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In this work we aim to investigate thick tori configurations around Kerr black holes with scalar hair
(KBHsSH). For that goal, we provide a first approach using constant specific angular momentum non-self-
gravitating Polish doughnuts. Through a series of examples, we show the feasibility of new topologies,
such as double-centered tori with two cusps as well as similar structures as the ones found for rotating
boson stars (BSs), namely, tori endowed with two centers and a single cusp. These KBHsSH solutions are
also shown to possibly house static surfaces, associated with the static rings present in these spacetimes.
Through this paper we highlight the differences between these fluid configurations when housed by some
KBHsSH examples, standard Kerr black holes and rotating BSs.
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I. INTRODUCTION

Bulgarian National ScienceCommonly used as a first
approach to thick accretion disk theory around compact
objects, Polish doughnuts with a constant specific angular
momentum distribution are a simple but yet powerful model.
They are simple in the sense that their construction requires
nothing but the assumption of a non-self-gravitating fluid
circularly rotating a compact central object. On the other
hand this model is powerful for it provides valuable insights
on the general topology of thick accretion disks and can also
be used as initial condition for simulations.
The subject of accretion disks is of ever-growing interest,

for these structures, through the transformation of potential
gravitational energy into radiation, can provide insights for
the emission of x-ray binaries, active galactic nuclei, and
quasars. A good example of the usefulness of thick
accretion disk models is the imaging of the compact object
at the center of M87 [1–6].
In fact, in order to process the data from the Event

Horizon Telescope Collaboration (EHTC), general relativ-
istic magnetohydrodynamics (GRMHD) simulations of
disks were necessary. In this context, Polish doughnuts
are often used as an initial condition for such type of
simulations. GRMHD simulations with a similar setup are
also used to address advection-dominated flows, the
evolution of weakly magnetized disks, jet formation, and
the differences between possible images of black holes
(BHs) and boson stars (BSs) [7–12]. Outside the context of
GRMHD simulations, Polish doughnuts are also used to
address possible tori geometries around exotic spacetimes

such as Kerr–de Sitter backgrounds, distorted static BHs,
deformed compact objects, Kehagias-Sfetsos naked singu-
larities, and BSs [13–19]. Although some models of
doughnuts may include magnetic fields and nonconstant
specific angular momentum distribution, the constant
specific angular momentum case remains an important
first step in this field of research, since in this case the torus
solutions are marginally stable for Kerr BHs and hold
similar topologies as the ones found for different specific
angular momentum distributions [20,21].
The realization of Kerr black holes with scalar hair

(KBHsSH), i.e. equilibrium configurations of spinning
black holes surrounded by solitons, was first reported a
few years ago in [22,23]. These are hairy black holes that
continuously connect Kerr BHs to regular, rotating BSs.
They emerge from a superradiant instability that causes an
initial cloud of scalar field to grow and eventually reach the
equilibrium found in the stationary case, where the soli-
tonic hair coexists with the hole in a bound system with
synchronized motion. Thus, within the framework of
general relativity, these are the simplest objects known
to evade no-hair theorems (see [24] for a review). This
circumvention relies solely on the fact that the matter fields
do not share the same isometries of spacetime and does not
require unreasonable assumptions. At the same time, the
complex field which is minimally coupled to gravity is
canonical and may arise in simple extensions of the
Standard Model [25]. Hence, KBHsSH pose some chal-
lenge to the Kerr hypothesis, i.e. that every isolated black
hole in nature should be described by the Kerr metric and
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could populate both the core and interstellar medium of
galaxies. Studying the phenomenology of these objects is
the only way to understand what imprints they could leave
in astrophysical observations that would allow us to probe
their existence. Within the past years, several generaliza-
tions to KBHsSH have been made, such as adding self-
interactions to the scalar sector [26–28], considering higher
winding numbers and excited states [29,30], as well as
admitting different field theories for the matter sector such
as the Proca hair [31], and different theories for the
gravitational sector such as tensor-scalar and -multiscalar
theories [32,33]. Different applications of astrophysical
relevance have been so far entertained, that besides aiding
in identifying their signatures, could also help better
constrain global parameters through future observations.
These include the studies of shadows, horizon geometry,
iron Kα line, thin accretion disks, and Polish doughnuts
[14,34–37].
As shown in [19], rotating BSs endowed with a static

ring [38] are able to shelter tori presenting the so called
static surfaces as well as compelling topologies (see also
[18]). Similar results can be found for KBHsSH. Double-
centered tori and static surfaces are again observed, while
new features such as tori endowed with two cusps can also
be found. The aim of our paper is to show and analyze such
features.
In Sec. II we discuss how the KBHsSH solutions are

obtained, while in Sec. III we provide the general recipe for
the building of the constant specific angular momentum tori
around these geometries. Section IV is dedicated to the
displaying of a few torus examples around two chosen
KBHsSH. Finally we report our conclusions in Sec. V.

II. SCALARIZED KERR BLACK HOLES

KBHsSH are simply the realization of the combined
system of a black hole with self-gravitating solitonic hair,
still within general relativity. The action that gives rise to it
is therefore the Einstein-Hilbert action plus the contribu-
tions of the solitonic sector, given by a complex scalar field
theory minimally coupled to gravity,

S¼
Z �

R
2
−
1

2
gμνð∂μΦ�∂νΦþ∂μΦ∂νΦ�Þ−UðΦÞ

� ffiffiffiffiffiffi
−g

p
d4x;

ð1Þ

whereR is the Ricci scalar,Φ is the complex scalar field,U is
the scalar field potential that contains the mass term
and possibly self-interaction terms, and g is the metric
determinant.
The equations are obtained by varying (1) with respect to

the inverse of the metric, yielding nonvacuum Einstein field
equations and the real and imaginary components of Φ,
which gives two Einstein-Klein-Gordon equations. The
scalar field theory is endowed with a globalUð1Þ symmetry

since it is invariant under the transformation Φ → eiαΦ for
any constant α. Hence, a conserved Noether current arises

jμ ¼ −iðΦ�∂μΦ −Φ∂μΦ�Þ: ð2Þ

KBHsSH are the outcome of a superradiant instability,
when the system is rotating. We adopt the following metric
parametrization for the line element:

ds2 ¼ −N e2F0dt2 þ e2F1

�
dr2

N
þ r2dθ2

�

þ e2F2r2sin2θðdφ − ωdtÞ2; ð3Þ

where N ¼ 1 − rH=r, with horizon radius rH in this
coordinate system. The four metric functions we need to
solve for, fF0; F1; F2;ωg, are all dependent on both r and
θ. The spacetime is therefore stationary and axisymmetric
and possesses two Killing vectors associated with these

isometries, ξμ ¼ ∂⃗t and χμ ¼ ∂⃗φ.
The complex scalar field, as opposed to the metric

functions, must depend on all four spacetime coordinates
to grant stability and rotation. Since the spacetime is
stationary and axisymmetric, the Lagrangian and all equa-
tions of motion must be independent of t and φ, which is
only possible if Φ depends on them harmonically, in
explicit form, as given by

Φ ¼ ϕðr; θÞeiðωstþkφÞ; ð4Þ

where ωs is the frequency of the scalar field and k is the
winding number which must be an integer due to the
identification Φðφ ¼ 0Þ ¼ Φðφ ¼ 2πÞ. Bound states of
KBHsSH in equilibrium configuration occur when the
axial phase velocity of the scalar field matches the angular
velocity of the horizon,

ωs

k
¼ −ωH; ð5Þ

i.e. the hair is synchronized. Note that this implies the no-
flux condition Kμ∂μΦjH ¼ 0, where Kμ ≡ ξμ þ ωχμ is the
Killing vector that defines the null hypersurface.
In this work, we consider a non-self-interacting scalar

field, so thatU ¼ μ2ΦΦ�=2. The total mass, frequency, and
radial coordinate are rescaled according to the field’s mass
μ:M → Mμ, ωs → ωs=μ, and r → rμ. In Fig. 1 we display
the domain of existence of KBHsSH in an ωs vs M
parameter space, which contains three continuously con-
nected boundaries. The red curve represents purely soli-
tonic solutions which are regular everywhere. The blue
curve represents Kerr BHs with a stationary solitonic cloud
which is not backreacting. The green line corresponds to
extremal KBHsSH. In this diagram, we map out some
peculiar regions according to special features of the orbital
parameters of a test particle in circular geodesic motion on
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the equatorial plane. The static ring corresponds to sol-
utions for which one eigenvalue of the circular orbit angular
velocity goes to zero at a certain value of the coordinate r.
The lowermost boundary of this area defines the occurrence
of an ergoregion where the particle would otherwise have
been able to stay at rest. The green region highlights
solutions in which, for some values of r, both eigenvalues
of the angular velocity are positive (hence just prograde
orbits are defined at those points) and furthermore both
orbits are stable. The pink domain encompasses solutions
in which the stability of the prograde orbits changes more
than once with varying r, giving rise to disjoint intervals
where these orbits are stable. Finally, the hatched orange
portion indicates spacetimes that contain regions where the
angular velocity is not defined (regardless of stability) and
where therefore no inertial circular orbits are allowed. This
is an entirely different phenomenon from orbits not being
defined for falling out of the light cone, however, and
noninertial circular motion is still allowed in the respective
regions. These orbital properties have been discussed in
[37–39].

III. CONSTANT SPECIFIC ANGULAR
MOMENTUM POLISH DOUGHNUTS

The non-self-gravitating axisymmetric stationary thick
tori we shall present in this paper, inspired by the formalism
regarding the study of rotating fluid masses in general
relativity provided by Boyer [40], were originally devel-
oped for the Schwarzschild case [41] and later generalized
for the Kerr metric [42]. Regardless, such formalism can be
used for a general axisymmetric stationary spacetime, for
which the metric components can be written as

ds2¼gttdt2þ2gtφdtdφþgrrdr2þgθθdθ2þgφφdφ2: ð6Þ

The tori are constructed by considering circular fluid
motion around the rotation axis of the central compact

object, thus the fluid four-velocity of any fluid particle can
be written as

uμ ¼ utðημ þ ΩξμÞ; ð7Þ

where ημ ¼ δμt and ξμ ¼ δμφ are the Killing vectors of the
background spacetime, while Ω _¼ uφ

ut . By defining the
specific angular momentum as the ratio l ¼ − uφ

ut
, we find

the relations

l ¼ −
gtφ þ gφφΩ
gtt þ gtφΩ

; Ω ¼ −
gtφ þ gttl

gφφ þ gtφl
: ð8Þ

For normalized uμ, the four-acceleration of the fluid can be
written as

aμ ¼ ∂μj lnðutÞj −
Ω

1 − Ωl
∂μl: ð9Þ

Considering now a perfect fluid with rest-mass density ρ,
specific enthalpy h, and pressure p, for which the stress-
energy tensor reads

Tμν ¼ ρhuμuν þ pgμν; ð10Þ

it is possible to write the fluid Euler equations,

−
1

ρh
∂μp ¼ ∂μj lnðutÞj −

Ω
1 −Ωl

∂μl: ð11Þ

Assuming the fluid to have a barotropic equation of state,
these equations can be integrated by summoning von
Zeipel’s theorem [40,43,44]. The integral is performed
from the outermost surface of the torus, where p ¼ 0 and
l ¼ lin, arriving at

Wðr; θÞ −W in ¼ ln jutj − ln jðutÞinj −
Z

l

lin

Ωdl0

1 −Ωl0
; ð12Þ

where the potential W is defined as

Wðr; θÞ −W in _¼ −
Z

p

0

dp0

ρh
; ð13Þ

andW in is the potential calculated at the outermost surface
of the torus. The potentialWðr; θÞ holds information about
the torus’ rest-mass density and pressure distributions,
specially in the case where the fluid’s specific angular
momentum distribution is set to be constant, for the integral
at the right-hand side of Eq. (12) vanishes. In this special
case, one can write Wðr; θÞ explicitly

Wðr; θÞ ¼ ln

�
g2tφ − gttgφφ

gφφ þ 2l0gtφ þ l20gtt

�1
2

; ð14Þ

FIG. 1. Domain of existence of the KBHsSH, where the
selected solutions S1 and S2 are marked.

THICK TOROIDAL CONFIGURATIONS AROUND SCALARIZED … PHYS. REV. D 104, 124047 (2021)

124047-3



where l0 is the constant specific angular momentum. An
example of how the potential dictates the torus topology is
given by considering the fluid to have a polytropic equation
of state, p ¼ κρΓ, where κ is the polytropic constant and Γ
is the polytropic index. In this case the rest-mass density
distribution can be derived from W as follows

ρðr; θÞ ¼
��

Γ − 1

κΓ

�
½expðW in −Wðr; θÞÞ − 1�

� 1
Γ−1
: ð15Þ

For this distribution the isosurfaces of rest-mass density
and pressure coincide with the isosurfaces ofWðr; θÞ. Rest-
mass density values, given an equation of state andW, can
be rescaled ad hoc, as long as the assumption of a non-self-
gravitating fluid holds. For instance, by choosing appro-
priate values of κ and Γ in Eq. (15) it is possible to set a
value of maximal rest-mass density in a given solution.
Therefore, W holds most of the information of interest
regarding the torus structure while being scale independent.
For this reason, we restrain ourselves to analyze mostly the
potential hereafter.
Extrema ofWðr; θ ¼ π=2Þ correspond to the locations of

cusps and centers of the torus. At these locations the fluid
moves also in Keplerian motion, for ∂rWðr; θ ¼ π=2Þ ¼
0 ⇒ aμ ¼ 0. Thus, the circular orbits’ specific angular
momentum profiles for the spacetime to be analyzed deter-
mine how many cusps and centers would a torus solution be
endowed with.
These circular orbits in the equatorial plane of a given

axisymmetric stationary spacetime can be addressed taking
the same four-velocity as in Eq. (7). Defining the conserved
quantities E ¼ −ut and L ¼ uφ, representing the energy
and angular momentum, the nonvanishing components of
the four-velocity read

ut ¼ −
gtφLþ gφφE

g2tφ − gttgφφ
; ut ¼ gttLþ gtφE

g2tφ − gttgφφ
: ð16Þ

Considering a spacelike trajectory, uμuμ ¼ −1, the follow-
ing effective potential can be defined:

Veff ≐ grr _r2 ¼
gφφ

g2tφ − gttgφφ
ðE − VþÞðE − V−Þ; ð17Þ

where

V� ≐ L
gtφ
gφφ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2ðg2tφ − gttgφφÞ

q
gφφ

: ð18Þ

Keplerian orbits are obtained when Veff ¼ ∂rVeff ¼ 0.
These constraints allow us to find the angular velocity
of such orbits,

Ω�
K ¼

−∂rgtφ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂rgtφÞ2 − ∂rgtt∂rgφφ

q
gφφ

; ð19Þ

which also allows us to assess the specific angular
momentum l�K of these geodesics through Eq. (8).1 The
lower index K and upper index þ or − indicates Keplerian
orbits that are either prograde or retrograde.
Given the profile l�KðrÞ and a constant specific angular

momentum value l0, the set of equatorial radii belonging to
cusps or centers of a torus solution generated by l0 will be
given by C ¼ fr�∶l�Kðr�Þ ¼ l0g. To distinguish cusps from
centers, the stability of their corresponding Keplerian
geodesics can be used. Stable orbits belong to the locations
given by the set S ¼ fr�∶∂2

rVeffðr�Þ < 0g. Thus, the set of
centers is given by C ∩ S, while the locations of cusps are
given by C ∩ S̄. The feasibility of multiple cusps or centers
can be anticipated by analyzing the presence of local
minima, maxima, or discontinuities in jl�KðrÞj. In the
absence of discontinuities a local minimum makes it
possible to have single-centered tori with one cusp. If
one local minimum and one local maximum are present,
double-centered tori, for which those centers are connected
by a cusp, can be formed. When two local minima and one
local maximum are present, double-centered tori endowed
with two cusps can be formed. This structure is also
possible for Keplerian specific angular momentum profiles
endowed with only one local maximum and one local
minimum, when discontinuities are observed. Examples of
all of these cases are provided in Sec. IV.
As shown in [19], spacetimes endowed with static orbits

[38] can shelter static surfaces in the context of thick tori.
While static orbits are circular geodesics in the equatorial
plane, for which a particle remains static with respect to the
zero angular momentum observer (ZAMO) at infinity,
static surfaces are their generalization for fluids. At these
surfaces, the fluid is also at rest, Ω ¼ 0, while inside it is
moving in a prograde manner Ω > 0 and outside in a
retrograde manner Ω < 0.
The nonmonotonicity of the metric functions is respon-

sible for yet other peculiarities of the orbital velocity that
arise in some of the solutions. Heeding the fact that gtt
grows in the region bounded by the two static rings, if its
slope is large enough, then the argument of the square root
in Eq. (19) becomes negative and no inertial circular orbits
can be realized. Note that where the argument becomes
zero Ωþ

K ¼ Ω−
K ¼ ω → l ¼ 0, i.e. the particle in circular

orbit is a ZAMO.We should stress that even though there is
a discontinuity in the existence of inertial circular orbits, a
particle could still be in circular motion by applying the
appropriate force in the radial direction.

1As stated in Sec. II, some orbits belonging to eigenvalues
which usually correspond to the retrograde case (indexed as l−K)
have positive angular velocity, being effectively prograde orbits.
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In order to track the existence of these surfaces given a
torus solution with l0, it is useful to define the “rest specific
angular momentum” lr for which Ω ¼ 0. Applying this
constraint to Eq. (8), lr reads

lr ¼ −
gtφ
gtt

: ð20Þ

Thus, any torus distribution where 0 > l0 > minðlrÞ will
also house such surfaces. The intersection of these surfaces
with the equatorial plane will be at the radii where
lrðrÞ ¼ l0. Static orbits, being both Keplerian and having
Ω ¼ 0 are located at the radial positions rs for which the
equality l−KðrsÞ ¼ lrðrsÞ holds.

IV. EXAMPLES

In this section we shall consider the KBHsSH solutions
depicted in Table I, which represent cases of spacetimes
endowed or not with a discontinuity in the Keplerian profile
for angular velocities (DI) and/or static orbits (SO). These
solutions were chosen since their Keplerian specific angu-
lar momentum profile presents prominent features that
indicate interesting differences between tori housed by
BS and by these solutions (see Table II). In fact, the
Keplerian specific angular momentum around S1 has a DI
while being endowed with two local minima for S2. In
addition both solutions have static orbits, indicating the

occurrence of static surfaces. The effects of these features
on the construction of the Polish doughnuts will be
exemplified in this section. The locations of these chosen
solutions in the domain of existence of the KBHsSH are
marked in Fig. 1.
At first we shall consider the solution S1 (see Table I),

endowed with two static rings and a discontinuity in the
specific angular momentum distribution for Keplerian
orbits. In Fig. 2 such a distribution is found together with
the rest specific angular momentum profile. It can be seen
that the equality lr ¼ l−K is satisfied in two radial positions,
namely, rins ¼ 0.567M and routs ¼ 1.260M, where the
indexing “in” (innermost) and “out” (outermost) is neces-
sary in this situation, since two static rings exist. On the
other hand, it can be seen that the innermost static ring is
unstable, while the outermost is stable.
Regarding the construction of tori, by avoiding the

discontinuous region, Polish doughnuts similar to the ones
found for rotating BSs emerge ([19] see Sec. 5.2.2.). This
means that prograde single-centered tori and retrograde
single- or double-centered tori are accomplishable, as well
as static surfaces. The novelties this solution brings can
then be better illustrated by taking constant specific angular
momenta l0 that have small enough absolute value to reach
the discontinuity of l�K. We provide examples of tori with
l0 ¼ 0.08M, l0 ¼ −0.08, l0 ¼ lrðrins Þ, and l0 ¼ lrðrouts Þ.
In Fig. 3 a torus produced with the specific angular

momentum l0 ¼ 0.08 around S1 is depicted. This choice of
l0 produces a torus that is not only double centered but also
endowed with two cusps, a feature not yet found for Polish
doughnuts, to our knowledge. One cusp connects the two
centers, as typically happens for rotating BSs, but another
cusp appears that connects the torus with the event horizon
of the solution. It is also interesting to note that previously
prograde doubled-centered tori were only found for BSs
with winding number k > 3 [18]. In contrast, for KBHsSH,
k ¼ 1 is sufficient to produce such configurations.
In order to estimate the ratio of the rest-mass density at

the inner center and at the outer center, we consider a
polytropic fluid obeying p ¼ κρΓ. In this case the ratio
reads

ρð1Þ

ρð2Þ
¼

�
expð−Wð1ÞÞ − 1

expð−Wð2ÞÞ − 1

�
1=ðΓ−1Þ

; ð21Þ

with the superscripts (1) and (2) corresponding to the
quantities evaluated at the inner and outer torus centers,
respectively. Taking the polytropic index to be Γ ¼ 4=3, we
report that ρð1Þ=ρð2Þ ¼ 1.09, meaning that both centers
ought to have similar densities, which contrasts with the
results for BSs, where the innermost center was typically
considerably denser than the outermost.
Negative non-null specific angular momenta l0 greater

than minðlrðrÞÞ ¼ −0.774M generate torus solutions
endowed with a static surface that reduces to a circle

TABLE I. Labels, properties, and relevant quantities of the two
KBHsSH solutions taken as examples. The event horizon
positions are not normalized by the mass of the solution.

KBHsSH solutions

Label M rh J Properties ω

S1 1.29 0.02 1.34 DIþ SO 0.800
S2 1.12 0.07 1.14 SO 0.723

TABLE II. Properties of the torus solutions reported. Positions
of the cusps and centers can have two values, for multiple cusps
and centers can be found. In the case of cusps, the first value
corresponds to the innermost cusp connecting the tori with the
event horizon, while the second corresponds to a cusp that
connects two centers. “SS” refers to the absence or presence of a
static surface in the solution. All values are normalized by the
mass of the background solution.

Torus solutions

KBHsSH l0=M rcenter=M rcusp=M SS

S1 0.08 [0.125, 1.114] [0.025, 0.598] No
S1 −0.08 [0.119, 1.052] [0.028, 0.633] Yes
S1 −0.1 [0.227, 1.059] ½∅; 0.567� Yes
S1 −0.431 ½1.260;∅� ½∅;∅� Yes
S2 0.455 [0.311, 0.550] [0.114, 0.436] No
S2 −0.8 ½0.579;∅� ½0.124;∅� Yes
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FIG. 2. (a) Keplerian and rest specific angular momentum distribution on the equatorial plane of S1. Dotted lines represent unstable
orbits, while black solid lines unbound ones. An enlargement near the event horizon is provided in (b), where the dotted red line
represents the normalized event horizon position.

FIG. 3. Potential for a torus around S1 endowed with l0 ¼ 0.08M (a),(b) and for a torus endowed with l0 ¼ −0.08M (c),(d). The bright
solid lines represent the isosurfaces related to the cusps and the dotted blue lines correspond to the outermost isosurface of the solution,
closed at infinity.
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around the equatorial plane for l0 ¼ minðlrðrÞÞ. In Fig. 4(a),
a scheme with some examples of such surfaces for different
torus specific angular momenta l0 around S1 can be
found.
Similar to the case for l0 ¼ 0.08M, a double-centered

torus endowed with two cusps is found for l0 ¼ −0.08M.
But now in contrast to the positive specific angular
momentum solution a static surface appears. Thus the
torus region containing the innermost center and the cusp
moves in a retrograde manner, while the region containing
the outermost cusp and center moves in a prograde manner.
In the special cases when l0 ¼ lrðrsÞ, either a cusp or a

center of the torus solution will be at a point of the static
surface, depending on the stability of the static ring. As an

example, we take l0 ¼ lrðrins Þ ¼ −0.100M, depicted in
Fig. 5(a). The produced solution is endowedwith two centers
connected by a cusp. Such a cusp sits at the unstable
Keplerian orbit that coincides with the static ring. The static
surface of this solution separates the two sectors of the
double-centered torus, where the innermost center is the only
center in retrograde motion. The absence of an innermost
cusp makes this solution similar to some solutions found for
rotatingBSs.But a contrasting feature should also benoticed.
The static surface of these doubled-centered tori around BSs
is typically small and nearby the innermost center and cannot
reach the cusp. Again the estimated ratio of the densities of
the two centers for a polytropic equation of state is close to
one, ρð1Þ=ρð2Þ ¼ 1.01.

FIG. 4. (a) Static surfaces for tori sheltered by S1 as a function of l0. (b) Surfaces of constant angular velocity for a torus endowed with
a static surface around S1 and constant specific angular momentum l0 ¼ −0.431M. Blue solid lines refer to positive values of Ω, red
lines to negative values of Ω, and the yellow line to the static surface, i.e. Ω ¼ 0.

FIG. 5. Potential for tori around S1 endowed with l0 ¼ −0.100M (a) and l0 ¼ −0.431M (b). The bright solid lines represent the
isosurfaces related to the cusps, when existent, and the dotted blue lines indicate the outermost isosurface of the solution, closed at
infinity. The static surface is plotted with a solid white line.
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In contrast, by choosing l0 ¼ lrðrouts Þ ¼ −0.431M,
depicted in Fig. 5(b), a single-centered cuspless torus is
produced, for which the center is at the stable static orbit.
To illustrate the angular velocity distribution of solutions
like this, endowed with a static surface, we also provide a
plot of the von Zeipel surfaces, i.e. the surfaces of constant
angular velocities in Fig. 4(b). Most of the pattern of the
von Zeipel surfaces simply follows the well-known pattern
for Kerr black holes, with spheroidal surfaces close to the
horizon, paraboloidal surfaces in the vicinity of the sym-
metry axis, and cylindrical surfaces otherwise, except for
the self-interacting surface at the transition radius [45].
However, for solutions with a static surface, inside the
cylindrical region another spheroidal region arises that
contains the static surface and the corotating fluid. Of

course, the presence of this new cylindrical region entails
the presence of a further transition radius with associated
self-intersecting surface. The figure highlights only these
new features due to the static surface.
Moving to solution S2, the specific angular momentum

is depicted in Fig. 6. No discontinuity in the Keplerian
distribution is found, except for the branch of retrograde
superluminal orbits, which is also characteristic of some
rotating BSs. Once more, for relatively large values of jl0j,
tori similar to the ones found for rotating BSs emerge,
while by choosing lower values of jl0j cusps connecting the
tori to the event horizon are produced.
As seen in Fig. 6(b), the specific angular momenta of the

prograde Keplerian orbits show a local maximum and two
local minima near the event horizon, meaning that

FIG. 6. (a) Keplerian and rest specific angular momentum distribution on the equatorial plane of S2. Dotted lines represent unstable
orbits, while black solid lines indicate unbound ones. An enlargement near the event horizon is provided in (b), where the dotted red line
represents the normalized event horizon position.

FIG. 7. Potential for tori around S2 endowed with l0 ¼ 0.455M (a) and l0 ¼ −0.8M (b). The bright solid lines represent the
isosurfaces related to the cusps, and the dotted blue lines correspond to the outermost isosurface of the solution, closed at infinity. The
static surface is plotted with a solid white line, when existent.
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regardless of the absence of a discontinuity, double-
centered tori with two cusps can be formed. As an example,
we choose l0 ¼ 0.455M for the solution depicted in
Fig. 7(a). Here the two centers are closer than the ones in
the previous solutions. Furthermore, ρð1Þ=ρð2Þ ¼ 1.00008. In
contrast, such topologies are not achievable in the retrograde
case in the absence of a discontinuity. Yet single-centered
tori with a cusp and a static surface can be formed, which is
the case, for instance, for l0 ¼ −0.8M [Fig. 7(b)].

V. CONCLUSIONS

By approaching thick tori around Kerr black holes with
scalar hair solutions with a constant specific angular
momentum Polish doughnut model, we reported in this
paper the appearance of remarkable novel geometries that
these fluid configurations can be endowed with. In par-
ticular, geometries with characteristics similar to the ones
already observed for rotating boson stars, but absent for
Kerr black holes, were found also for Kerr black holes with
scalar hair, such as double-centered tori, with the two
centers connected by a cusp. We also found several
important differences between the two types of objects.
The ratio between the densities of the centers were found to
be close to one for scalarized Kerr black holes, while for
boson stars the innermost center is typically considerably
denser than the outermost. Furthermore, an extra cusp, now
connecting the fluid to the event horizon was also found for
Kerr black holes with scalar hair, a feature not observed
before in any spacetime to our knowledge. With the
examples provided, we found that these double-centered
configurations with two cusps are accomplishable both in
the retrograde and prograde case when a discontinuity on
the Keplerian specific angular momentum distribution
exists. On the other hand, these torus geometries can also

be achieved for some cases when such a discontinuity is
absent, but only in the prograde case.
Another appealing feature of the Polish doughnuts

around Kerr black holes with scalar hair is that they can
also shelter static surfaces. These surfaces, a generalization
of static orbits for nongeodesic fluid configurations, have
vanishing angular velocity with respect to the zero angular
momentum observer at infinity. When existent, the fluid
moves in a prograde manner inside the surface and in a
retrograde manner outside. Different than static surfaces for
boson stars, in the context of Kerr black holes with scalar
hair these surfaces can be housed by single-centered tori
with a cusp. In the context of double-centered tori, they are
also accomplishable, but are no longer found in the vicinity
of the innermost center and can even contain the cusp
connecting the two centers.
In order to investigate the role of this extra cusp as well

as the evolution of tori with static surfaces, further
simulations would be useful. The addition of magnetic
fields in the analytical solution as well as the investigation
of different specific angular momentum distributions are
also fruitful next steps for the solutions here presented.
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