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We obtain a dynamical formulation of two-dimensional gravity from a non-Einsteinian phase in higher
dimensions (D ¼ 3þ 2n). The formalism is associated with (at least) one extra dimension of vanishing
proper length, thus being inequivalent to either a Kaluza-Klein compactification or the Mann-Ross
dimensional reduction defined upon a singular limit. The emergent solutions admit any arbitrary curvature
in contrast with Jackiw-Teitelboim constant curvature gravity. We present the static and homogeneous
solutions as explicit examples. The effective field equations are shown to remain unaffected by the
inclusion of higher Lovelock terms beyond Einstein.
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I. INTRODUCTION

In two spacetime dimensions, the Hilbert-Einstein action
is topological, leading to no local gravitational dynamics.
At the level of equations of motion, this peculiarity gets
reflected through the vanishing of Einstein tensor identi-
cally [1]. This implies that while the spacetime curvature
could be arbitrary, the energy-momentum tensor in the
sense of Einstein equations must be trivial. This is quite
different from the four dimensional case where Einstein
gravity emerges as the unique geometric theory, defined by
the lowest-order Lovelock term [2,3] depending upon the
curvature tensor.
Here, we confront this problem of defining a unique

metric theory in two dimensions from the perspective of
gravity in the presence of extra dimensions of vanishing
proper length. Such a formulation has only been introduced
recently in the context ofD > 4-dimensional gravity theory
as an attempt to provide a geometric resolution to the “dark
matter” problem [4]. The framework was developed around
the observation that the emergent field content in the
presence of invisible (“dark”) extra dimensions exhibits
coupling properties quite distinct from ordinary particulate
matter and could explain certain special features of the
Galactic halo and flat rotation curves. This general frame-
work has also been applied to generate effective dynamics
in four dimensions from the otherwise nondynamical
Lovelock (Gauss-Bonnet and higher-order) terms [5].
Efforts to develop a theory of two-dimensional gravity

have a long history [6–11]. Jackiw and Teitelboim [6] in the
early 1980s had proposed that an appropriate 2D analogue
of Einstein gravity should be a scalar equation Rþ Λ ¼ 0,
Λ being the cosmological constant. The solutions represent

constant curvature spacetimes. Within an action principle,
this field equation is recovered by introducing a scalar
which itself shows up in a second-order equation [7]. A few
years later, Mann and Ross [10] invoked a dimensional
regularization prescription in a classical sense, reproducing
a version of scalar tensor gravity associated with a con-
served energy-momentum tensor. Their procedure is based
on the singular rescaling of theD-dimensional gravitational
coupling constantKD, under the assumption that it vanishes
as (D − 2) in the limit D → 2. The D-dimensional bimetric
action involves two conformally related metrics and leads
to an effective action only after the subtraction of a
divergent contribution. However, this trick should be
viewed as formal rather than one with a straightforward
physical interpretation [5]. Further, the limit D → 2 essen-
tially attempts to force a connection between a gravity
theory with an extra dimensional space of a nonzero
metrical volume (before the limit) with another where such
a subspace has a trivial proper size (after the limit).
However, these two gravity theories are strictly inequiva-
lent and could be (nonanalytically) connected only by a
singular diffeomorphism. In retrospect, it is thus not
surprising that the Mann-Ross limit invoked to define an
effective lower-dimensional theory requires a rescaling that
is singular and exhibits an action that is divergent without
regularization.
Here, we show that within the recent formulation of

gravity in the presence of extra dimensions of vanishing
proper length, Einstein gravity becomes dynamically non-
trivial in two dimensions. The emergent theory is shown to
be more general than Jackiw-Teitelboim constant curvature
gravity and is also inequivalent to Mann-Ross 2D gravity.
From the geometric perspective, this theory could be
interpreted as being characterized by two diad fields,
among which only one is dynamical (associated with a
second-order equation). Alternatively, the field content
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other than the two-metric could be seen to contribute
through an effective energy-momentum tensor to the
1þ 1-dimensional field equations.
Our formalism could also be generalized to include

Lovelock densities higher than Einstein by having addi-
tional dimensions of vanishing proper length. Remarkably
though, such higher-order curvature nonlinearities contrib-
ute in a way which precisely reproduces the theory obtained
without them in the presence of one and only one vanishing
metrical dimension. In other words, the resulting emergent
theory is unique with respect to the inclusion of higher
Lovelock densities in a higher number of dimensions.
Let us emphasize that this formulation requires no

singular (Mann-Ross) limit such as D → 2 and no regu-
larization of divergences. Rather than being treated as
fictitious, the extra dimensions represent the zero eigendir-
ections of a spacetime with a noninvertible metric (with one
or more zero eigenvalues). Thus, the full spacetime exhibits
a subspace whose metrical size vanishes exactly. In general,
such spacetimes are known to occur as explicit solutions
[12–14] to the vacuum field equations within the first-order
formalism of gravity theory, which admits invertible as well
as noninvertible metric phases [15].
In the next section, we elucidate the dimensional

reduction of three-dimensional gravity theory where one
of the directions has a zero proper length, corresponding to
a vanishing eigenvalue of the triad. The most general
spacetime solutions associated with this noninvertible triad
are presented. The resulting emergent 2D gravity theory is
discussed, along with a comparison with the earlier for-
mulations in this particular context. The solutions of the
emergent field equations for the cases of static and
homogeneous spacetimes are presented. Finally, we ana-
lyze the critical question of the uniqueness of this theory
and demonstrate that the inclusion of higher-order
Lovelock terms does not affect the emergent field equa-
tions. The concluding remarks reflect on the possible
relevance of this work in more general contexts.

II. THREE-DIMENSIONAL ACTION AND ITS
REDUCTION

Let us consider the three-dimensional action with a
cosmological constant term,

Lðê; ŵÞ ¼ ϵμναϵIJK

�
ξêIμR̂να

JKðŵÞ þ β

3
êIμêJν êKα

�
:

The above reflects a pair of independent variables, e.g., the
triad and connection êIμ; ŵIJ

μ in three dimensions. ξ; β are
the gravitational coupling and cosmological constant,
respectively. The associated equations of motion are dis-
played below:

ϵμναϵIJKD̂μðŵÞêIν ¼ 0; ð1Þ

ϵμναϵIJK½ξR̂μν
IJðŵÞ þ βêIμêJν � ¼ 0: ð2Þ

Here, we explore the solution space corresponding to triad
fields with one vanishing eigenvalue, which would be
assumed to lie along the direction v in the (gauge-invariant)
metric ĝvμ ¼ 0. The associated triad in its simplest possible
form could be written as

êIμ ¼
�
êia ≡ eia ê2a ¼ 0

êiv ¼ 0 ê2v ¼ 0

�
:

The spacetime and internal indices are defined as ½μ≡
ðt; x; vÞ≡ ða; vÞ� and ½I ≡ ð0; 1; 2Þ≡ ði; 2Þ�. The diad
fields eia with a nonvanishing determinant e could be
associated with the emergent two-dimensional spacetime.
We define the inverse diad fields as eai with eai e

i
b ¼ δab,

eai e
j
a ¼ δji and the emergent antisymmetric densities as

ϵvab ≡ ϵab, ϵ2ij ≡ ϵij.

A. Solution to the connection equations

The solution to various components of the connection
equations of motion (1) are given below:

α ¼ v; ðJ; KÞ ¼ ðj; 2Þ∶ ϵabϵijD̂aêib ¼ 0 ¼ D̂½aêib� ⇒ Ka
ij ≡ ŵa

ij − w̄a
ijðeÞ ¼ 0;

α ¼ v; ðJ; KÞ ¼ ðj; kÞ∶ ϵabϵjkD̂aê2b ¼ 0 ¼ ŵ½a2iêib� ⇒ ŵa
2i ¼ eakMik ≡Mi

a;

α ¼ b; ðJ; KÞ ¼ ðj; kÞ∶ ϵabϵjkD̂½aê2v� ¼ 0 ¼ ŵv
2iêia ⇒ ŵv

2i ¼ 0;

α ¼ b; ðJ; KÞ ¼ ðj; 2Þ∶ ϵabϵijD̂½aêiv� ¼ 0 ¼ D̂vêia ⇒ ŵv
ij ¼ −eaj∂veia; ð3Þ

where in the first line we have defined Ka
ij as the

contortion, and w̄a
ijðeÞ as the torsionless connection

completely given by the diads [D̄½aðw̄Þeib� ¼ 0]. In the

second line,Mik ¼ Mki is a 2 × 2 matrix arbitrary up to the
triad equations of motion. The last equation implies that the
diad determinant e is independent of the third coordinate
associated with a null eigenvalue: eai ∂veia ¼ 0 ¼ ∂ve.

Since the emergent gauge invariant two-metric gab ¼
eiaebi is v independent, one must be able to gauge away
any apparent v dependence of eia. This could be done
through the following gauge choice, as evident from the last
equation in (3):

ŵv
ij ¼ 0: ð4Þ
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B. Solution to triad equations of motion

Let us consider the remaining field equations (2) here,
which are decomposed as below:

α¼ a; k¼ i∶ ϵabϵijR̂va
2i¼ 0⇒ ∂vŵ2i

a ¼ 0¼ ∂vMij; ð5Þ

α ¼ a; k ¼ 2∶ ϵabϵijR̂va
ij ¼ 0; ð6Þ

α ¼ v; k ¼ i∶ ϵabϵijR̂ab
2i ¼ 0 ¼ D̄½aðw̄ÞMi

b�; ð7Þ

α¼ v; k¼ 2∶ ϵabϵij½ξR̂ab
ijþβeiae

j
b� ¼ 0

¼ ϵabϵij½ξR̄ab
ij−2ξMi

aM
j
bþβeiae

j
b�: ð8Þ

In the last two equalities, we have used the vanishing of
torsion as reflected byEq. (3) to replace ŵa

ij by w̄a
ijðeÞ. Note

thatwhereasEq. (5) simply reflects thev independence of the
field Mab ≡Mijeiae

j
b ¼ Mba, the set (6) is satisfied identi-

cally. The only dynamical equation is the last one, which has
second-order derivatives of the two-metric gab.
Using the redefined fields above, the equation of motion

(8) reads

R̄ðw̄ðeÞÞ þ β

ξ
¼ M2 −Mi

aMa
i ; ð9Þ

where we have defined the Ricci scalar derived from the
torsionless connection w̄a

ijðeÞ as R̄ðw̄ðeÞÞ≡ eai e
b
j R̄ab

ijðw̄Þ
and the trace as M≡ eai M

i
a. This, along with Eq. (7),

summarizes the main content of the emergent gravity
theory on a line, built upon the formalism of extra
dimensions of vanishing proper length.
Let us note that the fields Mab may be decomposed in

general as

Mab ¼ ϕgab þ Sab; ð10Þ

where its three components are traded for a scalar ϕ and a
symmetric traceless field Sab (gabSab ¼ 0). For Sab ¼ 0,
Eq. (7) implies that ϕ is constant: Mab ¼ λgab (λ≡ const).
In this case, the equation of motion (9) simplifies to

R̄þ
�
β

ξ
− 2λ2

�
¼ 0: ð11Þ

Thus, this special case reproduces the Jackiw-Teitelboim
2D gravity equation [6] upon an identification of ½βξ − 2λ2�
as the (effective) cosmological constant Λ̄.
Note that it is possible (although not essential) to

interpret the field Mi
a as a dual diad that is nondynamical.

This would provide a geometric interpretation to the
emergent theory above. Based on this, it is possible to
set up a bimetric formulation of two-dimensional gravity,
which is not explored here any further.

The additional field content, however, also admits a
nongeometric interpretation in the emergent theory. This is
discussed next.

III. EFFECTIVE ENERGY-MOMENTUM
TENSOR FROM GEOMETRY

The right-hand side of the field equation (9) may (though
need not) be interpreted as the effective energy-momentum
scalar T̄ ≡ gabT̄ab ≡MabMab −M2, whose origin is purely
geometric. This has the following solution for the asso-
ciated two tensor:

T̄ab ¼ MacMc
b −MMab þ Tab ð12Þ

where Tab is any arbitrary symmetric traceless tensor. In
principle, the conservation of T̄ab could be imposed
consistently as an additional condition, although the theory
itself does not require it.
Note that this is in contrast with the original Jackiw-

Teitelboim lineal gravity which does not admit a conserved
energy-momentum tensor. The Mann-Ross singular limit,
while admitting such a tensor, leads to a scalar-tensor
gravity where the scalar shows up in a nontrivial second-
order equation. In our formulation, given the purely geo-
metric two-tensor T̄ab whose definition involves only
nonpropagating fields, the geometry of spacetime is deter-
mined completely. This is similar in spirit to the Einstein
gravitational dynamics in four dimensions where a stress
tensor dictates the curvature of spacetime.
Using the general decomposition (10), we obtain

T̄ab ¼ −2ϕ2gab þ SacScb þ Tab ¼ T̄
ðϕÞ

ab þ T̄
ðsÞ

ab þ T̄
ðtÞ

ab:

In order to unravel the physical properties of this field
content, we assume an ideal fluid form for this geometric
tensor, T̄

ðiÞ
ab ¼ ðρ̄i þ P̄iÞuaub þ P̄igab, with ua being the

two velocity of the fluid and ρ̄i; P̄i being the density and
pressure of the ith component. This leads to the following
expressions corresponding to the individual components:

P̄S ¼ 0; ρ̄S ¼ −SabSab;

P̄T ¼ ρ̄T;

P̄ϕ ¼ −ϕ2 ¼ −ρ̄ϕ:

Thus, the field multiplet ðSab; Tab;ϕÞ is composed of an
emergent dust, stiff fluid, and spacetime-dependent
counterpart of the cosmological constant, respectively.

IV. EFFECTIVE TWO DIMENSIONAL ACTION

Our theory may also be reproduced from a purely two-
dimensional effective action:
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Leffðe; w;M;ψ ;Λ; Λ̄Þ
¼ ψϵabϵij½ξRab

ijðwÞ þ βeiae
j
b − 2ξMi

aM
j
b�

þ 2ϵabΛiDaðwÞeib þ 2ϵabΛ̄iDaðwÞMi
b; ð13Þ

where the fields ψ ;Λi; Λ̄i are Lagrange multipliers and ξ, β
are couplings. The field equations obtained after varying
Leff with respect to all the independent fields are given by

δψ∶ ϵabϵij½ξRab
ijðwÞ þ βeiae

j
b − 2ξMi

aM
j
b� ¼ 0;

δΛi∶ ϵabDaðwÞeib ¼ 0;

δΛ̄i∶ ϵabDaðwÞMi
b ¼ 0;

δwij
a ∶ ϵij∂aψ ¼ Λ½jei�a þ Λ̄½jMi�

a;

δeia∶ DaðwÞΛi ¼ −βϵijeajψ ;

δMi
a∶ DaðwÞΛ̄i ¼ ξϵijMa

jψ :

From the above, we observe that the multipliers obey first-
order equations among themselves which lead to their
solutions. These decouple from the first three equations
containing only eia; w

ij
a , and Mj

a. Upon using the vanishing
of torsion as implied by the second equation above, the first
and third equations finally become

ϵabϵij½ξR̄ij
abðw̄Þ − 2ξMi

aM
j
b þ βeiae

j
b� ¼ 0;

ϵabD̄aðw̄ÞMi
b ¼ 0:

These are precisely the equations of motion (7) and (8)
defining the emergent theory. Note that the special case of
Jackiw-Teitelboim constant curvature gravity [7] corre-
sponds to the conditions Mi

a ¼ 0 ¼ Λ̄.

V. EXAMPLES

Here, we solve a few cases of physical interest, namely,
the static and homogeneous cases. These should serve as
useful toy models for investigating analogous physics in
higher dimensions (e.g., spherical symmetry and cosmo-
logical dynamics).

A. Static solutions

In two dimensions, the most general static two-metric
could always be written in the following form using the
general coordinate invariance:

ds2 ¼ −fðxÞdt2 þ dx2

fðxÞ :

We assume that the emergent fields Mij (and hence
Mi

a≡Mijeaj) are static. Using the identitiesM2 −Ma
i M

i
a ¼

2½fðM0
xÞ2 þM0

t M1
x�, R̄ðw̄ðeÞÞ ¼ −f00, the emergent equa-

tions of motion (7) and (9) become

∂xM0
t ¼

f0

2
M1

x; ∂xM1
t ¼ −

f0

2f
M1

t ;

fðM0
xÞ2 þM0

t M1
x ¼ −

f00

2
þ β

2ξ
: ð14Þ

These three independent equations could be solved for the
three independent components of Mi

a,

M1
t ¼

Cffiffiffi
f

p ¼ −fM0
x; M0

t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C̄þ C2

f
þ β

2ξ
f −

f02

4

s
;

M1
x ¼

− C2

f2 þ β
2ξ −

f00
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C̄þ C2

f þ β
2ξ f − f02

4

q ; ð15Þ

where C; C̄ are arbitrary integration constants. Note that the

solutions are well defined for ðC̄þ C2

f þ β
2ξ f − f02

4
Þ > 0.

Evidently, given any fðxÞ defining the static metric, the
emergent fields could all be determined.
Next, let us consider the conservation condition,

∇aT̄ab ¼ 0 ¼ ∇a½MacMc
b −MMab þ Tab�: ð16Þ

These two equations could be solved exactly for the two
components of the symmetric traceless tensor Tab (assum-
ing its staticity), using the expressions obtained for Mab
earlier,

∇aT̄at ¼ 0 ¼ 1

f
∂x½fT̄tx� ⇒ Ttx ¼ k

f
;

∇aT̄ax ¼ 0 ¼
ffiffiffi
f

p ∂x

�
T̄xxffiffiffi
f

p
�
þ ff0

2
T̄tt

⇒ Txx ¼ −
Z

dx f∂x

�
MxaMx

a −MMxx

f

�
¼ f2Ttt: ð17Þ

With this, we have the complete solution for all the
geometric fields Mab; Tab defining the effective energy-
momentum tensor for any arbitrary spacetime curvature.
The special case Tab ¼ 0 is of particular interest, which

leads to the following solution:

k ¼ 0; fðxÞ ¼
�
k̄þ β

2ξ

�
x2 þ λxþ σ;

where λ, σ are integration constants. Thus, a trivial Tab
corresponds to constant curvature solutions of Jackiw-
Teitelboim gravity [7].
It is straightforward to extend this analysis to the case of

two-dimensional black holes [11] [e.g., by replacing αðxÞ
by αðjxjÞ as an analogue of spherically symmetric sol-
utions], where the curvature singularity should get reflected
in the fields Mab through the field equations in our
formulation.
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B. Homogeneous solutions: Two-dimensional
cosmology

Let us now consider a homogeneous geometry in 1þ 1
dimensions parametrized by the scale factor aðtÞ,

ds2 ¼ −dt2 þ a2ðtÞdx2:

Assuming the fields Mi
a (Mij) to be homogeneous, the

emergent equations of motion (7) and (9) in this case imply

∂tM0
x þ

�
_a
a

�
M0

x ¼ 0; ∂tM1
x − _aM0

t ¼ 0;

ä
a
þ β

2ξ
−

1

a2
½ðM0

xÞ2 þ aM0
t M1

x� ¼ 0: ð18Þ

These have the following solutions:

M0
x ¼

C
a
¼ −aM1

t ; M0
t ¼

äþ β
2ξ a − C2

a3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ β

2ξ a
2 þ C2

a2 þ C̄
q ;

M1
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_a2 þ β

2ξ
a2 þ C2

a2
þ C̄

s
; ð19Þ

where C; C̄ are arbitrary integration constants, and the
solutions are well defined for ð _a2 þ β

2ξ a
2 þ C2

a2 þ C̄Þ > 0.
Next, we proceed to analyze the consequences of the

conservation condition (16) (assuming homogeneity of the
fields Tab), whose solution reads

TtxðtÞ¼ k
a3

;

TttðtÞ¼−
1

a2

Z
dta2∂t½MtcMt

c−MMtt� ¼ a2TxxðtÞ: ð20Þ

For the case Tab ¼ 0, the conservation condition
reduces to

ä −
�
k̄ −

β

2ξ

�
a ¼ 0;

where k̄ is an integration constant. This admits the
following solutions:

aðtÞ ¼ A cosh μtþ B sinh μt
�
μ2 ¼ k̄ −

β

2ξ
> 0

�
;

aðtÞ ¼ C cos ωtþD sin ωt

�
ω2 ¼ β

2ξ
− k̄ > 0

�
:

Again, this particular case corresponds to spacetimes
whose curvature is constant [given by ðk̄ − β

2ξÞ].

VI. GENERALIZATION TO HIGHER
LOVELOCK TERMS: UNIQUENESS

OF EMERGENT THEORY

In the presence of Lovelock terms higher than the
Einstein in a D ≥ 5-dimensional action, one should
expect higher-order curvature nonlinearities to appear in
the emergent theory, in general. Here, we consider a five-
dimensional Lovelock theory in order to include the
quadratic Gauss-Bonnet term and explore the resulting
emergent theory (in two dimensions) after a dimensional
reduction along the lines demonstrated earlier.
The Lagrangian density now reads [5]1

Lðê; ŵÞ ¼ ϵμναβγϵIJKLM

�
αR̂μν

IJðŵÞR̂αβ
KLðŵÞêMγ

þ χ

3
R̂μν

IJðŵÞêKα êLβ êMγ þ β

5
êIμêJν êKα êLβ ê

M
γ

�
: ð21Þ

Variation with respect to the five-dimensional connection
and vielbein fields leads to the following set of equations of
motion:

ϵμναβγϵIJKLM½χêIαêJβ þ 2αR̂αβ
IJðŵÞ�D̂μðŵÞêKν ¼ 0; ð22Þ

ϵμναβγϵIJKLM½αR̂μν
IJðŵÞR̂αβ

KLðŵÞ
þ χR̂μν

IJðŵÞêKα êLβ þ βêIμêJν êKα êLβ � ¼ 0: ð23Þ

The full spacetime now has three dimensions of vanish-
ing proper length associated with the three zero eigen-
values of the five-dimensional vielbein. Hence, we
adopt a more general notation following Ref. [5]. The
spacetime and internal indices, respectively, are given by
μ≡ ða; āÞ, I ≡ ði; īÞ, where a, i are the two-dimensional
indices, and ā≡ ðv1; v2; v3Þ, ī≡ ð2; 3; 4Þ are the extra-
dimensional ones. The only nontrivial components
of the degenerate vielbein are êia ≡ eia, which also
denote the emergent diad fields with a nonvanishing
determinant e,

êIμ ¼
�
êia ≡ eia êīa ¼ 0

êiā ¼ 0 êīā ¼ 0

�
:

Let us first find the most general solution to the
connection equations (22). Their decomposition into vari-
ous components and the corresponding solutions are
displayed below:

1A different dimensional reduction of this 5D action (along
with solutions given by a five-metric with one zero eigenvalue)
has recently been considered in Ref. [5] in a formulation of
Einstein-Gauss-Bonnet effective theory in four dimensions.
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γ¼ b; ðL;MÞ¼ ði;jÞ∶ ϵā b̄ c̄abϵī j̄ k̄ ijR̂ā b̄
ī j̄D̂c̄ðŵÞêk̄a ¼ 0;

γ¼ c̄; ðL;MÞ¼ ði;jÞ∶ ϵā b̄ c̄abϵī j̄ k̄ ijR̂ā b̄
ī j̄D̂aðŵÞêk̄b ¼ 0;

γ¼ b; ðL;MÞ¼ ðk̄; iÞ∶ ϵā b̄ c̄abϵī j̄ k̄ ijR̂ā b̄
ī j̄D̂c̄ðŵÞêja¼ 0;

γ¼ c̄; ðL;MÞ¼ ðk̄; iÞ∶ ϵā b̄ c̄abϵī j̄ k̄ ijR̂ā b̄
ī j̄D̂aðŵÞêjb ¼ 0:

ð24Þ

The remaining components represented by ½γ ¼
b; ðL;MÞ ¼ ðj̄; k̄Þ� and ½γ ¼ b̄; ðL;MÞ ¼ ðj̄; k̄Þ� are both
satisfied identically upon using these equations above.
Assuming the field-strength components R̂ā b̄

ī j̄ as arbitrary,
the most general solutions of these equations are obtained
as below:

D̂āðŵÞek̄b ¼ 0 ⇒ ŵā
īj ¼ 0;

D̂½aðŵÞeīb� ¼ 0 ⇒ ŵa
īi ¼ M

ðīÞ
ikeak½M

ðīÞ
ik ¼ M

ðīÞ
ki�;

D̂½āðŵÞeib� ¼ 0 ⇒ ŵā
ij ¼ −eaj∂ āeia;

D̂½aðŵÞeib� ¼ 0 ⇒ Ka
ij ≡ ŵa

ij − w̄a
ijðeÞ ¼ 0: ð25Þ

The third solution above implies that ŵā
ij is a pure gauge,

which may be fixed to zero using exactly the same
argument provided earlier. With this, the emergent diad
field is manifestly independent of the extra-dimensional
coordinates. Note that this set of solutions leads the
following field-strength components to vanish:

R̂ā b̄
iī ¼ 0 ¼ R̂ā b̄

ij: ð26Þ

Next, we analyze the vielbein equations (23) and present
their general solutions below:

γ¼ a; M¼ i∶ ϵā b̄ c̄abϵī j̄ k̄ ijR̂ā b̄
ī j̄R̂bc̄

jk̄ ¼ 0⇒ R̂bc̄
jk̄ ¼ 0;

γ¼ b; M¼ k̄∶ ϵā b̄ c̄abϵī j̄ k̄ ijR̂ā b̄
ī j̄R̂ac̄

ij ¼ 0⇒ R̂ac̄
ij¼ 0;

γ¼ c̄; M¼ j∶ ϵā b̄ c̄abϵī j̄ k̄ ijR̂ā b̄
ī j̄R̂ab

ik̄ ¼ 0⇒ R̂ab
ik̄ ¼ 0;

γ¼ c̄; M¼ k̄∶ ϵā b̄ c̄abϵī j̄ k̄ ijR̂ā b̄
ī j̄½αR̂ab

ijþχeiae
j
b� ¼ 0

⇒ ϵabϵij½αR̂ab
ijþχeiae

j
b� ¼ 0: ð27Þ

Note that in the above we have used the fact that R̂ā b̄
ī j̄ are

arbitrary.
In the second solution within the set (25), we first

consider the case where exactly one among the three

(ī≡ ½2; 3; 4�) symmetric fields M
ðīÞ

ik is nonvanishing,

M
ðīÞ

ik ¼ Mikδī2: ð28Þ

With this, the various components of first equation among
the set (27) are solved as

R̂bc̄
j2 ¼ 0 ⇒ ∂ c̄M

j
b ¼ 0;

R̂bc̄
j3 ¼ 0 ⇒ ŵc̄

23 ¼ 0;

R̂bc̄
j4 ¼ 0 ⇒ ŵc̄

24 ¼ 0: ð29Þ

Thus, the equations of motion naturally force Mij,
the only emergent field other than the two-metric to be
independent of the extra-dimensional coordinates. The
above leaves the components ŵc̄

34 arbitrary. The second
equation implies ∂ c̄ŵa

ijðeÞ ¼ 0, which simply reconfirms
that our gauge choice ŵā

ij ¼ 0 is the correct one. The third
equation in the set (27), decomposed into its components,
leads to:

R̂ab
i2 ¼ 0 ⇒ D̄½aðw̄ÞMi

b� ¼ 0;

R̂ab
i3 ¼ 0 ⇒ ŵa

23 ¼ 0;

R̂ab
i4 ¼ 0 ⇒ ŵa

24 ¼ 0; ð30Þ

while leaving ŵa
34 arbitrary. Finally, using the vanishing of

torsion as obtained in (25), the last equation in (27) may be
rewritten as

R̄ðw̄ðeÞÞ þ χ

α
¼ M2 −MabMab; ð31Þ

where we have defined Mab ¼ Mijeaiebj as earlier. Note
that this, along with the first in the set (30), are precisely the
emergent equations of motion [Eqs. (7) and (9)] obtained
earlier without the Gauss-Bonnet term, up to an identi-
fication of the respective couplings as χ

α ↔
β
ξ. As for

Eq. (28), the only other possibilities to consider are when

all the three fields Mik
ðīÞ

are either nonvanishing or trivial.
The first case leaves these fields as arbitrary leading to no
deterministic emergent theory and should be discarded. The
latter case reduces to Jackiw-Teitelboim gravity, which
emerges as a special case of our formulation as already
elucidated earlier.
To conclude, the addition of higher-order Lovelock

terms does not affect the emergent theory, whose form
remains unique. This feature is remarkable enough and may
be contrasted with a Kaluza-Klein compactification of a
higher-dimensional theory where the effective dynamics
depend upon the number of extra dimensions as well as on
the nature of the compactified space.

VII. CONCLUSION

We have revisited the problem of defining a metric
theory of gravity in two spacetime dimensions. Based on
the general idea of extra dimensions of vanishing proper
length introduced recently [4] and implementing a dimen-
sional reduction, we have obtained a formulation where the
spacetime solutions could exhibit any arbitrary curvature.
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This formalism is more general than the celebrated
Jackiw-Teitelboim gravity exhibiting constant curvature
solutions.
Ourmethod is inequivalent to aKaluza-Klein dimensional

reduction of a higher-dimensional action, leading to effective
scalar-tensor2Dgravity, in general. In this context, let us also
note that the emergent theory is independent of compacti-
fication and is not built upon any singular rescaling of
gravitational coupling or a subtraction of divergences from
the action in the discontinuous limit D → 2. This is in
contrast with some of the earlier prescriptions in the
literature, invoked to extract nontrivial dynamical effects
from higher-dimensional actions (e.g., Mann-Ross dimen-
sional regularization prescription [10]).
The emergent lineal theory exhibits a nonpropagating

field content apart from the two-metric. From a geometric
viewpoint, this field could be interpreted as a dual diad that
is nondynamical. In this sense, our formulation could act as
a basis of two-dimensional bimetric gravity. Alternatively,
its contribution could be viewed as an effective energy-
momentum tensor. As an ideal fluid, its components have
the equations of state P

ρ ¼ 0;�1. We have solved the
effective equations for the emergent fields for the cases
of static and homogeneous geometries. Analogous to
four-dimensional gravity, specifying this tensor (along with
its conservation) completely determines the spacetime
geometry.
We have explicitly demonstrated the uniqueness of the

emergent theory. The inclusion of higher Lovelock terms
(Gauss-Bonnet and so on) in the presence of more than one
“dark” dimension has no effect on the general form of the
emergent 2D theory. The fact that only a single extra
dimension of vanishing proper length is relevant, leading to
contributions from only a finite number of Lovelock

densities to the emergent field equations, appears to be a
generic feature in this dimensional reduction formalism
associated with noninvertible vielbein fields.2 The recent
formulation of a four-dimensional Einstein-Gauss-Bonnet
effective theory [5] based on a non-Einsteinian phase
supports this observation, even though the original motive
to consider this case is different from here.
It is well known that the quantization of lower-

dimensional gravity does provide important insights
[8,9], particularly in view of the unresolved issues in
four-dimensional quantum gravity. One wonders if our
formulation here could add to the general wisdom upon a
canonical or Wheeler-Dewitt quantization. That might be
worthwhile, given the genericity of its solution space as
compared to Jackiw-Teitelboim gravity and its essential
resemblance to classical gravitational dynamics in four
dimensions. Further, it seems plausible that the quantum
counterpart of our formulation, either from theD > 2 or the
emergent perspective, could be connected to quantum
gravity states that have support only along a single
dimension. Explicit examples are the (loop) states defined
on Wilson lines which define a 1þ 1-dimensional space-
time embedded within a noninvertible metric [16].
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