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Applying the perturbative approach to geodesic equations, we study motion of the test particles in time-
dependent spherically symmetric spacetimes created by oscillating dark matter. Assuming the weakness of
the gravitational field, we derive general formulas that describe infinite trajectories of the test particles and
determine the total deflection angle in the leading order approximation. The obtained formulas are valid for
both time-dependent and static matter configurations. Using these results, we calculate the deflection angle
of a test particle passing through a spherically symmetric oscillating distribution of a self-gravitating scalar
field with a logarithmic potential. It turns out that, in a wide range of amplitudes, oscillations in the
deflection angle are sinusoidal and become small for ultrarelativistic particles.
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I. INTRODUCTION

Despite the great efforts of theorists and significant
advances in technologies and methods of observation,
the nature of dark matter (DM) remains unknown. The
standard ΛCDM, which explains observational data well at
cosmological scales, faces serious problems at galactic and
subgalactic scales (see, e.g., [1]). One of the most cited
possibilities to overcome these difficulties is to assume that
DM consists of ultralight bosonic particles with masses in
the 10−23–10−21 eV range, e.g., axions [2], which are in a
coherent state described by a classical scalar field [3–12]. In
the early Universe, the primordial fluctuations of this field
are stretched by inflation, this evolution resulting in the
formation of a uniform scalar background oscillating near
the minimum of the effective potential. These oscillations
are unstable [13]. In the case of the quadratic potential, the
oscillating background behaves as a dustlike matter, so that
some kind of the Jeans instability can occur [9]. In addition,
in the case of a self-interacting scalar field, another
instability mechanism comes into play. This mechanism
is based on parametric resonance between the oscillating
background and perturbations and works on both cosmo-
logical and astrophysical scales [14–21]. At the nonlinear
stage, this leads to formation of quasistable oscillating
lumps, oscillons (pulsons) (see [22] for a recent review).
Under the influence of gravity, after the completion of
some relaxation processes, these lumps turn into long-
lived self-gravitating oscillating objects, oscillatons (grav-
ipulsons) [23–25], separated from the Hubble flow. The
latter means that the dynamics of an individual oscillaton

should be determined by the self-consistent system of
Einstein-Klein-Gordon equations. Note that oscillatons
can arise from rather arbitrary localized initial conditions
due to the gravitational cooling process [4,5,26]. This
process is very similar to that which occurs in the
integrable systems, when an initial state decays into
solitons and outgoing waves.
On galactic and subgalactic scales, oscillaton solutions

can describe various localized objects, from oscillating
soliton stars to oscillating DM halos, depending on the
assumed mass of the scalar field. Oscillations of the scalar
field in these objects cause oscillations of the gravitational
potential, which can be detected by their effect on the
motion of photons and test bodies. In particular, as shown
in [27], the gravitational time delay for a photon passing
through an oscillating halo should cause small periodic
fluctuations in the observed timing array of the pulsar
located inside the halo. Although the predicted effect is
very small, the authors believe it can be detected in the next
generation of pulsar timing observations. In Ref. [28], it
was proposed to use the laser interferometers for detecting
the axion wind caused by passage of Earth through DM.
The gravitational field oscillations, produced by the oscil-
lating DM, look like gravitational waves to an observer on
Earth and would be detected in future laser interferometer
experiments. An approach based on the observations of
binary pulsars was discussed in [29,30] to probe of ultra-
light axion DM. It was shown that oscillations of DM
resonantly perturb the orbits of the binary pulsars, thus
leading to secular variations in their orbital period. Also, in
the context of oscillating DM, in Refs. [31,32] the orbital
motion of test bodies in spherically symmetric time-
periodic spacetimes was studied numerically. In particular,*zheka@izmiran.ru
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it was demonstrated in [32] that the orbital resonances may
occur in the motion of stars in oscillating spherically
symmetric halos. In addition, in Refs. [32,33] it was shown
that spectroscopic emission lines from stars in such halos
exhibit characteristic, periodic modulation patterns due to
variations in the gravitational frequency shift. These
results show that the motion of photons and test bodies
may carry distinguishable observational imprints of the
oscillating DM.
Recently, in the above context, we studied the deflection

of photons in time-periodic spherically symmetric gravi-
tational fields [34]. Using the geodesic method and
the perturbative approach, we have shown that the deflec-
tion angle of a light ray, in general, undergoes periodic
variations when passing through such fields. In observa-
tions, this can lead to additional variations of intensity of
images when lensing the distant sources. In the present
paper, following the approach developed in [34], we study
the deflection of massive particles.
Our paper is organized as follows. In Sec. II, assuming

the weakness of the gravitational field, we use the pertur-
bative approach to describe the infinite trajectories of
massive particles in nonstatic spherically symmetric
spacetimes. In particular, we obtain general formulas that
determine the deflection angle of a massive particle in the
leading order approximation. In Sec. III, we apply these
formulas to calculate the deflection angle of a massive test
particle passing through an oscillating dark matter con-
figuration formed by a real scalar field with a logarithmic
self-interaction. Discussion and concluding remarks can be
found in Sec. IV.

II. INFINITE TRAJECTORIES OF TEST
PARTICLES IN NONSTATIC SPHERICALLY

SYMMETRIC SPACETIMES

Let us consider a spherically symmetric nonstatic metric
of the form

ds2 ¼ Bðt; rÞdt2 − Aðt; rÞdr2 − r2ðdϑ2 þ sin2 ϑdφ2Þ; ð1Þ

where Aðt; rÞ and Bðt; rÞ tend to unity as r → ∞. For the
trajectories lying in the plane ϑ ¼ π=2, the geodesic
equation reduces to the system

d
ds
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where ð_Þ ¼ ∂=∂t and ð 0Þ ¼ ∂=∂r. From Eqs. (4) and (1), it
follows that

dφ
ds

¼ J
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; ð5Þ
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�
dr
ds

�
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�
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ds

�
2

þ J2

r2
þ 1 ¼ 0; ð6Þ

where J ¼ const. It is easy to see that, for a particle (e.g., of
unit mass) coming from a distant point with an initial
velocity v and an impact parameter b,

J ¼ bvE; E ¼ ð1 − v2Þ−1=2; ð7Þ

so that J is the particle’s angular momentum, and E is the
initial kinetic energy.
Let us assume that thegravitational field is time-dependent

and weak everywhere on the particle trajectory, i.e.,

A ¼ 1 − 2ψ þOðϰ2Þ; B ¼ 1þ 2χ þOðϰ2Þ; ð8Þ

where ψðt; rÞ and χðt; rÞ are small functions of order ϰ,
ϰ ≪ 1 being a dimensionless small parameter proportional
to the gravitational constant G.
Now suppose that in the xy plane at a distant point

x ¼ x0, y ¼ b at a moment t0, a particle begins to move
with an initial velocity v parallel to the x axis in the
direction of the gravitating mass (see Fig. 1). If the
gravitating mass were absent, the particle would move
along the straight line,

x ¼ x0 þ vðt0 − tÞ; y ¼ b; ð9Þ

and be registered at the moment tR ¼ t0 þ 2x0=v at the
distant point x ¼ −x0, y ¼ b. On this line

rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ b2

q
; dt=ds ¼ E: ð10Þ

With the gravitating mass, the particle will move along a
deflected trajectory with the current radial coordinate

rðtÞ ¼ ð1þ ηðtÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ b2

q
; ð11Þ

where, as before,

Δϕ

FIG. 1. Passage of the test particle through the gravitating mass.
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x ¼ vðtR − tÞ − x0; ð12Þ

and ηðtÞ is a small function of order ϰ. On this trajectory,
the dependence tðsÞ is determined by Eq. (2), where we set

B
dt
ds

¼ Eð1þ ζðtÞÞ; ð13Þ

with a small function ζðtÞ ∼ ϰ. Then, with the required
accuracy, from Eq. (2) we obtain

dζ
dt

¼ _χðt; rÞ þ v2 _ψðt; rÞ
�
1 −

b2

r2

�
: ð14Þ

To get the equation for η, we proceed from Eq. (6), where
dr=ds ¼ ðdr=dtÞðdt=dsÞ, and r is now given by Eq. (11).
Calculating dr=dt and using Eqs. (7), (8), and (13), in the
first order in ϰ we arrive at the equation

vxðx2 þ b2Þ dη
dt

− v2ðx2 − b2Þηþ v2x2ψðt; rÞ
þ ½ð2v2 − 1Þx2 − b2�χðt; rÞ
þ ½ð1 − v2Þx2 þ b2�ζðtÞ ¼ 0: ð15Þ

Further, from Eq. (5), using Eqs. (7), (8), (11), and (13),
we find

dφ
dt

¼ vb
x2 þ b2

½1þ ð2χ − ζ − 2ηÞ�: ð16Þ

Since in Eqs. (14)–(16) t ¼ tR − ðxþ x0Þ=v and
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

p
, we can integrate over x instead of t, setting

dx ¼ −vdt. As a result, we obtain

ζ ¼ 1

v

Z
x0

x

�
_χðt; rÞ þ v2 _ψðt; rÞ

�
1 −

b2

r2

��
dx; ð17Þ

η¼ x
v2ðx2þb2Þ

�Z
½v2x2ψðt;rÞþ ðð2v2−1Þx2−b2Þχðt;rÞ

þðð1−v2Þx2þb2ÞζðtÞ�dx
x2

þ const

�
; ð18Þ

φ ¼ π=2 − arctgðx=bÞ þ b
Z

x0

x

2χ − ζ − 2η

x2 þ b2
dx: ð19Þ

These equations completely describe, in the leading
order, the trajectory of the test particle that was emitted
at a distant point with the coordinates ðx0; bÞ and registered
by a distant observer at the moment tR. The constant in
Eq. (18) can be found from the condition ηðx0Þ ¼ 0, but it
does not affect the complete change of φ for the particle
coming from infinity and going to infinity. Indeed, taking
x ¼ −x0 and setting x0 → ∞, we find φ ¼ π þ Δφ, where

Δφ ¼ b
Z

∞

−∞

2χ − ζ − 2η

x2 þ b2
dx ð20Þ

is the deflection angle.
The obtained formulas are valid not only for time-

dependent metrics, but also for the static ones. In the
latter case, one should put ζ ¼ 0 in accordance with
Eq. (17). Consider, for example, the Schwarzschild metric.
Assuming rg=b ¼ ϰ ≪ 1, where rg ¼ 2GM is the gravi-
tational radius, we have

ψ ¼ χ ¼ −ϰ
b
2r

: ð21Þ

Then, formula (18) gives

η ¼ −ϰ
bx

2v2ðx2 þ b2Þ

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ b2

p

x
þ ð3v2 − 1Þarsh x

b
þ const

�
: ð22Þ

Substituting (21) and (22) into (20) and integrating, we
reproduce the well-known result

Δφ ¼ 2GM
bv2

ð1þ v2Þ þOððrg=bÞ2Þ: ð23Þ

Note that this formula is only valid for v2 ≫ ϰ ¼ 2GM=b.
In the case of a time-dependent metric, the deflection

angle for a large fixed x0 will generally depend on the
particle emission time t0 or, equivalently, on the observa-
tion time tR ¼ t0 þ 2x0=v, since when integrating in
(17)–(20) we substitute t ¼ tR − ðxþ x0Þ=v into the poten-
tials ψðt; rÞ and χðt; rÞ. For time-periodic potentials (with a
certain period Tg), we can ignore x0 in the integrands by
setting for convenience x0 ¼ nTgv, where n is a large
integer. Then the moment tR will determine in which phase
of the oscillations of the gravitational field the particle
passed through the matter distribution and, consequently, at
what angle it deflected as a result of this.
In the next section, we calculate the deflection

angle of the test particle passing through the oscillating
distribution of a real scalar field with a logarithmic self-
interaction.

III. DEFLECTION OF THE TEST PARTICLE
BY A TIME-PERIODIC SPHERICALLY

SYMMETRIC SCALAR FIELD

As a deflecting matter, we consider the self-gravitating
real scalar field with the potential

UðϕÞ ¼ m2

2
ϕ2

�
1 − ln

ϕ2

σ2

�
; ð24Þ
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where σ is the characteristic magnitude of the field, andm is
the mass (in units ℏ ¼ c ¼ 1). Originally, such potentials
were considered in quantum field theory [35,36]. Also,
when taking into account quantum corrections, they nat-
urally appear in inflationary cosmology [37,38], as well as
in some supersymmetric extensions of the Standard Model
[39]. It is remarkable that potential (24) admits exact
solutions of the Klein-Gordon equation in the form of
multidimensional localized time-periodic field configura-
tions, the pulsons (oscillons) [40–42]. The corresponding
solution of the Einstein-Klein-Gordon system was found in
Ref. [25] by the Krylov-Bogoliubov method. This solution
describes a self-gravitating field lump of an almost
Gaussian shape that pulsates in time. In the weak field
approximation, the corresponding metric functions Aðt; rÞ
and Bðt; rÞ can be written as (8), where

ψðt; rÞ ¼ ϰ

2

�
Vmax

�
1 −

ffiffiffi
π

p
erf ρ
2ρ

eρ
2

�
þ a2ρ2

�
e3−ρ

2

; ð25Þ

χðt;rÞ¼−
ϰ

2

�
Vmax

�
1þ

ffiffiffi
π

p
erfρ
2ρ

eρ
2

�
þa2 lna2

�
e3−ρ

2

; ð26Þ

τ ¼ mt, ρ ¼ mr, and ϰ ¼ 4πGσ2 ≪ 1 (G is the gravita-
tional constant). The function aðθðτÞÞ oscillates in the
range −amax ≤ aðθÞ ≤ amax in the local minimum of the
potential VðaÞ,

aθθ ¼ −dV=da; ð27Þ

VðaÞ ¼ða2=2Þð1 − ln a2Þ; ð28Þ

where Vmax ¼ VðamaxÞ, θτ ¼ 1þ ϰΩþOðϰ2Þ, and the
constant ϰΩ is the frequency correction due to gravitational
effects (see Ref. [25] for details). The period (in θ) of these
oscillations is given by

T ¼ 4

Z
1

0

½ð1 − ln a2maxÞð1 − z2Þ þ z2 ln z2�−1=2dz: ð29Þ

The dependence of the period on a2max is shown in
Fig. 2. With a2max ≪ 1, it can be approximated by T ≈
2πð1 − ln a2maxÞ−1=2.
The energy density of the field lump we are considering

is concentrated on the characteristic scale r ∼m−1. As seen
from Eqs. (25) and (26), at large distances from the lump,
the gravitational field turns into the static Schwarzschild
field (21) with the mass M ¼ ðe ffiffiffi

π
p Þ3σ2m−1Vmax, in

accordance with the Birkhoff theorem (see, e.g., [43]).
However, inside the lump, the gravitational field oscillates
with the period Tg ¼ ½2mð1þ ϰΩÞ�−1T (with respect to t).
Let us calculate the effect of these oscillations on the

deflection angle of the test particle passing through the

lump. First of all, we need to find the functions ζ and η by
formulas (17) and (18). Calculating _ψðt; rÞ, _χðt; rÞ, and
setting

τ ¼ τR − ðξþ ξ0Þ=v; ρ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ2 þ β2

q
; ξ¼mx;

β ¼mb; ξ0 ¼mx0; τR ¼mtR; d=dτ ¼ −vd=dξ;

from (17) we find

ζ ¼ ϰ

2
e3−β

2

Z
ξ0

ξ

�
d
dξ

ða2 ln a2Þ − v2ξ2
d
dξ

a2
�
e−ξ

2

dξ; ð30Þ

where ξ0 → ∞.
Further, using Eqs. (27) and (28), it is easy to verify that

v2
d2a2

dξ2
¼ d2a2

dτ2
¼ d2a2

dθ2
θ2τ

¼ 4Vmax − 2a2 þ 4a2 ln a2 þOðϰÞ: ð31Þ

In what follows, we use this relation to exclude a2 ln a2

from calculations. Thus, integrating in (30) by parts and
using (31), we obtain

ζ ¼ −
ϰ

4
e3−ρ

2

�
v2e−ξ

2

�
1

2

d2

dξ2
þ ξ

d
dξ

�
a2

− ð1 − v2Þ
Z

∞

ξ

da2

dξ
e−ξ

2

dξ

�
þOðϰ2Þ: ð32Þ

Now we substitute ψ , χ, and ζ into Eq. (18), use Eq. (31),
and integrate over ξ by parts. This gives

FIG. 2. Field oscillation period versus a2max (solid line) and its
approximation for small amplitudes (dashed line).
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η ¼ ϰ

4v2
e3−β

2

� ffiffiffi
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Vmax

�
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− eβ

2
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Z
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�

−
1 − v2
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�
ðv2 − 2β2Þξ

Z
∞
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2

dξ − 2½ð1 − v2Þξ2 − β2�
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∞
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2
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Z

∞
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a2ξ2e−ξ

2

dξ

�
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ξ

ρ2

�
þOðϰ2Þ: ð33Þ

Here, when calculating, we used the identity

β2
Z

erfρ
ρ

dξ
ξ2

¼ e−β
2 2ffiffiffi

π
p

Z
e−ξ

2

dξ −
ρerfρ
ξ

ð34Þ

and replaced the indefinite integrals of regular functions by the definite integrals over the interval ð0; ξÞ plus constants.
We turn now to Eq. (20). Using Eqs. (26), (32), and (33), and taking into account (31), we find

2χ − ζ − 2η ¼ ϰe3−β
2

� ffiffiffi
π

p
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2v2

�
ξ

ρ2

�
ð3v2 − 1Þeβ2

Z
ξ

0

erfρ
ρ

dξ − ð1þ v2Þerfξ
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ρ

�
−
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4
e−ξ

2

�
1

2
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dξ2
−
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1þ 1
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�
ξ
da2

dξ

�
þ 1

4
ð1 − v2Þa2e−ξ2

þ 1 − v2

2v2

�
ðv2 − 2β2Þ ξ

ρ2

Z
∞

ξ
a2e−ξ

2

dξ − ð2 − v2Þ
�
1 −

2β2

ρ2

�Z
∞

ξ
a2ξe−ξ

2

dξþ 2ð1 − v2Þ ξ

ρ2

Z
∞

ξ
a2ξ2e−ξ

2

dξ

�

þ const
ξ

ρ2

�
þOðϰ2Þ: ð35Þ

Finally, we substitute this expression into Eq. (20), integrate by parts, and use the identities

Z
∞

−∞

ξ

ρ4

�Z
ξ

0

erfρ
ρ

dξ

�
dξ ¼ 1

β2
ð1 − e−β

2Þ þ 2ffiffiffi
π

p e−β
2

Z
∞

0

e−ξ
2

ξ2 þ β2
dξ; ð36Þ

Z
∞

−∞

ξerfξ
ρ4

dξ ¼ 2ffiffiffi
π

p
Z

∞

0

e−ξ
2

ξ2 þ β2
dξ: ð37Þ

As a result, we obtain a simple formula for the deflection angle,

Δφ ¼ ϰ
e3

ffiffiffi
π

p
Vmax

2βv2
ð1þ v2Þð1 − e−β

2Þ þ ϰ
1 − v2

2v2
βe3−β

2

Z
∞

−∞
a2e−ξ

2

dξþOðϰ2Þ

¼ 2GM
bv2

ð1þ v2Þð1 − e−m
2b2Þ þ 2πGσ2mbe3−m

2b2 1 − v2

v2

Z
∞

−∞
a2e−ξ

2

dξþOðϰ2Þ; ð38Þ

where

M ¼ ðe ffiffiffi
π

p Þ3σ2m−1Vmaxð1þOðϰÞÞ ð39Þ

is the total mass of the lump.
The first term in (38) is the Schwarzschild deflection

angle (23) multiplied by the factor 1 − e−m
2b2, which takes

into account the mass distribution. Therefore, the resulting
formula is valid for any values of the impact parameter b. In
particular, for b ¼ 0 we get Δφ ¼ 0, which is quite natural.
However, regardless of the values of b, the formula is valid

only for sufficiently large initial velocities such that
v2 ≫ ϰVmax ¼ 4πGσ2Vmax. Otherwise, the deflection
angle becomes significant, which contradicts our initial
assumptions.
The second term in (38) describes the periodic variations

of the deflection angle. In the integrand, the function aðθÞ is
found from Eqs. (27) and (28) followed by the substitution
θ ¼ ð1þ ϰΩÞðτR − ξ=vÞ. Therefore, after integration
over ξ, this term becomes a T=2-periodic function of
θR ¼ ð1þ ϰΩÞτR. Note that this term becomes small for
ultrarelativistic particles and vanishes when v → 1; that is,

PASSAGE OF TEST PARTICLES THROUGH OSCILLATING … PHYS. REV. D 104, 124046 (2021)

124046-5



the pulsations of the lump do not affect the deflection of
light. As emphasized in [34], this fact is a specific feature of
the logarithmic potential (24).
In the case of small oscillations, i.e., for a2max ≪ 1, we

find aðθÞ ≈ amax cos ωθ with ω ¼ 2π=T ≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ln a2max

p
.

Formula (38) then gives

Δφ ≈ ϰ
e3

ffiffiffi
π

p
4βv2

a2max½ω2ð1þ v2Þð1 − e−β
2Þ

þ ð1 − v2Þβ2e−β2ð1þ e−ðω=vÞ2 cos 2ωθRÞ�: ð40Þ

In general, averaging (38) over the period, we find

Δφ ¼ ϰ
e3

ffiffiffi
π

p
2βv2

½Vmaxð1þ v2Þð1 − e−β
2Þ

þ ð1 − v2Þβ2e−β2a2� þOðϰ2Þ; ð41Þ

where a2, as well as Vmax, is a function of only amax.
Figure 3 shows the dependence of Δφ on the impact
parameter for different values of a2max. It can be seen that, at
large β, the deflection angle behaves in the same way as in
the case of the Schwarzschild metric. Figure 4 shows the
deviation of the deflection angle from its averaged value as

a function of θR. As we can see, even with a sufficiently
large a2max, the oscillations practically do not differ from
sinusoidal ones.

IV. DISCUSSION AND CONCLUDING REMARKS

Thus, we have considered infinite motion of test
particles in time-periodic spherically symmetric space-
times. Applying the perturbative approach to the geodesic
equations, we have obtained general formulas (17)–(19)
describing infinite trajectories of the particles passing
through oscillating dark matter. From these, formula (20)
immediately follows for the total deflection angle of a
particle coming from infinity, passing through an oscillat-
ing distribution of matter and going to infinity.
As an example, we calculated the deflection angle of a

particle passing through an oscillating lump of the self-
gravitating scalar field with the logarithmic potential (24).
The result is given by Eqs. (38)–(41). It should be noted
that the stability of the scalar field lump we were dealing
with essentially depends on the amplitude of the oscilla-
tions. It turned out that, in certain narrow intervals of amax
values, the solutions of the Einstein-Klein-Gordon system
with high accuracy retain their periodicity, making hun-
dreds of oscillations, while outside them the solutions,
remaining well localized, lose their coherence [25]. This is
also true without self-gravity effects [15,44]. We assume
that amax belongs to one of these intervals of quasistability.
The distributions of scalar field dark matter (SFDM) we

are considering can be formed by axionlike particles in the
ground state determined by the dynamical balance of self-
gravity, self-interaction, and quantum pressure. The size of
such a structure depends both on the mass of scalar particles
and on the self-interaction potential of the scalar field.
It was argued (see [12] and references therein) that, in

studying DM structures on galactic scales and above, the
self-interaction of axionlike particles can be neglected. In
this case, the central part of the dark matter configuration,
the so-called core, can be described by the system of
Schrödinger-Poisson (SP) equations. The characteristic size
of this core is roughly equal to the de Broglie wavelength
and amounts to ∼1 kpc for m ≃ 10−22 eV, the core mass
being limited from above by the value of 1012 M⊙ [12].
On the scales larger than the de Broglie wavelength, the

SFDM behaves as cold dark matter, and thus, the solitonic
core should be surrounded by a scalar field halo with
Navarro-Frenk-White (NFW) density distribution [45]
derived from the results of the N-particle modeling.
Formation of the solitonlike core in the central region of
the SFDM lump was clearly demonstrated in the 3D SP
simulation of the ultralight dark matter [46], where a good
fit was provided of the core density profile. These calcu-
lations, however, proved to be unable to yield the NFW
density profile outside the core.
A comprehensive method for predicting the global

density profiles of the SFDM halo was proposed in [47].

FIG. 4. Deviation of the deflection angle from its averaged
value, δ ¼ ðΔφ − ΔφÞ=ϰ, for a2max ¼ 0.42 (1), a2max ¼ 0.705 (2),
and a2max ¼ 0.86 (3); v ¼ 0.8; β ¼ 1.

β

FIG. 3. Dependence of Δφ on the impact parameter for a2max ¼
0.42 (1), a2max ¼ 0.705 (2), and a2max ¼ 0.86 (3); v ¼ 0.8.
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It enables one to match the fit [46] to the NFW profile.
Comparison with circular velocities of the galaxies from the
SPARC database with those corresponding to this global
density fit shows, however, that this new profile, while
providing better agreement with SPARC data at outer radii
of galaxies, cannot solve and even exacerbates the central
density problem. This fact prompted the authors of [47] to
regard baryonic feedback as a probable candidate for
resolving this discrepancy.
Another approach to the problem of the Galactic core is

based on the assumption that the core consists of a central
black hole surrounded by a self-gravitating scalar field. For
the case of a massive real scalar field without self-inter-
action, oscillating long-lived self-gravitating configurations
of the scalar field around a nonrotating black hole were
found in Ref. [48] by numerically solving the Einstein-
Klein-Gordon equations. For a complex non-self-interacting
scalar field, such configurations were found in Ref. [49] in
the form of self-gravitating coherent states. The authors
believe that these configurations can be detected due to their
influence on behavior of light rays, stars, gas clouds, or other
compact objects surrounding a black hole in the center of
galaxies. In this context, we note that our results obtained in
the weak field approximation lose their validity near the
horizon of the black hole, but remainvalid for large values of
the impact parameter b ≫ rg, if the oscillation amplitude of
the scalar field is not too large.
The inclusion of self-interaction in the consideration can

significantly change the expected properties of dark matter
distributions. Therefore, the shape and parameters of the
scalar field potential should be chosen from the observa-
tional data. Thus, in Ref. [50], strong restrictions on the
axion mass and self-interaction coupling constant based on
astrophysical and cosmological observations were found
for the ϕ2 − ϕ4 potential. It turned out that these restrictions
do not allow such a potential to be suitable for describing
both dark matter halos and compact dark matter objects like
boson stars. As was shown in Ref. [51], the mass of the
scalar field and the self-interaction constant in this potential
almost uniquely determine the characteristic scale of the
scalar lumps. This means that if these parameters are fixed,
then all the halos considered in this model as giant
boson stars would have practically the same size, in stark
disagreement with observations. Apparently, the only way
to overcome this difficulty is to assume that galactic halos

are collisionless ensembles of small-scale components of
scalar dark matter, rather than whole giant lumps of the
scalar dark matter field. These components, the so-called
mini-massive compact halo objects [52], static or oscillat-
ing, should be of star size or smaller and have a mass less
than 10−7 M⊙ following from microlensing data [53]. This
idea was further developed in Ref. [54], where the Einstein-
Klein-Gordon system with the axion self-interaction poten-
tial was solved numerically in the quasiclassical limit.
Having chosen the axion mass m ∼ 10−5 eV and the decay
constant f ∼ 6 × 1020 eV, the authors found the self-
gravitating lumps of the axion field with the mass of an
asteroid (∼10−16 M⊙) and radius of a few meters.
In our toy model with logarithmic potential (24), it is

assumed that the self-interaction dominates gravity, since
we work in the weak field approximation. In the limiting
case when gravity is neglected, the considered oscillating
lump becomes the exact pulson solution of the Klein-
Gordon equation with the characteristic size ∼m−1. The
inclusion of weak gravity practically does not change the
size of the lump, so that its compactness remains the same,
∼ðe ffiffiffi

π
p Þ3σ2Vmax, where σ2 ≪ G−1 is assumed (see [25] for

details). Thus, at m ∼ 10−22 eV, the lump size is about
0.06 pc, which is much smaller than the Galactic core size
and much larger than the star size. As for the period Tg, it
can be seen from Fig. 2 that, in a rather wide range of a2max

values, we can take T ≃ 10, so that Tg ≈ ð2mÞ−1T ∼ 1 year.
To obtain the Sun-sized lump, we need to assume
m ≃ 2.7 × 10−16 eV, which gives Tg ≃ 12 s. Such lumps
must have a very low average density ρ≲ 10−7ρ⊙, which
means the weakness of the gravitational field everywhere,
including their interior. Nevertheless, we believe that
multiple gravitational scattering of particles by an ensemble
of these lumps with random oscillation phases can
make an additional contribution to the isotropization of
cosmic rays and cause small variations of neutrino flux
from supernovae.
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