
Thermodynamics of Eddington-inspired-Born-Infeld-AdS black holes
with global monopole

A.M. Kusuma, B. N. Jayawiguna, and H. S. Ramadhan
Departemen Fisika, FMIPA, Universitas Indonesia, Depok, 16424, Indonesia

(Received 20 August 2021; accepted 17 November 2021; published 15 December 2021)

It is well known that a black hole can be endowed with a topological charge coming as a result of phase
transition(s) in the early universe. It has also recently been revealed that such an object might exist in one of
the modified theory of gravity called the Eddington-inspired-Born-Infeld (EiBI) theory. Here we shall
investigate the possibility of phase transitions, and in general thermodynamic phenomena, of EiBI-anti-de
Sitter (AdS) black hole with (topologically-charged) global monopole. This is the first work that applies the
full Euclidean action formalism in this model. We provide a counterterm to cancel infinities and argue that
it is the most suitable among other possibilities. Our investigation reveals that the state variables obtained
are found to obey the first law of black hole mechanics and Smarr’s law for black holes with Λ ≠ 0. Related
to the second feature, we obtained the forbidden range of parameter space for EiBI AdS black hole with

global monopole, which corresponds to −ð1−ΔÞ
Λ ≤ κ ≤ − 1

Λ. The dependencies on Λ, the EiBI constant κ and
the global monopole charge η of the state variables and state functions obtained manifests in a Schwarzchild
AdS-like phase transition for black holes with parameters below the lower bound of the forbidden range,
and could also manifest in a Schwarzschild-flat like phase behavior for black holes with parameters above
the higher bound of the forbidden range.

DOI: 10.1103/PhysRevD.104.124045

I. INTRODUCTION

A series of phase transitions in the early universe might
have produced global monopole(s) when global SOð3Þ
symmetry is spontaneously broken [1]. These objects, along
with other types of topological defects, are of great interest in
cosmology as their existence might reveal information about
the early history of our cosmos and the unification of
fundamental interactions. The gravitational field of this
object was first studied by Barriola and Vilenkin in 1989
[2] that shows that, although the monopole exerts no
gravitational force, nonetheless the metric is not asymptoti-
cally flat but suffers a deficit solid angle. When the
monopole core is much smaller than the Schwarzschild
radius, the solution describes a black hole eating up a global
monopole [3]. Ever since then, numerous studies have been
devoted to the study of classical properties as well as
cosmological signatures of global monopole black holes
in various modifications. Black holes with noncanonical
global monopole within the framework of general relativity
(GR) were studied, for example, in [4–6]. Extensive works
have also been done to investigating canonical black holes
within the modified gravity models, for example in [7] and
the references therein. Recently, gravitational field of global
monopole was studied in the framework of Eddington-
inspired-Born-Infeld (EiBI) gravity [8], a modified gravity
model that revives an old proposal by Eddington and was
proposed to solve singularity problems within GR [9,10].

Semiclassically, black holes radiate [11,12] and, as a
consequence, may undergo phase transition [13]. The
study of black hole phase transition began when Hut and,
independently, Davies pointed out such possibility
[14,15]. Interest in this field of study then has been
steadily increasing ever since Hawking and Page’s semi-
nal finding in 1983 that in AdS space, Schwarzschild
black holes display phase behavior and thus undergo
phase transitions [16]. Adopting the Euclidean formu-
lation, they found in Schwarzschild-AdS there are two
kinds of black holes that can exist, the thermodynami-
cally-stable large and the thermodynamically-unstable
small black holes. By treating the AdS space as the
background metric, it has also been found that at certain
critical temperature there would be phase transition
between the thermal AdS space and the stable large
Schwarzschild AdS black hole state. From then on
numerous mechanisms to explain the thermodynamics
and critical behaviour of AdS black holes have been
proposed. One of the most interesting finding between all
the proposed discourses is the fact that the cosmological
constant in black holes could be thought of as a varying
parameter [17]. Once the cosmological constant variation
is taken into account, there shall be a modification in the
first law of black hole mechanics so that its form would be
consistent with the Smarr’s relation. The cosmological
constant variation itself then can be done in its associated
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form, namely as the variation of spacetime’s negative
pressure P. It has been established that for 4d black holes,
the cosmological constant in terms of the natural units is
defined as

Λ ¼ −8πP ¼ −
3

l2
: ð1Þ

Note that the l above is the AdS radius constant. The
existence of pressure indicates the presence of its conjugate
form, thermodynamic volumeV [18,19]. The introduction of
P and V in the first law of black hole mechanics leads to a
more comprehensive study of thermodynamic quantities of
black holes, one of its most enterprising branch of study is
now widely dubbed as black hole chemistry [20,21].
In contrast to the extensive studies on thermodynamics and

phase transitions of vacuum or electrically-charged black
holes, the study of them charged with global monopole is
relatively rare, and even much less for the case of modified
gravity. The thermodynamics of global monopole black holes
in 4d were investigated in [22–28], while their higher-
dimensional generalization was discussed, for example, in
[29]. Semiclassical analysis of black holes in EiBI gravity
were studied in [30–32]. It is therefore interesting to inves-
tigate the effect of global monopole to the critical behavior of
AdS black holes with global monopole in EiBI gravity. That
is the purpose of this work. To achieve that, this paper
proceeds as follows. In the next section we review the static
black hole with global monopole in EiBI gravity. In Sec. III
we present the Euclidean action formalism of EiBI AdS black
hole with global monopole from which the corresponding
partition function can be obtained. In Sec. IV we calculate the
black hole’s state variables and in Sec. V we present the local
and global stability of this model by investigating its phase
structure. Section VI is devoted to the conclusion and
discussion. Note that throughout this work we have set
ℏ ¼ c ¼ G ¼ 1, unless otherwise stated.

II. EiBI-AdS GLOBAL MONOPOLE
(EiBI-GM-AdS)

It is instructive to briefly review the EiBI global
monopole solutions laid out in [8]. The action is

S¼ 1

8πκ

Z
d4x̃

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνþ κRμνðΓÞj

q
−λ

ffiffiffiffiffiffi
−g

p �
þSM½g;ΦM�:

ð2Þ

The matter Lagrangian is given by the global SO(3) Higgs
field,

L ¼ 1

2
ð∇ΦaÞ2 − σ

4
ðΦaΦa − η2Þ2: ð3Þ

Employing the Palatini formalism, the gravitational field
equations are

ffiffiffiffiffiffi
−q

p
qμν ¼ λ

ffiffiffiffiffiffi
−g

p
gμν − 8πκ

ffiffiffiffiffiffi
−g

p
Tμν; ð4Þ

and

qμν ¼ gμν þ κRμν; ð5Þ

for gμν and qμν, respectively.
Assuming static, spherically symmetric configuration,

we choose ansatz

ds2g ¼ −ψ2ðr̃Þfðr̃Þdt̃2 þ 1

fðr̃Þ dr̃
2 þ r̃2dΩ2

2; ð6Þ

ds2q ¼ −G2ðr̃ÞFðr̃Þdt̃2 þ 1

Fðr̃Þ dr̃
2 þH2ðr̃ÞdΩ2

2; ð7Þ

and

Φa ¼ ϕðrÞη x
a

r
; ð8Þ

where ds2g and ds2q are the physical and auxiliary metrics,
respectively. Outside the monopole core, the exterior
energy momentum tensors are (ϕ ≈ 1) Tμ

ν ¼ η2=r̃2diag
ð−1;−1; 0; 0Þ. Substituting it to Eq. (4), we get

H2 ¼ λr̃2 þ 8πκη2; G ¼ λψ ; F ¼ f
λ
: ð9Þ

On the other hand, Eq. (5) read

2

κF

�
ψ2f
G2F

− 1

�
¼ F00

F
þ 2G00

G
þ 3G0F0

GF
þ 2F0H0

FH
þ 4G0H0

GH
;

2

κF

�
F
f
− 1

�
¼ F00

F
þ 2G00

G
þ 4H00

H
þ 2F0H0

FH
þ 3F0G0

FG
;

1

κF

�
r2

H2
− 1

�
¼ −

1

H2F
þ F0H0

FH
þH02

H2
þH00

H
þH0G0

HG
:

ð10Þ

Solving Eqs. (10) simultaneously, the solutions are

ψðr̃Þ ¼
ffiffiffi
λ

p
r̃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λr̃2 þ 8πκη2
p ; ð11Þ

and

fðr̃Þ ¼ 1 −
2m̃

ffiffiffi
λ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λr̃2 þ Δκ

p

λr̃2
−
Λ
3
r̃2

−
�
2Λ
3

þ ðr̃2 − 1Þ
r̃2

�
Δ
λ
−
�
1þ Λ

3

�
Δ2

λ2r̃2
; ð12Þ

withΔ≡ 8πη2. Defining Δ̃ ¼ Δ=λ and applying the follow-
ing rescaling prescriptions,
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t̃ →
tffiffiffiffiffiffiffiffiffiffiffiffi

1 − Δ̃
p ; r̃ → r

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − Δ̃

p
;

Δ̃κ → ð1 − Δ̃Þκ; m̃ → mð1 − Δ̃Þ3=2; ð13Þ

the line elements from Eqs. (6)–(7) are thus obtained to be

ds2g ¼ −
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ κ

p −
1

3
Λðκ þ r2Þ

�
dt2

þ r2

r2 þ κ

�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ κ

p −
1

3
Λðκ þ r2Þ

�
−1
dr2

þ r2ð1 − Δ̃ÞdΩ2
2: ð14Þ

ds2q ¼ −λ
�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ r2

p −
1

3
Λðκ þ r2Þ

�
dt2

þ λr2

κ þ r2

�
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ r2

p −
1

3
Λðκ þ r2Þ

�
−1
dr2

þ λðr2 þ κÞð1 − Δ̃ÞdΩ2
2: ð15Þ

The profiles of ψðrÞ and fðrÞ are shown in In Figs. 1–2.

III. EUCLIDEAN ACTION FORMULATION

The complexified action integrals may serve as a starting
point to obtain the state variables of black holes, as what
has been first established by Gibbons and Hawking in 1977
[33]. For convenience, we shall relabel some components
in Eqs. (14)–(15) as follows

AðrÞ≡ 1 −
2mffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ κ

p −
1

3
Λðr2 þ κÞ;

B2ðrÞ≡ r2

ðr2 þ κÞ ;

C2ðrÞ≡ ðr2 þ κÞ: ð16Þ

Applying Wick rotation ðt → iτÞ to the previously defined
line elements, we obtain

ds2g ¼ AðrÞdτ2 þ B2ðrÞA−1ðrÞdr2 þ r2ð1 − Δ̃ÞdΩ2
2; ð17Þ

ds2q ¼ λAðrÞdτ2þ λB2ðrÞA−1ðrÞdr2þ λC2ðrÞð1− Δ̃ÞdΩ2
2:

ð18Þ

To construct the thermal states, we utilize the relation
between the geometrical period of spacetime with the
inverse temperature in Euclidean time [16]. In our case,
the Hawking temperature reads [34]

TH ¼ κ

2π
¼ 1

4π

� ∂rðg00Þffiffiffiffiffiffiffiffiffiffiffiffi
g00g11

p
�

¼ 1

4π

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þ þ κ
p − Λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ κ

q �
: ð19Þ

We should point out that in our case, the Hawking
temperature obtained from the physical and auxiliary metric
are exactly alike with each other. Thus, based on the result
above the period of the black hole is given by

β ¼ 4π

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ κ

p
1 − Λðr2þ þ κÞ

�
: ð20Þ

The total Euclidean action considered would be of the
following form

I ¼ Ib þ IGHY þ Ict; ð21Þ

where Ib is the bulk action, IGHY is the Gibbons-
Hawking-York boundary term and Ict is the counterterm.
The bulk action is the Wick rotated form of Eq. (2), while
IGHY and Ict serves to regulate the divergences that arise
in the bulk action evaluation. First we evaluate the bulk
action with the line elements given in Eqs. (17)–(18),
which gives

Ib ¼
1

8πκ

Z
d4xð− ffiffiffi

q
p þ λ

ffiffiffi
g

p
− 8πκLm

ffiffiffi
g

p Þ

¼ βλ

2

�
Λ
3
ðr2þ þ κÞ3=2 − Λ

3
ðr2b þ κÞ3=2

�
ð1 − Δ̃Þ ð22Þ

Note that the result above can also be obtained by working
with the unrescaled line elements given in Eqs. (6)–(7) on the
bulk action evaluation, as long as we conduct appropriate
rescaling prescription previously outlined in Eq. (13) before
the t and r elements integration.
Before we construct the IGHY for EiBI gravity, first let us

note that the action given in Eq. (2) could also be written in
its alternative form [10],
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FIG. 1. Plot of ψðrÞ for κ ¼ 1 and η ¼ 0.5.
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Ib ¼
1

16πκ

Z
d4x

ffiffiffiffiffiffi
−q

p �
κR − 2

þ
�
qμνgμν − 2λ

ffiffiffiffiffiffiffiffiffiffi
ð−gÞ
ð−qÞ

s ��
þ Sm;

¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−q

p �
R −

2Λ
λ

�
: ð23Þ

We can see that the expression has similar structure to the
usual Einstein-Hilbert action. We then argue that the appro-
priate boundary term is the usual Gibbons-Hawking-York
(GHY) form [33,35,36]. Using the constructed trace of the
extrinsic curvature from Eq. (18) it yields

IGHY¼
1

8π

Z
d3x

ffiffiffi
h

p
K;

¼βλ

2

�
3mþΛðr2bþκÞ3=2−2

ffiffiffiffiffiffiffiffiffiffiffiffi
r2bþκ

q �
ð1− Δ̃Þ: ð24Þ

Besides the GHY term, we also need to subtract the
contribution of the black hole’s background space. It might
be tempting to immediately construct the counterterm in
such a way that it comes from 3D form of Eq (23), but such
approach would not yield an effective counterterm, as we
show in the Appendix. Instead, we shall take the advantage
of how the alternative form of the EiBI GM AdS action is
similar to the usual Einstein AdS action. Consider the
second term of (23). Using the rescaled line element given
in Eq. (18), we can see that the AdS background in EiBI
gravity could be written in the following form

IEiBIAdS ¼
1

16πλ

Z
d4x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ4AðrÞB2ðrÞA−1ðrÞC4ðrÞð1 − Δ̃Þ2sin2θ

q
ð2ΛÞ;

¼ λ

16π
ð1 − Δ̃Þ

Z
d4x

ffiffiffi
g

p ð2ΛÞ: ð25Þ

This looks similar, up to some overall constant, to the usual
AdS term found in Einstein-Hilbert (EH) action,

IEHAds ¼
1

16π

Z
d4x

ffiffiffi
g

p ð2ΛÞ: ð26Þ

Due to the similarity of the form above with the usual
EH action, it is justifiable to use the same counterterm
prescription as used in AdS black holes with GR frame-
work. In the search for the counterterm prescription, we
found that the most appropriate and effective approach to
compute the counterterm action is by utilizing the

generalized form of the Balasubramanian-Kraus counter-
term (BK) action [37,38]. For 4D AdS black holes the
counterterm is given as follows

Ict ¼
1

8π

Z
d3x

ffiffiffiffiffi
ho

p "
2

l
þ l
2
R−

l3

2

�
RμνRμν −

3

8
R2

�#
: ð27Þ

Thus, we will use the counterterm prescription for AdS
black holes given in Eq. (27) by treating the λð1 − Δ̃Þ as a
constant. The Ricci scalar and tensor shall be constructed
from the following boundary metric
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FIG. 2. Profiles of fðrÞ for several values of κ. In this plot, we set m ¼ 1.
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hoij ¼ fAoðrbÞ; C2ðrbÞ; C2ðrbÞsin2θg; ð28Þ

with Ao is the modified AdS metric in EiBI gravity and we will define it as follows

AoðrÞ ¼ 1 −
Λ
3
ðr2 þ κÞ: ð29Þ

Using the quantities above, the counterterm gives

Ict ¼
λ

8π
ð1 − Δ̃Þ

Z
d3xo

ffiffiffiffiffi
ho

p �
2

l
þ l
2
R −

l3

2

�
RμνRμν −

3

8
R2

��
;

¼ λβo
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AoðrbÞ

p
2

	
−

l3

ðr2b þ κÞ þ
3l3

4ðr2b þ κÞ þ
2ðr2b þ κÞ

l
þ l



ð1 − Δ̃Þ: ð30Þ

Rescale the period of the AdS background so that it matches with that of the black hole,

βo
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AoðrbÞ

p
¼ β

ffiffiffiffiffiffiffiffiffiffiffi
AðrbÞ

p
; ð31Þ

and with some approximation we shall obtain

βo ¼ β

2
664− l3ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b þ κ

q
− 2mÞ2

8ðr2b þ κÞ5=2 þ
lð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b þ κ

q
− 2mÞ

2ðr2b þ κÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b þ κ

q
l

3
775: ð32Þ

Substituting the results above into Eq. (30) and omitting
the null terms (terms that becomes zero as rb → ∞) as we
revert the l constant back into Λ, leave us with the following
results

Ict¼
βλ

2

�
−2mþ2

ffiffiffiffiffiffiffiffiffiffiffiffi
r2bþκ

q
−
2Λ
3
ðr2bþκÞ3=2

�
ð1− Δ̃Þ: ð33Þ

Combining the results that we have obtained so far from
Eqs. (22), (24), and (33) yields the total Euclidean action as
follows

I ¼ βλ

2

�
Λ
3
ðr2þ þ κÞ3=2 þm

�
ð1 − Δ̃Þ: ð34Þ

The value of m can be obtained from fðrþÞ ¼ 0 and gives

m ¼ −
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ κ

q
½Λðr2þ þ κÞ − 3�: ð35Þ

Thus, the total Euclidean action can be written again as
follows

I ¼ βλ

2

�
Λ
6
ðr2þ þ κÞ3=2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ κ

q �
ð1 − Δ̃Þ: ð36Þ

IV. STATE VARIABLES, FIRST LAW, AND
SMARR’S FORMULA

Using the total Euclidean action, we could compute state
variables and state functions of the black hole. First we
shall evaluate the entropy of the system, which gives

S ¼ β

�∂I
∂β

�
A
− I;

¼ β

� ∂I
∂rþ

�
A

�� ∂β
∂rþ

�
A
− I;

¼ λπðr2þ þ κÞð1 − Δ̃Þ: ð37Þ
We can see that the entropy for our case is different from that
of the ordinary Einstein-Hilbert gravity, due to the existence
of the λ, κ, and Δ. Nevertheless, as κ → 0 we can see that the
result reduces to that of the Bekenstein-Hawking entropy of a
black hole that is endowed with global monopole [26]. Note
that the form given in Eq. (37) can also be obtained from
the known relation between the black hole’s entropy and the
event horizon area calculated from the auxiliary metric

S ¼ A
4
¼ 1

4

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qθθqϕϕ

p
dθdϕ: ð38Þ

The generalized second law (GSL) of black hole mechan-
ics states that the entropy of a black hole must always
increase, S ≥ 0 [39,40]. For the entropy obtained in Eq. (37),
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it seems certain value of κ would yield decreasing amount of
entropy, which clearly violates GSL. Thus we proceed to
find the allowed set of parameters for κ by applying the GSL
requirement to the entropy expression, which yields the
following result

1 − Δ̃ ≥ 0;

1 −
Δ

1þ κΛ
≥ 0: ð39Þ

Setting the conditions that 0 ≤ Δ < 1 (based on the critical
value for monopole charge [2,41]) and Λ < 0, we obtain the
following range that should be considered as the requirement
that the hole is thermodynamically feasible

κ ≤
−ð1 − ΔÞ

Λ
or κ > −

1

Λ
: ð40Þ

We can see the first condition on the equation above may
serve as some sort of the lower bound while the other one
acts as the upper bound. The region between these two

boundaries
�
−ð1−ΔÞ

Λ ≤ κ ≤ − 1
Λ

�
will be considered as the

forbidden region for our thermodynamic analysis.
The ADMmass from the euclidean action is computed as

follows

M ¼
�∂I
∂β

�
;

¼ −
λð1 − Δ̃Þ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ κ

q
½Λðr2þ þ κÞ − 3�: ð41Þ

Comparing the result above with Eq. (35), we can see that
the ADM mass can also be expressed in the following form

M ¼ λð1 − Δ̃Þm: ð42Þ

We can also see that once again there is an explicit
dependence on λ, and consequently κ, on the ADM mass.
As κ → 0 the result would still reduce to the known value in
EH gravity [26].
In 2008, Kastor [42] constructed a new Komar integral for

black holes with Λ ≠ 0 by defining an antisymmetric 2-form
potential ωμν such that

M ¼
Z
∂Σ

dSμνð∇μξν þ ΛωμνÞ; ð43Þ

where ωμν satisfies ∇μω
μν ¼ 0 and ξμ ≡ f1; 0; 0; 0g is the

time-invariant Killing vector. The equation above can also
be used to obtain the ADM mass given in Eq. (42).
In the following year Kastor et al. found that there is a
consistency between the derivation of Smarr’s formula for
AdS black holes from the newly defined Komar integral
and the scaling argument (the method which was actually

used by Smarr in his original proposal), if the variation of
Λ is also taken into account [17]. The modified Smarr’s
formula could be expressed as follows

M ¼ 2TS − 2VP: ð44Þ

The volume term V above is defined by the relation
between P and Λ given in Eq. (1), and is given by

V ¼
�∂M
∂P

�
A
: ð45Þ

The first law of black hole mechanics as the variation of Λ
is taken into account can then be defined as follows

dM ¼ TdSþ VdP: ð46Þ

Employing Eqs. (1) and (42) to the equation above, the
conjugate volume is obtained to be

V ¼ 4π

3
ð1 − Δ̃Þðr2þ þ κÞ3=2: ð47Þ

It can be verified that the state variables that we have
obtained so far for our model, namely Eqs. (19), (37), (42),
and (47), along with the definition of P given in Eq. (1)
would obey (44) and (46).

V. THE THERMODYNAMIC STABILITY
OF AN AdS EiBI BLACK HOLE
WITH GLOBAL MONOPOLE

After obtaining the relevant state variables of the EiBI-
GM-AdS black holes, the thermodynamical stability can be
investigated. We start with the local stability, which can be
done by analyzing the Hawking temperature and the specific
heat of the configuration. The plot of Hawking temperature
TH vs the event horizon rþ is shown in Fig. 3. There is a
discontinuous transition from lower (κ ¼ 0) to higher
(κ > 0) EiBI parameter. In the Schwarzschild case (κ ¼ 0
and Λ ¼ 0), the Hawking temperature depends only on its
mass or event-horizon radius and slowly decreases as the
radius gets larger. When κ ¼ 0 (with nonvanisihing cosmo-
logical constant), the Hawking temperature becomes similar
to thewell known Schwarzschild-AdS. In this case, the black
hole has minimum temperature at r0 ¼ i=

ffiffiffiffi
Λ

p
. This con-

dition forces T0 ¼ −i
ffiffiffi
Λ

p
2π , where the cosmological constant

must have a negative value (AdS),Λ ¼ −jΛj. From this plot,
we can also infer that for T < T0 the spacetime is filled with
pure radiation and hence there is no AdS black hole. For
T > T0, AdS black holes tend to have two different
conditions. When EiBI parameter κ gets larger, we still
have a same behavior as Schwarzschild-AdS but with the
nonzero Hawking temperature at the origin. We shall discuss
in detail about this conditions and also the stability on
specific heat.
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The Hawking temperature in Eq. (19) indicates that there
is a possible transition from small to large black hole. In
detail, we can use the specific heat C and free energy F to
investigate the stability and phase transitions. Combined
with the entropy (37), the specific heat C can be obtained:

C ¼ TH
∂S
∂TH

¼ −
2πλðr2þ þ κÞð−1þ Λr2þ þ κΛÞ

ð1þ Λr2þ þ κΛÞ ð1 − Δ̃Þ:

ð48Þ

Figure 4 shows the specific heat described in Eq. (48),
compared to those of Schwarzschild black holes in AdS
and asymptotically flat spacetimes. Their stability depends
on the value of C, where positive sign (C > 0) indicates the
black holes are stable and C < 0 means unstable.
In general, the specific heat plot of an EiBI-GM-AdS

black hole that follows the first parameter space given in

Eq. (40) would have diverging points separating the two
distinct phases, illustrated with the blue-colored plot in
Fig. 4. The form is completely similar to that of the
Schwarzschild-AdS black hole (plotted as the green-
colored plot in Fig. 4), which tells us that the nature of
the phase transition taking place between these two
configurations black holes is the same; there would be
a phase transition taking place between the unstable small
black hole (SBH) and the stable large black hole (LBH).
Meanwhile, for EiBI GM AdS black holes that follow
the second parameter space in Eq. (40), we observed
the specific heat would always be completely negative,
reminiscent with the usual flat Schwarzschild black hole
configuration. The main difference between the two
configurations is the existence of unstable equilibrium
for the EiBI-GM-AdS, while for flat Schwarzschild black
hole there would be none (due to the quadratic nature of
the function) whereas for EiBI GM AdS configuration
there is one visible.
With the results obtained so far, we have been able to

analyze the local stability of the holes. Now we proceed to
extend the analysis by determining the global stability of
the configuration in order to study the phase of a system
that corresponds to the global maximum of the system’s
total entropy, in other words the phase that minimizes the
free energy used would be the preferred one [43]. The free
energy in black hole mechanics is defined as follows,

F ¼ I
β
: ð49Þ

Using the previously obtained results for the thermody-
namic variables, the free energy as a function of the black
hole’s event horizon is obtained to be

F ¼ λ

2

�
Λ
6
ðr2þ þ κÞ3=2 þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þ þ κ

q �
ð1 − Δ̃Þ: ð50Þ
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FIG. 4. The heat capacity C vs rþ for Λ ¼ −0.03 and Δ ¼ 0.4.
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FIG. 3. A typical plot of Hawking temperature TH versus
radius rþ.
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Note that the results above agree with F ¼ M − TS, using
expressions previously obtained in Eqs. (19), (37), and (41).
The plots of the free energy as a function of event horizon

are shown inFig. 5.Echoing the earlier results presented in the
specific heat results, we observed similar features between the
EiBI-GM-AdS with κ that follows the first parameter space
given in Eq. (40) with the Schwarzschild AdS black holes.
Themain difference between these two configurations are the
fact that EiBI-GM-AdS starts with nonzero free energy. At a
certain point, increasing the amount of κ eventually renders
the free energy configuration to be completely positive-
valued. This drastic change of the free energy profile starts
after the lower bound of the “forbidden region” of the EiBI
parameter obtained previously from the applied GSL require-
ment to the entropy expression of the holes. Above this value,
F would abruptly change its profile into an ever-increasing
value of free energy with no critical points, which leads us to
consider any configuration above this particular value would
not be thermodynamically stable.

VI. CONCLUSION

To summarize, we consider the 4d (A)dS black holewith a
global monopole [8] as a test case to apply Euclidean
formalism and derive the corresponding thermodynamical
properties in EiBi gravity. To the best of our knowledge this
is the first approach to do so in this type of modified gravity
model. In noncanonical GR, one is faced with ambiguity in
choosing the appropriate boundary and counterterms to
render the Euclidean action finite. In this work we argue
that the most suitable respective terms are the GHY and the
generalized KS forms.
Once the finite Euclidean action is obtained, it is easy to

verify that the state variables satisfy the black hole first law
and the Smarr formula. We obtained the parameter space in
terms of κ, η and the cosmological constant Λ that would
allow a thermodynamically feasible configuration. The
phase structure of EiBI AdS with global monopole is found

to be quite similar to that of Schwarzchild-AdS black hole
endowed with global monopole, as long as κ ≤ −ð1−ΔÞ

Λ . On
the other hand, once κ > − 1

Λ, a Schwarzschild flatlike phase
behavior shall be observed in our configuration.
All in all, we have been able to examine the nature of the

phase transition taking place in the EiBI AdS black hole
endowed with global monopole. Naturally, further studies
on the nature of the phase transition in the electrically-
charged black hole endowed with global monopole in EiBI
gravity would seem to be an interesting inquiry to pursue.
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APPENDIX: ALTERNATIVE FORM OF THE
COUNTERTERM ACTION

One of the pivotal steps of Euclidean action calculation
is the counterterm action evaluation. There are many
approaches that can be done to calculate counterterm actions
[33,35,38,44], and in this work we obtain finite result by
utilizing the relatively simple form of counterterm action for
AdS black holes [37]. This is not a unique choice due to the
ambiguity of choosing it in noncanonical gravity. In this
section we shall show several attempts in constructing the
counterterm action, and why they fail.1 The first approach is
motivated by the known results in AdS black holes thermo-
dynamics with GR structure, in which IGHY would eventually
give vanishing contribution due to the nature of AdS. Thus, to
normalize the divergent term arising from the bulk action one

5 10 15
r+

2

1

1

2

3
F

EiBI AdS ( = 5)

EiBI AdS ( = 35)

Schwarzschild AdS

FIG. 5. Figure that represents the on-shell free energy of AdS holes as a function of event horizon with different configurations. In this
plot, we have set Λ ¼ −0.03 and Δ ¼ 0.4.

1We thank the anonymous PRD referee for suggesting these
models for us to consider.
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could construct a counterterm from the Euclideanized form of
the pure AdS geometry. In this approach, the integrand is the
physical metric tensor, not the induced metric. Looking back
at Eq. (23), since there is similarity between the EiBI and EH
actions, it is tempting to construct the counterterm in such a
way that the form becomes as follows

Ict1 ¼
1

16πλ

Z
d4x

ffiffiffi
q

p ð2λÞ: ðA1Þ

Using the known result in AdS thermodynamics that for
even-dimensional black holes in GR framework rþ ¼ 0 [45],
we then obtain

Ict1 ¼
ωβ0Λλ
8π

	Z
rb

0

dr½r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ κ

p
�


ð1 − Δ̃Þ;

¼ λβ0Λ
2

	
1

3
ðr2 þ κÞ3=2jrb0



ð1 − Δ̃Þ: ðA2Þ

Rescaling the period to the metric results in the following
form

β0 ¼ β

2
641þ l2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b þ κ

q
− 2mÞ

2ðr2b þ κÞ3=2

3
75: ðA3Þ

Plugging the result above into Eq. (A2) gives

Ict ¼
βλ

2

	
m −

ðr2b þ κÞ
2

þ Λ
3
ðr2b þ κÞ5=2 − κ3=2

3



ð1 − Δ̃Þ:

ðA4Þ

The result above actually reduces the divergent term that arise
in the bulk action, yet we can see there is an extra divergent
term that comes up in Eq. (A4), −ðr2b þ κÞ=2. Thus the
regular AdS counterterm approach does not seem to work
completely in our case.
Next, we attempt to slightly modify the first approach

that we have taken. If the counterterm was to be calculated
as the rescaled to the AdS space version of the bulk action,
then we would have

Ict2 ¼
1

8πκ

Z
d4xð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gμν þ κRμν

p
− λ

ffiffiffiffiffiffi
gμν

p Þ;

¼ 1

8πκ

Z
d4xð ffiffiffiffiffiffiffi

qμν
p − λ

ffiffiffiffiffiffi
gμν

p Þ: ðA5Þ

Similar to the previous approach, by taking advantage of
rþ ¼ 0 in even dimensional AdS counterterm calculation,
we obtain

Ict2 ¼
ωβ0λ

8πκ

Z
rb

0

dr½λBðrÞC2ðrÞ−BðrÞr2�ð1− Δ̃Þ;

¼ β0λ

2κ

	
κ

� ffiffiffiffiffiffiffiffiffiffiffiffi
r2þ κ

p
þΛ

3
ðr2þ κÞ3=2

�����rb
0



ð1− Δ̃Þ;

¼ β0λ

2

� ffiffiffiffiffiffiffiffiffiffiffiffi
r2bþ κ

q
þΛ

3
ðr2bþ κÞ3=2− ffiffiffi

κ
p

−
Λ
3
κ3=2

�
ð1− Δ̃Þ:

ðA6Þ

Using the β0 rescaling obtained in Eq. (A3) and substituting
it into the form above would yield the following form (after
the null terms are eliminated rb → ∞)

Ict2 ¼
βλ

2

2
4m −

ffiffiffi
κ

p
3

ðλþ 2Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2b þ κ

q
2

þ Λ
3
ðr2b þ κÞ3=2

3
5ð1 − Δ̃Þ: ðA7Þ

Once again we see that the regular AdS counterterm approach does not completely normalizes the Euclidean action, instead
we are left with more divergent terms. This is one of the reason why we choose to use the generalized BK boundary
counterterm action, since they wonderfully work well in eliminating the divergence.
Our last attempt is by considering another approach, namely by reinterpreting the 3D Dirac-Born-Infeld action as the

counterterm [31,46]. This is motivated by the similarity of EiBI gravity with the new massive gravity [47]. The 3D Dirac-
Born-Infeld action itself is given by

IDBI ¼ −
m2

4πG3

Z
M

d3x

2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−jgμν þ
σ

m2
Gμνj

r
−
�
1 −

λ0
2

� ffiffiffiffiffiffiffiffiffiffiffiffi
−jgμνj

q 3
5: ðA8Þ

In the form above m is a spin-related mass paramater. G3 is the gravitational constant and σ is term related to the helicity of
Einstein-Hilbert term [48]. Gμν is the usual Einstein tensor ðGμν ≡ Rμν − 1

2
gμνRÞ. In Dirac-Born-Infeld gravity, the effective

cosmological constant is expressed as
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Λ ¼ σm2λ0

�
1 −

λ0
2

�
: ðA9Þ

Our goal is to reinterpret Eq. (A8) with appropriate terms in EiBI gravity, so that we may evaluate it as the counterterm
action for our model. First we can see that them2 term in (A8) is dimensionally similar to κ in EiBI gravity, in which both of
them are inversely proportional to the cosmological constant. Based on this observation if we were to reinterpret the form
given in Eq (A8), it is tempting to translate m2 → κ. Next we may set σ ¼ −1 since we are using the regular form of EH
action. G3 can be set to 1 so that eventually we obtain the following form

Ict3 ¼
1

8πκ

Z
d3x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ κGμνj

q
þ λ

ffiffiffiffiffiffiffiffiffi
jgμνj

q �
;

¼ 1

8πκ

Z
d3x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ κ

�
Rμν −

1

2
gμνR

�
j

s
þ λ

ffiffiffiffiffiffiffiffiffi
jgμνj

q �
;

¼ 1

8πκ

Z
d3x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqμν −

κ

2
gμνRj

r
þ λ

ffiffiffiffiffiffiffiffiffi
jgμνj

q �
: ðA10Þ

The Ricci scalar from 3-D qμν could be constructed as

R ¼ 2

ð1 − Δ̃Þλðκ þ r2Þ : ðA11Þ

Note that the form above is different from the one used in Eqs. (27) and (30), since in this current approach we could not
take advantage of the similarity between EiBI and EH action (λ and 1 − Δ̃ could not be treated as mere constants in the
counterterm evaluation anymore). Evaluating Eq (A10) gives

Ict ¼
ωβ0
8πκ

8>><
>>:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð6mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ r2b

q
ðκΛþ Λr2b − 3ÞÞðκð1 − ð1 − Δ̃Þλ2Þ − ð1 − Δ̃Þλ2r2bÞ

3ð1 − Δ̃Þλðκ þ r2bÞ3=2

vuut

×

�
κλþ r2b

�
λ −

κ

ð1 − Δ̃Þλðκ þ r2bÞ

��
− λ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2mffiffiffiffiffiffiffiffiffiffiffiffiffi
κ þ r2b

q −
1

3
Λðκ þ r2bÞ

vuut ðr2b þ κÞ

9>>=
>>;

× ð1 − Δ̃Þ: ðA12Þ

Using the rescaled form of β0 from the time component of the line elements given in Eqs. (18) and (28) as the form above is
expanded, we obtain the following results

Ict ¼
β

2κ

�
−
r10ðl5 þ 12κl3 − 72κ2lÞ

1728κ3ðκ þ r2Þ9=2 −
r8ð−72κ2 þ l4 þ 12κl2Þ

144κ2lðκ þ r2Þ7=2 þ r6ð−72κ2 þ l4 þ 12κl2Þ
24κl3ðκ þ r2Þ5=2 þ � � �

�
ð1 − Δ̃Þ: ðA13Þ

The latest approach that we attempt to conduct does not seem to normalize the bulk action, instead, more nonlinear
divergent terms appear in the counterterm action evaluation. This leads us to conclude that the said approach is not effective,
and should not be considered as the procedure taken for the counterterm computation.
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