
h̃abh̃

cd

�
σcd

¼ 1

2
h̃a

ch̃b
dDðducÞþ

¼ 1

2
h̃b

ch̃a
dDðducÞ −

1

2
h̃abh̃

cdDðducÞ; ðA7Þ

which becomes

Σab¼DðbuaÞ−nðbu0aÞ−
1

2
Θh̃ab¼ D̃ðbuaÞ−

1

2
Θh̃ab: ðA8Þ

Consequently, we find out that

Σab ¼ D̃hbuai; ðA9Þ

namely that Σab consists of the 2D counterpart of the three-
dimensional gradient of the 4-velocity field—recall that
σab ≡ Dhbuai.

APPENDIX B: 1 + 2 DECOMPOSITION OF THE
FULL EULER-MAXWELL EQUATIONS

In Sec. III we split up the Euler-Maxwell system of
equations after considering its ideal MHD limit. Here, we
provide for thoroughness the 1þ 2 decomposition of the
full system (no approximations made).
Let us start with Euler’s equation in the form (13).

Its 1þ 2 decomposition leads to a scalar (projecting
along na)

ðρþPþΠÞA¼−P0−ð _Q−αcQcÞ−ΘQ−Π0

−
3

2
ΠΘ̃−D̃bΠbþ2n0bΠb

þ σ̃abΠab−ΠbAbþμϵþϵbcjbBc ðB1Þ

and a vector equation (projection orthogonal to na)

�
ρþ Pþ 1

2
Π
�
Aa ¼ −D̃aP −Qαa − _Qā −

3

2
ΘQa − ΣabQb − 2ΩϵabQb þ 3QϵabΩb

þ 1

2
D̃aΠþ 1

2
Πn0a − Π0

a −
1

2
Θ̃Πa − D̃bΠab þAΠa þAbΠab

þ ðω̃ab þ σ̃abÞΠb þ μϵa − jϵacBc þ Bϵabjb; ðB2Þ

where we have taken into account that Σ ¼ − 1
3
Θ and Σa ¼

−ϵacΩc (see the previous section). Both 1þ 2 components
of the various quantities as well as the 2D fluid dynamics
fields (Θ̃, ω̃ab, and σ̃ab) are present in the above relations.
It is worth focusing our attention on the last term in the
right-hand side of (B1), namely ϵbcjbBc, which vanishes.
This happens because jana ¼ 0 and Bana ¼ 0. It is thus
clear that the same relation holds for any two vectors that lie
on the 2-surface normal to na. The meaning of expression
ϵbcjbBc ¼ 0 is that the vector product of two vectors is not
defined in two-dimensional space. In our problem, the
aforementioned expression implies that there are no forces
of magnetic origin affecting the motion along the direction
na of the magnetic field lines.
Regarding Maxwell’s equations, their 1þ 2 split leads to

the following components:

_ϵā ¼ −ϵαa −
1

2
Θϵa − 2ϵϵacΩc þ Σacϵ

c þ Ωϵacϵc

−AϵacBc þ BϵacAc − ϵacB0c − ϵacðD̃cndÞBd

þ ϵacD̃cB − Bϵacn0c − ja ðB3Þ

and

_ϵ ¼ ϵaαa − Θϵ − 2ω̃B þ ϵacD̃aBc − j ðB4Þ

for the electric field propagation equation as well as

_Bā ¼ −Bαa −
1

2
ΘBa − 2BϵacΩc þ ΣacBc þ ΩϵacBc

þAϵacϵ
c − ϵϵacAc þ ϵacϵ

0c þ ϵacðD̃cndÞϵd
− ϵacD̃cϵþ ϵϵacn0c ðB5Þ

and

_B ¼ Baαa − ΘB þ 2ω̃ϵ − ϵacD̃aϵc ðB6Þ

for the magnetic field propagation equation. Concerning
the scalar relations representing Gauss’s law for the electric
and the magnetic fields, their individual terms split leading
to

D̃aϵa þ Θ̃ϵþ ϵ0 þ naϵ0a þ 2ðΩB þ ΩaBaÞ ¼ μ ðB7Þ

and

D̃aBa þ Θ̃B þ B0 − n0aBa − 2ðΩϵþ ΩaϵaÞ ¼ 0; ðB8Þ
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respectively. We observe that the full 1þ 2 decomposed
equations are generally more complicated than their origi-
nal (nondecomposed) counterparts. The usefulness of the
split in components becomes evident only when specific
geometric or physical properties of the problem in hand are
taken into account, or even under certain simplifying
assumptions reflecting such properties.

APPENDIX C: EQUIVALENCE OF THE
EULER-MAXWELL SYSTEM UNDER THE

DEFINITIONS Ba =Bna AND Ba =Bka (naka = 0)

Let us verify that if we had defined na to be
perpendicular to the magnetic field, namely Ba ≡ Ba ¼
Bka (kana ¼ 0 and kaka ¼ 1), we would have arrived at an
equivalent system of equations for the magnetized fluid.
In particular, we will focus our attention on the vector
equations, namely Euler’s equations of motion and
Faraday’s law. Besides, pointing out the equivalence of
the scalar equations is a trivial procedure.
First of all, consider Euler’s equation in the form of (63).

On projecting the latter along na and setting Ba ¼ Bka (so
that Bana ¼ 0) we arrive at

ðρþ Pþ B2ÞA ¼ −P0 − BB0 þ B2ðkcDckaÞna; ðC1Þ

where −BB0 and B2ðkcDckaÞna correspond to the magnetic
pressure and tension components of the Lorentz force. Note
that kcDcka represents a vector orthogonal to ka, namely na.
Therefore, the equation in question transforms into

ðρþ Pþ B2ÞA ¼ −P0 − BB0 þ B2; ðC2Þ

which is the equivalent of (61b). Subsequently, projecting
(63) orthogonal to na and setting Ba ¼ Bka as well as
Aa ¼ A�ka, we arrive at

ðρþ Pþ B2ÞA�ka ¼ −D̃aPþA�B2ka −
1

2
D̃aB2

þ 1

2
ðkcDcB2Þka: ðC3Þ

Note that kcDcB2 represents the norm of the gradient D̃aB2

and ka its direction, so that 1
2
ðkcDcB2Þka ¼ 1

2
D̃aB2. As a

consequence, our equation finally transforms into

ðρþ PÞAa ¼ −D̃aP; ðC4Þ

which is the equivalent of (61a) and, as expected, does not
include any forces of magnetic origin (no magnetic forces
act along the direction of the total magnetic field). In what
follows we consider Faraday’s and Gauss’s law (for the
magnetic field), Eqs. (41) and (43b), respectively. Projecting
the former perpendicular to na, subsequently along ka, and
setting Ba ¼ Bka, Faraday’s law reads

_B ¼ −
1

2
ΘB þ BΣackakc: ðC5Þ

Making use of (33) we can determine the last term in the
right-hand side of the above as

Σackakc ¼ σackakc þ
1

2
Σ ¼ −

1

2
Θ; ðC6Þ

where we have taken into account that σackakc ≡ Dhauci ¼
−Θ=3 (DðaucÞ ¼ 0) and Σ ¼ −Θ=3. Hence, Eq. (C5) finally
becomes

_B ¼ −ΘB; ðC7Þ

namely Eq. (44a), the relation which has led us to the
evolution formula for the magnetic field of a highly
conducting fluid.
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