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We study a first-order formulation for the coupled evolution of a quantum scalar field and a classical
Friedmannuniverse. Themodel is definedby a state dependentHamiltonian constraint and the timedependent
Schrödinger equation for the scalar field. We solve the resulting nonlinear equations numerically for initial
data consisting of a Gaussian scalar field state and gravity phase space variables. This gives a self-consistent
semiclassical evolution that includes nonperturbative “backreaction” due to particle production.We compare
the results with the evolution of a quantum scalar field on a fixed background, and find that the backreaction
modifies both particle production and cosmological expansion, and that these effects remain bounded.
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I. INTRODUCTION

Semiclassical gravity is the study of quantum matter
propagating on a classical spacetime. One part of this
broadly defined area is the study of quantum fields in
curved spacetime (QFTCS), a subject that has been
extensively studied (see textbook Refs. [1–5]). The other
and less well-established field is the extension of QFTCS to
include backreaction of quantum stress-energy on classical
spacetime. This paper concerns the latter.
There are at present two broad approaches for addressing

the problem of semiclassical gravity with backreaction: the
first and earliest is the postulation of a semiclassical
Einstein equation without first having at hand a quantum
theory of gravity. The proposal

Gab ¼ 8πGhΨjT̂abjΨi ð1Þ

has been the focus of much research, see e.g., [6–10]. For a
recent review see e.g., [11].
The second is to start from a proposal for quantum

gravity and make a suitable ansatz for geometry and matter
physical states to arrive at a consistent approximation. This
typically starts with the Dirac quantization conditions
which give the Wheeler-deWitt equation and the diffeo-
morphism conditions

ðĤG þ ĤMÞjΨi ¼ 0; ð2Þ

ðĈG
a þ ĈM

a ÞjΨi ¼ 0: ð3Þ

To arrive at a semiclassical approximation from these
equations, the joint gravity-matter state is carefully chosen
such that the gravity state is semiclassical and peaked on a
classical configuration, and the matter quantum state is
parametrized by the classical peaking configuration. The
combined state is a product of such matter and gravity
states. The Wheeler-DeWitt equation then simplifies to a
time-dependent (functional) Schrodinger equation.
There has been considerable work in trying to extract (1)

from the Dirac quantization (2)–(3) of gravity with matter
[12–19]. Beyond minisuperspace models the results are
largely formal in nature. This is because the problem of
preserving the quantum algebra of constraints, a crucial
ingredient for maintaining spacetime reparametrization
invariance in the quantum theory, remains unsolved.
A related observation and potential problem of the

proposal (1) is in its very definition. In the general setting,
this is an equation for a semiclassical metric g given a fixed
state jΨi in the Heisenberg representation. However,
viewed as a nonperturbative equation, the state and the
operator T̂abðϕ̂; gÞ must be defined with respect to the as-
yet-undetermined metric g. But the field modes used to
define T̂ab are normally solutions of the wave equation,
which in turn requires a metric for their definition. This
situation is of course unlike the case of QFT on a fixed
background because there a background metric is available
and provides the necessary mode equation; its solutions can
be used to define (up to coordinate choices) the Heisenberg
operator T̂abðϕ̂; gÞ. There is, thus, the question of exactly
how the rhs of (1) is to be constructed if the metric is not
known explicitly. This is an issue even for the simplest
cosmological metrics where the only free function is the
scale factor aðtÞ: there is no analytical solution of the wave
equation for a general form of aðtÞ, so the r.h.s. of (1)
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cannot be constructed. Several additional issues with (1) are
outlined in Refs. [20,21].
For spherically symmetric and cosmological solutions of

Einstein equations with no free functions in the metric there
is a large literature on calculations of hT̂abi for various
choices of vacuum states; these fall in the domain QFTCS,
and can be used to define (1). An example of this is the
replacement of the Schwarzschild mass M by MðtÞ to
model a black hole that is shrinking due to Hawking
radiation. These simple cases can be compared with the
minisuperspace models of quantum gravity where all
metric functions also depend only on a time parameter.
These considerations raise the broader question of how

to define a coupled classical-quantum system. There have
been many efforts to incorporate semiclassical backreaction
on a classical system [22–33]. These attempts essentially
fall into two categories, one where dynamics is modified on
the classical or quantum side, or both, in exotic ways, from
discarding unitarity to introducing new structures such as
stochastic fluctuations in the classical sector; the other type
seeks to recover (1), but typically fails to incorporate the
full canonical structure self-consistently.
With this broad motivation, we address here the general

question of how to couple a quantum theory to a classical
theory in the first order formalism such that initial data
consisting of a classical configuration and a quantum state
evolve self-consistently. In Sec. II we outline the approach
by considering a scalar field coupled to a flat Friedmann-
Lemaitre-Robertson-Walker (FLRW) cosmology where
the scalar field is quantized. In Sec. III, as a prelude to
addressing the backreaction problem in cosmology, we
describe a canonical approach to particle creation in a fixed
FLRW cosmology; we show, unlike in the standard
covariant asymptotic computation, that the particle number
in each mode varies in time as it reaches saturation at late
time. In Sec. IV we self-consistently calculate the scale
factor and particle number with backreaction. We show that
this results in a modified expansion rate that is more
pronounced at early times. In Sec. V we close with a
summary and prospects for the applications of our method
in other gravitational settings where quantum-classical
coupling is expected to play an important role.

II. SELF-CONSISTENT
QUANTUM-CLASSICAL COSMOLOGY

We describe here our method for the joint evolution of a
quantum-classical system in cosmology. The classical
system is a flat FRLW cosmology and the quantum system
is a homogeneous scalar field. The equations we present
may be viewed as ones that describe backreaction non-
perturbatively. However this characterization is not appro-
priate because the term “backreaction” presumes an
a priori fixed background spacetime with a test quantum
field, which then subsequently acts to deform the spacetime
as a higher order effect. As we will see, the equations we

propose are such that a classical spacetime and matter
quantum state evolve self-consistently from initial data in a
manner that does not permit identification of an a priori
classical background spacetime.
Although we do not consider inhomogeneities, it will be

evident that our method is different in both spirit and
technique from the backreaction method deployed for
cosmological perturbation theory where the effective
dynamics of the perturbations is, in the final analysis,
equivalent to a scalar field on the a fixed FRLW back-
ground. In our approach there is no fixed background that
forms the basis for a perturbation expansion.
The canonical variables for this model are the scale

factor and scalar field and their conjugate momenta ða; paÞ
and ðϕ; pϕÞ. The metric is

ds2 ¼ −N2dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ ð4Þ

and the classical dynamics is described by the Hamiltonian
constraint (for Λ ¼ 0),

H ¼ −
p2
a

24a
þ p2

ϕ

2a3
þ a3VðϕÞ≡ −

p2
a

24a
þ hϕ; ð5Þ

and the Hamilton equation that follow from it,

_a ¼ fa;NHg; _pa ¼ fpa; NHg; ð6Þ

_ϕ ¼ fϕ; NHg; _pϕ ¼ fpϕ; NHg: ð7Þ

We define the hybrid quantum-classical theory by
quantizing the scalar field and defining an effective state
dependent Hamiltonian constraint

Heff
Ψ ≡ −

p2
a

24a
þ 1

2a3
hΨjp̂2

ϕjΨi þ a3hΨjVðϕ̂ÞjΨi ¼ 0; ð8Þ

where jΨi is any state of the scalar field. The proposed
evolution equations (choosing lapse N ¼ 1) are the
coupled set

_a ¼ fa;Heff
Ψ g ¼ −

pa

12a
; ð9Þ

_pa ¼ fpa;Heff
Ψ g

¼ −
p2
a

24a2
þ 3

2a4
hp̂2

ϕiΨ − 3a2hVðϕ̂ÞiΨ ð10Þ

ij _Ψi ¼ 1

2a3
p̂2
ϕjΨi þ a3Vðϕ̂ÞjΨi ð11Þ

where we are working in the Schrodinger picture. Initial
data for these equations is faðt0Þ; paðt0Þ; jΨðt0Þig chosen
such that the constraint (8) holds. In practice this means
solving the quadratic for paðt0Þ given aðt0Þ and jΨiðt0Þ.
The first of these equations is the same form as the
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corresponding classical one, with the difference that pa on
the rhs is state dependent through the second equation.
For self-consistency we must verify that the constraint

Heff
Ψ ¼ 0 is conserved. This is readily checked by using the

evolutions (9)–(11):

d
dt

Heff
Ψ ¼ ∂Heff

Ψ
∂a _aþ ∂Heff

ψ

∂pa
_pa þ h _ΨjĥΦjψi þ hΨjĥϕj _Ψi

¼ 0: ð12Þ

This completes the prescription for a first order formulation
of the hybrid classical-quantum cosmology. The initial
scalar field state is arbitrary; it can be a linear combination
of Gaussian or squeezed states, or indeed any normalizable
state. The resulting cosmological evolution is much richer
than in the purely classical theory since there is an arbitrary
normalizable function’s worth of initial data instead of the
classical pair ðϕðt0Þ; pϕðt0ÞÞ ∈ R2. Solutions to this system
of equations may be generated numerically [34].

III. CANONICAL APPROACH TO PARTICLE
PRODUCTION

As a prelude to the main calculation in the next section
using the ideas we outlined above, we revisit here the
cosmological particle production calculation. We redo this
calculation using the time-dependent Schrodinger equation
(TDSE) for each mode of a scalar field on a background
prescribed by a scale factor aðtÞ.
The standard calculation proceeds as follows: one solves

the scalar wave equation for the early (E) and late (L) time
modes fEðkÞ and fLðkÞ. These two sets of modes define
distinct bases for the Fock space, together with their
corresponding number operators NE and NL. Cosmo-
logical particle production is the result that the expectation
value of the late time mode number operator NL in
the vacuum j0Ei of the early time modes is nonzero,
i.e., h0EjNLj0Ei ≠ 0.
The TDSE method starts from the Hamiltonian of a

scalar field of mass m on a given FRLW background with
scale factor aðtÞ. In spatial Fourier space with modes
k ¼ jk⃗j, the total Hamiltonian density is

H ¼ 1

2

Z
d3k
ð2πÞ3

�
1

a3
p2
k þ a3

�
k2

a2
þm2

�
ϕ2
k

�
;

≡
Z

d3k
ð2πÞ3 hk; ð13Þ

where pk and ϕk are defined from the Fourier transforms of
the scalar field and its conjugate momentum. Quantization
of each mode may be carried out in the standard manner
leading to the TDSE

i
∂
∂tΨkðϕk; aðtÞ; tÞ ¼ ĥkΨkðϕk; aðtÞ; tÞ: ð14Þ

The method for calculating cosmological particle pro-
duction from this equation is the following. First we solve
(14) using the evolving Gaussian ansatz

Ψkðϕk; tÞ ¼ βkðtÞ exp ½−αkðtÞϕ2
k�; ð15Þ

where αk and βk are complex values functions of t. At the
chosen initial time, this state coincides with the instanta-
neous ground state of ĥk. The TDSE with this ansatz leads
to the equations

i
dαk
dt

¼ 1

2a
ð4α2k − k2Þ; ð16Þ

i
d
dt

ðln βkÞ ¼
αk
a
: ð17Þ

Normalization gives

jβkj2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ReðαkÞ

π

r
: ð18Þ

To compute the particle number in mode k at time
T > t0, we note that the eigenvalue problem for ĥk (13)
determines an instantaneous energy eigenbasis ψk

nðϕk; TÞ
for the Hilbert space at T. And since ĥk is an oscillator with
mass a3 and frequency m2 þ k2=a2, ψk

nðϕk; TÞ are just the
oscillator eigenfunctions. The overlap jðΨkðTÞ;ψk

nðTÞÞj2 of
the evolved wave function Ψkðϕk; TÞ with such a basis
element gives the probability that the evolved state of mode
k has instantaneous excitation level n at time T. Hence the
expected particle number in mode k at time T is

hnkðTÞi ¼
X∞
n¼0

njðΨkðTÞ;ψk
nðTÞÞj2: ð19Þ

This overlap integral and sum can be computed exactly
with the result [35,36]

hnki ¼
jzkj2

1 − jzkj2
; ð20Þ

where zkðtÞ is defined from the solution αkðtÞ of Eq. (16) by

αk ¼
ka2

2

�
1 − zk
1þ zk

�
: ð21Þ

An advantage of this method is that the particle number
nkðtÞ may be computed at any time during cosmological
evolution. This is unlike the standard method based on field
expansion in the mode solutions of the wave equation
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where only the asymptotic late time particle number is
available.
We performed this calculation for fixed scale factor of

the form

aðtÞ ¼ Aþ B tanh

�
t − t̄
t0

�
; ð22Þ

The results for A ¼ 2; B ¼ 1; t̄ ¼ 7; t0 ¼ 1 appear in Fig. 1.
The first frame is the scale factor, the second shows the
Hubble and mode length scales, and the last frame shows
nkðtÞ for selected values of k. A number of features are
visible in the last frame: particle production number rises

initially with small oscillations for larger k; as the horizon
scale falls toward its minimum (t ¼ 7), the super horizon
mode numbers reach their late time steady state values,
whereas the sub horizon mode numbers dip before reaching
their much lower steady states.
In summary, the purpose of this section was to demon-

strate the Schrödinger picture technique for computing
particle production. We now combine this method with
the quantum-classical idea discussed in Sec. II to compute
self-consistently the evolution of the scale factor with
the quantized scalar field. Although nonperturbative, this
calculation implicitly contains ‘backreaction due to particle
creation.

IV. BACKREACTION IN COSMOLOGY

In the last section we considered cosmological particle
production with a specified scale factor. In light of that
discussion, we now present and solve a set of equations that
determine self-consistent evolution of the scale factor and
the scalar field wave function.. This calculation is in the
spirit of the method described in Sec. II. The key difference
is that the expectation value of the energy density in the
effective Hamiltonian constraint HΨ is integrated over all
modes k with a Planck cutoff, and this sum is then used as
the evolving source in the constraint.
The semiclassical equations we propose are

i
∂
∂tΨkðϕk; aðtÞ; tÞ ¼ ĥkΨkðϕk; aðtÞ; tÞ; ð23Þ

Heff
Ψ ≡ −

p2
a

24a
þ a3hρiΨ ¼ 0; ð24Þ

_a ¼ fa;Heff
Ψ g ¼ −

pa

12a
; ð25Þ

where

hρiΨ ¼ 1

a3

Z
d3k
ð2πÞ3 hĥkiΨ: ð26Þ

The first of these is the TDSE for each mode, the same as
that used in Sec. III; the second is the effective Hamiltonian
constraint, where the matter density is the expectation value
of the scalar field energy density integrated over all modes
(26); and the third is the Hamilton equation for the scale
factor. Initial data for these equations is the set

faðt0Þ;Ψkðt0Þg: ð27Þ

At each time step, the state is used to compute hρiΨ, and the
semiclassical Hamiltonian constraint (24) is solved at the
initial time to determine paðt0Þ. Evolution is then deter-
mined by solving the coupled first order system (14) and
(25), and the process is iterated. We note that the evolution

FIG. 1. Particle production by mode in the Schrödinger picture:
the top frame is the scale factor used, the second illustrates the
mode scales in relation to the Hubble scale, and the bottom one is
the computed particle production for selected modes using
Eq. (19).
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equation for pa is not used, and as shown in Sec. II, the
same argument that gives conservation of Heff

Ψ applies to
each mode, and hence to the integration over modes. Thus
one can use either the a and pa equations which preserve
the effective constraint Heff

Ψ , or use the a equation and the
effective constraint to solve the system.
For the time dependent Gaussian state (15) Eqs. (23)–

(25) become

i _αk ¼
2α2k
a3

−
a3

2

�
k2

a2
þm2

ϕ

�
ð28Þ

�
_a
a

�
2

¼ hρiΨ; ð29Þ

and a calculation gives

FIG. 2. Scale factor dynamics and particle production: the first column gives particle production without backreaction for aðtÞ ¼ t1=2.
The second and third columns are solutions of Eqs. (28)–(29) that give the scale factor dynamics as modified by particle production; the
dotted lines give the early and late time backreaction effects on the scale factor. The scales in the second row are in Planck units; k ¼ 1 is
the Planck scale.
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hĥki ¼
1

2ReðαkÞ
�jαkj2
a3

þ a3

4

�
k2

a2
þm2

ϕ

��
; ð30Þ

with hρiΨ given by (26). The particle number in mode k is
again given by (19).
We note that the zero mode k ¼ 0 is not included in the

mode summeddensity due to the k-spacevolume factor in the
computation of hρiΨ. Thismay be added separately to the rhs
of (29), butwe have not done so in the following calculations;
this is the energy density in the homogeneous model in
Sec. II. For k ≠ 0, the equations represent the mode summed
homogeneous contribution to the cosmological dynamics,
and so exclude the explicit inhomogeneities that would
require inclusion of the spatial diffeomorphism constraint.

A. Numerical solution

We computed the solutions of the coupled Eqs. (28)–29)
for aðtÞ and αkðtÞ, and used these to determine nkðtÞ using
(19). It is convenient for numerical integration to use
dimensionless variables defined by rescaling with the
Planck length lP: t → t=lP, ϕk → lpϕk, αk → αk=l2P,
k → lpk, and mϕ → lpmϕ. For the density term in the
Friedmann equation (29)we used the Planck scale ultraviolet
cutoff k ¼ 1 (in Planck units) on the mode integration for the
density, namely

hρiΨ ¼ 1

a3

Z
1

0

d3k
ð2πÞ3 hĥkiΨ: ð31Þ

Figure 2 contains our results for initial data að0Þ ¼ 1,
andΨkð0Þ given by the state (15) for a selection of modes k.
The first column gives particle production without back-
reaction for aðtÞ ¼ t1=2; this may be compared to Fig. 1
which gives the results of a similar calculation for the scale
factor in Eq. (22). The second and third columns give the
self-consistent dynamics as modified by nonperturbative
backreaction as defined in our equations for two values of
the scalar field mass.
There are several interesting features of these results:

(i) the modification of scale factor dynamics is not
significant in comparison to the fixed scale factor case
a ¼ t1=2; early time behavior of the scale factor, aðtÞ ∼ t0.7,
is approximately the same for both the massive and
massless scalar field (for the masses shown). This is a
reflection of the fact that particle numbers in the modes
shown are similar for early times. (ii) There is more particle
creation for smaller values of k than larger ones, a feature
consistent with the intuition that lower energy modes are
more readily created. (iii) The massive scalar field case has
larger oscillations in particle number for all modes at larger
values of the scale factor; this is due to the term a3mϕ

which dominates the evolution of αk in Eq. (28).
(iv) Particle production is lowest for the Planck scale
modes k ¼ 1. Again this is an expected feature since larger
k particles are harder to produce.

V. SUMMARY AND DISCUSSION

We defined a self-consistent and nonperturbative
Hamiltonian formalism for coupling a quantum scalar field
system to a classical FLRW universe. We used this to
compute the dynamics of the scale factor by using the
evolving mode-summed energy density as the quantized
source. This demonstrated the viability of themethod, at least
in the setting of homogeneous and isotropic spacetime.
Our results are derived in the Schrodinger picture for

the evolving quantum field. This allowed computation of
created particle number at any time during the evolution
of the universe rather than just in the asymptotic region.
This calculation revealed the new feature of oscillations in
particle number on a fixed background, a result that
remains in the self-consistent evolution defined by our
coupled classical-quantum equations. Notably, the calcu-
lation showed no divergent “backreaction” on spacetime if
the scale factor is evolved together with the quantum state
from initial data, including the zero mode of the scalar field.
Indeed, as already noted, in our approach there is no
a priori background on which a quantum field back reacts,
so the term “backreaction” loses its meaning. We note also
that the evolving state of each mode was restricted to the
Gaussian form, but with evolving width. This simplified the
problem to a set of coupled ordinary differential equations,
one for each mode. Removing this restriction would require
solving a functional differential equation.
These results provide a proof of concept for computing

self-consistent and nonperturbative evolution of quantum
matter and classical spacetime in the first order formalism.
It is readily generalized to field theoretic systems without
first class constraints, and to systems with more than the
one constraint we considered here. Beyond homogeneity,
the gravitational system has diffeomorphism constraints in
addition to the Hamiltonian constraint. The consistency of
the system in the sense that constraints are preserved ifmatter
contributions to the constraints are replaced by expectation
values, is an interesting question. Intuitively it seems the
answer is that the system remains consistent for the reason
that the gravitational contributions to the constraints, being
classical, retain their algebra, while the matter terms contain
gravity phase space variables in the same functional forms as
in the classical theory.
The formalism we have described may be applied to other

field theoretic systems. Among these is the charged scalar-
electromagnetic field theory where the scalar field is quan-
tized—this would address the backreaction problem in
Schwinger effect. Another is the effect of Hawking radiation
on the geometry of a Schwarzschild black hole; in our
approach it is apparent that evolution of quantum matter is
unitary by design so the only question is how the geometry
and matter evolve self-consistently from quantum-classical
initial data. Work in this direction is in progress.
Our method may also be applicable to the calculation

of quantum fluctuations in inflationary cosmology.
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This would require a canonical formulation for first order
perturbations such as in [37,38], followed by a choice of
state for the perturbation variable that is to be treated
quantum mechanically.
Lastly, it would be desirable to have a formalism for

deriving the equations we propose here from the full
quantum gravity equations (2), at least in an approximation
where the gravitational wavefunction is peaked on a
classical geometry. This would provide a metric for a
mode expansion for quantum matter fields, and possibly

permit a mode-by-mode analysis of matter backreaction
with quantum gravity corrections. A first step in such a
direction might be similar to a recent analysis [39].
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