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We investigate the complete family of (aligned) Robinson-Trautman spacetimes sourced by conformally
invariant nonlinear electrodynamics inD dimensions in the presence of an arbitrary cosmological constant.
After presenting general features of the solutions (which exist only in even dimensions), we discuss in more
detail some particular subclasses. Static metrics contain dyonic black holes with various possible horizon
geometries (Kähler if there is a magnetic field, including flat branes) and different asymptotics. In addition,
there exist also time-dependent solutions (not possible in the D> 4 linear theory) which may represent
white hole evaporation by emission of electromagnetic radiation (or a time-reversed picture of black hole
formation). For those, we comment on a quasilocal characterization of possible past horizons. Finally, we
briefly discuss the special case of stealth solutions. In an Appendix, a theory-independent result on the
redundancy of the gravity part of the field equations for Robinson-Trautman spacetimes is further obtained.

DOI: 10.1103/PhysRevD.104.124051

I. INTRODUCTION

Nonlinear classical theories of electrodynamics were
originally introduced in order to cure the divergent elec-
tron’s self-energy [1–3]. Modified theories also naturally
appear as effective Lagrangians taking into account various
quantum corrections (cf. e.g., the review [4] and references
therein) as well as low-energy limits of string theory [5–7].
Coupling modified electrodynamics to gravity is clearly
also of interest and it is remarkable that certain non-
linearities can regularize black holes [8–10].
In recent years, higher-dimensional scenarios have

attracted increasing attention, with motivation coming from
different directions, such as string theory, the AdS/CFT
correspondence, and brane-world models. While higher-
dimensional static black hole solutions in the Einstein-
Maxwell theory were obtained several decades ago [11], it
is a natural question to ask how their properties are
modified when Einstein’s gravity is coupled to more
general electrodynamics. Perhaps the simplest extensions
of the Maxwell Langrangian include polynomial functions
of the invariant F≡ FμνFμν—yet already such simple
higher-order corrections make the field equations in general
much more difficult to solve. Within this class of theories,
the only conformally invariant action in D dimensions is
defined by the monomial FD=4 [12] (see also Sec. I A).

While for D ¼ 4 this reduces to the standard Maxwell
action, it gives rise to nonlinear equations of motion when
D> 4.1 Nevertheless, the conformal character of the matter
field allows for a considerable simplification of the field
equations. Indeed, a simple exact solution representing an
electrically charged, spherically symmetric, asymptotically
flat black hole was obtained in [12] (provided D is a
multiple of four). This result is of interest also in that it
contrasts with certain no-go theorems obtained for the case
of higher-dimensional black holes coupled to a conformally
invariant scalar field [15,16].
The purpose of the present paper is to study black hole

solutions of the theory proposed in [12] from a more
general viewpoint. To this end, we will analyze system-
atically the class of Robinson-Trautman solutions, which
are defined by the existence of an expanding, shearfree and
twistfree congruence of null geodesics (see Sec. II A for a
short summary).2 In four-dimensional general relativity,
such spacetimes were first constructed in [19] as an
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1A different (and linear) conformally invariant extension of
Maxwell’s theory is defined in D ¼ 2p dimensions by the
Lagrangian density

ffiffiffiffiffiffi−gp
Fα1…αpF

α1…αp, where Fα1…αp is a
p-form field [13]. See [14] and references therein for nonlinear
p-form theories admitting conformal invariance.

2We observe that four-dimensional Robinson-Trautman sol-
utions coupled to nonlinear electrodynamics have been studied in
[17,18]. There is however no overlap with the results of our paper,
since the matter field equations of the theory (1) become linear
when D ¼ 4.
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example of spherical gravitational radiation, and studied
more systematically in [20] and in several subsequent
papers by various authors (cf. [21,22] for reviews and
for a number of references). The family of solutions of
[19,20] comprises diverse (electro)vacuum spacetimes
ranging from static Schwarzschild-like black holes of
various topologies to their accelerating (C-metric) or null
fluid (Vaidya metric) counterparts, as well as more general
radiative solutions. An interesting feature of the latter is that
at late times (in vacuum and under suitable initial con-
ditions) they decay to the Schwarzschild (or Kottler)
spacetime by emitting gravitational waves (see [22] for a
review and relevant references). They also serve as exact
models where various quasilocal characterizations of hori-
zons in dynamical situations can be tested and visualized
[23–25]. In the charged case with Λ ¼ 0, however, linear
perturbations lead to an instability, and the physical mean-
ing of such solutions is less clear [26,27].
The general form of Robinson-Trautman metrics in D

dimensions was obtained in [28] (see [29] for an earlier
discussion from a more geometrical viewpoint), where
vacuum solutions were also studied. Extensions to the
higher-dimensional Einstein-Maxwell theory were later
obtained in [30]. In both cases, such family of solutions
turned out to be much more restricted when D> 4, in
particular it does not contain the interesting radiative
spacetimes known for D ¼ 4. The motivation to consider
here the theory of [12] is thus twofold. On the one hand,
adopting an ansatz more general than the one used in [12]
enables one to explore the space of static black hole
solutions more systematically, including dyonic configu-
rations, various horizon geometries and different asymp-
totics (and also when D is not a multiple of four, under
certain conditions, cf. the following). This can possibly be
of interest in the context of generalized thermodynamics
(see, e.g., the recent work [31] and references therein for
general results, and [32] for a discussion relevant to the
theory considered here). Furthermore, by allowing for time-
dependent solutions, one can analyze to what extent the
negative results of [28,30] can be bypassed thanks to the
conformal invariance of the action for matter fields (this is
in part motivated by the results of [33] for the p-form
Einstein-Maxwell theory in D ¼ 2p dimensions, cf. foot-
note 1). As we will show, time-dependent solutions which
can be interpreted as dynamical black holes emitting (or
absorbing) electromagnetic radiation do indeed exist in the
theory of [12]. These are also interesting from the view-
point of dynamical “quasilocal” horizons.
The plan of the paper is as follows. In Sec. I Awe outline

the basic features of the theory under consideration [12]. In
Sec. I B we compactly summarize our main results in the
case of Robinson-Trautman nonstealth solutions. After
outlining their derivation in Sec. II, we describe those in
more detail in Secs. III and IV in the most interesting cases
of static black holes and their time-dependent (radiating)

extensions. Stealth solutions are briefly discussed in Sec. V.
Some concluding remarks are given in Sec. VI.
Appendixes A and B contain some technical results
useful for the derivation of the solutions in Sec. II.
Namely, Appendix A presents a result on the redundancy
of the gravity part of the field equations for Robinson-
Trautman spacetimes which applies to a large class of
diffeomorphism-invariant metric theories of gravity arbi-
trarily coupled to (unspecified) matter fields. Appendix B
contains the components of the Ricci tensor for
Robinson-Trautman metrics, needed to integrate Einstein’s
equations.

A. The theory

We consider D-dimensional Einstein gravity minimally
coupled to a 2-form F ¼ dA in the following theory [12]:

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p �
1

κ
ðR − 2ΛÞ − 2βFD=4

�
; ð1Þ

where κ and β are coupling constants, and

F≡ FμνFμν: ð2Þ

Variations of (1) with respect to g and A give rise to the
equations of motion [12]

1

κ
ðGμν þ ΛgμνÞ ¼ βFD=4−1ðDFμρFν

ρ − gμνFÞ; ð3Þ

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
F

D
4
−1FμνÞ ¼ 0: ð4Þ

The latter can be understood as generalized Maxwell
equations. For the sake of brevity, in the following we
will just refer to (4) as the Maxwell equations of the theory
(1). We will also write Eq. (3) compactly as Eμν ¼ 0

[cf. (A2)], in order to later refer to some of its components
for specific values of the indices. The rhs of (3) defines the
energy-momentum tensor Tμν.
In addition, F must be closed, i.e.,

F½μν;ρ� ¼ 0: ð5Þ

Since the rhs of (3) is traceless, the Ricci scalar is a
constant, i.e.,

R ¼ 2D
D − 2

Λ: ð6Þ

For later computations we observe that this allows one to
write the lhs of (3) as Gμν þ Λgμν ¼ Rμν − 2Λgμν=ðD − 2Þ.
Let us observe that for D ≠ 4 the theory (1) admits

stealth solutions, i.e., nontrivial electromagnetic configu-
rations for which the energy-momentum tensor, i.e., the rhs
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of (3), vanishes identically.3 It is easy to prove that those are
precisely the configurations such that F ¼ 0 (see Sec. V).
This clearly also ensures that the Maxwell equations (4) are
identically satisfied. Therefore, any closed 2-form F
provides a solution to the theory (1) in any Einstein
spacetime.
The reality of the quantity F

D
4 (which appears in the field

equations) implies that D must be a multiple of 4 when
F < 0. From the above discussion it also follows that the
requirement of a non-negative energy density (in an
orthonormal frame) T 0̂ 0̂ ≥ 0 amounts to βFD=4−1 ≥ 0, so
that (as discussed in a special case in [12]): (i) β > 0 if
F > 0, or if F < 0 with D=4 being odd; (ii) β < 0 if F < 0
withD=4 being even; (iii) β can have any sign in the stealth
case F ¼ 0. This will be assumed in the following.

B. Summary of the results (nonstealth fields)

Let us assume here that the electromagnetic field is
nonstealth (i.e., F ≠ 0). The line element is given by

ds2 ¼ r2hijdxidxj − 2dudr − 2Hdu2; ð7Þ

where latin indices i; j;… ¼ 1;…; D − 2 label the spatial
coordinates xi (from now on collectively denoted simply as
x), and the base space metric hij ¼ h1=ðD−2Þðu; xÞγijðxÞ
represents a Riemannian Einstein space of dimension
D − 2 and scalar curvature R ¼ KðD − 2ÞðD − 3Þ (we
denoted h≡ det hij, such that γij is unimodular).
The (aligned) electromagnetic field is

F¼ e
r2
dr∧duþ

�
e;i
r
−ξi

�
du∧dxiþ1

2
Fijdxi∧dxj; ð8Þ

and the metric function H in (7) is defined by

2H ¼ K þ 2

D − 2
ðln

ffiffiffi
h

p
Þ;ur − λr2 −

μ

rD−3 þ
Q2

rD−2

ðK ¼ 0;�1Þ; ð9Þ

λ≡ 2Λ
ðD−2ÞðD−1Þ; Q2≡2κβF

D
4
−1

0

�
b2

D−2
þe2

�
: ð10Þ

In (8)–(10), the quantities e, ξi, Fij, μ, b and F0 may in
general depend on ðu; xÞ, with (hij denotes the inverse ofhij)

F0 ≡ b2 − 2e2; b2 ≡ FikFjlhijhkl; ð11Þ

and F ¼ r−4F0. The functions e and b characterize the
strength of, respectively, the purely electric and purely
magnetic parts of the electromagnetic field (8), while ξi
[characterizes] its radiative (null) component [see also
footnote 9 and Eq. (50)]. By the observations in Sec. I A
it follows thatDmust be a multiple of 4 when b2 − 2e2 < 0.
The singularity of F at r ¼ 0 represents also a (timelike)
curvature singularity, as can be checked by computing, e.g.,
the invariant RμνRμν.
Further conditions coming from the Maxwell and

Einstein equations are

F½ij;k� ¼ 0; Fij;u ¼ ξi;j − ξj;i; ð12Þ

F
D
4
−1

0

ffiffiffi
h

p
hije;j ¼ ðFD

4
−1

0

ffiffiffi
h

p
hikhjlFklÞ;j;

ðFD
4
−1

0

ffiffiffi
h

p
hijξjÞ;i ¼ ðFD

4
−1

0

ffiffiffi
h

p
eÞ;u; ð13Þ

and

μ;i ¼ 2κβDF
D
4
−1

0 ðeξi − FikξjhkjÞ; ð14Þ

ðD − 2Þμ;u ¼ −ðD − 1Þμðln
ffiffiffi
h

p
Þ;u

− 2κDβF
D
4
−1

0 hijξiξj ðD> 4Þ: ð15Þ

Note that none of the above equations contain Λ.
Finally, when F contains a nonzero magnetic component

Fij ≠ 0 (⇔ b2 ≠ 0), Fij and the spatial metric must further
obey the constraint

b2hij ¼ ðD − 2ÞFikFjlhlk; ð16Þ

which means that the base space is almost Hermitian [37]
(in addition to being Einstein)4 and D must therefore be
even. Vice versa, when D is odd (recalling that in this case
F must be non-negative, cf. section I A) one has necessarily
b2 ¼ 0 ¼ 2e2, i.e., F ¼ 0, contradicting the assumption
made above that the field is nonstealth—odd dimensional
solutions cannot therefore occur here (but they are con-
tained in the discussion of Sec. V).
All the above equations hold also in the limit D ¼ 4,

except for (15) (see Sec. II and [20,21,30] for more details
on the D ¼ 4 case).5 For D> 4, it should also be observed
that several features of the obtained solutions contrast with
those of the linear theory [30]. First, the nonlinearities

3This should be contrasted with the standard linear Maxwell
theory, for which nonzero fields with vanishing energy-momen-
tum are not permitted (in any dimension), cf. e.g., footnote 10 of
[34] and references therein. Stealth fields in nonlinear four-
dimensional theories have been studied in [35]. See [36] for a
more general discussion on matter field Lagrangians with
vanishing energy-momentum.

4While this condition is identically satisfied in the case D ¼ 4,
it restricts considerably the permitted spatial geometries when
D> 4, cf. Sec. III for more comments and related references.
From a geometric viewpoint, it is also worth pointing out that
such spacetimes with the 2-form F naturally define almost-
Robinson manifolds [38–41].

5Beware of two typos in [30]: the rhs of (B.13) should read
8P2ðQ;1ξ1 þQ;2ξ2Þ, while on the rhs of (B.14) there should be a
factor 8 (instead of 4).
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cause the magnetic term in (9) to fall off more quickly at
infinity and thus make the geometry better behaved (for a
slower falloff as in the linear theory [30] cf. also related
comments in [42]). They also give rise to a dimensional-
independent falloff of the electric component of (8) (as
already observed in [12] and in contrast to the standard
Coulomb field of the linear theory [11], see also [30]). In
addition, apart from the electric and magnetic components
e and Fij, the electromagnetic field (8) may contain also a
radiative null term Fui, which is related to a possible mass
loss (or gain) encapsulated in Eq. (15). This has also to do
with the fact that the line element is in general time
dependent (cf. also footnote 7 in Sec. III).6

Particular specializations of the above family of solu-
tions may thus describe various physical configurations,
such as static dyonic black holes, but also time-dependent
solutions with a radiating term in F. These are discussed,
respectively, in Secs. III and IV.

II. ANSATZ AND INTEGRATION OF THE FIELD
EQUATION

A. Robinson-Trautman geometry with
an aligned 2-form field

A D-dimensional Robinson-Trautman spacetime [28] is
defined by admitting a nontwisting, nonshearing, expand-
ing geodesic null vector field k. This can be expressed
invariantly as [29]

kμkμ ¼ 0; k½ρkμ;ν� ¼ 0;

£kgμν ¼ ρgμν þ kμξν þ ξμkν; ρ ≠ 0: ð17Þ

The latter condition is precisely the one which defines a
nonzero expansion (the case ρ ¼ 0 corresponding, instead,
to Kundt spacetimes [28]).
The associated Robinson-Trautman line element was

obtained in adapted coordinates in [28].
It is the purpose of the present paper to determine

Robinson-Trautman solutions of the theory (1). We shall
restrict to the case of electromagnetic fields that are aligned
with k [30], i.e.,

Fαβkβ ¼ Nkα: ð18Þ

Thanks to (18), Einstein’s equations (3) reveal that the
Ricci tensor is necessarily doubly aligned with k (i.e.,
Rμνkν ∝ kμ). Similarly as in [33], this enables one to
specialize the form of the general Robinson-Trautman
metric obtained in [28], i.e., we can already start from
the simplified line element

ds2 ¼ r2hijðu; xÞðdxi þWiduÞðdxj þWjduÞ
− 2dudr − 2Hdu2; ð19Þ

Wi ¼ αiðu; xÞ þ r1−Dβiðu; xÞ; ð20Þ

where the function H can depend on all spacetime
coordinates, and hij denotes a (so far unspecified)
Riemannian metric inD − 2 dimensions. For later purposes
let us note that

ffiffiffiffiffiffi
−g

p ¼ rD−2
ffiffiffi
h

p
; ð21Þ

where g≡ det gμν.
Using the above coordinates one has

kμ∂μ ¼ ∂r; kμdxμ ¼ −du; ð22Þ

such that r is an affine parameter along k. Condition (18)
reads

Fri ¼ 0; Fru ¼ N: ð23Þ

B. Integration of the field equations

Eqs. (19), (20), and (23) already ensure thatErr ¼ 0 ¼ Eri
(cf. [28,30,33] for related discussions).
With (23), Eq. (5) reads

Fij;r ¼ 0; ð24Þ

Fui;r ¼ −N;i; ð25Þ

Fij;u ¼ Fuj;i − Fui;j; ð26Þ

F½ij;k� ¼ 0; ð27Þ

while Eq. (4) becomes [using also (19)—the explicit
relation between covariant and contravariant components
of F can be found in [30]]

ðrD−2F
D
4
−1NÞ;r ¼ 0; ð28Þ

ffiffiffi
h

p
ðrD−2F

D
4
−1FirÞ;r ¼ −rD−2ð

ffiffiffi
h

p
F

D
4
−1FijÞ;j; ð29Þ

ð
ffiffiffi
h

p
F

D
4
−1FirÞ;i ¼ −ð

ffiffiffi
h

p
F

D
4
−1NÞ;u: ð30Þ

The r dependence of F is determined by (24), (28), and
(25), namely

Fij ¼ Fijðu; xÞ; ð31Þ

N ¼ eðu; xÞ
r2

; ð32Þ
6A similar behavior in a linear theory is possible provided one

considers, instead of a 2-form, a p-form in D ¼ 2p dimensions
[33].
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Fui ¼
e;i
r
− ξiðx; uÞ; ð33Þ

where e and ξi are integration functions.
Substituting (33) into (26) gives

Fij;u ¼ ξi;j − ξj;i: ð34Þ

Equation (27) simply means that Fij defines a closed
2-form in the spatial base manifold. Consequences of the
remaining equations (29) and (30) will be discussed more
easily after (36) is obtained below.
At this stage, the invariant (2) (useful in the following)

takes the form

F ¼ r−4F0; ð35Þ

where we have defined F0 as in (11).
Using (23), (31) and (35) one finds that the ðijÞ

component of the rhs of (3) is proportional to r2−D.
Comparing this with the Ricci tensor component (B1)

implies βi ¼ 0. Furthermore, a coordinate transformation
enables one to set (at least locally) αi ¼ 0 [28]. From now
on we shall thus have in (19)

Wi ¼ 0; ð36Þ

which simplifies several quantities.
Eq. (36) with (32), (33), (35) enables one to easily write

the remaining Maxwell equations (29) and (30) as

F
D
4
−1

0

ffiffiffi
h

p
hije;j ¼ ðFD

4
−1

0

ffiffiffi
h

p
hikhjlFklÞ;j;

ðFD
4
−1

0

ffiffiffi
h

p
hijξjÞ;i ¼ ðFD

4
−1

0

ffiffiffi
h

p
eÞ;u: ð37Þ

Alternatively, these can be rewritten covariantly asF
D
4
−1

0 e;i ¼
ðFD

4
−1

0 FijÞjjj and
ffiffiffi
h

p ðFD
4
−1

0 hijξjÞjji ¼ ðFD
4
−1

0

ffiffiffi
h

p
eÞ;u, where a

double bar denotes a covariant derivative in the base space.
Further analysis of various powers of r appearing in Eij

determines the r dependence of H

2H ¼ R
ðD − 2ÞðD − 3Þ þ

2

D − 2
ðln

ffiffiffi
h

p
Þ;ur −

2Λ
ðD − 2ÞðD − 1Þ r

2 −
μ

rD−3 þ
2κβ

D − 2
F

D
4
−1

0

b2 þ ðD − 2Þe2
rD−2 ; ð38Þ

and additionally gives the following conditions:

Rij ¼
R

D − 2
hij; ð39Þ

hij;u ¼
2ðln ffiffiffi

h
p Þ;u

D − 2
hij; ð40Þ

b2hij ¼ ðD − 2ÞFikFjlhlk; ð41Þ

where the identity hijhij;u ¼ 2ðln ffiffiffi
h

p Þ;u has been used.
Here Rij is the Ricci tensor associated with the spatial
metric hij,R ¼ hijRij its Ricci scalar, and μ an integration
function independent of r.
Using (38) and (B2) one finds that the equation Eur is

satisfied identically.
Using (38), (40) and (B3), the vanishing of the coef-

ficient of the term r2−D in the equation Eui requires

μ;i ¼ 2κβDF
D
4
−1

0 ðeξi − FikξjhkjÞ: ð42Þ

Coefficients of some other powers of r vanish identically as
a consequence of (A8).
Finally, with (38) and (B4), the vanishing of the

coefficient of the term r2−D in the equation Euu gives

ðD − 2Þμ;u ¼ −ðD − 1Þμðln
ffiffiffi
h

p
Þ;u

− 2κDβF
D
4
−1

0 hijξiξj ðD> 4Þ; ð43Þ

while other powers of r in Euu vanish identically as a
consequence of (A9). For later purposes it is useful to point
out that one of those identities reads

Δ
�
F

D
4
−1

0 ½b2 þ ðD − 2Þe2�
�
¼ DðD − 2ÞFD

4
−1

0 hije;ie;j; ð44Þ

where Δ≡ 1ffiffi
h

p ∂jð
ffiffiffi
h

p
hij∂iÞ is the Laplace operator in the

(D − 2)-dimensional space with metric hij.
All the equations obtained previously hold also for

D ¼ 4, except for (43), which applies only to the case
D> 4—the reason for this is that Euu contains terms
with powers r−2 and r2−D, which combine precisely when
D ¼ 4 [resulting in an additional term proportional to ΔR
in (43), cf. [20,21] and Appendix B of [30]]. On the other
hand, for D ¼ 4 Eq. (39) is an identity, whereas for
D> 4 it means that the metric hij is Einstein and therefore
R ¼ RðuÞ. Equation (40) means that hij can depend on u
only via a conformal factor, i.e., hij ¼ h1=ðD−2ÞγijðxÞ [28].
To conclude, we note that a transformation of the form

[20,28]

u ¼ uðũÞ; r ¼ r̃= _uðũÞ; ð45Þ
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can be used to rescale the first term in (38) arbitrarily
(provided μ, e and b are also appropriately redefined),
so that without losing generality we can hereafter
assumeR ¼ 0;�ðD − 2ÞðD − 3Þ. Combining all the results
obtained above one arrives at the summary given in Sec. I B.

III. STATIC BLACK HOLES

A. The solutions

Here we assume that ∂u is a Killing vector field of the
metric (7), so that the spacetime is static in regions where
H > 0. This requires h;u ¼ 0, so that hij ¼ hijðxÞ, along
with μ;u ¼ 0 and Q;u ¼ 0. Plugging these conditions into
(15), (14), (12) one easily concludes that ξi ¼ 0, μ ¼ const,
Fij;u ¼ 0 (and therefore also b;u ¼ 0) and e;u ¼ 0.7

Now, let us recall the identity (44). Since its rhs is
non-negative, Hopf’s theorem (see, e.g., [37]) implies
that when the base manifold is compact then both

F
D
4
−1

0 ½b2 þ ðD − 2Þe2� and e must be constant, and there-
fore such must be also b. Having in mind primarily black
hole spacetimes, hereafter we shall thus restrict ourselves to
the case e ¼ const and b ¼ const.
The solutions of interest are thus given by the line

element (7)8 with the base space metric hijðxÞ being
Einstein, and

2H ¼ K − λr2 −
μ

rD−3 þ
Q2

rD−2 ; ð46Þ

while the electromagnetic field reads

F ¼ e
r2
dr ∧ duþ 1

2
FijðxÞdxi ∧ dxj; ð47Þ

with (10), (11). The constant K ¼ 0;�1 represents the sign
of the Ricci scalar of hij, μ is a mass parameter, while e and
b parametrize the electric and magnetic components of F.9

In the above expressions, the main differences with respect
to the D> 4 Einstein-Maxwell solutions [30] are the better
behaved magnetic term in (46) (the electric and magnetic
terms in [30] fall off as 1=r2ðD−3Þ and 1=r2, respectively)

and the fact that the falloff of electric field component in
(47) does not depend on D (as noticed in [12]).
The only remaining field equations reduce to [cf. (12),

(13)]

F½ij;k� ¼ 0; ð
ffiffiffi
h

p
hikhjlFklÞ;j ¼ 0; ð48Þ

along with (16). This means that the 2-form Fij must be
closed and coclosed in the base space geometry and that,
when Fij ≠ 0, the base space must be almost-Kähler [37]
(and not just almost-Hermitian, as in the general case
of Sec. I B)—in particular, the only permitted space
of constant curvature is flat space [37], in which case
Fijjjk ¼ 0 and a solution can be easily found in closed form
[30] and interpreted as a black brane (as done in [46] in the
D-dimensional Einstein-Maxwell theory).10 This also
implies that dyonic (or purely magnetic) solutions cannot
be asymptotically flat. By contrast, in the purely electric
case (Fij ¼ 0) the base manifold can be any Einstein space,
so in particular a round sphere. The latter solutions were
found in [12] in the case Λ ¼ 0. When e ¼ 0 ¼ b, i.e.,
F ¼ 0, Eq. (46) describes familiar Schwarzschild-like
black holes of vacuum Einstein’s gravity [11,53,54] (see
also Sec. V).
It is interesting to observe that all the above black hole

solutions turn out to be “immune” to some corrections to
the gravity part of the action (1), i.e., they coincide with
electric [55] and magnetic [34] solutions of certain fðRÞ
gravities. This is no longer true for extensions of (1) to
Gauss-Bonnet gravity, however exact solutions thereof are
also known in the case of electric [56] and dyonic [34]
fields (for Gauss-Bonnet magnetic black holes coupled to
different powerlike electrodynamics see [57]).
It is also worth remarking that when Λ ¼ 0 metric (46)

can also be seen as a vacuum (non-Einstein) solution of
pure R2 gravity [in which case Q2 in (46) is simply an
integration constant] [58,59]. When Λ and Einstein terms
are added to the action, or for more general fðRÞ theories,
this remains true provided the parameters of the theory are
suitably fine-tuned [58–60]. That this is the case can be
traced back to the fact that the Ricci scalar of (46) is
constant [34,58–60]. Similarly, the same metric also solves
Einstein’s gravity coupled to a conformal scalar field [61].7In other words, the time dependence of the general line

element (7), (9) is due to the radiative component of F in (8) [see
in particular Eq. (15)]. From a complementary viewpoint, when
μ ≠ 0 staticity of the metric also follows by assuming ξi ¼ 0 in
(8) (and using (45), see a related discussion in [30,33]).

8Standard Schwarzschild coordinates are obtained by the well-
known transformation du ¼ dt − dr=2H (cf. e.g., [21,30]).

9At least for asymptotically flat purely electric solutions, the
mass and electric charge were computed in [12] using a reduced
Hamiltonian action and, perhaps not surprisingly, are determined
in terms of the parameters μ and e. The thermodynamics was
studied subsequently in [32]. For a definition of the electric and
magnetic parts of an arbitrary tensor in any dimension cf. e.g.,
[43–45].

10Recall that, apart from flat space, examples of Einstein-
Kähler spaces are provided by direct products of identical 2-
dimensional spaces of constant curvature S2 × S2 ×… or
H2 ×H2 ×…, or the complex projective space CP

n
2 and the

complex hyperbolic space H
n
2

C with the Fubini-Study metric [47].
A thorough description and more examples can be found, e.g., in
[37,47,48] (see [49,50] and references therein for almost-Kähler-
Einstein manifolds). The relevance of these geometries in the
context of higher-dimensional charged black hole spacetimes has
been already pointed out for linear electrodynamics in
[30,33,51,52] and for modified theories in [34].
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B. Horizons and spacetime structure

Since the vacuum case is known, in the following
discussion we shall assume F ≠ 0. As mentioned
in Sec. I B, there is a timelike curvature singularity at
r ¼ 0 (similarly as in the Reissner-Nordström spacetime,
cf. e.g., [22] and references therein). We can therefore
restrict ourselves to the range r > 0.
The spacetime is static in regions where H > 0, whereas

positive values of r such that H ¼ 0 represent Killing
horizons. The latter are defined by positive real roots of the
polynomial

−λrD þ KrD−2 − μrþQ2 ¼ 0; ð49Þ

where the last term is positive by the conditions on β
(cf. Sec. I). Using Descartes’s rule of signs one can place
restrictions on the signs of the parameters Λ, K and μ in
order for such roots to exist, and simultaneously count how
many of those may occur. This is straightforward and
summarized in Table I. Note that the counting of the roots
includes their multiplicities, so the case of 2 roots also
possibly includes a double one (an extreme horizon),
while the case of 3 roots (in general corresponding to
a cosmological, an outer and an inner horizon) also
allows for a single root accompanied by a double one,
or for a triple root. In particular, the latter case occurs
at r ¼ r3 ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD − 3ÞðD − 2Þ2

p
=

ffiffiffiffiffiffiffiffiffiffi
2DΛ

p
when Λ> 0,

K ¼ 1, and for the special values μ ¼ 4DΛrD−1
3

ðD−3ÞðD−2ÞðD−1Þ,
ðD − 2Þ2Q2 ¼ 4ΛrD3 (cf. [62] in the case D ¼ 4). More
generally, assessing the precise number of horizons which
do actually occur (e.g., 2 vs 0, or 3 vs 1) depends on the
particular chosen ranges of the parameters. This is illus-
trated in Figs. 1–4 by plotting H as a function of r for
various values of μ in the exemplificative cases Λ< 0 with

K ¼ 0 and K ¼ −1, and Λ> 0 with K ¼ 1. All combi-
nations of signs which do not appear in Table I [for
example, ðΛ ≤ 0; K ≥ 0; μ ≤ 0Þ] describe naked singular-
ities. We observe that the structure of Killing horizons is
qualitatively similar to the one of the four-dimensional
(anti)de Sitter [(A)dS]-Reissner-Nordström metrics
[22,62]. Some related comments and plots complementary
to the one given above can be found in [58] for the case
Λ ¼ 0 and in [55] for Λ< 0 with K ¼ 1.
The asymptotic properties at r → ∞ are determined by

the sign of Λ, similarly as in vacuum Einstein’s gravity
(cf. [54]). In particular, when the base space is a round
sphere (which requires Fij ¼ 0, as mentioned above), the
spacetime is asymptotically flat or (A)dS. When Fij ≠ 0

FIG. 1. Plot of the function 2HðrÞ [Eq. (46)] for D ¼ 8 in the
case Λ< 0, K ¼ 0. For the cosmological constant and the
electromagnetic field strength we have chosen the values λ ¼
−1 [recall (10)],Q2 ¼ 1, while the mass parameter μ ranges from
2 (lower, magenta curve) to −6 (upper, light blue curve).
Intersections with the r axis represent Killing horizons. In
particular, the red curve denotes a double horizon (at
μ ≈ 1.458, within numerical accuracy).

TABLE I. Possible combinations of the signs of the parameters
Λ, Kð¼ 0;�1Þ and μ that permit the polynomial equations (49)
to admit positive real roots. In the fourth column the possible
number of roots is indicated (including their multiplicities) for
each case (in some cases there may be more than one possibility,
depending on the specific range of the parameters). The last
column displays the character of the Killing vector field ∂u
sufficiently close to infinity, i.e., in the outer region. See the main
text for more information.

Λ K μ # Horizons ∂u for r → ∞

<0 ≥0 >0 2,0 Timelike
<0 Any 2,0

0 >0 >0 2,0 Timelike
0 >0 1 Spacelike
<0 Any 1 Spacelike

>0 >0 >0 3,1
>0 ≤0 1 Spacelike
≤0 Any 1

FIG. 2. Plot of the function 2HðrÞ for D ¼ 8 in the case Λ < 0,
K ¼ −1. Here λ ¼ −0.7, Q2 ¼ 0.05, and μ ranges from 0.1
(lower, magenta curve) to −1 (upper, light blue curve). The dark
blue curve denotes a double horizon (at μ ≈ −0.251, within
numerical accuracy).
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this is not possible, however, the spacetime is asymptoti-
cally locally AdS if hij is a flat metric and Λ< 0.
The Killing vector field ∂u is spacelike near infinity when
Λ> 0 and timelike for Λ< 0. When Λ ¼ 0, it is timelike if
K > 0 and spacelike if K < 0 (if also K ¼ 0, its character is
determined by the sign of μ; if K ¼ 0 ¼ μ, it is timelike),
see also Table I.

IV. TIME-DEPENDENT SOLUTIONS

In this section we consider nonstealth solutions with a
nonzero radiating term ξi ≠ 0 in the electromagnetic field (8).

As discussed in Sec. III, this ensures that ∂u is not Killing.
Equation (14) further implies μ;i ≠ 0, while Eq. (15)
shows how ξi contributes to a mass loss due to electro-
magnetic radiation as the retarded time u evolves. The
electromagnetic energy flux along the Robinson-
Trautman null vector field k ¼ ∂r is measured by the
leading term of the scalar Tμνnμnν, where n ¼ ∂u −H∂r is
another null vector field such that nμkμ ¼ −1. One finds
(Tμν is defined in Sec. I A)

Tμνnμnν ¼ βDFD=4−1
0

hijξiξj
rD−2 þOðr1−DÞ; ð50Þ

where the leading term actually takes the same value in
any frame parallelly transported along k and is thus an
invariant quantity. As expected from the above comments,
it vanishes if and only if ξi ¼ 0.
If the base manifold is taken to be compact, the same

argument as used in Sec. III gives e;i ¼ 0 ¼ b;i—but here e
and b can depend on u. We observe that in four dimensions
there exist simple (Vaidya-like) explicit solutions describ-
ing the evaporation of a white hole (or, by time-reversal,
black hole formation) by emission (collapse) of electro-
magnetic radiation, which has the form of a null field [63].
However, no analog of those solutions is possible here, both
because μ;i ≠ 0 and because null fields are stealth and thus
do not backreact.
Time-dependent solutions can be understood as dynami-

cal extensions of the static black holes of Sec. III. It is an
open question whether they indeed do settle down to a
static configuration at late times (at least under suitable
initial conditions) or whether they develop instabilities as
some of their four-dimensional counterparts [26,27]. This
would deserve a separate investigation. However, even if
the future evolution was sound (with a possible extension
across a future horizon), one may still expect the past
evolution to be singular [64], preventing one from sensibly
defining a past event horizon. From this viewpoint it is
more appropriate to study, instead, past quasilocal horizons
[24–26,65–67]. In the following we show how one can do
that for Robinson-Trautman spacetimes in higher dimen-
sions, and specifically for solutions of the theory (1) (see
[68] for earlier results in the presence of null radiation but
without an electromagnetic field).

A. General setup in Robinson-Trautman spacetimes

Given the spacetime (7), let us consider a family of
(D − 2)-dimensional spacelike surfaces S defined by

u ¼ u0; r ¼ Xðx; u0Þ; ð51Þ
where u0 is a constant parameter and X a positive function
(at this stage arbitrary) of its arguments.
Similarly as in [68] (see also the earlier work [26,65] in

four dimensions), a null frame adapted to the above
surfaces is defined by

FIG. 4. Plot of the function 2HðrÞ for D ¼ 8 in the case Λ> 0,
K ¼ 1. Note that in this case we have chosen different values
of the parameters for each curve—this is just a technicality
that enables us to plot in a single figure various curves descri-
bing different special cases. Namely, the magenta [ðQ2; λ; μÞ ≈
ð0.05; 0.5; 0.127Þ] and green [ðQ2; λ; μÞ ≈ ð0.5; 0.5; 1.119Þ]
curves contain a double horizon, while the red curve
[ðQ2; λ; μÞ ≈ ð0.15; 1.08; 0.293Þ] denotes a triple one. The
black curve [ðQ2; λ; μÞ ¼ ð0.05; 0.5; 0Þ] possesses only a single
horizon.

FIG. 3. Plot of the function 2HðrÞ for D ¼ 8 in the case Λ> 0,
K ¼ 1. Here λ ¼ 0.5, Q2 ¼ 0.05, and μ ranges from 0.16 (lower,
red curve), over 0 (black curve), to −4 (upper, light blue curve).
The red curve displays a case when there are three distinct Killing
horizons (inner, black hole and cosmological horizons).
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k ¼ ∂r; n ¼ ∂u þ
1

2
ð−2H þ r−2hijY;iY;jÞ∂r þ r−2hijY;i∂j; mðαÞ ¼ r−1m̃i

ðαÞð∂i þ X;iÞ∂r; ð52Þ

where m̃i
ðαÞ are the components of an orthonormal frame in the base space with metric h (i.e., hijm̃i

ðαÞm̃
j
ðβÞ ¼ δðαÞðβÞ). The

null vectors k and n are, respectively, the outgoing and ingoing future-oriented normals to the surfaces S, while the mðαÞ
span such surfaces. The expansion Θk of k is positive by construction, whereas for n one finds

ðD − 2ÞΘn ¼ X−1
�
Δ lnX − ðD − 2ÞH þ Xðln

ffiffiffi
h

p
Þ;u þ

1

2
ðD − 4ÞhijðlnXÞ;iðlnXÞ;j

�
; ð53Þ

where H has to be evaluated with (51) holding.
For choices of X such that Θn > 0, the corresponding S

are (past) trapped surfaces (at least if they are compact)
[69], while solutions of the equation Θn ¼ 0 (if they exist)
represent marginally trapped surfaces [23]. In the latter
case, the (D − 1)-dimensional hypersurface H defined by
r ¼ Xðx; uÞ (where now u is not fixed) is thus a marginally
trapped tube (foliated by the surfaces S). Furthermore, ifH
is spacelike, it defines a dynamical horizon [70].11 Since
the normal to H is Nμdxμ ¼ −drþ X;uduþ X;idxi, this
happens when

2ðH þ X;uÞ þ hijðlnXÞ;iðlnXÞ;j < 0; ð54Þ

where we have imposed r ¼ X and also H has to be
evaluated at H.

B. Past horizons in Einstein gravity with conformally
invariant electrodynamics

So far the discussion has been general, i.e., it applies to
any spacetime of the form (7). In the case of the solutions
constructed in the present paper, H is given by (9), so that
using (53) the equationΘn ¼ 0 defining marginally trapped
surfaces reads explicitly

2Δ lnX − ðD − 2Þ
�
K − λX2 −

μ

XD−3 þ
Q2

XD−2

�

þ ðD − 4ÞhijðlnXÞ;iðlnXÞ;j ¼ 0: ð55Þ

This is a nonlinear partial differential equation (PDE) for
the unknown function Xðx; u0Þ, and for Q ¼ 0 it reduces to
a result of [68]. As noticed there, the last term in (55) makes
the nonlinearity worse when D> 4.12 Recall that μ and Q
are generically functions of ðu; xÞ (but Q;i ¼ 0 if the base
space is compact), constrained by the field equations (12)–
(15). As suggested in [25] in four dimensions, solutions to

(55) define an analog of the past horizon in Robinson-
Trautman spacetimes. However, proving existence (and,
possibly, uniqueness) of such solutions requires a thorough
and rigorous mathematical analysis which goes well
beyond the scope of the present paper, and we leave it
for future investigations (see [25] for the original results for
four-dimensional vacua, and [68] for a modification thereof
suitable for the case D> 4).

V. STEALTH SOLUTIONS

A. General characterization of stealth solutions

First of all, let us prove that, as pointed out in Sec. I, a
2-form F has a vanishing energy-momentum tensor in the
theory (1) if and only if F ¼ 0. That the latter condition is
sufficient follows obviously from (3). To see that it is also
necessary, it suffices to set up an orthonormal frame
fe0̂; eîg (such that î; ĵ ¼ 1;…; D − 1 and e0̂ · e0̂ ¼ −1,
eî · eĵ ¼ δî ĵ). Then one sees that the ð0̂ 0̂Þ component of the
rhs of (3) vanishes only if either F ¼ 0 or ðD − 2ÞF0îF0î þ
Fî ĵFî ĵ ¼ 0 (where we used F ¼ −2F0̂ îF0̂ î þ Fî ĵFî ĵ).
However, the latter expression is non-negative and vanishes
if and only if F0̂ î ¼ 0 ¼ Fî ĵ, which is equivalent to the
trivial configuration Fμν ¼ 0. Therefore the only possible
stealth fields are those with F ¼ 0, as we wanted to show.
In particular, all null fields are stealth.
For a stealth field the Maxwell equations (4) are also

identically satisfied and, in order to have a solution, it thus
suffices to ensure that dF ¼ 0. Any closed 2-form F hence
provides a solution to the theory (1) in any Einstein
spacetime [other matter fields can obviously be included
provided the Einstein equations (3) are modified accord-
ingly—yet a stealth F will not affect those].13 We also
observe that for stealth fields the number of dimensions D
can also be odd, since the quantity FD=4 is identically zero.

11To be precise, in [70] a “time-reversed” situation is consid-
ered, i.e., (future) horizons with Θk < 0.

12By setting D ¼ 4 one recovers the equation first obtained in
[24,25] for Λ ¼ 0 ¼ Q, and extended to more general cases in
[17,26,67].

13The fact that null electromagnetic fields may be simulta-
neous solutions of large classes of electrodynamic theories (and
thus have “universal” properties) has first been pointed out in
[71,72] and investigated more systematically recently [73–75]
(see also [76] for earlier observations).
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B. Stealth solutions in Robinson-Trautman spacetimes

Let us now specialize the results outlined above to the
case of aligned stealth fields in Robinson-Trautman space-
times. Since the field is stealth, the Robinson-Trautman
metric must be Einstein and thus [28] of the form (7), where
the spatial metric hij ¼ h1=ðD−2Þðu; xÞγijðxÞ is also Einstein
(more details below). The alignment assumption (18) [i.e.,
(23)] together with the conditions F ¼ 0 (stealth) and
dF ¼ 0 (closed) mean that F can be written as

F ¼ e
r2

dr ∧ duþ
�
e;i
r
− ξi

�
du ∧ dxi þ 1

2
Fijdxi ∧ dxj;

ð56Þ

where the functions e, ξi and Fij depend on ðu; xÞ, and
further obey

2e2 ¼ FikFjlhijhkl; F½ij;k� ¼ 0; Fij;u ¼ ξi;j − ξj;i:

ð57Þ

Simple examples are given by a generalized Coulomb
field with e;i ¼ ξi ¼ Fij ¼ 0, or by null fields with e ¼
Fij ¼ 0 and ξi ¼ φ;i [where φðu; xÞ is an arbitrary real
function].
Concerning the possible background geometries, let us

recall that vacuum Robinson-Trautman spacetimes in
Einstein gravity consist of two subclasses [28]. Generically
one can arrive at a canonical form of the metric (7) with
h;u ¼ 0 and

2H ¼ K − λr2 −
μ

rD−3 ðK ¼ 0;�1Þ; ð58Þ

where μ and K [such that R ¼ KðD − 2ÞðD − 3Þ] are
constants. The base space metric hijðxÞ can be any
Einstein space. These spacetimes describe generalized
Schwarzschild black holes [11,53,54].
In the special case μ ¼ 0, the u dependence of the spatial

metric cannot in general be removed [28,77], and one has
instead

2H ¼ K þ 2

D − 2
ðln

ffiffiffi
h

p
Þ;ur − λr2 ðK ¼ 0;�1Þ: ð59Þ

The base space metric hijðu; xÞ is Einstein and further
constrained [77] by being conformal to other Einstein
spaces, and thus belongs to the class studied thoroughly
in [78,79].

VI. CONCLUSIONS

We have presented the complete family of Robinson-
Trautman spacetimes admitting an aligned conformally
invariant electromagnetic field in the D-dimensional
theory (1) put forward in [12]. The main differences with

respect to the linear theory studied in [30] include a better
behaved magnetic term in the metric function H, the
existence of radiative solutions and the possibility of
stealth fields.
A subclass of these metrics represents static dyonic

black holes/branes which generalize in various ways an
earlier purely electric solution of [12]. In particular, the
presence of a magnetic field allows also for even dimen-
sions which are not a multiple of four. On the other hand,
it constrains the horizon geometries more severely
[Eq. (16)], in particular ruling out asymptotically flat
solutions. Various properties of the general class, such as
the structure of horizons, have been clarified.
Furthermore, a new branch of solutions includes time-

dependent spacetimes. These describe dynamical black
holes emitting (or receiving) electromagnetic radiation. In
such a context, quasilocal characterizations of horizon are
useful in clarifying geometric properties. We have com-
mented on marginally trapped surfaces and the equation
which defines a possible family of past horizons (in the
sense of [25]). Further study will be required to assess the
existence and uniqueness properties of the solutions of
such equation. Another interesting open question con-
cerns the stability of the time evolution of Robinson-
Trautman spacetimes. We only remark here that (as
already noticed in the vacuum case [28]) the D> 4
“Robinson-Trautman equation” (43) presents qualitatively
new features as opposed to the well-studied D ¼ 4
case (notably missing the term corresponding to a
Calabi flow when D ¼ 4 [25]), and one may thus possibly
expect a significantly different behaviour in higher
dimensions.
Some ancillary results have been presented in the

Appendixes. In particular, we deem the conclusions of
Appendix A to be of some interest in their own right.
Since they are theory independent, they will prove useful to
future studies of Robinson-Trautman spacetimes (and
in particular of static black holes) also in different
contexts.
Future work may point at extensions of our investigation

beyond Einstein’s gravity, still in the context of the electro-
dynamics of [12]. Some results about static black holes are
already available, see [34,56,57,80]. Analyzing the thermo-
dynamics of the obtained solutions and their modifications
would also be of considerable interest (cf. [32]). More
general powerlike electrodynamics [81] are also worth
considering, also from the viewpoint of string theory (cf.,
e.g., [57]). Not possessing conformal invariance they may
display rather different properties (cf. also [57,80–82]).
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APPENDIX A: CONSERVATION EQUATION IN
ROBINSON-TRAUTMAN SPACETIMES

In this Appendix we discuss certain properties of the
structure of the equations of motion for general Robinson-
Trautman spacetimes in an arbitrary diffeomorphism-
invariant metric theory of gravity, including arbitrarily
coupled matter fields. Certain results obtained previously
(often after tedious computations) in several special cases
[28,30,33] (see [21] for the Einstein-Maxwell theory in four
dimensions) are thus rederived in a more compact and
general way. The present discussion applies, in particular,
also to the theory considered in the main body of the paper,
thereby allowing one to get rid of a redundancy in the
gravity part of the field equations studied there.
Let us consider a diffeomorphism-invariant theory of

gravity of the form

S ¼
Z

dDx
ffiffiffiffiffiffi
−g

p
LðR;∇R;…;Ψ;∇Ψ;…Þ; ðA1Þ

where L is a scalar invariant constructed locally from the
Riemann tensor R, the matter fields Ψ and their covariant

derivatives of arbitrary order (following [83], hereΨ stands
for an unspecified collection of tensor fields with arbitrary
index structure).
Extremizing the action with respect to g produces

the gravity part of the corresponding equations of
motion E ¼ 0, where E is a symmetric 2-tensor defined
by [83,84]

Eμν ≡ 1ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp
LÞ

δgμν
: ðA2Þ

The explicit form of the matter field equations is not
relevant to the following discussion. However, once they
are satisfied (as we assume hereafter), one obtains that E is
conserved [83–87], i.e.,

∇νEμν ¼ 0: ðA3Þ

For a metric of the form (19)14 one finds [88] Γr
rr ¼

Γu
rr ¼ Γu

ru ¼ Γu
ri ¼ Γi

rr ¼ 0 and Γi
rj ¼ r−1δij, Γu

ij ¼ r−1gij,
so that the various components of (A3) read

Euu
;u þ Eur

;r þ Eui
;i þ ð2Γu

uu þ Γr
ru þ Γi

iuÞEuu þ ð3Γu
ui þ Γr

ri þ Γj
jiÞEui þ Γu

ijE
ij þ Γi

irE
ur ¼ 0; ðA4Þ

Eiu
;u þ Eir

;r þ Eij
;j þ 2ðΓi

ruEru þ Γi
rjE

rj þ Γi
ujE

ujÞ þ Γi
uuEuu þ Γi

jkE
jk þ Γν

νuEiu þ Γj
jrE

ir þ Γν
νkE

ik ¼ 0; ðA5Þ

Eru
;u þ Err

;r þ Eri
;i þ ð3Γr

ru þ Γu
uu þ Γj

juÞEru þ ð3Γr
ri þ Γu

ui þ Γj
jiÞEri þ Γr

uuEuu þ 2Γr
uiE

ui þ Γr
ijE

ij þ Γi
irE

rr ¼ 0: ðA6Þ

Let us now assume the field equationsEuu ¼ 0 andEui ¼
0 have already been solved. Then Eq. (A4) reduces to

ðrD−2EurÞ;r þ rD−1hijEij ¼ 0: ðA7Þ

From this conditionwe learn that the spatial trace ofEij does
not provide an equation independent of Eur, by virtue of the
identity (A3) (and of the field equations that have already
been solved; cf. also [59] for related comments in a special
case). Alternatively, one can also say that terms contained in
Eur that are proportional to powers of r different from
1=rD−2 necessarily vanish, once Eij ¼ 0 has been solved.
Once also Eur ¼ 0 and Eij ¼ 0 have been solved,

Eq. (A5) becomes

ðrDEirÞ;r ¼ 0: ðA8Þ

This means that terms of Eir that are proportional to powers
of r different from 1=rD vanish identically.
Finally, after also Eir ¼ 0 has been solved, Eq. (A6)

gives the last identity

ðrD−2ErrÞ;r ¼ 0: ðA9Þ

Therefore, terms of Err proportional to powers of r
different from 1=rD−2 are zero identically.
The above results are clearly theory independent, only

relying on the form of the metric ansatz (19). As mentioned
at the beginning of this Appendix, explicit examples of
such kind of identities for particular theories have been
worked out in [21,28,30,33].
Let us mention in passing that, similarly as done above,

one can also analyze consequences of the generalized
Bianchi identity (A3) also in the case of Kundt spacetimes,
arriving at somewhat different conclusions. This will be
discussed elsewhere.

APPENDIX B: RICCI TENSOR OF ROBINSON-
TRAUTMAN SPACETIMES

Here we follow Appendix A of [33] (cf. also [28,30,88]).
For a metric of the form (19) one has Rrr ¼ 0 identically.

Assuming also (20), one further obtains Rri ¼ 0 and

14For the results of this Appendix, the particular form of Wi

given in (20) will not be needed—i.e., they apply to any
Robinson-Trautman geometry subject to the only condition
Rrr ¼ 0 [28].
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Rij ¼ Rij − r4−DðrD−32HÞ;rhij − r2ð2−DÞ ðD − 1Þ2
2

hikhjlβkβl

− r

�
D − 2

2
ð2hkðiαk;jÞ þ αkhij;k − hij;uÞ þ ðαk;k þ αkðln

ffiffiffi
h

p
Þ;k − ðln

ffiffiffi
h

p
Þ;uÞhij

�

þ r2−D
�
1

2
ð2hkðiβk;jÞ þ βkhij;kÞ − ðβk;k þ βkðln

ffiffiffi
h

p
Þ;kÞhij

�
; ðB1Þ

whereRij is the Ricci tensor associated with the spatial metric hij, and a partial derivative with respect to xj is denoted by a
comma followed by j.
With the further assumptionWi ¼ 0 (which is precisely what we need in section II), the remaining Ricci components take

the form

Rur ¼ r2−DðrD−2H;rÞ;r − r−1ðln
ffiffiffi
h

p
Þ;u; ðB2Þ

Rui ¼ r4−DðrD−4H;iÞ;r þ
1

2
ðhjkhik;uÞ;j þ

1

2
hjkhik;uðln

ffiffiffi
h

p
Þ;j −

1

4
hjkhlmhkl;uhjm;i − ðln

ffiffiffi
h

p
Þ;ui; ðB3Þ

Ruu ¼ 2HRur − r2ðr−2HÞ;rðln
ffiffiffi
h

p
Þ;u þ ðD − 2Þr−1H;u þ r−2ΔH − ðln

ffiffiffi
h

p
Þ;uu −

1

4
hilhjkhij;uhkl;u; ðB4Þ

where Δ is the transverse Laplace operator as in (44).
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