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We study the linear perturbations about nonrotating black holes in the context of degenerate higher-order
scalar-tensor (DHOST) theories, using a systematic approach that extracts the asymptotic behavior of
perturbations (at spatial infinity and near the horizon) directly from the first-order radial differential system
governing these perturbations. For axial (odd-parity) modes, this provides an alternative to the traditional
approach based on a second-order Schrödinger-like equation with an effective potential, which we also
discuss for completeness. For polar (even-parity) modes, which contain an additional degree of freedom in
DHOST theories, and are thus more complex, we use a direct treatment of the four-dimensional first-order
differential system (without resorting to a second order reformulation). We illustrate our study with two
specific types of black hole solutions: “stealth” Schwarzschild black holes, with a nontrivial scalar hair, as
well as a class of nonstealth black holes whose metric is distinct from Schwarzschild. The knowledge of the
asymptotic behaviors of the perturbations enables us to compute numerically quasinormal modes, as we
show explicitly for the nonstealth solutions. Finally, the asymptotic form of the modes also signals some
pathologies in the stealth and nonstealth solutions considered here.
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I. INTRODUCTION

The dawn of gravitational wave (GW) astronomy has
spurred a renewed interest in possible deviations from
general relativity (GR), which could be detected in the
GWs emitted by compact binaries. Of particular interest is
the ringdown phase of a binary black hole merger, which
can be described by linear perturbations about a back-
ground stationary black hole solution. These perturbations
mainly correspond to a superposition of quasinormal
modes, whose frequencies are quantized (see the reviews
[1–4] and references therein). One expects that modified
gravity models would predict QNMs that differ from their
GR counterpart and the detailed analysis of the GW signal,
commonly called “black hole spectroscopy,” represents an
invaluable window to test general relativity and to look for
specific signatures of modified gravity [5,6]. So far, QNMs
have been investigated only for a few models of modified
gravity (see e.g., the review [6] and references therein).
With these motivations in mind, the goal of this paper is

to present a new approach for the study of black holes
perturbations, illustrated in the context of scalar-tensor
theories, which constitute the simplest extensions of
Einstein’s theory. So far, the most general covariant
scalar-tensor theories containing a single scalar degree of
freedom are degenerate higher-order scalar-tensor
(DHOST) theories, introduced and constructed up to
quadratic order (in second derivatives of the scalar field)
in [7] and extended up to cubic terms in [8] (see [9] for a

review). DHOST theories encompass the traditional scalar-
tensor theories (see e.g., [10] and references therein),
Horndeski’s theories [11] and beyond Horndeski theories
such as the disformal transformations of GR [12] and
GLPV theories [13].
There already exists a significant literature on black

holes in DHOST theories [14–24] or in subclasses like
Horndeski theories (see the review [25] and references
therein) and beyond Horndeski theories [26]. Among the
solutions discussed in the literature, one can distinguish the
so-called stealth black holes, corresponding to solutions
with a nontrivial scalar field profile but with a metric that
exactly coincides with a GR black hole solution (possibly
with a cosmological constant). These solutions have been
scrutinized in detail as they could naturally be compatible
with present observations, while leading to specific sig-
natures, at the level of perturbations, that could be detected
or constrained by observations. It appears however that
stealth solutions seem to suffer from strong coupling issues
or instabilities [27–29]. As suggested in [30], one possible
cure to the strong coupling problem could be a small
detuning of the degeneracy condition.
Other black hole solutions, distinct from GR solutions,

have also been constructed. Here we will mainly consider a
family of solutions introduced in [26], whose metric is
formally analogous to that of Reissner-Nordström black
hole but with the square of the electric charge effectively
negative, which implies that there is a single horizon.
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In addition, the scalar field has a nontrivial profile in this
geometry.
Beyond the construction of exact solutions, the linear

perturbations of nonrotating black holes in DHOST theo-
ries, or in some subclasses, have been studied in a few
papers. For background solutions in Horndeski theories
with a purely radially dependent scalar field, the axial
perturbations were investigated in [31] and the polar
perturbations in [32], in both cases by reducing the
quadratic action to keep only the physical degrees of
freedom. This analysis was extended in [33,34] to include
a linear time dependence of the background scalar profile,
although the stability issue was subsequently revisited in
[35]. Black hole perturbations were further discussed in
[36–38] in the context of DHOST theories. The perturba-
tions of stealth black holes in some DHOST theories were
also investigated in [28,29], showing that the equation of
motion for the (polar) scalar degree of freedom is charac-
terized by a singular effective metric in some cases, or
concluding to the existence of a gradient instability in other
cases. The perturbations of the stealth Kerr black hole
solutions found in [16] were analyzed in [39].
Perturbations of nonrotating black holes in Horndeski

theories were also studied in [40], but in the restrictive case
of a constant background scalar field, which excludes the
stealth and nonstealth black holes with a nontrivial scalar
field profile. In this simple case, axial modes satisfy exactly
the same equations as in GR, while the equations of motion
for the polar perturbations can be rewritten in a matricial
Schrödinger-like system. The latter belongs to the family of
generalized second-order Schrödinger-like matricial sys-
tems considered in [41] to parametrize small deviations
from GR and compute the perturbations of quasinormal
frequencies with respect to their GR values.
In the present work, instead of using a second-order

system, which in general is more complex that the ansatz
considered in [41] and requires a convoluted calculation (as
illustrated in [38] for stealth black holes), we resort here to
the new approach that we have presented in a companion
paper [42], to be referred to as Paper I. This method
analyses directly the first-order differential system in its
original form and extracts the asymptotic behavior of the
perturbations. This enables us to identify the asymptotic
behavior of the physical modes and, in particular, to
estimate numerically the quasinormal modes, which are
defined by their asymptotic boundary conditions. In this
way, we are able to get new insights concerning the
perturbations of stealth black holes and to explore for
the first time the perturbations of a nonstealth solution
introduced in [26].
The structure of the paper is the following. In the next

section, we present the quadratic DHOST theories and the
black hole solutions considered in the rest of the paper. In
Sec. III, following the standard method, we write a general
Schrödinger-like equation for axial perturbations, which is

then applied to our specific cases of interest. In Sec. IV, we
revisit the axial perturbations with our novel approach,
obtaining the asymptotic behaviors of the modes and
computing numerically the QNMs for the nonstealth
solution. We then turn, in Sec. V, to the case of polar
modes, for which the standard method is not available. We
conclude in Sec. VI. Several appendixes have also been
added to provide more details on a few technical points.

II. BLACK HOLES IN DHOST THEORIES

In this section, we give a brief summary of quadratic
DHOST theories, focusing on the subclass Ia (according to
the classification of [43]) which contains the most interest-
ing theories from a phenomenological point of view. We
then review a few static and spherically symmetric black
hole solutions in these theories.

A. Quadratic DHOST theories

Allowing for second-order derivatives in the action, the
most general family of viable scalar-tensor theories, which
contain a single scalar degree of freedom and are free from
Ostrogradski instabilities, can be constructed in a system-
atic way by requiring the degeneracy of the theories [7].
Quadratic DHOST theories are described by an action of
the form

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
PðX;ϕÞ þQðX;ϕÞ□ϕþ FðX;ϕÞð4ÞR

þ
X5
i¼1

AiðX;ϕÞLi

�
ð2:1Þ

where ð4ÞR is the Ricci scalar for the metric gμν and the Li
denote the five possible scalar terms quadratic in second
derivatives of ϕ, namely

L1 ≡ ϕμνϕ
μν; L2 ≡ ð□ϕÞ2; L3 ≡ ϕμϕμνϕ

ν
□ϕ;

L4 ≡ ϕμϕμνϕ
νρϕρ; L5 ≡ ðϕμϕμνϕ

νÞ2; ð2:2Þ

using the short-hand notations ϕμ ≡∇μϕ and ϕμν ≡
∇ν∇μϕ for the first and second (covariant) derivatives of
ϕ. The action contains eight functions, Ai, F, Q and P,
which depend on the scalar field ϕ and its kinetic term
X ≡ ϕμϕ

μ. While the functions P and Q are arbitrary, the
functions F and Ai must satisfy three algebraic conditions
[7], in order to ensure the degeneracy of the theory and the
absence of any Ostrogradski ghost.
As shown in [43,44], quadratic DHOST theories can be

classified into several classes and subclasses which are
stable under general disformal transformations, i.e., trans-
formations of the metric of the form

gμν → g̃μν ¼ CðX;ϕÞgμν þDðX;ϕÞϕμϕν; ð2:3Þ
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where C and D are arbitrary functions such that the two
metrics gμν and g̃μν are not degenerate. Note that, when the
disformal transformation is not invertible, one gets mimetic
theories of gravity [45,46], which can also be seen as
DHOST theories [47,48]. As shown recently in [49],
invertible disformal transformations can also be used to
exhibit a remarkably simple Lagrangian for quadratic
DHOST theories when ignoring matter.
Similarly, the theories belonging to class Ia can be

mapped into a Horndeski form by applying a disformal
transformation. The other classes are not physically viable
(either tensor modes have pathological behavior [50] or
gradient instabilities of cosmological perturbations are
present [51]) and will not be considered in the present
work. Theories in class Ia are specified by the three free
functions F, A1 and A3 (in addition to P and Q) and the
three remaining functions A2, A4 and A5 are given by
algebraic relations in terms of A1, A3, F and FX (which
denotes the derivative of FðX;ϕÞ with respect to X). These
relations are a direct consequence of the three degenerate
conditions, necessary to guarantee that only one scalar
degree of freedom is present [7,50]. In summary, this means
that all the DHOST theories we consider here are charac-
terized by the five functions P, Q, F, A1 and A3.
Finally, matter can easily be included by adding to the

DHOST action an action Sm where the matter degrees of
freedom are minimally coupled to the metric gμν, which
therefore corresponds to the physical metric. Note that this
implies that two DHOST theories that are disformally
related via (2.3) are physically inequivalent when matter is
included (assuming matter minimally coupled to gμν for the
first theory and to g̃μν for the second one).
If one is interested only in vacuum solutions, it can be

convenient to use these disformal transformations to restrict
the study of DHOST Ia theories to their Horndeski
subclass, defined by the action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½FðX;ϕÞð4ÞRþ PðX;ϕÞ þQðX;ϕÞ□ϕ

þ 2FXðX;ϕÞð□ϕÞ2 − ϕμνϕ
μνÞ�; ð2:4Þ

i.e., DHOST Ia theories (2.1) with the restrictions

A1 ¼ −A2 ¼ 2FX; A3 ¼ A4 ¼ A5 ¼ 0: ð2:5Þ

For simplicity, in the following, we will study nonrotating
black holes in gravitational theories described by the above
Horndeski action.

B. Black hole solutions

We now consider static spherically symmetric black hole
solutions, i.e., with a metric of the form

gμνdxμdxν ¼ −AðrÞdt2 þ 1

BðrÞ dr
2

þ r2ðdθ2 þ sin2θ dφ2Þ; ð2:6Þ

where A and B are functions of the radial coordinate r only.
Although it seems natural to assume a radially dependent
scalar field, i.e., of the form ϕ ¼ ϕðrÞ, it was realized in
[52] that one can adopt the more general ansatz

ϕðt; rÞ ¼ qtþ ψðrÞ; ð2:7Þ

where q is constant, in the context of shift-symmetric
theories, i.e., where the arbitrary functions entering in
the DHOST action (2.1) depend only on X and not on ϕ. In
this case, since only the gradient of the scalar field ϕμ is
relevant, (2.7) is compatible with a static metric. Note that if
q ≠ 0 the disformal transformation of the metric (2.6) does
not conserve the same form, because of the presence of a
nonzero g̃tr ≠ 0. This implies that, in the case q ≠ 0,
working with the Horndeski action is more restrictive than
starting with the general DHOST action.
Even though our approach is general, in the following we

will mainly concentrate on two families of interesting
solutions found in the literature, which we now introduce.

1. Stealth solutions

Stealth solutions are solutions for which the metric
coincides with a vacuum solution of general relativity,
possibly with a cosmological constant. This means that,
even if the scalar field profile is non trivial, i.e., ϕ non
constant, its effective energy-momentum tensor reduces to
that of a cosmological constant. These solutions have been
actively studied in the context of Horndeski, beyond
Horndeski and more generally DHOST theories in the last
few years [14,15,17–19,25,26,36,53].1
For shift-symmetric DHOST Ia theories, or more spe-

cifically Horndeski theories, one can obtain stealth
Schwarzschild solutions with a scalar field satisfying
(2.7) if the conditions

XðxμÞ¼X0¼−q2; PðX0Þ¼PXðX0Þ¼QXðX0Þ¼0; ð2:8Þ

are satisfied.2 More concretely, the equations of motion
involve the functions F, P and Q up to their second
derivatives only evaluated at the background value
X0 ¼ −q2, as can be seen in Appendix B.

1Note that stealth solutions were first introduced in the context
of three-dimensional gravity [54] and an earlier stealth solution in
four-dimensional modified gravity was discovered [55] in the
context of ghost condensate [56] (even though it was not named
“stealth”).

2More general conditions to get stealth Schwarzschild solu-
tions in DHOST Ia theories are (A2) and (A3).
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As a consequence, if we fix FðX0Þ ¼ 1 for convenience,
the only theory-dependent parameters that appear in the
equations of motion are

α≡ FXðX0Þ; β≡ FXXðX0Þ;
γ ≡ PXXðX0Þ; δ≡QXXðX0Þ: ð2:9Þ

In other words, without loss of generality, we can limit our
study to Horndeski theories with

FðXÞ≡ 1þ αðX þ q2Þ þ β

2
ðX þ q2Þ2;

PðXÞ≡ γ

2
ðX þ q2Þ2; QðXÞ≡ δ

2
ðX þ q2Þ2: ð2:10Þ

All the other terms in the expansions in powers of ðX þ q2Þ
of these functions are irrelevant.
The stealth Schwarzschild solution is then described by

the metric (2.6) with

AðrÞ ¼ BðrÞ ¼ 1 −
rs
r
; ð2:11Þ

where rs denotes the Schwarzschild radius, and the scalar
field (2.7) with3

ψ 0ðrÞ ¼ q
ffiffiffiffiffiffi
rrs

p
r − rs

; ðstealth SchwarzschildÞ ð2:12Þ

which is obtained by solving X ¼ −q2 (see [52]).
Throughout this paper, a prime denotes a derivative with
respect to the radial coordinate r.

2. Babichev-Charmousis-Lehébel (BCL) solutions

While it is natural to look for stealth solutions in
alternative theories of gravity, it is more interesting to find
genuinely new solutions, i.e., nonstealth solutions. For
DHOST theories, this is not an easy task as the equations of
motion are quite involved, even for a static and spherically
symmetric metric. This is why very few exact nonstealth
solutions have been found so far.4 Another approach is to
construct solutions numerically (see e.g., [57] for rotating

solutions in Horndeski theories with a cubic Galileon and a
k-essence term only).
As an illustration, we study in this work the nonstealth

solutions obtained in [26] for a subset of Horndeski theories
(2.4) characterized by the functions

FðXÞ¼f0þf1
ffiffiffiffi
X

p
; PðXÞ¼−p1X; QðXÞ¼0; ð2:13Þ

where f0, f1 and p1 are constants (we take f0, p1 > 0) and
X is supposed to be positive. For simplicity, we restrict
ourselves to the case where the scalar field (2.7) has no time
dependence, i.e., q ¼ 0.
The black hole solution found in [26], which we will

name BCL after the authors, is described by a metric of the
form (2.6) with

AðrÞ ¼ BðrÞ ¼
�
1 −

rþ
r

��
1þ r−

r

�
; ð2:14Þ

where r− and rþ are defined by the relations

rþr−¼
f21

2f0p1

; rþ−r−¼rm≡2m; rþ>r−>0: ð2:15Þ

Note that the expression for AðrÞ is reminiscent of the
Reissner-Nordström metric but with a negative root here.
As a consequence, the black hole exhibits a single event
horizon, of radius rþ, in contrast with the Reissner-
Nordstroem geometry.
As for the scalar field, its kinetic term is given by

XðrÞ ¼ AðrÞϕ02ðrÞ ¼ f21
p1

2r4
; ð2:16Þ

which is nonconstant, in contrast with the stealth solutions
presented above. The scalar field profile can be found
explicitly by integrating the equation

ϕ0ðrÞ ¼ � f1
p1r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − rþÞðrþ r−Þ
p ; ð2:17Þ

yielding5

ϕðrÞ ¼ � f1
p1

ffiffiffiffiffiffiffiffiffiffi
rþr−

p arctan

�
rmrþ 2rþr−

2
ffiffiffiffiffiffiffiffiffiffi
rþr−

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − rþÞðrþ r−Þ
p �

þ cst: ð2:18Þ

3Note that the equations of motion lead to ψ 0 up to a global
sign. Here we make one choice because it gives a regular
expression (in Eddington-Finkelstein coordinates) while the
expression with the opposite sign leads to a singular scalar field
on the horizon [52]. However, such a singularity has no physical
consequences because X itself and the stress-tensor energy are
not singular.

4A new generic method to construct nonstealth solutions in
DHOST theories has been introduced recently in [18]. The idea
consists in using a known solution ðgμν;ϕÞ of a given DHOST
theory to build, via a disformal transformation (2.3), a new solution
ðg̃μν;ϕÞ for the disformally related DHOST theory. In general, a
stealth solution transforms into a nonstealth one. An interesting
result from this method is the construction of the first nonstealth
rotating black hole solutions in DHOST theories [20,21].

5The sign of ϕðrÞ and the constant are physically irrelevant.
Notice that the derivative of the scalar field diverges at the
horizon. According to [26], this is not a problem as it is a
coordinate dependent statement which disappears in the tortoise
coordinate for instance. Furthermore, it was argued in [26] that all
physical meaningful quantities are well-defined at the horizon,
for e.g., the scalar field itself.
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This concludes our presentation of the background sol-
utions, whose perturbations will be considered in the
following.

III. AXIAL PERTURBATIONS:
STANDARD APPROACH

The rest of this paper is devoted to the study of the
dynamics of linear perturbations about the black hole
solutions described in the previous section. In this section
and the next one, we examine the axial (or odd-parity)
perturbations, which are simpler to analyze than polar (or
even-parity) perturbations discussed in Sec. V. Axial
perturbations correspond to the perturbations of the metric
that transform like ð−1Þl under parity transformation, when
decomposed into spherical harmonics, where l is the usual
multipole integer.
In this section, we follow the standard approach for black

hole perturbations which consists in reformulating the
linearized equations of motion as a second order
Schrödinger-like equation. In particular, we derive the
corresponding effective potential for both stealth
Schwarzschild and BCL black hole solutions.

A. Equations of motion for the perturbations

To derive the linearized equations of motion, let us
substitute the perturbed metric and scalar field,

gμν ¼ ḡμν þ hμν; ϕ ¼ ϕ̄þ δϕ; ð3:1Þ

where a bar denotes a background quantity, into the
gravitational scalar-tensor action (2.1), or (2.4), and expand
it up to second order in the perturbations hμν and δϕ. The
quadratic part of the action, Squad½hμν; δϕ� then describes
the dynamics of linear perturbations and the linearized
equations of motion are given by the associated Euler-
Lagrange equations,

Eμν ≡ δSquad
δhμν

¼ 0; Eϕ ≡ δSquad
δϕ

¼ 0: ð3:2Þ

The equation Eϕ ¼ 0 turns out to be redundant as a
consequence of Bianchi’s identities, so we just need to
take into account the metric equations Eμν ¼ 0.
We now assume a background metric ḡμν of the form

(2.6), keeping AðrÞ and BðrÞ unspecified at this stage, and a
scalar field (2.7). In terms of the spherical harmonics Ylm
and working in the traditional Regge-Wheeler gauge
(details about gauge fixing can be found in paper I), the
axial metric perturbations for l ≥ 2 read explicitly6

htθ ¼
1

sin θ

X
l;m

hlm0 ðt; rÞ∂φYlmðθ;φÞ;

htφ ¼ − sin θ
X
l;m

hlm0 ðt; rÞ∂θYlmðθ;φÞ;

hrθ ¼
1

sin θ

X
l;m

hlm1 ðt; rÞ∂φYlmðθ;φÞ;

hrφ ¼ − sin θ
X
l;m

hlm1 ðt; rÞ∂θYlmðθ;φÞ; ð3:3Þ

while all the other components vanish. Moreover, the scalar
field perturbation is zero by construction for axial modes.
All the modes (lm) decouple at the linear level and, in the
following, we will drop this label to shorten the notation.
Since the metric is static, it is also convenient to

decompose any time-dependent function fðt; rÞ in
Fourier modes, according to

fðt; rÞ ¼
Z þ∞

−∞
dωfðω; rÞ expð−iωtÞ: ð3:4Þ

In practice, this implies that all partial derivatives with
respect to time become, in Fourier space, multiplications
by −iω. The equations of motion for the Fourier modes,
which we will also denote Eμν ¼ 0, therefore consist
of a system of ordinary differential equations, with only
derivatives with respect to the variable r. As discussed
in Appendix C 1, the only relevant equations of motion
reduce to

Erθ ¼ 0; Eθθ ¼ 0: ð3:5Þ

These two equations are first order ordinary differential
equations and, after using the background equations of
motion (see Appendix B), they drastically simplify into a
differential system for the two functions

Y1ðrÞ ¼ h0ðrÞ; Y2ðrÞ≡ 1

ω
ðh1 þ Ψh0Þ; ð3:6Þ

which reads, using Y ¼ TðY1; Y2Þ,

dY
dr

¼ MðrÞY; M≡
�
2=rþ iωΨ −iω2 þ 2iλΦ=r2

−iΓ Δþ iωΨ

�
;

ð3:7Þ

where

λ≡ ðl − 1Þðlþ 2Þ
2

; ð3:8Þ

and we have introduced the four functions
6As in GR, the dipole perturbation (l ¼ 1) does not propa-

gate [36].
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Ψ≡ 2qFXψ
0

F
; Φ≡ F

F− 2XFX
; Γ≡AFðF− 2XFXÞ

BF 2
;

ð3:9Þ

Δ≡
ffiffiffiffiffiffiffiffiffi
A=B

p
F

�
AB

�
Fffiffiffiffiffiffiffi
AB

p
�0

þ 2Xð
ffiffiffiffiffiffiffi
AB

p
FXÞ0

þ 2q2
� ffiffiffiffi

B
A

r
FX

�0�
; ð3:10Þ

which depend on the function F defined by

F ≡ AðF − 2XFXÞ − 2q2FX: ð3:11Þ

In general relativity, the functions defined above
reduce to

Ψ¼ 0; Φ¼ A; Γ¼ A−2; Δ¼ −A0=A; ð3:12Þ

with F ¼ A, and (3.7) reduces to the system studied in
Paper I.

B. Schrödinger-like equation and effective potential

Following the standard approach (originally introduced
in [58] and recalled in Paper I), we now recast the above
system (3.7) into a single Schrödinger-like equation, which
is second order with respect to the radial coordinate r and
depends on ω2 (corresponding to a second order time
derivative).
As discussed in detail in Appendix D, a transformation

YðrÞ ¼ P̂ðrÞŶðrÞ ð3:13Þ

with the appropriate matrix7 P̂ enables us to rewrite the
system (3.7) in the canonical form

dŶ
dr�

¼
�

iμðrÞω 1

VðrÞ − ω2=c2ðrÞ iμðrÞω

�
Ŷ; ð3:14Þ

where we have introduced a new radial coordinate r� and
the functions μ and c, defined by

dr
dr�

≡ n; μ≡ nΨ; c2 ≡ 1

n2Γ
: ð3:15Þ

In terms of the functions introduced in (3.9)–(3.10), the
potential V in (3.14) reads (see Appendix D for the explicit
calculation)

V ¼ n2

4

�
8ð1þ λΦΓÞ

r2
þ Δ2 −

4Δ
r

þ 2Δ0 þ 2Γ0

Γ

�
2

r
− Δ

�

þ3

�
Γ0

Γ

�
2

þ
�
n0

n

�
2

− 2

�
Γ00

Γ
þ n00

n

��
: ð3:16Þ

One can check that this coincides with the expression found
in [36]8 in the case n ¼ ffiffiffiffiffiffiffi

AB
p

. Let us stress that the explicit
expressions of propagation speed cðrÞ and of the potential
VðrÞ depend on the choice of the radial coordinate r�,
characterized by n.
In contrast to general relativity, whereΨ ¼ 0, one cannot

eliminate in general the diagonal components in the new
matrix above via a change of functions (3.13). However, as
noticed in [36], this can be achieved via a time redefinition
of the form9

t → tþ νðrÞ: ð3:17Þ

Indeed, under such a time coordinate change, one easily
shows that the system (3.14) transforms into

dŶ
dr�

¼
�
iωðμðrÞþdν=dr�Þ 1

VðrÞ−ω2=c2ðrÞ iωðμðrÞþdν=dr�Þ

�
Ŷ: ð3:18Þ

We can then eliminate the diagonal terms by choosing

νðrÞ ¼ −
Z

μðrÞ
nðrÞ dr ¼ −

Z
ΨðrÞdr ð3:19Þ

This choice of change of time variable leads to a
Schrödinger-like equation, of the form

d2Ŷ1

dr2�
þ
�

ω2

c2ðrÞ − VðrÞ
�
Ŷ1 ¼ 0; ð3:20Þ

where cðrÞ corresponds to the propagation speed and VðrÞ
to the effective potential.

C. Stealth Schwarzschild axial pertubations

Let us apply the above results to the stealth Schwarzschild
solutiondescribed inSec. II B 1. Substituting thebackground
expressions (2.11) and (2.12) into (3.9) and (3.10), one finds

7The matrix P̂ here corresponds to the matrix P̃ P̂ in Appen-
dix D, where P̃ is defined in (D18) and P̂ in (D8).

8See Eq. (64) of [36]. We do not recover, however, the
potential used in [59] in the limit q → 0. An unfortunate
consequence is that the computation of quasinormal modes in
[60] should be revisited as the latter potential was used in that
work.

9Equivalently, one can get rid of the diagonal terms by a
redefinition Ŷ → e−iωνðrÞŶ, where νðrÞ is given by (3.19).
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Ψ ¼ ζr1=2s r3=2

ðr − rsÞðr − rgÞ
; Φ ¼ r − rg

ð1þ ζÞr ;

Γ ¼ ð1þ ζÞr2
ðr − rgÞ2

; Δ ¼ 1

r
−

1

r − rg
; ð3:21Þ

where we have introduced the constant parameters

ζ≡ 2q2α ≥ 0; rg ≡ ð1þ ζÞrs: ð3:22Þ

This dimensionless constant ζ parametrizes the deviation
from general relativity, since one recovers the GR functions
(3.12)when ζ ¼ 0. The radius rg, which differs from rswhen

ζ ≠ 0, appears as an extra pole in the above functions, in
addition to rs and 0.
From the expressions (3.21), one can compute the

potential VðrÞ and the propagation speed cðrÞ that appear
in the Schrödinger-like equation (3.20). As already stressed
in the previous subsection, these quantities depend on the
choice of the radial coordinate. If one adopts the usual
Schwarzschild tortoise coordinate, defined by

r� ¼
Z

dr
r

r − rs
¼ rþ rs lnðr=rs − 1Þ; ð3:23Þ

corresponding to the choice n ¼ AðrÞ ¼ 1 − rs=r, the
potential takes the form

VðrÞ ¼ V0 þ V1ðrs=rÞ þ V2ðrs=rÞ2 þ V3ðrs=rÞ3 þ V4ðrs=rÞ4
ðr − rgÞ2

; ð3:24Þ

with

V0 ¼ 2ðλþ 1Þ; V1 ¼ −2ðλþ 3Þζ − 6λ − 9;

V2 ¼ ð15ζ þ 16λþ 70Þζ=4þ 6λþ 15;

V3 ¼ −ð1þ ζÞð13ζ=2þ 2λþ 11Þ;
V4 ¼ 3ð1þ ζÞ2; ð3:25Þ

and the propagation speed is given by the expression

cðrÞ ¼ r − rgffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p ðr − rsÞ
; ð3:26Þ

where one must take ζ > −1 in order to have c2 > 0.
Another possibility is to choose the radial coordinate

such that the propagation speed is c ¼ 1, i.e.,

r� ¼
Z

dr
ffiffiffi
Γ

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p
½rþ rg lnðr=rg − 1Þ�; ð3:27Þ

which is very similar to the usual tortoise coordinate, with
rg instead of rs and a global rescaling. In this case, the
potential becomes

Vc¼1ðrÞ ¼
�
1 −

rg
r

�
2ðλþ 1Þr − 3rg

ð1þ ζÞr3 ; ð3:28Þ

which is, quite remarkably, identical to the standard Regge-
Wheeler potential, with rg instead of rs, up to a global
rescaling. One can note that rs has completely disappeared
from the equation of motion and rg seems to play the role of
the horizon that is effectively “seen” by the axial metric
perturbations. The same result was obtained recently in
[37] by analyzing the effective metric that appears in the
equation of motion for the axial perturbations.

In fact, this result can be understood by noting that the
quadratic Lagrangian for the axial tensor perturbations can
come only from two terms in (2.1): the term in ð4ÞR, which
contains both KμνKμν and ð3ÞR according to the Gauss-
Codazzi identity,10 and the Lagrangian L1 in (2.2), which
contains KμνKμν (see discussion in [61]). These two terms
give, in the quadratic Lagrangian of the axial modes, a
kinetic term with coefficient F − XA1, evaluated on the
background, and a gradient terms with coefficient given by
F, again evaluated on the background. Since X is a
constant, these coefficients are constant and, when
A1 ¼ 0, one recovers the same quadratic Lagrangian as
in GR with c ¼ 1. Even if A1 ≠ 0 (which is the case here
since A1 ¼ 2FX ¼ 2α), it is possible to perform a disformal
transformation to go into a “frame” where A1 ¼ 0 and
therefore c ¼ 1. The background metric is disformally
transformed into a new metric, which is straightforward to
compute using the disformal transformations of quadratic
DHOST theories given in [43]. It turns out that this new
metric is another stealth Schwarzschild metric with a
displaced horizon, corresponding to rg, as discussed in
[18], which explains why the potential in this frame
coincides with the standard Regge-Wheeler potential.

D. BCL axial pertubations

We now apply the results of Sec. III B to the nonstealth
solution described in Sec. II B 2. In this case, the new
coordinate r� is given by

10In a (3þ 1) decomposition of spacetime, where nμ is the unit
vector normal to the spatial hypersurfaces, the Gauss-Codazzi
equation reads ð4ÞR¼KμνKμν−K2þð3ÞRþ2∇μðKnμ−nν∇νnμÞ,
where hμν ≡ gμν þ nμnν and Kμν ≡ hαμ∇αnν.
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r� ¼
Z

dr
r2

ðr − rþÞðrþ r−Þ

¼ rþ r2þ lnðr=rþ − 1Þ − r2− lnðr=r− þ 1Þ
rþ þ r−

: ð3:29Þ

For the BCL background, characterized by (2.14) with
(2.15), we find that the functions (3.9) and (3.10) entering
in the coefficients of the differential system (3.7) read

Ψ ¼ 0; Φ ¼ A; Γ ¼ F
f0A2

¼ r2ðr2 þ 2rþr−Þ
ðr − rþÞ2ðrþ r−Þ2

;

Δ ¼ −
A0

A
¼ −

rþ
rðr − rþÞ

þ r−
rðrþ r−Þ

; ð3:30Þ

since F ¼ f0A.
Furthermore, the potential (3.16) takes the form

VðrÞ ¼ AðrÞV0 þ V1ðrm=rÞ þ V2ðrm=rÞ2 þ V4ðrm=rÞ4 þ V6ðrm=rÞ6
2r2ð1þ ξðrm=rÞ2Þ2

; ð3:31Þ

with the coefficients

V0 ¼ 4ðλþ 1Þ; V1 ¼ −6; V2 ¼ 6ð2λ − 1Þξ;
V4 ¼ ð12λ − 1Þξ2; V6 ¼ 4λξ3; ð3:32Þ

and where we have introduced the dimensionless constant

ξ≡ 2
rþr−
r2m

¼ f21
f0p1r2m

: ð3:33Þ

Similarly to the parameter ζ in the stealth case, ξ para-
metrizes the deviation from GR (corresponding to the limit
r− ¼ 0, i.e., f1 ¼ 0).
One notes that one must have ξ ≥ 0 to prevent a

singularity in the potential. When ξ ¼ 0, one recovers
the standard Regge-Wheeler (RW) potential for the
Schwarzschild geometry,

VRWðrÞ ¼
�
1 −

rs
r

�
2ðλþ 1Þr − 3rs

r3
; ð3:34Þ

where rs ¼ rm in this limit. Potentials for several values of
ξ are shown on Fig. 1, where one can see that the potential
is a deformation, parametrized by ξ, of the RW potential. At
infinity, the behavior of the potential is very similar to that
of the RW potential, with corrections appearing only at
second order in rm=r:

VðrÞ¼ 1

r2m

�
2ðλþ1Þr

2
m

r2
− ð2λþ5Þr

3
m

r3
þO

�
r4m
r4

��
: ð3:35Þ

By contrast, the leading order behavior is modified near the
horizon,

VðrÞ ¼ 32μξðλð3μξ − 1Þ2 − μξð1þ μξÞÞ
ð1þ μξÞ5ð3μξ − 1Þr3m

ðr − rþÞ

þOððr − rþÞ2Þ; μξ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ξ

p
; ð3:36Þ

where we have used r� ¼ rmð1� μξÞ=2. Notice that the
height of the potential also depends on the value of ξ.
The propagation speed is given by

cðrÞ ¼ rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ξr2m

p : ð3:37Þ

We thus recover the usual value c ¼ 1 at spatial infinity
(when r → ∞), but at the horizon we find

cðrþÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rþ
rþ þ 2r−

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μξ þ 1

3μξ − 1

s
≤ 1: ð3:38Þ

From the Schrödinger equation (3.20) with (3.31) and
(3.37), one can compute explicitly the complex frequency
of the associated quasinormal models (QNM) by resorting
to standard numerical techniques [1–3] which were applied
in the context of Horndeski theories in [62]. In the present
case, we will postpone the computation of the QNMs
modes to the next section, where we will show that they can

FIG. 1. Potential VðrÞ for the nonstealth for different values of ξ
but fixed values of rm ¼ 1 and l ¼ 2 (λ ¼ 2).
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be computed numerically even without the Schrödinger-
like reformulation of the equations of motion.

IV. AXIAL PERTURBATIONS: FIRST-ORDER
SYSTEM APPROACH

In this section, we revisit axial perturbations and study
their asymptotic behavior, both at infinity and near the
horizon, using the method presented in Paper I. Using these
asymptotic behaviors, we then compute the quasinormal
modes numerically.

A. First order approach: method and goal

Ignoring the traditional Schrödinger reformulation of the
perturbation equations, discussed in the previous section,
we now go back to the original first-order system and apply
the systematic method developed in Paper I to determine
the asymptotic behavior of the solution at spatial infinity
and near the black hole horizon.
More precisely, let us consider some first order system of

the form

dY
dz

¼ MðzÞY;

MðzÞ ¼ zr
Xp
n¼0

Mr−nz−n þOðzr−p−1Þ; ð4:1Þ

where Y is a column vector, MðzÞ a square matrix which
can expanded, up to some given order, when the variable z
goes to infinity. In most cases,11 the solution YðzÞ can be
written asymptotically in the form

YðzÞ ¼ eϒðzÞzΔFðzÞY0; ðz → ∞Þ ð4:2Þ
where Y0 is a constant vector (which can be constrained by
boundary conditions), FðzÞ is a matrix regular at infinity, Δ
is a constant diagonal matrix, and finally ϒðzÞ is also a
diagonal matrix whose coefficients are polynomials of
degree (at most) r. The algorithm described in Paper I,
based on [63–66], enables one to compute explicitly all the
quantities entering in (4.2), up to some order.
Note that there is no loss of generality when considering

the asymptotic behavior at infinity since one can always
reformulate a system that is singular for some finite value z0
into a system of the form (4.1) via a change of variable.
In the following, we apply the algorithm of paper I

successively to the BCL perturbations and to the stealth
Schwarzschild perturbations.

B. BCL axial perturbations

As found in the previous section, the axial perturbations
of the BCL black hole satisfy the system [see (3.7)]

dY
dr

¼MY; MðrÞ¼
�
2=r −iω2þ i2λA=r2

−iΓ Δ

�
; ð4:3Þ

with, according to (3.30),

A ¼
�
1 −

rþ
r

��
1þ r−

r

�
; Γ ¼ r2ðr2 þ 2rþr−Þ

ðr − rþÞ2ðrþ r−Þ2
;

Δ ¼ −
rþ

rðr − rþÞ
þ r−
rðrþ r−Þ

: ð4:4Þ

1. At spatial infinity

When r → ∞, the asymptotic expansion of the matrix
MðrÞ in (4.3) reads

MðrÞ ¼ M0 þ
1

r
M−1 þO

�
1

r2

�
; M0 ≡ −i

�
0 ω2

1 0

�
;

M−1 ≡ 2

�
1 0

−irs 0

�
; ð4:5Þ

where we have stopped at order 1=r, which will be
sufficient for our purpose. Note that the two terms in the
above expansion do not depend on ξ, which mean they
coincide with the analogous terms in GR. This is consistent
with the observation that the asymptotic behavior of the
potential (3.31) at infinity coincides with that of the RW
potential (3.34) up to first order in 1=r.
Since we have already analysed the same asymptotic

system in Paper I for the axial modes in Schwarzschild, we
recall briefly the main result. Using the transformation

Y ¼ P̃ Ỹ; P̃ ¼
�−1þϖþ 1þϖ−

1þϖþ 1 −ϖ−

�
;

ϖ� ≡�ωrm þ i
2ωr

; ð4:6Þ

we obtain the equivalent, and fully diagonalized, system

dỸ
dr

¼ M̃ Ỹ;

M̃ðrÞ¼
�−iω 0

0 iω

�
þ1

r

�
1− iωrm 0

0 1þ iωrm

�
þO

�
1

r2

�
:

ð4:7Þ
Direct integration yields the asymptotic solution

ỸðrÞ ¼ ð1þOð1=rÞÞ
�
a−e−iωrr1−iωrm

aþeþiωrr1þiωrm

�

¼ ðrþOð1ÞÞ
�
a−e−iωr�

aþeþiωr�

�
; ð4:8Þ

11The variable z that appears in the asymptotic solution (4.2)
can sometimes differ from the original variable in the system
(4.1). Moreover, in the very particular cases where the system is
such that MðzÞ ¼ M−1=zþOð1=z2Þ with M−1 nilpotent, the
asymptotic expansion of YðzÞ is no longer given by (4.2) but it
can be expressed as a polynomial of ln z (see Sec. IV.C of
Paper I).
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where a� are arbitrary constants and we have reintroduced,
in the last expression, the variable r� associated with the
BCL solution, defined in (3.29).12

Taking into account the time dependence e−iωt of the
modes, the two components Ỹ− (up component) and Ỹþ
(down component) of Ỹ take the form

e−iωtỸ∓ðrÞ ¼ a∓ðrþOð1ÞÞe−iωðt�r�Þ; ð4:10Þ
where one recognizes the usual ingoing mode (associated
with a−) and outgoing mode (associated with aþ) at spatial
infinity. The values of a� can be restricted by the boundary
conditions imposed on the system. For example, requiring
that the mode is purely outgoing, as is the case for QNMs,
imposes a− ¼ 0.

2. At the horizon

We now turn to the asymptotic behavior at the black hole
horizon. Introducing the variable

ε≡ r − rþ; ð4:11Þ

the near-horizon asymptotic expansions of the functions A,
Γ and Δ in (4.4), are given by

A ¼ OðεÞ; Γ ¼ i

�
Γ2

ε2
þ Γ1

ε
þ Γ0

�
þOðεÞ;

Δ ¼ Δ1

ε
þ Δ0 þOðεÞ: ð4:12Þ

Substituting into (4.3), we obtain the asymptotic expansion
of the matrix M,

MðεÞ ¼ 1

ε2

�
0 0

Γ2 0

�
þ 1

ε

�
0 0

Γ1 Δ1

�
þ
�
2=rþ −iω2

Γ0 Δ0

�

þOðεÞ; ð4:13Þ
where we will need only the explicit expression of the
coefficients Δ1 and Γ2,

Δ1 ¼ −1; Γ2 ¼ −ir20 with r0 ≡ rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþðrþ þ 2r−Þ

p
rþ þ r−

:

ð4:14Þ

Our system now differs from the GR analog studied in
Paper I. However, the leading order term is still nilpotent, as
in GR, and the resolution of the system is very similar to the
analysis of Paper I. According to the algorithm, one first
needs to perform the transformation

Y ≡ Pð1ÞYð1Þ; with Pð1ÞðεÞ≡
�
1 0

0 1=ε

�
; ð4:15Þ

which leads to the new system

dYð1Þ

dε
¼ Mð1ÞYð1Þ;

Mð1Þ ¼ 1

ε

�
0 −iω2

Γ2 1þ Δ1

�
þOð1Þ

¼ −
i
ε

�
0 ω2

r20 0

�
þOð1Þ: ð4:16Þ

The leading term of the new matrix Mð1Þ is now diago-
nalizable and the system can be explicitly diagonalized via
the transformation

Yð1Þ ≡ Pð2ÞYð2Þ; with Pð2Þ ¼
�
ω −ω
r0 r0

�
; ð4:17Þ

leading to the new system

dYð2Þ

dε
¼ Mð2ÞYð2Þ;

Mð2ÞðεÞ ¼ iωr0
ε

�−1 0

0 1

�
þOð1Þ: ð4:18Þ

Finally, integrating this system yields

Yð2ÞðεÞ ¼ ð1þOðεÞÞ
�
a−ε−iωr0

aþεþiωr0

�

¼ ð1þOðεÞÞ
�
a−e−iηωr�

aþeþiηωr�

�
; ð4:19Þ

where a∓ are constants and we have used the asymptotic
expansion of the tortoise coordinate (3.29) near the horizon,

r� ¼
r2þ

rþ þ r−
ln εþOð1Þ ¼ r0

η
ln εþOð1Þ;

η≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ þ 2r−

p
r1=2þ

: ð4:20Þ

Taking into account the time dependence e−iωt, one thus
gets for the two components of Yð2Þ

e−iωtYð2Þ∓ ¼ a∓e−iωðt�ηr�Þð1þOðεÞÞ; ð4:21Þ
where one recognizes the ingoing and outgoing modes,
propagating with the velocity c ¼ η−1, in agreement with

12The tortoise coordinate associated with the BCL solution has
been computed in (3.29) and its large r expansion reads

r� ¼ rþ rm ln r −
r2þ ln rþ − r2− ln r−

rþ þ r−
−
r2þ þ r2− − rþr−

r

þO
�
1

r2

�
: ð4:9Þ

When rm ¼ rs ¼ 2m, it coincides with the Schwarzschild tor-
toise coordinate (3.23) r� ¼ rþ rs ln r up to the order Oð1Þ.
Hence, one can equivalently use any of the two coordinates in the
asymptotic (4.8) which has been given up to Oð1Þ as well.
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the expression (3.38) obtained in the previous section, via
the Schrödinger-like equation.

3. Numerical computation of the quasinormal modes

A very useful application of knowing the asymptotic
solutions at infinity and near the horizon is the
numerical computation of the quasinormal modes (see
e.g., the reviews [1–3]), as illustrated in Paper I for
Schwarzschild black holes in general relativity. In the
context of modified gravity, quasinormal modes have been
computed explicitly for a few solutions, such as black holes
in Einstein-Gauss-Bonnet [67–70] or dynamical Chern-
Simons gravity [71].
Let us briefly explain the principle of the computation,

based on [72], and apply it to the BCL solution. The
asymptotic behavior of the original metric variables Y1

and Y2, defined in (3.6), can be deduced from the asymptotic
solutions to the diagonalized systems and the transition
matrices. At spatial infinity, we have Y ¼ PỸ where P is
given in (4.6), and the asymptotic behavior (4.8) for Ỹ implies

Y1 ¼ ða∞þ riωrmeþiωr − a∞− r−iωrme−iωrÞðrþOð1ÞÞ; ð4:22Þ

Y2 ¼ ða∞þ riωrmeþiωr þ a∞− r−iωrme−iωrÞðrþOð1ÞÞ; ð4:23Þ

where, for later convenience,we have chosen the formulation
in terms of r. A quasinormal mode is characterized by purely
outgoing boundary conditions at infinity, i.e.,

a∞− ¼ 0: ð4:24Þ
At the horizon, the relation between the initial and final

quantities is Y ¼ Pð1ÞPð2ÞYð2Þ, where Pð1Þ and Pð2Þ are
defined in (4.15) and (4.17) respectively. The asymptotic
solution (4.19) thus yields

Y1 ¼ ωðahor− ε−iωr0 − ahorþ εþiωr0Þð1þOðεÞÞ; ð4:25Þ

Y2 ¼ r0ðahor− ε−iωr0−1 þ ahorþ εþiωr0−1Þð1þOðεÞÞ: ð4:26Þ

For a quasinormal mode, the boundary condition at the
horizon must be purely ingoing, which requires

ahorþ ¼ 0: ð4:27Þ

Now we proceed as in Paper I to compute numerically
the first quasinormal modes of the axial perturbations about
the BCL black hole. We first introduce an ansatz for Y1 and
Y2, which satisfies the required boundary conditions,

Y1 ¼ eiωrr1þiωrm

�
r − rþ

r

�
−iωr0

f1ðrÞ;

Y2 ¼ eiωrr1þiωrm

�
r − rþ

r

�
−1−iωr0

f2ðrÞ; ð4:28Þ

where the functions f1 and f2 are supposed to be regular in
the whole domain ½rþ;∞½ and bounded at spatial infinity
and at the horizon. To implement these regularity con-
ditions, we change the coordinate variable by setting

u ¼ 2rþ
r

− 1 ∈ ½−1;þ1�; ð4:29Þ

and decompose f1ðuÞ and f2ðuÞ onto the Chebyshev
polynomials TnðuÞ. We truncate the decomposition at a
given order N, hence we have

f1ðuÞ ¼
XN
n¼0

αnTnðuÞ; f2ðuÞ ¼
XN
n¼0

βnTnðuÞ; ð4:30Þ

where αn and βn are the complex coefficients to be
determined by the resolution of the equations of motion.
The next step consists in reformulating the differential
system (3.7) as a system of linear algebraic equations of the
form,

MNðωÞVNðαn; βnÞ ¼ 0; ð4:31Þ
where MN is a 2ðN þ 1Þ × 2ðN þ 1Þ complex-valued
matrix whose (finite) expansion in powers of ω reads13

MNðωÞ ¼ MN½0� þMN½1�ωþMN½2�ω2; ð4:32Þ

while the 2ðN þ 1Þ-dimensional column vector VNðαn; βnÞ
contains the coefficients of the decompositions (4.30)

TVNðαn; βnÞ≡ ðα0;…; αN; β0;…; βN Þ: ð4:33Þ
Following [72], we transform the problem of solving the
previous linear system in terms of a generalized eigenvalue
problem which is formulated as follows,

M̃NðωÞṼNðαn; βnÞ ¼ 0; ð4:34Þ
where the dimensions of the matrix M̃N and the vector ṼN
have been doubled compared to the previous (untilded)
ones according to

M̃N ¼ M̃N½0� þ M̃N½1�ω and M̃N½0� ¼
�
MN½0� MN½1�
0 1

�
;

M̃N½1� ¼
�

0 MN½2�
−1 0

�
: ð4:35Þ

At this stage, it is finally possible to compute the values
of ω usingMathematica or SciPy. To proceed, we computed
the modes for two different values of N and kept the ones
that agree up to a given precision, which allows us to get rid
of the spurious solutions. The first quasinormal modes have

13We use indices inside brackets to indicate the coefficients of
the powers of ω (in contrast with the coefficients in the
asymptotic expansions at spatial infinity or near the horizon).
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been represented in Fig. 2. We have also plotted, in Fig. 3,
the “evolution” in the complex plane of the first three
modes (n ¼ 0; 1; 2) for l ¼ 2; 3 when ξ increases. One
observes a decrease of both the real and (absolute value of
the) imaginary parts of the complex frequencies as ξ
increases.

C. Stealth Schwarzschild axial perturbations

Let us now study the asymptotic behavior of axial
perturbations for the stealth Schwarzschild solution. As
we saw in Sec. III C, the dynamics of axial perturbations is
now governed by the system (3.7),

dY
dr

¼ MY;

MðrÞ ¼
�
2=rþ iωΨ −iω2 þ 2iλΦ=r2

−iΓ Δþ iωΨ

�
; ð4:36Þ

where the functions Ψ, Φ, Γ and Δ are given in (3.21). Let
us also recall that the constant ζ (3.22) parametrizes the
deviation to general relativity which is recovered in the
limit ζ → 0.
Following our remark, at the end of Sec. III C, that the

Schrödinger-like equation for axial modes is equivalent to a
standard Regge-Wheeler equation, we now show that this
property can be seen directly with the first order system, via
appropriate rescalings of the time and radial variables. We
first perform a time shift (3.17) with ν0 ¼ −Ψ so that Ψ
disappears from the above matrix MðrÞ in (4.36). Then,
introducing the new variables

r̃≡ ð1þ ζÞr; r̃g ≡ ð1þ ζÞrg;
t̃≡ ffiffiffiffiffiffiffiffiffiffiffi

1þ ζ
p

t ⇒ ω̃ ¼ ω=
ffiffiffiffiffiffiffiffiffiffiffi
1þ ζ

p
; ð4:37Þ

one can see that the first order differential system takes
exactly the same form as in GR, namely

dY
dr̃

¼ M̃Y;

M̃ðr̃Þ ¼
� 2=r̃ −iω̃2 þ 2iλ r̃−r̃g

r̃3

−i r̃2

ðr̃−r̃gÞ2 − r̃g
r̃ðr̃−r̃gÞ

�
; ð4:38Þ

with r̃g as Schwarzschild radius.
As a consequence, the asymptotic behavior of Y is

immediately deduced from the GR results given in Paper I
(Sec. III. B). Both at infinity and near the horizon, the
asymptotic behaviors of the two components of Y are linear
combinations (withcoefficients that candependonrealpowers
of r or ε) of the following outgoing and ingoing modes,

e�iω̃r̃� ¼ e�iωr� ; r̃� ≡ r̃þ r̃g lnðr̃=r̃g − 1Þ; ð4:39Þ
where r̃� corresponds to the standard tortoise coordinate in
Schwarzschild (with radial coordinate r̃ andhorizon r̃g) and r�
is the radial coordinate introduced in (3.27) in order to
get cðrÞ ¼ 1.
One can finally reintroduce the time dependence, taking

into account the time shift ν, to obtain the asymptotic limits.
At spatial infinity, using νðrÞ ¼ −

R
ΨðrÞdr ≈ −2ζ ffiffiffiffiffiffi

rsr
p

,
one finds

e−iωðtþνÞe�iωr� ≈ e−iωðtþνÞe�iω
ffiffiffiffiffiffi
1þζ

p ðrþð1þζÞrs ln rÞ

≈ e−iωte2iωζ
ffiffiffiffiffi
rsr

p
e�iω

ffiffiffiffiffiffi
1þζ

p
rr�iωð1þζÞ3=2rs :

ð4:40Þ
At the horizon r ¼ rg, using ν ≈ −ð1þ ζÞ3=2rs ×
lnðr=rg − 1Þ ≈ −r�, one gets

FIG. 3. The first three quasinormal modes (n ¼ 0; 1; 2) for
l ¼ 2 (continuous line) and l ¼ 3 (dashed line), with rm ¼ 1,
when ξ varies from 0 to 50. On each “trajectory,” the large dot
denotes the GR mode (ξ ¼ 0) and the next point corresponds to
ξ ¼ 0.2, the subsequent values of ξ increasing with a constant
logarithmic increment until the final value ξ ¼ 50.

FIG. 2. Quasinormalmodes numerically found for ξ ¼ 0.5, rm ¼
1 and l ¼ 2. We take N ¼ 30, then N ¼ 60, and keep the values
that agree up to 10−3. The eigenvalues shown in red correspond to
the physical quasinormalmodes,whereas the eigenvalues visible in
blue or orange correspond either to spurious modes (on the
imaginary axis) or to modes that have not yet converged.
We can observe that there is a symmetry about the imaginary axis.
The first three modes detected are ω0 ¼ �0.646 − 0.152i,
ω1 ¼ �0.605 − 0.468i and ω2 ¼ �0.534 − 0.819i.
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e−iωðtþνÞe�iωr� → e−iωðt−2r�Þ and e−iωt: ð4:41Þ
In the original coordinate system, only one mode seems to
be propagating at the horizon. It is necessary to use a more
appropriate time coordinate to identify one outgoing and
one ingoing mode. The above expressions could also be
obtained by applying the algorithm of Paper I to the
original system.

V. POLAR PERTURBATIONS

We now turn to the study of polar, or even-parity,
perturbations. We choose the same (Zerilli) gauge fixing
as usually adopted in general relativity (see e.g., Paper I for
details), thus the metric perturbations are parametrized by
four families of functions Hlm

0 , Hlm
1 , Hlm

2 and Klm (l and
m are integers with l ≥ 0 and −l ≤ m ≤ l) such that the
nonvanishing components of the metric are

htt ¼ AðrÞ
X
l;m

Hlm
0 ðt; rÞYlmðθ;φÞ;

hrr ¼ BðrÞ−1
X
l;m

Hlm
2 ðt; rÞYlmðθ;φÞ;

htr ¼
X
l;m

Hlm
1 ðt; rÞYlmðθ;φÞ;

hab ¼
X
l;m

Klmðt; rÞgabYlmðθ;φÞ; ð5:1Þ

where the indices a, b belong to fθ;φg. The scalar field
perturbation is parametrized by one family of functions
according to

δϕ ¼
X
l;m

δϕlmðt; rÞYlmðθ;φÞ: ð5:2Þ

In the following we will consider only the modes l ≥ 2 (the
monopole l ¼ 0 and the dipole l ¼ 1 require different
gauge fixing conditions).

We will study successively the BCL and stealth
Schwarzschild solutions. Essentially, we proceed as in
the previous section for axial perturbations. The main
difference is that the first order system is now four-
dimensional since it contains a scalar mode and a gravi-
tational mode, which are coupled. By contrast with the
axial case, we have not been able to reduce the system to a
2-dimensional Schrödinger-like equation, so the only
option available to us in this case is the asymptotic analysis
of the first-order system. We thus use the algorithm of
Paper I to obtain the behavior of the solutions of the system
near the horizon and at spatial infinity. Since the calcu-
lations are more involved than in the axial case, we have
summarized the steps of the procedure in the main text and
confined the details to Appendix E.

A. BCL solution

In the frequency domain, the linear equations of motion
can be written as a four-dimensional first-order differential
system (see Appendix E for details)

dY
dr

¼ MY; ð5:3Þ

with the column vector

Y ¼ T
�
K χ H1 H0

�
; ð5:4Þ

where χ corresponds to a renormalized scalar field pertur-
bation, namely

χðrÞ≡ f1
f0

ffiffiffiffiffiffiffiffiffi
AðrÞp δϕðrÞ: ð5:5Þ

The explicit form of the square matrix M can be read
off from the equations of motion (see discussion in
Appendix C 2)

M ¼

0
BBBBB@

− 1
r þ U

2r3A
U
r4

ið1þλÞ
ωr2

V
r3

ω2r2

A2 − λ
A −

rm
2rA þ r2mS

4r4A2 − 2
r −

UV
2r5A

− iωr
A þ ið1þλÞU

2r3ωA − λ
A −

3U
2r3A −

ξ2r4m
2r4A

− iωV
r2A

2iω
r − iωU

r3A − U
r3A − iωV

r2A

− 1
r þ U

2r3A
2
r2 −

U2

2r6A − iω
A þ ið1þλÞ

ωr2
1
r −

U
2r3A −

UV
2r5A

1
CCCCCA; ð5:6Þ

where we have introduced the functions

UðrÞ≡ rmðrþ ξrmÞ; VðrÞ≡ r2 þ ξr2m;

SðrÞ≡ r2 þ 2ξrð2rm − rÞ þ 2ξ2r2m: ð5:7Þ

We analyse below the asymptotic behaviors of the above
system, first at spatial infinity and then near the horizon.

1. At spatial infinity

The expansion of the matrixM in (5.6) at spatial infinity
is of the form

MðrÞ ¼ r2M2 þ rM1 þM0 þ
1

r
M−1 þO

�
1

r2

�
; ð5:8Þ

where the matrices Mi can easily be inferred from (5.6).
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The leading matrix M2 contains a single nonzero entry,
ðM2Þ21 ¼ ω2, and is thus nilpotent. To diagonalize the
system, one can follow step by step the algorithm presented
in Paper I. Here, however, in order to shorten the procedure,
we first adopt a “customized” strategy by considering a
transformation of the form

Y ¼ Pð1ÞYð1Þ; Pð1Þ ¼ Diagðrp1 ; rp2 ; rp3 ; rp4Þ ð5:9Þ

and choosing the powers pi that simplify the system the
most. With the choice

p1 ¼ 0; p2 ¼ 2; p3 ¼ p4 ¼ 1; ð5:10Þ

one finds that the system becomes

dYð1Þ

dr
¼ Mð1ÞYð1Þ;

Mð1Þ ¼ Mð1Þ
0 þ 1

r
Mð1Þ

−1 þO
�
1

r2

�
; ð5:11Þ

where the two matrices Mð1Þ
0 and Mð1Þ

−1 have the simple
expressions

Mð1Þ
0 ¼

0
BBB@

0 0 0 1

−ω2 0 iω 0

0 −2iω 0 −iω
0 0 −iω 0

1
CCCA;

Mð1Þ
−1 ¼

0
BBB@

−1 −rm ið1þλÞ=ω 0

−2ω2rm −4 0 −λ
−iω iωrm −1 −iωrm
0 −2 −iωrm 0

1
CCCA: ð5:12Þ

Following now the algorithm of Paper I, two additional
steps are needed to obtain a fully diagonalized system (up
to order r0), given by

dỸ
dr

¼ M̃ Ỹ; ðY ¼ P̃ ỸÞ; ð5:13Þ

where the (combined) transition matrix P̃ and the expan-
sion of M̃ are given explicitly in Appendix E. Integrating
this asymptotic system yields

ỸðrÞ ¼

0
BBBBB@

c−r−iωrme−iωr

cþrþiωrmeþiωr

d−
r3 r

−ωrmffiffi
2

p
e−

ffiffi
2

p
ωr

dþ
r3 r

þωrmffiffi
2

p
eþ

ffiffi
2

p
ωr

1
CCCCCAð1þOð1=rÞÞ; ð5:14Þ

where c� and d� are constants.

The first two components are very similar to the
components of the asymptotic solution obtained in the
axial sector [see (4.8)] and it is therefore natural to identify
these modes with the usual outgoing and ingoing gravita-
tional modes. By contrast, the last two components have an
unusual form. If we return to the original variables, via the
transformation (E1), we find that the asymptotic behavior
of the (renormalized) scalar perturbation χ (5.5) reads

χðrÞ ¼ 3

2r
½d−r−

ωrmffiffi
2

p
e−

ffiffi
2

p
ωr − dþr

ωrmffiffi
2

p
e

ffiffi
2

p
ωr�

× ð1þOð1=rÞÞ: ð5:15Þ

The behavior exhibited by this perturbation appears
problematic, as it is associated with an effective metric
which does not possess the appropriate causal structure.
Indeed, the asymptotic solution (5.15) can be related to an
equation of motion for χ̃ ≡ rχ of the form

∂2χ̃

∂t2 þ
∂2χ̃

∂r̃2 ≈ 0; with r̃ ¼
ffiffiffi
2

p �
rþ rm

2
ln r

�
; ð5:16Þ

which does not correspond to a wave equation. This
nonhyperbolicity is usually associated with a ghost or
gradient instability.
For a more direct—although less rigorous—approach to

this problem, it is instructive to examine the perturbations
of the scalar field on the fixed background geometry, in
other words to ignore the backreaction of the scalar field
perturbations on the metric. In this case, the equation of
motion for the scalar field perturbation χ is of the form

∂2χ

∂t2 þ
1

2
AðrÞ∂

2χ

∂r2 þ
1

r

�
1þ ξr2m

2r2

�∂χ
∂r −WðrÞχ ¼ 0; ð5:17Þ

where WðrÞ is some potential, given explicitly in
Appendix G. Since A > 0, this equation has the structure
of an elliptic equation, similar to (5.16). In fact, it is even
possible to show that the asymptotic behavior (5.15) can be
directly recovered from (G2), as shown in Appendix G.

2. Near the horizon

To obtain the asymptotic behavior near the horizon, we
define, as usual, the small parameter ε≡ r − rþ. It is then
convenient to make the following initial change of vector to
simplify the analysis:

Y ¼ Pð1ÞYð1Þ; Pð1Þ ¼

0
BBB@

1 0 0 0

0 1=ε 0 0

0 0 1=ε 0

0 0 0 1=ε

1
CCCA: ð5:18Þ

The matrix Mð1Þ associated to the system for Yð1Þ admits a
very simple asymptotic expansion, of the form

LANGLOIS, NOUI, and ROUSSILLE PHYS. REV. D 104, 124044 (2021)

124044-14



Mð1Þ ¼ 1

ε
Mð1Þ

0 þOð1Þ; ð5:19Þ

where the matrix Mð1Þ
0 is given in (E6) in the Appendix E.

After transforming this matrix into a Jordan block form
as shown in Appendix E, one finds that the asymptotic
expansion of the modes reads

Yð2ÞðrÞ ¼

0
BBBBB@

c−ε−iωr0

cþεþiωr0

ða1 ln εþ a2Þ
ffiffiffi
ε

p

a1
ffiffiffi
ε

p

1
CCCCCAð1þOðεÞÞ; ð5:20Þ

where again c�, a1 and a2 are constant. The correspondence
between the original vector Y and Yð2Þ and the expression of
the matrix P ¼ Pð1ÞPð2Þ are described in the Appendix E.
The behavior of the first two components in (5.20) is the

same as in the axial case, and one can thus identify themwith
the ingoing and outgoing gravitational modes. By contrast,
the behavior of the last two components is very peculiar and
is related to the presence of the scalar field degree of freedom.
As in the spatial infinity limit, these modes do not seem to
correspond to a second-order equation respecting the usual
four-dimensional causal structure, which indicates that the
effective metric near the horizon, in which the perturbations
propagate, is pathological.

3. Computation of the quasinormal modes

In the following, we restrict ourselves to the “gravita-
tional” modes, which behave asymptotically like the axial
modes. We do not consider the “scalar” modes, whose
pathological behavior probably indicates the presence of
an instability, as mentioned earlier. To compute numerically
the quasinormalmodes, we extend themethod of Sec. IV B 3
to a 4-dimensional system. At spatial infinity, we require the
modes to be purely outgoing, while they must be purely
ingoing near the horizon. This implies the restrictions

c− ¼ dþ ¼ d− ¼ 0; cþ ¼ a1 ¼ a2 ¼ 0; ð5:21Þ
in (5.14) and (5.20), respectively. Taking into account these
requirements, we consider the following ansätze for the four
perturbations:

H0ðrÞ ¼ eiωrr1þiωrm

�
r − rþ

r

�
−1þiωr0

f0ðrÞ;

H1ðrÞ ¼ ωeiωrr1þiωrm

�
r − rþ

r

�
−1þiωr0

f1ðrÞ;

KðrÞ ¼ eiωrriωrm
�
r − rþ

r

�þiωr0
fKðrÞ;

χðrÞ ¼ eiωrr−1þiωrm

�
r − rþ

r

�
−1þiωr0

fχðrÞ; ð5:22Þ

where the functions f0, f1, fK and fχ are supposed to be
bounded.
Decomposing these functions onto Chebyshev polyno-

mials, up to some orderN, the differential system with (5.6)
is transformed into the matricial equation

MNðωÞVN ¼ 0; with

MNðωÞ ¼ MN½0� þMN½1�ωþMN½2�ω2; ð5:23Þ

where the components of the 4ðN þ 1Þ-dimensional col-
umn vector VN are the components of the functions f0, f1,
fK and fχ on the Chebyshev basis. Once again, this linear
system corresponds to a generalized eigenvalue problem
and the values of ω can be determined numerically.
Changing the truncation order N then enables us to identify
the quasinormal modes of the full system.
The first modes are represented in Fig. 4. Even though

the numerical analysis could be further refined,14 we can
already make interesting observations. First, when the
parameter ξ vanishes, all the modes found agree with the
ones of Schwarzschild in general relativity as expected.
When ξ is not vanishing and increases, the real and
imaginary parts of the modes decrease compared to those
of GR. It is interesting to note that we have obtained a
continuous deformation of the classical branch of the polar
modes in GR and no other modes are detected. In other

FIG. 4. Quasinormal modes found for ξ ¼ 10−4 and rm ¼ 1.
We take N ¼ 25, then N ¼ 50, and keep the values that agree up
to 10−3. We can observe that there is a symmetry about the
imaginary axis. Only the first two modes are detected, and they
match with the Schwarzschild frequencies up to 10−3.

14We can see that the results are plagued with a lot of spurious
eigenvalues caused by numerical errors, which prevents us from
probing higher values of ξ, or higher-overtone modes. This
problem comes from the higher order of the coupled system: it is
made of four first-order equations, while the system for axial
modes involves only two equations. In order to get accurate
estimates of the frequencies, we need to increase the precision of
the computations, and this is extremely time consuming. This is
the reason why we do not probe higher-overtone modes here.
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words, there is a one-to-one correspondance between the
metric polar modes of the BCL black hole and the modes of
the Schwarzschild black hole in GR. Hence, it seems that
imposing the metric boundary conditions, recalled above,
on the equations of perturbations is sufficient to ensure only
the metric modes are computed.
As a final but interesting remark, we underline that the

well-known degeneracy between axial and polar modes
(the so-called isospectrality property) in GR is lifted when
one considers the BCL solution. Indeed, the polar and axial
modes associated to the same overtone are different as soon
as ξ ≠ 0. This is illustrated in Fig. 5. Such a feature could
be used to discriminate between a GR black hole and a
modified gravity black hole in the ringdown phase of a
black hole merger.

B. Stealth Schwarzschild solution

The asymptotic behavior of polar perturbations for
stealth Schwarzschild can be computed with the same
procedure as in the BCL case, even if it turns out to be
technically more involved, with rather tedious calculations.
Since the details are not very illuminating, we simply give
the final results in this section. Furthermore, to simplify the
analysis, we will consider theories where only one of the
parameters α, β or γ defined in (2.9) is nonzero.
In each case, we find that the asymptotic expansion of

the four-dimensional column vector YðrÞ can be written as
a linear combination of four modes, which we will denote
g�ðrÞ for the modes analogous to the axial gravitational
modes and s�ðrÞ for the additional modes. There will be
two families of such modes, one at spatial infinity and the
other one near the horizon, which will be distinguished by
the subscript ∞ or h, respectively. We give below the
leading order behavior of the modes, ignoring possible

multiplicative factors that are powers of r or of ε≡ r − rs
with a real exponent.
For the theories with β ≠ 0 or γ ≠ 0, we find the

following common behaviors:
(i) at spatial infinity:

g∞� ðrÞ ≈ r�iωrse�iωr; ð5:24Þ

(ii) near the horizon:

gh�ðεÞ ≈ ε�iωrs ; sh�ðεÞ ≈ ε−iωrs : ð5:25Þ

By contrast, the behaviors of the “scalar” modes at spatial
infinity are different in the two cases:

β ≠ 0∶ s∞� ðrÞ ≈ e−2iωrszz�2i
ffiffi
λ

p
;

γ ≠ 0∶ s∞� ðrÞ ≈ e−2iωrszðz2=3þ1Þ; ð5:26Þ

where we recall that z≡ ffiffiffiffiffiffiffiffiffi
r=rs

p
.

One observes that, in some cases, the þ and − modes
share exactly the same leading behavior at spatial infinity or
near the horizon. As a consequence, the usual distinction
between ingoing and outgoing modes becomes difficult, at
least at leading order, and might require to consider the next
orders in the asymptotic expansion. It is also worth noting
that, in the cases γ ≠ 0 and β ≠ 0, the equations for the
perturbations drastically simplify, as shown in Appendix F
for γ ≠ 0, and the asymptotic behavior of the scalar field
can be obtained from the perturbed conservation equation

∇μðδXϕμÞ ¼ 1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p
δX ϕμÞ ¼ 0; ð5:27Þ

where gμν is the Schwarzschild metric and δX is the
perturbation of X ¼ ϕμϕ

μ. Remarkably this equation can
be solved explicitly (at least in the case γ ≠ 0) and its solution
reproduces exactly the asymptotic behavior of the scalar field
derived from the analysis of the first order system.
Finally, in the case α ≠ 0, we find the following

asymptotic behaviors at spatial infinity:

g∞� ðrÞ ≈ e�iωr�þ2iωζ
ffiffiffiffiffi
rsr

p
; s∞� ðrÞ ≈ e−2iωrsz; ð5:28Þ

where r� is the coordinate introduced in (3.27). For the
“gravitational” modes, one can clearly identify the ingoing
and outgoing modes, and the term proportional to

ffiffiffiffiffiffi
rsr

p
in

the exponential of gh�ðrÞ could be absorbed by a time
redefinition of the form (3.17). At the horizon, the study of
the asymptotic behavior is more subtle because in that case
the “scalar” modes and the “gravitational” modes might
“see” different horizons.
We will restrict our discussion here to the horizon rg,

where the axial modes behave as in GR as we have seen.
Near r ¼ rg, we find

FIG. 5. Tracking of the fundamental metric mode of BCL for
0 ≤ ξ ≤ 0.01. The parameter ξ is increased by 0.002 between
each point. We observe that the polar and axials modes are
identical in the GR limit (as expected), but become different as
soon as ξ ≠ 0.
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ghþðεÞ ≈ ε2iωð1þζÞ3=2rs ≈ e2iωr� and

gh−ðεÞ ≈ 1; where ε≡ r − rg: ð5:29Þ
We thus recover exactly the same behavior as for the axial
modes obtained in (4.41). Performing the same time shift
detailed in (3.19), the above modes in (5.29) would become

gh�ðεÞ ≈ e�iωr� ; ð5:30Þ
which can be interpreted as ingoing and outgoing modes. In
summary, the polar and axial “gravitational” modes have
similar asymptotic properties, which are more easily
interpreted in the effective metric with horizon at r ¼ rg.
We leave a detailed study of the behavior of the “scalar”
modes for a future work.
As mentioned in the introduction, a detuning of the

degeneracy conditions, called “scordatura”, was proposed
in [30] as a solution to the strong coupling problem of the
stealth solutions. In order to include this type of model, the
method developed here would need to be extended. Indeed,
if the degeneracy conditions are not satisfied, the pertur-
bation system contains higher order equations. They can
nevertheless be recast into a higher-dimensional first-order
system, to which we can apply our method. We leave the
study of these models for future work.

VI. CONCLUSION

In this article, we have applied the novel approach
introduced in Paper I to study linear black hole perturba-
tions in the context of DHOST theories. The method is very
generic and enables one to obtain the asymptotic behaviors
of the perturbations at spatial infinity and near the black
hole horizon without reformulating their dynamics in terms
of a Schrödinger-like equation. The knowledge of these
asymptotic behaviors is essential to define and compute the
quasinormal modes, characterized by outgoing conditions
at spatial infinity and ingoing conditions at the horizon.
We have considered here two examples of nonrotating

black hole solutions within DHOST theories. The first one
is the Schwarzschild stealth solution whose geometry is
described by the usual Schwarzschild metric while the
second one is the nonstealth BCL solution whose metric is
analogous to that of Reissner-Nordstrom black hole with
the square of the electric charge effectively negative. In
both cases, the scalar field has a nontrivial profile (but
X ¼ ϕμϕ

μ is constant in the former case whereas it depends
on the radial coordinate r in the latter case).
We have treated separately axial and polar perturbations.

Since the scalar field perturbation is polar, axial perturbations
are described by a single (gravitational) degree of freedom
and are thus easier to study. In particular, their equations of
motion can be reformulated as a Schrödinger-like equation
and we have found a simple method to compute explicitly
the corresponding effective potential (which depends on
the choice of the radial coordinate, as the propagation

speed does). For some stealth solutions, one obtains the
very peculiar property that the axial modes “see” a
Schwarzschild metric with a displaced horizon, correspond-
ing to the disformal transformation of the original metric into
the “frame” where the propagation speed is unity.
For axial perturbations of the BCL solution, instead of

computing the quasinormal modes in the traditional way by
numerically solving the Schrödinger-like equation, we have
used the novel method of Paper I. We have thus first
computed the asymptotic behaviors of the perturbations, at
infinity and near the horizon, from the original differential
system. We have then computed, using a spectral method,
the first quasinormal modes for BCL, finding a deviation
from general relativity.
The study of polar perturbations and the computation of

the associated quasinormal modes is more challenging
because the scalar field and metric perturbations are now
coupled and we have not found a generalized Schrödinger-
like reformulation of the system. The only option left was
thus to apply themethod of Paper I, providing the asymptotic
behaviors of the solutions at spatial infinity and near the
horizon for both types of black holes. For the BCL solution,
we have identified two pairs ofmodes at the boundaries. One
pair consists of an ingoing mode and an outgoing mode,
which look similar to the usual gravitational modes. By
contrast, the other two modes, corresponding to “scalar”
modes, possess an asymptotic behavior that appears patho-
logical. Restricting ourselves to the gravitational modes, we
have computed numerically the first quasinormal modes for
the BCL solution, both for axial and polar modes. They are
distinct from the GRSchwarzschild quasinormalmodes and,
as expected, the isospectrality property breaks down as the
polar and the axial quasinormal modes are now different.
For the stealth black hole solution, we have found that

the “gravitational” polar modes behave asymptotically as
their axial counterparts. In the stealth models with α ≠ 0,
their behavior is similar to the standard GR behavior but in
a disformed Schwarzschild metric, with a different horizon
and characterized by a radially-dependent time shift. The
polar modes also contain two additional modes, due to the
presence of the scalar field, for which we have computed
some asymptotic limits. We leave for a future work a
detailed analysis of these scalar modes.
This work opens a new window for the investigation of

black hole perturbations in modified gravity. The potential
of the new method presented in Paper I has been illustrated
here with just a couple of examples and a rudimentary
numerical treatment. We plan to develop it further in the
future, especially the numerical approach in order to reach a
precision that would be useful for observational constraints.
We would also like to extend our investigation to other
background solutions. Note that it would be interesting to
explore the use of the asymptotic limits as a first diagnostic
tool for potential pathologies of black hole solutions with
scalar hair.
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APPENDIX A: STEALTH SOLUTIONS
IN DHOST THEORIES

In this Appendix, we recall and discuss the conditions for
a DHOST theory to admit stealth solutions, i.e., solutions of
modified gravity whose metric coincides with a vacuum
solution of general relativity plus a cosmological constant.
The main stealth solutions in shift-symmetric DHOST

theories are described by the Schwarzschild metric and a
scalar field of the form

ϕðt; rÞ ¼ qtþ ψðrÞ; ðA1Þ

where q is constant. We also assume a constant value for
X ≡ ϕμϕ

μ, which we denote X0.
Stealth Schwarzschild solutions can be found in DHOST

theories, with either X0 ¼ −q2 or X0 ≠ −q2, provided that
the functions appearing in the action (2.1) satisfy the
conditions (see Eq. (22) of [15])

P ¼ PX ¼ QX ¼ A1 þ A2 ¼ A1X þ A2X ¼ 0; ðA2Þ

ðX0þq2ÞA1¼ðX0þq2Þð2A1XþA3Þ¼0 ðatX¼X0Þ; ðA3Þ

where all functions are evaluated at X ¼ X0. These con-
ditions were shown to be necessary and sufficient for the
equations of motion of the metric to reduce to those of
general relativity for static and spherical symmetric metric

[15]. Type Ia DHOST theories verify A2ðXÞ ¼ −A1ðXÞ,
which implies that the last two conditions in (A2) are
automatically satisfied. By contrast, the conditions (A3) are
more restrictive if X0 þ q2 ≠ 0. These two cases were
discussed in detail in [15].
One can also look for DHOST theories such that any

solution of general relativity (with a cosmological constant
Λ), not only thee static spherically symmetric metric
solutions, is also solution of the DHOST theory, which
imposes much more stringent conditions [22]:

Pþ 2ΛF ¼ 0; PX þ Λð4FX − X0A1XÞ ¼ 0;

QX ¼ 0; A1 ¼ 0A3 þ 2A1X ¼ 0; ðA4Þ

where all these expressions are evaluated at X ¼ X0. These
conditions have been recently generalized to nonshift
symmetric theories and to the case where matter is coupled
to gravity minimally [22].

APPENDIX B: BACKGROUND EQUATIONS
OF MOTION

The variation of the shift-symmetric Horndeski action
(2.4) yields the equations of motion

Bμν ≡ δS
δgμν

¼ 0; Bϕ ≡ δS
δϕ

¼ 0: ðB1Þ

Due to Bianchi identities, the equation for the scalar field is
not independent from the metric equations and therefore
can be ignored.
For a metric of the form (2.6) and a scalar field profile

(2.7), one finds that the only nontrivial equations are given,
up to a global irrelevant factor, by

Btt ∝
1

2
APþ q2PX −

A
r2
ð−1þBþ rB0ÞFþ 2q2

r2

�
1− rB

A0

A

�
FX þ

2A
r2

dðrXBÞ
dr

FX

−
4B
r2A

ðq4 þ q2XðAþ rA0Þ− rA2XX0ÞFXX þ
1

2

�
q2B0ψ 0 þBψ 0

�
4q2

r
þ q2A0

A
−AX0

�
þ 2Bq2ψ 00

�
;

Btr ∝ qψ 0PX þ
q
2r

�
4q2

A
þ 4Xþ rX

A0

A

�
QX −

2qψ 0

r2

�
B− 1þ rB

A0

A

�
FX −

4qψ 0B
r2

�
q2

A
þXþ rX

A0

A

�
FXX;

Brr ∝ −
1

2B
Pþ 1

r2

�
1−

1

B
þ rA0

A

�
F−

2q2

r2A

�
2−

1

B
þ rA0

A

�
FX

−
4X
r2

�
1−

2

B
þ rA0

A

�
FX þ ðψ 0Þ2PX þ

ψ 0

2r

�
4q2

A
þ 4Xþ rX

A0

A

�
QX −

4

r2
Bðψ 0Þ2

�
q2

A
þXþ rX

A0

A

�
FXX;

Bθθ ∝ Bφφ ∝ −
1

2
r2Pþ 1

2
r2Bψ 0X0QX −

B0r
2

�
2q2

A
þ 2Xþ rX

A0

A

�
FX þ

r
4

�
2B0 − rB

�
A0

A

�
2

þB
A

�
r
A0

A
B0

B
þ 2

A0

A
þ 2r

A00

A

��
F

−
rBA0

2A

�
−
2q2

A
þ 2Xþ rX0

�
FX − rX0B

�
2q2

A
þ 2Xþ rX

A0

A

�
FXX −

rB
2

�
−rX

�
A0

A

�
2

þ 2

�
X0 þ rX

A00

A

��
;
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where a prime denotes a derivative with respect to r. X is
related to A, B and ψ 0 by the equation

X ¼ gμν∂μϕ∂νϕ ¼ −
q2

A
þ Bðψ 0Þ2: ðB2Þ

Assuming X to be constant drastically simplifies the above
metric equations. For a Schwarzschild metric, the equations
admit a solution only if the stealth conditions (A2) and (A3)
(restricted to Horndeski theories) are fulfilled.

APPENDIX C: EQUATIONS OF MOTION FOR
THE LINEAR PERTURBATIONS

As discussed in the main text, the equations of motion for
the perturbations are derived from the quadratic action
Squad½hμν; δϕ�:

Eμν ≡ δSquad
δhμν

¼ 0; Eϕ ≡ δSquad
δϕ

¼ 0: ðC1Þ

The equation Eϕ ¼ 0 turns out to be redundant as a
consequence of Bianchi’s identities, so we just need to
take into account the 10 metric equations Eμν ¼ 0.
Furthermore, due to the spherical symmetry, the equations
Etφ, Erφ and Eφφ are obviously equivalent to Etθ, Erθ and
Eθθ respectively. Hence, at this stage of the analysis, seven
equations at most out of the initial ten equations are
independent. We are going to see that we can reduce even
more the set of independent equations. This is expected as
the number of independent equations must be the same as
the number of independent dynamical variables.

1. Axial perturbations

The symmetry of the background implies that Ett ¼ 0,
Etr ¼ 0 and Err ¼ 0. This leaves four non trivial indepen-
dent equations for two independent functions h0 and h1.
One can thus expect that two of these equations are
redundant, which is indeed the case.
First, one has Eθθ þ 2Eθφ ¼ 0. Then, one can notice that,

out of these four equations, Etθ contains second-order
derivatives of h0 and h1 while the others contain at most
first order derivatives. This is an indication that Etθ is
redundant and, as expected, one can show that a combi-
nation of Etθ, Eθθ, Erθ and their derivatives vanishes. As a
consequence, the dynamics of the axial perturbations is
fully determined by the system consisting of the two
equations

Erθ ¼ 0; Eθθ ¼ 0; ðC2Þ

for the two variables h0 and h1. These two equations are
first order with respect to the radial coordinate r, second
order in ω and are explicitly given in section III A.

2. Polar perturbations

Similarly to axial perturbations, we start with seven
equations of motion Eμν but they now depend on five
functions: H0, H1, H2, K and δϕ.

a. BCL black hole perturbations

In the BCL case, the equation Eθφ is algebraic, as in GR,
and yields H2,

H2 ¼
rmðrþ ξrmÞ

r3
δϕþ r2 þ ξr2m

r2
H0: ðC3Þ

Among the remaining six equations for four independent
functions, it turns out that the four equations Etr, Err, Etθ
and Erθ are independent, first-order with respect to the
radial coordinate and they imply the last two ones, Ett
and Eθθ.
Contrary to GR, the remaining four equations cannot be

reduced further because the system now contains two
coupled degrees of freedom, the usual polar gravitational
mode and the scalar mode. Hence, we obtain a system of
four first order equations for the four functions H0, H1, K
and δϕ, whose explicit form is given in (5.6).

b. Stealth black hole perturbations

We proceed as in the previous case. The equation Eθφ,

rð1þ 2q2αÞ − rs
r − rs

H0 − 4q2α
ffiffiffiffiffiffi
rrs

p
r − rs

H1

−
r − ð1þ 2q2αÞrs

r − rs
H2 − 2qα

ffiffiffiffiffi
rs
r3

r
δφ ¼ 0; ðC4Þ

is algebraic and gives H2 in terms of the other functions.
Once again, the four equations Etr, Err, Etθ and Erθ form a
complete dynamical system forH0,H1, K and δϕ. It can be
written in the form

MA
dX
dr

¼ MBX; X ≡T

�
K δϕ H1 H0

�
; ðC5Þ

where the expressions of the matricesMA andMB are quite
cumbersome. To simplify, we restrict ourselves to the case
where only β ≠ 0 (and α ¼ γ ¼ δ ¼ 0) where MA and MB
can be decomposed in powers of ω according to

MA ¼ MA½0� þMA½1�ω

MB ¼ MB½0� þMB½1�ωþMB½2�ω2; ðC6Þ

with
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MA½0� ¼

0
BBBBBBBB@

4βq4
ffiffiffiffiffi
r3sr

p
r−rs

16βrsq3

r−rs
0 8βq4

ffiffiffiffiffiffi
rsr

p

− rðr2sð1−4βq4Þþ2r2−3rsrÞ
ðr−rsÞ2

16βq3
ffiffiffiffiffi
r3sr

p
ðr−rsÞ2 0

2rðrsð4βq4−1ÞþrÞ
r−rs

0 − 4βrsq3

r rs − r 0

r − 4βr3=2s q3ffiffi
r

p ðr−rsÞ 0 −r

1
CCCCCCCCA
; ðC7Þ

MA½1� ¼

0
BBB@

−2ir2 −16iβq3 ffiffiffiffiffiffi
rsr

p
0 0

0 0 0 0

0 0 0 0

0 0 0 0

1
CCCA; ðC8Þ

MB½0� ¼

0
BBBBBBBB@

0 − 8βðλþ1Þrsq3
rðr−rsÞ − 2ððλþ1Þr2s−2rsrðλþ4βq4þ1Þþðλþ1Þr2Þ

ðr−rsÞ2 − 16βq4
ffiffiffiffiffi
r3sr

p
ðr−rsÞ2

2λr
r−rs

− 8βðλþ1Þr3=2s q3ffiffi
r

p ðr−rsÞ2
16βq4ðrsrÞ3=2

ðr−rsÞ3 − 2rðr2sðλþ8βq4Þþλr2−2λrsrÞ
ðr−rsÞ3

0 0 − rsð−rsþ4βq4rþrÞ
rðr−rsÞ

2βq4
ffiffiffi
rs
r

p
ðrsþrÞ

r−rs

0 0 − 4βq4
ffiffiffiffiffi
r3sr

p
ðr−rsÞ2

rsðrsþ2βrsq4þrð2βq4−1ÞÞ
ðr−rsÞ2

1
CCCCCCCCA
; ðC9Þ

MB½1� ¼

0
BBBBBBBB@

− irð3r2s−rsrð4βq4þ5Þþ2r2Þ
ðr−rsÞ2

16iβq3
ffiffiffiffiffi
r3sr

p
ðr−rsÞ2 0

2irðrsð4βq4−1ÞþrÞ
r−rs

4iβr3=2s q4r5=2

ðr−rsÞ3
16iβr2sq3r
ðr−rsÞ3

4ir2ðrsð4βq4−1ÞþrÞ
ðr−rsÞ2 − 8iβq4

ffiffiffiffiffiffi
rsr5

p
ðr−rsÞ2

−ir − 4iβq3
ffiffiffiffiffi
rsr

p
r−rs

0 −ir

0 − 4iβrsq3r
ðr−rsÞ2 − ir2

r−rs
0

1
CCCCCCCCA
; ðC10Þ

MB½2� ¼

0
BBBBB@

0 0 0 0

− 2r4

ðr−rsÞ2 − 16βq3
ffiffiffiffiffiffi
rsr5

p
ðr−rsÞ2 0 0

0 0 0 0

0 0 0 0

1
CCCCCA: ðC11Þ

We do not write down the general equations (i.e., with
generic values for α, β, γ and δ) which are particularly
cumbersome.

APPENDIX D: SCHRÖDINGER-LIKE EQUATION
FROM A GENERAL TWO-DIMENSIONAL

SYSTEM

In this Appendix, we consider a two-dimensional first-
order differential system of the form,

dY
dr

¼ MY;

MðrÞ ¼ M½0�ðrÞ þ ωM½1�ðrÞ þ ω2M½2�ðrÞ; ðD1Þ

where the matricesM½0�,M½1� andM½2� do not depend on ω.
Their coefficients, which are functions of r, will be denoted
an, bn, cn and dn, so that

M½n�ðrÞ ¼
�
anðrÞ bnðrÞ
cnðrÞ dnðrÞ

�
: ðD2Þ

The system admits a Schrödinger-like form if one can
find a new vector Ŷ related to Y by the transformation
Y ¼ P̂ Ŷ, where the transition matrix P̂ depends on r but
not on ω, leading to a system of the form
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dŶ
dr

¼ M̂ Ŷ; with

M̂ðrÞ ¼ 1

nðrÞ
�

iωμðrÞ 1

VðrÞ − ω2=c2ðrÞ iωμðrÞ

�
; ðD3Þ

where n, μ, V and c are functions of r. In particular, nðrÞ
allows for a possible rescaling of the radial coordinate.
Using similar notations as in (D1), we can decompose

M̂ as

M̂ðrÞ ¼ M̂½0�ðrÞ þ ωM̂½1�ðrÞ þ ω2M̂½2�ðrÞ; ðD4Þ

where the individual matrices can be read off from (D3) and
are related to the matrices in (D1) by

M̂½2� ¼ P̂−1M½2�P̂; M̂½1� ¼ P̂−1M½1�P̂;

M̂½0� ¼ P̂−1M½0�P̂ − P̂−1P̂0; ðD5Þ

where P̂0 denotes the derivative of P̂ with respect to r. One
notices from (D3) that M̂½1� is proportional to the identity

matrix and M̂½2� is nilpotent. Given (D5), this requires that
the original matrices M½1� and M½2� satisfy the same
properties, respectively. This implies in particular that
M̂½1� ¼ M½1� and therefore

μ

n
¼ a1 ¼ d1: ðD6Þ

In the following, we will assume, for simplicity, that

M½2� ¼
�

0 0

c2 0

�
: ðD7Þ

Indeed, sinceM½2� is nilpotent, it is always possible to make
a transformation X ¼ P̃ X̃ to bring the matrix coefficient of
ω2 in this form, so there is no loss of generality with the
above assumption. It is then easy to check, using the first
relation in (D5), that the most general P̂ that brings M½2� of
the form (D7) into M̂½2� corresponding to (D3) is

P̂ ¼ x

�
1 0

y z

�
with z ¼ −c2nc2; ðD8Þ

where y and x are arbitrary (and x ≠ 0).
The functions x and y can be determined by requesting

that the initial matrixM½0� is transformed into the requested

form M̂½0�. Using the third transformation relation in (D5),
this leads to the four equations

x0 − ða0 þ yb0Þx ¼ 0; ðD9Þ

1 − b0nz ¼ 0; ðD10Þ

ðxyÞ0 − ðc0 þ yd0Þxþ V
xz
n

¼ 0; ðD11Þ

ðxzÞ0 − d0xzþ
xy
n

¼ 0: ðD12Þ

The second equation, Eq. (D10), is purely algebraic and is
solved by

z ¼ 1

nb0
; ðD13Þ

which can be substituted into both (D11) and (D12). The
combination of (D9) and (D12) then yields

x ¼
ffiffiffiffiffiffiffiffi
b0n

p
exp

1

2

�Z
r
duða0ðuÞ þ d0ðuÞÞ

�
;

y ¼ 1

2b0

�
d0 − a0 þ

b00
b0

þ n0

n

�
; ðD14Þ

and, finally, the expression of the potential follows from
(D11),

V ¼ n2b0

�
c0 þ yd0 − y

x0

x
− y0

�
: ðD15Þ

Substituting the solutions (D14) for x and y, we obtain the
simple expression

V ¼ n2

4

�
4b0c0 þ ðd0 − a0Þ2 − 2ðd00 − a00Þ þ 2

b00
b0

ðd0 − a0Þ

þ 3

�
b00
b0

�
2

þ
�
n0

n

�
2

− 2

�
b000
b0

þ n00

n

��
: ðD16Þ

This potential, valid for an arbitrary choice of radial
coordinate, i.e., of n, is associated with the propagation
speed

c2 ¼ −
1

n2b0c2
; ðD17Þ

obtained from (D8) and (D13).
In conclusion, for any differential system of the form

(D1), we have found the necessary and sufficient conditions
for it to be rewritten in a Schrödinger-like form: M½1� must
be proportional to the identity matrix andM½2� nilpotent. In
this case, and assuming the form (D7) for the matrix
M½2� we have obtained explicitly the potential V and
the propagation speed c, given respectively by (D16)
and (D17).
Let us apply the above results to the system (3.7) for

axial perturbations. One must first transform the system so
that the matrix coefficient of ω2 has the canonical form
(D7). This can be done via the transformation Y ¼ P̃ Ỹ with
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P̃ ¼
�
0 1

1 0

�
; c̃2 ¼ b2; ðD18Þ

so that the new (nonvanishing) coefficients are

ã0 ¼ d0 ¼ Δ; b̃0 ¼ c0 ¼ −iΓ;

c̃0 ¼ b0 ¼ 2iλ
Φ
r2
; d̃0 ¼ a0 ¼

2

r
; ðD19Þ

ã1 ¼ d̃1 ¼ a1 ¼ iΨ; c̃2 ¼ b2 ¼ −i: ðD20Þ

Using the expressions (D17) and (D16) with the “tilded”
coefficients we obtain, respectively,

c2 ¼ 1

n2Γ
ðD21Þ

and

V ¼ n2

4

�
8ð1þ λΦΓÞ

r2
þ Δ2 −

4Δ
r

þ 2Δ0 þ 2Γ0

Γ

�
2

r
− Δ

�

þ 3

�
Γ0

Γ

�
2

þ
�
n0

n

�
2

− 2

�
Γ00

Γ
þ n00

n

��
: ðD22Þ

The radial rescaling is arbitrary and one can choose it so
that the propagation speed is normalized, i.e., c ¼ 1.
According to (D21), this corresponds to the choice

nc¼1 ¼
1ffiffiffi
Γ

p : ðD23Þ

Substituting in the general expression, the potential
becomes

Vc¼1 ¼
1

4Γ

�
8ð1þ λΦΓÞ

r2
þ Δ2 −

4Δ
r

þ 2Δ0

þ 2Γ0

Γ

�
2

r
− Δ

�
þ 7Γ02

4Γ2
−
Γ00

Γ

�
: ðD24Þ

This expression can be applied in particular to the first-
order system governing polar perturbations about a
Schwarzschild black hole in GR, as recalled in paper I.
In this case, one recovers the usual Regge-Wheeler
potential.

APPENDIX E: DETAILS ON THE BCL BLACK
HOLE PERTURBATIONS

In this Appendix, we give more details on the asymptotic
analysis of polar perturbations about the BCL solution.

1. At spatial infinity

The final variable Ỹ (which diagonalizes the dynamical
system up to the order 1=r2 at spatial infinity) is related to

the original variable Y by the linear transformation Y ¼ P̃ Ỹ
with

P̃ ¼

0
BBB@

p1 þ q1 p1 − q1 r1 þ s1 r1 − s1
0 0 r2 þ s2 r2 − s2

p3 þ q3 p3 − q3 r3 þ s3 r3 − s3
p3 þ q3 −p3 þ q3 r4 þ s4 r4 − s4

1
CCCA; ðE1Þ

where the coefficients are given by

p1 ¼ −
2λ

3rω2
; q1 ¼

ið3r − 2rsÞ
3rω

;

r1 ¼
27 − 10λ

12rω2
; s1 ¼ −

ffiffiffi
2

p ð12rþ 7rsÞ
24rω

;

r2 ¼
ffiffiffi
2

p ð3 − 2λÞr
8ω

; s2 ¼
ð12rþ 7rsÞr

8
;

p3 ¼
3rþ rs

3
; q3 ¼ −

iλ
3ω

;

r3 ¼
ið2λ − 9Þ

6ω
; s3 ¼

i
ffiffiffi
2

p ð11rs − 12rÞ
12

;

r4 ¼
12r − 5rs

12
; s4 ¼ −

ffiffiffi
2

p ð27þ 2λÞ
12ω

: ðE2Þ

As we announced, this change of variable enables us to
diagonalize the system whose associated matrix M̃ is

M̃ðrÞ ¼ ω

0
BBB@

−i 0 0 0

0 i 0 0

0 0 −
ffiffiffi
2

p
0

0 0 0
ffiffiffi
2

p

1
CCCA

þ 1

r

0
BBB@

−iωrm 0 0 0

0 iωrm 0 0

0 0 −3 − ωrmffiffi
2

p 0

0 0 0 −3þ ωrmffiffi
2

p

1
CCCA

þO
�
1

r2

�
; ðE3Þ

up to the order Oð1=r2Þ. One can easily check that the
dominant term in the asymptotic expansion of M̃ is a

diagonalization of Mð1Þ
0 (5.12) as expected.

2. Near the horizon

As we showed in Sec. VA 2, we can make a first change
of variables
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Y ¼ Pð1ÞYð1Þ; Pð1Þ ¼

0
BBB@

1 0 0 0

0 1=ε 0 0

0 0 1=ε 0

0 0 0 1=ε

1
CCCA; ðE4Þ

so that the new differential system satisfied by Yð1Þ has an
associated matrix Mð1Þ with a very simple asymptotic
expansion,

Mð1Þ ¼ 1

ε
Mð1Þ

0 þOð1Þ; ðE5Þ

where the matrix Mð1Þ
0 is given by,

Mð1Þ
0 ¼

0
BBBBBB@

1
2

η
r0rþ

i 1þλ
ωr2þ

η2

rþ

r2þ
4
þ ω2r2

0
r2þ

η2
η2

2
i 1þλ
2ω − iωrþr0

η
5−η2þ2η4þ4λ

4η r0

0 −iω 0 −iηωr0
0 − η

2r0
− iωr0

η
1−η2
2

:

1
CCCCCCA
:

ðE6Þ

Even though the expression ofMð1Þ is relatively complex, it
can be transformed into a simple Jordan block form with

two Jordan blocks. Indeed, we make a new change of

variable Yð1Þ ¼ Pð2ÞYð2Þ where Pð2Þ transforms Mð1Þ
0

according to

Mð1Þ
0 ¼ Pð2Þ

0
BBB@

−iωr0 0 0 0

0 þiωr0 0 0

0 0 1=2 1

0 0 0 1=2

1
CCCAP−1

ð2Þ; ðE7Þ

The solution for Yð2Þ is obtained immediately and reads

Yð2ÞðrÞ ¼

0
BBB@

c−ε−iωr0

cþεþiωr0

ða1 ln εþ a2Þ
ffiffiffi
ε

p

a1
ffiffiffi
ε

p

1
CCCAð1þOðεÞÞ; ðE8Þ

where c�, a1 and a2 are constant.
The asymptotic expansion at the horizon of the original

variable Y whose components are the metric and scalar
perturbations (5.6) is obtained directly from the matrix of
change of variables P such that Y ¼ PYð2Þ. It is given
by the product P ¼ Pð1ÞPð2Þ which reads after a direct
calculation,

P ¼ 1

ε

0
BBBBBB@

− 2ρεðiηrþωþ1þλÞ
ωr3=2þ Δ1

2ρεðiηrþω−1−λÞ
ωr3=2þ Δ2

− 2ρεðð3þ2λÞrþþr−Þ
rþΔ3

iε 4ð2rþþ3r−Þr3þω2−ð1þλÞρ2
r2þΔ3

− 2iηr−r
3=2
þ

Δ1

2iηr−r
3=2
þ

Δ2
− rþðrþþ2r−Þ

ρ
i
2ω

− ir1=2þ ðρþ2iηr2þωÞ
Δ1

− ir1=2þ ðρþ2iηr2þωÞ
Δ2

0 1

1 1 1 0

1
CCCCCCA

ðE9Þ

where we introduced the notations ρ≡ rþ þ r− and

Δ1 ≡ ffiffiffiffiffi
rþ

p ð2ωr2þ þ iηρÞ; Δ2 ≡ ffiffiffiffiffi
rþ

p ð2ωr2þ − iηρÞ;
Δ3 ≡ ρ2 þ 4ω2r4þ: ðE10Þ

APPENDIX F: POLAR PERTURBATIONS
ABOUT THE STEALTH SOLUTION:

THE K-ESSENCE CASE

In this appendix, we study the polar perturbations of the
stealth solution in Horndeski theory where the only non-
vanishing parameter among (2.9) is γ ≠ 0. In this case, the
action (2.1) reduces to the sum of the Einstein-Hilbert term
supplemented with a so-called K-essence term and simply
reads

S½ϕ; gμν� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
Rþ γ

2
ðX þ q2Þ2

�
: ðF1Þ

Following the notations and the procedure we described
in the paper, we can compute the corresponding polar
perturbations equations about the stealth solution. As
expected, they can be cast into a form very similar to
those of GR, with three first order equations

K0 −
1

r
H0 −

iðλþ 1Þ
r2ω

H1 þ
2r − 3rs
2rðr − rsÞ

K ¼ iq2γ
ffiffiffiffiffiffi
rrs

p
ωðr − rsÞ

δX;

H0
1 þ

irω
r − rs

H0 þ
rs

rðr − rsÞ
H1 þ

irω
r − rs

K ¼ 0;

H0
0 − K0 þ rs

rðr − rsÞ
H0 þ

irω
r − rs

H1 ¼ 0; ðF2Þ

along with one algebraic relation,
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0 ¼
�
2λþ 3rs

r

�
H0 þ

�
iðλþ 1Þrs

r2ω
− 2irω

�
H1

þ
�
−
4rλðr − rsÞ þ 2rrs − 3r2s

2rðr − rsÞ
þ 2r3ω2

r − rs

�
K

þ
�
2q2γr2rs
r − rs

þ iq2γ
ffiffiffiffiffiffi
rrs

p
rs

ωðr − rsÞ
�
δX; ðF3Þ

where we have chosen to keep explicitly δX, the linear
perturbation of X ¼ ϕμϕ

μ. δX can also be expressed in
terms of δϕ, H0, H1 and K:

δX ¼ −
q2ðrs þ rÞ
r − rs

H0 þ
2q2

ffiffiffiffiffiffi
rsr

p
r − rs

H1

þ 2q

ffiffiffiffi
rs
r

r
δϕ0 þ 2iqrω

r − rs
δϕ: ðF4Þ

At this stage, it is possible to treat the system (F2) and
(F3) in the same way we have treated the system for polar
perturbations in GR (see Paper I). We first solve the
algebraic equation (F3) for H0 and then substitute the
solution into the first two differential equations (F2).
Hence, we obtain a system of the form

dY
dr

−MðrÞY ¼ q2γδX
ðr − rsÞð2rλþ 3rsÞ

�
2r2rs − 2i

ffiffiffiffiffiffi
rrs

p ðrλþ rsÞ=ω
rsr2

ffiffiffiffiffiffi
rrs

p
=ðr − rsÞ − 2ir4rsω=ðr − rsÞ

�
; ðF5Þ

where Y ≡T ðKH1Þ andMðrÞ is the matrix entering in the dynamical system of polar perturbations in GR whose expression
has been computed in the companion paper,

MðrÞ ¼ 1

3rs þ 2λr

� rsð3rsþðλ−2ÞrÞ−2r4ω2

rðr−rsÞ
2iðλþ1ÞðrsþλrÞþ2ir3ω2

r2

irð9r2s−8λr2þ8ðλ−1ÞrsrÞþ4ir5ω2

2ðr−rsÞ2
2r4ω2−rsð3rsþ3λrþrÞ

rðr−rsÞ

�
: ðF6Þ

We can therefore interpret the system (F5) as describing
the dynamics of unmodified polar perturbations in GR on
which the scalar field acts like a source.
Finally, it is possible to obtain a fully decoupled equation

for the perturbation δX. For that one replaces the expres-
sions of H0

0, H0
1 and K0 (computed from (F5) or the

algebraic equation) into (F2). After a direct calculation,
one obtains

ir2ð ffiffiffiffiffiffi
rrs

p
− 2ir2ωÞδX0ðrÞ þ

�
3

2
ir

ffiffiffiffiffiffi
rrs

p þ r3
�
3 −

r
r − rs

�
ω

þ 2ir5

r − rs

ffiffiffiffi
r
rs

r
ω2

�
δXðrÞ ¼ 0; ðF7Þ

which, after some simplifications, becomes15

2
ffiffiffiffi
rs

p ðr − rsÞrδX0ðrÞ
þ ffiffiffiffi

rs
p ð3ðr − rsÞ þ 2ir2

ffiffiffiffiffiffiffiffiffi
r=rs

p
ÞδXðrÞ ¼ 0: ðF9Þ

The equation for δXðrÞ can be solved explicitly and one
finds

δXðrÞ ¼ C

r3=2

� ffiffiffi
r

p þ ffiffiffiffi
rs

pffiffiffi
r

p
− ffiffiffiffi

rs
p

�iωrs

× exp

�
−
2

3
iωðrþ 3rsÞ

ffiffiffiffiffiffiffiffiffi
r=rs

p �
; ðF10Þ

where C is an integration constant. Hence, the asymptotics
of δX are deduced immediately and one obtains,

δXðrÞ ≈ C
z3
expð−2iωzrsðz2=3þ 1ÞÞð1þOð1=zÞÞ;

z≡ ffiffiffiffiffiffiffiffiffi
r=rs

p
≫ 1; ðF11Þ

at infinity, and

δXðrÞ≈Dðr−rsÞ−iωrsð1þOðr−rsÞÞ; r−rs≪rs; ðF12Þ

near the horizon, where D is a constant that can be
computed trivially.
In order to compute the asymptotic behavior of δφ, we

need to solve (F4). But, at this stage, it is already
remarkable to observe that the asymptotic behavior of
δX agrees with the asymptotic behavior of δϕ computed in
(5.25) and (5.26) from the first order system.
But, for completeness, let us consider (F4) which can be

viewed as a first order equation for δϕ with three sources
proportional to H0, H1 and δX. The first two can be
computed from (F5) and the algebraic equation while the
third one has just been computed above. By superposition,
the general solution is a combination of three particular

15Notice that such a decoupled equation for δX was expected.
Indeed, we can directly check that it is exactly the same as the
well-known conservation equation (for linear perturbations) in
shift-symmetric theories,

∇μð
ffiffiffiffiffiffi
−g

p
δXe−iωtϕμÞ ¼ 1ffiffiffiffiffiffi−gp ∂μð

ffiffiffiffiffiffi
−g

p
δXe−iωtϕμÞ ¼ 0: ðF8Þ
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solutions (solutions where only one of the three sources is
turned on) and one homogeneous solution.
The homogeneous equation is

δϕ0ðrÞ þ
ffiffiffiffi
r
rs

r
iωr
r − rs

δϕðrÞ ¼ 0: ðF13Þ

It can be fully integrated, and the solution is

δϕ ¼ C

�
zþ 1

z − 1

�
iωrs

exp ð−2iωzrsðz2=3þ 1ÞÞ;

z≡ ffiffiffiffiffiffiffiffiffi
r=rs

p
; ðF14Þ

where C is also a constant. We observe that the solution of
the homogeneous solution for δϕ is almost the same as the
solution for δX. They only differ by the overall factor r3=2.
Hence, their behaviors at infinity and at the horizon are
exactly the same ones (up to some integers powers of z that
play no role). This means that the homogeneous solution
and the particular solution associated with δX have the
same asymptotics. Moreover, the functionsH0 andH1 have
their asymptotic behavior fixed by the modified GR system
(F5): they both behave like GR metric modes at infinity and
at the horizon.
As a conclusion, δϕ can have two different behaviors at

infinity and at the horizon (or any linear combination of
these two): it can either behave exactly like a metric mode,
similarly to H0 and H1; or it can have the behavior of δX
computed previously.
These behaviors are exactly the ones found for the

decoupled modes (5.26). We understand now why the
branches nþ and n− were the same: the asymptotic scalar
behavior is set by δX, and δX does not verify a second-order
equation but a first-order one. A similar behavior was found
for the theory where α ≠ 0, which means that such a
simplification of the equations may also exist in that case.

APPENDIX G: LINEAR PERTURBATIONS OF
THE SCALAR FIELD ABOUT A FIXED

BACKGROUND IN HORNDESKI THEORIES

We consider a background solution, for the (static and
spherically symmetric) metric ḡμνðrÞ and the scalar field
ϕ̄ðr; tÞ ¼ qtþ ψðrÞ, in Horndeski theories and we study
the dynamics of the linear perturbations of the scalar field
only δϕ≡ ϕ − ϕ̄ about such a background. Hence, we do
not consider perturbations of the metric. As usual, we
decompose the perturbation of the scalar field onto spheri-
cal harmonics

δϕ ¼
X
l;m

δϕlmðt; rÞYlmðθ;φÞ; ðG1Þ

and we study independently each components δϕlmðt; rÞ.
As these components do not couple at the linear order, we

drop the indices l; m. Then, we consider the Fourier
components of δϕ which is equivalent to taking δϕðr; tÞ ¼
δϕðrÞe−iωt as we have done all along the paper.
One can compute the equation satisfied by δϕðrÞ in any

such background but its general expression is too cumber-
some to be written here. In the case q ¼ 0, it can be
extracted from the quadratic Lagrangian computed in [32].
Instead, we concentrate on the two background solutions
we have considered in the paper, namely the BCL and the
stealth Schwarzschild solutions.

1. BCL background

When the background is the BCL metric, one shows that
the differential equation satisfied by χðt; rÞ [defined from
δϕðt; rÞ in (5.5)] is given by

∂2χ

∂t2 þ
1

2
AðrÞ ∂

2χ

∂r2 þ
1

r

�
1þ r2mξ

2r2

� ∂χ
∂r −WðrÞχ ¼ 0; ðG2Þ

where AðrÞ is the function entering into the BCLmetric and

WðrÞ ¼ 1

4r4

�
2r2ð3þ 2λÞ − 4rð1þ λÞrm − 2ð1þ 2λÞr2mξ

−
1

2

ð2r − rmÞ2
AðrÞ

�
:

As AðrÞ > 0, one immediately sees that χðr; tÞ satisfies an
elliptic equation and is therefore not propagating.
We now consider the Fourier component of χðt; rÞ,

namely χðrÞ, and change variables by writing

χðrÞ ¼ ϖðrÞχ̃ðrÞ: ðG3Þ

By setting

ϖðrÞ ¼ 1

2rAðrÞ ; ðG4Þ

we obtain the following differential equation for χ̃:

1

2
AðrÞχ̃00 þ

�
r2mξ
2r4

−WðrÞ − ω2

�
χ̃ ¼ 0: ðG5Þ

When r → þ∞, this equation simplifies to

χ̃00 ¼ 2ω2χ̃; ðG6Þ

which means that the behavior at infinity of χðrÞ is given by

χðrÞ ¼ 1

2r
ðb1e

ffiffi
2

p
ωr þ b2e−

ffiffi
2

p
ωrÞ; ðG7Þ

where b1 and b2 are integration constants. This agrees with
the asymptotic behavior found for the scalar mode in
(5.15). Therefore, it seems that the asymptotic behavior
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of the scalar perturbation when the metric is fixed coincides
with the asymptotic behavior of the scalar part of the
polar modes.
In order to confirm this intuition, we study (G5) when

r → rþ. The resulting equation is

χ̃00 þ 1

4ðr − rþÞ2
χ̃ ¼ 0; ðG8Þ

and the general solution corresponds to

χðrÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ

p ðb1 þ b2 lnðr − rþÞÞ; ðG9Þ

where b1 and b2 are integration constants. We observe that
this result is also fully consistent with the asymptotic
analysis in (E8).

2. Stealth background

A similar analysis can be make when the background is
the stealth Schwarzschild solution. For simplicity, we
distinguish again the three cases where the only non-
vanishing parameter is γ ≠ 0, β ≠ 0 or α ≠ 0.
When γ ≠ 0, the equation for δϕ is given by,

δϕ00 þ rsðr − rsÞ þ 2iðrsr5Þ1=2
rrs

δϕ0

−
ω½5iðrrsÞ3=2 − 3iðr5rsÞ1=2 þ 2ωr4�

2rrsðr − rsÞ2
δϕ ¼ 0: ðG10Þ

We introduce a new field φ defined by

δϕ ¼ κðrÞφðrÞ; ðG11Þ

where κðrÞ is chosen to eliminate the first-order derivative
in the differential equation. This can be achieved with

κðrÞ ¼ exp ½−2iω
ffiffiffiffiffiffiffiffiffi
r=rs

p
ðrþ 3rsÞ�

� ffiffiffiffiffiffiffiffiffi
r=rs

p þ 1ffiffiffiffiffiffiffiffiffi
r=rs

p
− 1

�iωrs

;

ðG12Þ

and then φ is solution of the second order equation

4r2φ00 þ φ ¼ 0; ðG13Þ
which can be solved immediately to get

φðrÞ ¼ a1
ffiffiffi
r

p þ a2
ffiffiffi
r

p
ln r; ðG14Þ

where a1 and a2 are integration constants. We also notice
that we recover the asymptotic behaviors of the scalar mode
obtained in (5.25) and (5.26).
The case where β ≠ 0 is treated in exactly the same way.

Taking now

κðrÞ ¼ exp ½−2iω ffiffiffiffiffiffi
rrs

p �
� ffiffiffiffiffiffiffiffiffi

r=rs
p þ 1ffiffiffiffiffiffiffiffiffi

r=rs
p

− 1

�iωrs

; ðG15Þ

we show that the field φ satisfies the equation

4r2φ00 þ ð4λþ 1Þφ ¼ 0; ðG16Þ

which, again, can be solved immediately

φðrÞ ¼ ffiffiffi
r

p ðaþri
ffiffi
λ

p
þ a−r−i

ffiffi
λ

p
Þ; ðG17Þ

where a� are constants. We find again that the perturbation
is not propagating. Furthermore, these results agree with
the full asymptotic analysis of the solutions of the polar
system.
Finally, in the case α ≠ 0, the equation satisfied by δϕ at

linear order disappears, since the quadratic Lagrangian for
δϕ is a total derivative.

[1] K. D. Kokkotas and B. G. Schmidt, Quasinormal
modes of stars and black holes, Living Rev. Relativity 2,
2 (1999).

[2] H.-P. Nollert, Topical review: Quasinormal modes: The
characteristic ‘sound’ of black holes and neutron stars,
Classical Quantum Gravity 16, R159 (1999).

[3] E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal
modes of black holes and black branes, Classical Quantum
Gravity 26, 163001 (2009).

[4] R. A. Konoplya and A. Zhidenko, Quasinormal modes of
black holes: From astrophysics to string theory, Rev. Mod.
Phys. 83, 793 (2011).

[5] E. Berti, V. Cardoso, and C. M. Will, On gravitational-
wave spectroscopy of massive black holes with the space
interferometer LISA, Phys. Rev. D 73, 064030 (2006).

[6] E. Berti, K. Yagi, H. Yang, and N. Yunes, Extreme gravity
tests with gravitational waves from compact binary coa-
lescences: (II) Ringdown, Gen. Relativ. Gravit. 50, 49
(2018).

[7] D. Langlois and K. Noui, Degenerate higher derivative
theories beyond Horndeski: Evading the Ostrogradski in-
stability, J. Cosmol. Astropart. Phys. 02 (2016) 034.

[8] J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois,
K. Noui, and G. Tasinato, Degenerate higher order

LANGLOIS, NOUI, and ROUSSILLE PHYS. REV. D 104, 124044 (2021)

124044-26

https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.12942/lrr-1999-2
https://doi.org/10.1088/0264-9381/16/12/201
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1088/0264-9381/26/16/163001
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/RevModPhys.83.793
https://doi.org/10.1103/PhysRevD.73.064030
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1007/s10714-018-2372-6
https://doi.org/10.1088/1475-7516/2016/02/034


scalar-tensor theories beyond Horndeski up to cubic order,
J. High Energy Phys. 12 (2016) 100.

[9] D. Langlois, Dark energy and modified gravity in degen-
erate higher-order scalar-tensor (DHOST) theories: A re-
view, Int. J. Mod. Phys. D 28, 1942006 (2019).

[10] Y. Fujii and K. Maeda, The Scalar-Tensor Theory of
Gravitation, Cambridge Monographs on Mathematical
Physics (Cambridge University Press, Cambridge, England,
2007).

[11] G.W. Horndeski, Second-order scalar-tensor field equations
in a four-dimensional space, Int. J. Theor. Phys. 10, 363
(1974).

[12] M. Zumalacárregui and J. García-Bellido, Transforming
gravity: From derivative couplings to matter to second-order
scalar-tensor theories beyond the Horndeski Lagrangian,
Phys. Rev. D 89, 064046 (2014).

[13] J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, Healthy
Theories Beyond Horndeski, Phys. Rev. Lett. 114, 211101
(2015).

[14] J. Ben Achour and H. Liu, Hairy Schwarzschild-(A)dS
black hole solutions in degenerate higher order scalar-tensor
theories beyond shift symmetry, Phys. Rev. D 99, 064042
(2019).

[15] H. Motohashi and M. Minamitsuji, Exact black hole
solutions in shift-symmetric quadratic degenerate higher-
order scalar-tensor theories, Phys. Rev. D 99, 064040
(2019).

[16] C. Charmousis, M. Crisostomi, R. Gregory, and N. Ster-
gioulas, Rotating black holes in higher order gravity, Phys.
Rev. D 100, 084020 (2019).

[17] M. Minamitsuji and J. Edholm, Black hole solutions in shift-
symmetric degenerate higher-order scalar-tensor theories,
Phys. Rev. D 100, 044053 (2019).

[18] J. Ben Achour, H. Liu, and S. Mukohyama, Hairy black
holes in DHOST theories: Exploring disformal transforma-
tion as a solution-generating method, J. Cosmol. Astropart.
Phys. 02 (2020) 023.

[19] M. Minamitsuji and J. Edholm, Black holes with a non-
constant kinetic term in degenerate higher-order scalar
tensor theories, Phys. Rev. D 101, 044034 (2020).

[20] T. Anson, E. Babichev, C. Charmousis, and M. Hassaine,
Disforming the Kerr metric, J. High Energy Phys. 01 (2021)
018.

[21] J. Ben Achour, H. Liu, H. Motohashi, S. Mukohyama,
and K. Noui, On rotating black holes in DHOST theories,
J. Cosmol. Astropart. Phys. 11 (2020) 001.

[22] K. Takahashi and H. Motohashi, General Relativity solu-
tions with stealth scalar hair in quadratic higher-order scalar-
tensor theories, J. Cosmol. Astropart. Phys. 06 (2020) 034.

[23] E. Babichev, C. Charmousis, A. Cisterna, and M. Hassaine,
Regular black holes via the Kerr-Schild construction in
DHOST theories, J. Cosmol. Astropart. Phys. 06 (2020)
049.

[24] O. Baake, M. F. Bravo Gaete, and M. Hassaine, Spinning
black holes for generalized scalar tensor theories in three
dimensions, Phys. Rev. D 102, 024088 (2020).

[25] E. Babichev, C. Charmousis, and A. Lehbel, Black holes
and stars in Horndeski theory, Classical Quantum Gravity
33, 154002 (2016).

[26] E. Babichev, C. Charmousis, and A. Lehbel, Asymptotically
flat black holes in Horndeski theory and beyond, J. Cosmol.
Astropart. Phys. 04 (2017) 027.

[27] M. Minamitsuji and H. Motohashi, Stealth Schwarzschild
solution in shift symmetry breaking theories, Phys. Rev. D
98, 084027 (2018).

[28] C. de Rham and J. Zhang, Perturbations of stealth black
holes in degenerate higher-order scalar-tensor theories,
Phys. Rev. D 100, 124023 (2019).

[29] J. Khoury, M. Trodden, and S. S. C. Wong, Existence and
instability of novel hairy black holes in shift-symmetric
Horndeski theories, J. Cosmol. Astropart. Phys. 11 (2020)
044.

[30] H. Motohashi and S. Mukohyama, Weakly-coupled stealth
solution in scordatura degenerate theory, J. Cosmol.
Astropart. Phys. 01 (2020) 030.

[31] T. Kobayashi, H. Motohashi, and T. Suyama, Black hole
perturbation in the most general scalar-tensor theory with
second-order field equations I: The odd-parity sector, Phys.
Rev. D 85, 084025 (2012); Erratum, Phys. Rev. D 96,
109903 (2017).

[32] T. Kobayashi, H. Motohashi, and T. Suyama, Black hole
perturbation in the most general scalar-tensor theory with
second-order field equations II: The even-parity sector,
Phys. Rev. D 89, 084042 (2014).

[33] H. Ogawa, T. Kobayashi, and T. Suyama, Instability of hairy
black holes in shift-symmetric Horndeski theories, Phys.
Rev. D 93, 064078 (2016).

[34] K. Takahashi and T. Suyama, Linear perturbation analysis of
hairy black holes in shift-symmetric Horndeski theories:
Odd-parity perturbations, Phys. Rev. D 95, 024034 (2017).

[35] E. Babichev, C. Charmousis, G. Esposito-Farèse, and A.
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