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The traditional approach to perturbations of nonrotating black holes in general relativity uses the
reformulation of the equations of motion into a radial second-order Schrödinger-like equation, whose
asymptotic solutions are elementary. Imposing specific boundary conditions at spatial infinity and near the
horizon defines, in particular, the quasinormal modes of black holes. For more complicated equations of
motion, as encountered for instance in modified gravity models with different background solutions and/or
additional degrees of freedom, we present a new approach that analyses directly the first-order differential
system in its original form and extracts the asymptotic behavior of perturbations, without resorting to a
second-order reformulation. As a pedagogical illustration, we apply this treatment to the perturbations of
Schwarzschild black holes and then show that the standard quasinormal modes can be obtained numerically
by solving this first-order system with a spectral method. This new approach paves the way for a generic
treatment of the asymptotic behavior of black hole perturbations and the identification of quasinormal
modes in theories of modified gravity.
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I. INTRODUCTION

The oscillations of black holes (BH) have been studied
theoretically for several decades. Today, with the first
observations of gravitational waves emitted by BH merg-
ers, one can now hope to observe directly these oscillations
via their GW signatures, especially in the ringdown phase
of the signal when the postmerger black hole relaxes to a
Kerr black hole, according to general relativity. One of the
major goals of future detections will be to check whether
the observed oscillations coincide with the predictions
based on general relativity (see e.g., [1,2]). This is also
an ideal playground to test alternative theories of gravita-
tion. Indeed, even if the background BH solution may
coincide with that of GR, the linear perturbations in general
obey different equations of motion.
During the ringdown phase, at least in the linear regime,

the GW signal is expected to mainly consist of a super-
position of the so-called quasinormal, or resonant, modes
(QNMs) which have been excited by the merger and then
decay via GW radiation: these modes correspond to the
proper oscillation modes of the black hole and are char-
acterized by a complex frequency ω, whose imaginary part
quantifies their damping rate.
In the simplest case of nonrotating black holes, i.e.,

Schwarzschild black holes, the computation of QNMs is
based on the classical papers by Regge andWheeler [3] and
later Zerilli [4], who reformulated the linearized Einstein
equations in the frequency domain, which are first-order

with respect to the radial coordinate, as a second-order
Schrödinger-like equation. This familiar equation, with a
specific potential for axial and polar metric perturbations, is
the standard starting point for the numerical calculations or
semianalytical treatments of QNMs, using for instance
well-known methods in quantum mechanics.
Understanding the asymptotic behavior of the perturba-

tions at the horizon and at spatial infinity is crucial for
QNMs, which are defined by very specific boundary
conditions. Indeed, they correspond to purely outgoing
radiation at spatial infinity and ingoing radiation at the
horizon. Imposing these specific boundary conditions leads
to a discrete set of allowed frequencies.
When the equations of motion of the perturbations are

written as a second-order Schrödinger equation, obtaining
their asymptotic behavior is immediate, as it simply
depends on the asymptotic behavior of the effective
potential. In the context of modified gravity however,
the problem can become more involved for several reasons.
First, the background metric can differ from the standard
GR solutions, i.e., be different from Schwarzschild in
the nonrotating case. Moreover, modified theories often
involve additional fields, such as scalar fields, which
increases the number of degrees of freedom and therefore
the complexity of the linear equations of motion.
In several interesting cases, the equations of motion can be

rewrittenas ageneralizedN-dimensionalmatrixSchrödinger-
like system for N fields Ψi, of the typical form (see e.g., [5])
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f
d
dr

�
f
dΨi

dr

�
þ ðω2 − fVijÞΨj ¼ 0; ð1:1Þ

where fðrÞ ¼ 1 − rs=r and the N × N matrix Vij of radial
potentials usually vanishes or becomes a constant diagonal
matrix asymptotically. The frequencyω appears quadratically
in the above system, which corresponds to a system of
propagation equations if one replaces ω with −i∂=∂t. The
boundary conditions are still easy to infer from such a
differential system.
However, one could also encounter more general sit-

uations where such a simple reformulation of the equations
of motion is not available or would require an involved and
lengthy procedure. Specific examples will be given in a
companion paper [6], in the context of degenerate higher-
order scalar-tensor (DHOST) theories [7–10] which pro-
vide the most general viable set of scalar-tensor theories to
date. In those examples, it is not clear whether one can
rewrite the polar equations of motion as a second-order
Schrödinger-like system of the form (1.1), with its specific
dependence on ω. In the specific case of stealth
Schwarzschild black holes, a lengthy manipulation of
the quadratic Lagrangian for perturbations enabled the
authors of [11] to identify master variables, leading to a
second-order differential system for the physical degrees of
freedom, although of a more complex form than (1.1). To
tackle more general situations, it would be very useful to be
able to analyze directly the first-order system of equations
in its original form and to extract directly from it the
asymptotic behavior of perturbations.
The purpose of this paper is to present such a systematic

treatment of a general first-order differential system. In order
to reach this goal, we use recent developments that appeared
in the mathematical literature. These results enable us to
determine, via a systematic algorithm, the asymptotic struc-
ture of the solutions of a generic first-order differential
system. For pedagogical reasons, we use here this algorithm
to recover the asymptotic solutions for the axial, or odd-
parity, modes and for the polar, or even-parity, modes of the
standard Schwarzschild solution. This paper will be com-
pleted by a companion paper [12] that applies the same
method to a few black hole solutions in DHOST theories.
The outline of the paper is the following. In the next

section, we review the standard derivation for the
Schwarzschild perturbations, distinguishing as usual the
axial and polar modes. In Sec. III, we present our new
approach and show explicitly how this new method enables
us to recover the usual asymptotic solution, working
directly with the first order system. We also show how
the quasinormal modes can be computed in this new
perspective. We then present, in Sec. IV, the general
algorithm, carefully listing the various steps of the algo-
rithm depending on the structure of the system. We give a
summary and open some perspectives in the concluding
section. A few appendixes contain some additional details.

II. A SHORT REVIEW ON REGGE-WHEELER
AND ZERILLI EQUATIONS

In this section, we review the standard procedure to
derive the equations of motion for the perturbations of a
Schwarzschild black hole in general relativity, originally
obtained by Regge and Wheeler [3] for the axial, or odd-
parity, modes and Zerilli [4] for the polar, or even-parity,
modes. These equations can be shown to reduce to a
Schrödinger-like equation with an effective potential char-
acterising the “dynamics” of the linear perturbations.

A. Linear perturbations of Einstein equations
about the Schwarzschild black hole

We start with the four-dimensional Einstein-Hilbert
action in vacuum (with no cosmological constant) for
the metric gμν,

S½gμν� ¼
1

16πGN

Z
d4x

ffiffiffiffiffiffi
−g

p
R; ð2:1Þ

where g≡ detðgμνÞ is the determinant of the metric, R the
four-dimensional Ricci scalar and GN denotes Newton’s
constant, which actually will not show up in the equations of
motion since we are not considering any matter field here.

1. Linearized general relativity

Given any background metric ḡμν solution to the Einstein
equations, one can introduce the perturbed metric

gμν ¼ ḡμν þ hμν ð2:2Þ

where the hμν denote the linear perturbations of the metric.
In order to derive the linear equations of motion that govern
the evolution of hμν, one expands the Einstein-Hilbert
action (2.1) up to the second order in hμν. The Euler-
Lagrange equations associated with the quadratic part of
this expansion then provide the linearized equations of
motion for hμν.
By expanding (2.1), one obtains the following quadratic

action for hμν,

Squad½hμν� ¼
1

16πGN

Z
d4x

ffiffiffiffiffiffi
−ḡ

p �
−
1

2
hμνhμνR̄þ 1

4
h2R̄

þ hhμνR̄μν þ 4hμρhμνR̄νρ − 2hμνhρσR̄μρνσ

þ 1

2
ð∇̄μhÞð∇̄μhÞ − 2ð∇̄μhμνÞð∇̄ρhνρÞ

− ð∇̄μhÞð∇̄νhμνÞ þ 3ð∇̄νhμρÞð∇̄ρhμνÞ

−
1

2
ð∇̄ρhμνÞð∇̄ρhμνÞ

�
; ð2:3Þ

where R̄μνρσ, R̄μν, R̄ and ∇̄μ are respectively the Riemann
tensor, the Ricci tensor, the Ricci scalar and the covariant
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derivative associated with the background metric ḡμν. The
indices are lowered or raised with ḡμν and h≡ ḡμνhμν
denotes the trace of the metric perturbation. The linearized
Einstein equations are then given by the Euler-Lagrange
equations of (2.3) and can be written in the form

Eμν ≡ ∇̄σ∇̄σhμν þ ∇̄μ∇̄νhþ ð∇̄α∇̄βhαβ − ∇̄σ∇̄σhÞḡμν
þ 2∇̄ðμ∇̄αhανÞ − 6∇̄α∇̄ðμhανÞ þ R̄μνh − R̄hμν

þ 1

2
R̄ḡμνhþ R̄αβḡμνhαβ þ 8R̄αðμhανÞ ¼ 0; ð2:4Þ

where use the standard notation AðμνÞ ≡ ðAμν þ AνμÞ=2 for
the symmetrization of any rank-2 tensor Aμν.
Let us now specialize these equations to the case where

the background metric is the Schwarzschild metric,
expressed as

ḡμνdxμdxν ¼ −
�
1 −

rs
r

�
dt2 þ

�
1 −

rs
r

�
−1
dr2

þ r2ðdθ2 þ sin2θ dφ2Þ; ð2:5Þ

where rs ¼ 2Ms is the Schwarzschild radius, Ms being the
mass of the black hole.
Given the spherical symmetry of the background sol-

ution, it is convenient to decompose the metric perturba-
tions hμν into (scalar, vectorial, and tensorial) spherical
harmonics that are defined from the standard Ylmðθ;φÞ
functions and their derivatives with respect to θ and φ. They
are labeled by the two multipole integers l and m (with
l ≥ 0 and −l ≤ m ≤ l).
Furthermore, one can distinguish axial and polar modes,

which behave differently under the parity transformation
r⃗ → −r⃗: the polar, or even-parity, modes transform as
ð−1Þl, similarly to the scalar spherical harmonics
Ylmðθ;φÞ, whereas the axial, or odd-parity, modes trans-
form as ð−1Þlþ1. These modes can be treated separately as
they are decoupled at linear order. Moreover, we consider
here only the modes l ≥ 2. The particular cases of
the l ¼ 0 and l ¼ 1 modes are briefly discussed in
Appendix A 3.
Since the background metric is static, it is also conven-

ient to decompose the time dependence of the perturbations
into Fourier modes,

Fðt; rÞ ¼
Z þ∞

−∞
dω F̃ðω; rÞe−iωt: ð2:6Þ

In the rest of this paper, we will use the same notation for
the time-dependent function F and its Fourier transform, as
there will be no ambiguity. From a practical point of view,
we simply replace every time derivative by a multiplication
by −iω in the linearized equations, which leads to a system
of ordinary differential equations with respect to the radial
variable r.

In both axial and polar sectors, the equations of motion
can be reduced to a system of two first order ordinary
differential equations, as we will show below.

2. Axial perturbations

Wechoose the usual Regge-Wheeler gauge [3] to describe
the axial modes. As recalled in Appendix A 1, in this gauge
the perturbations for l ≥ 2 are parametrized by three
families of functions hlm0 , hlm1 and hlm2 according to

htθ ¼
1

sin θ

X
l;m

hlm0 ∂φYlmðθ;φÞ;

htφ ¼ − sin θ
X
l;m

hlm0 ∂θYlmðθ;φÞ;

hrθ ¼
1

sin θ

X
l;m

hlm1 ∂φYlmðθ;φÞ;

hrφ ¼ − sin θ
X
l;m

hlm1 ∂θYlmðθ;φÞ; ð2:7Þ

while the other components vanish.
For these perturbations, the equations of motion (2.4)

reduce to the following three equations

Etθ¼2

�
rs
r
−1−λ

�
h0ðt;rÞþrðr−rsÞ

∂2h0
∂r2

−2ðr−rsÞ
∂h1
∂t −rðr−rsÞ

∂2h1
∂t∂r¼0;

Erθ¼−2λh1ðt;rÞ−
2r2

r−rs

∂h0
∂t þ

r3

r−rs

∂2h0
∂t∂r−

r3

r−rs

∂2h1
∂t2 ¼0;

Eθθ¼2rsh1ðt;rÞþ2rðr−rsÞ
∂h1
∂r −

2r3

r−rs

∂h0
∂t ¼0; ð2:8Þ

where we have introduced the notation

2λ≡ lðlþ 1Þ − 2; ð2:9Þ

as the equations Etφ ¼ 0, Erφ ¼ 0, Eφφ ¼ 0 and Eθφ ¼ 0
are identical to the above ones.
Since there are only two independent functions, h0 and

h1, one expects one of the above equations to be redundant.
This is indeed verified by noting the following relation
between the equations (2.8) and their derivatives, written
now in the frequency domain,

dErθ

dr
þ ir2ω
ðr − rsÞ2

Etθ þ
rs

rðr − rsÞ
Erθ

þ λ

rðr − rsÞ
Eθθ ¼ 0: ð2:10Þ

This shows that the two equations Erθ ¼ 0 and Eθθ ¼ 0 are
sufficient to fully describe the dynamics of axial
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perturbations. As a consequence, the initial system (2.8)
reduces to

dY
dr

¼MðrÞY;

MðrÞ¼
�

2=r 2iλðr− rsÞ=r3− iω2

−ir2=ðr− rsÞ2 −rs=rðr− rsÞ

�
; ð2:11Þ

where the two components of the column vector Y ≡
TðY1; Y2Þ are Y1ðrÞ≡ h0ðrÞ and Y2ðrÞ≡ h1ðrÞ=ω. Notice
that we divided the variable h1ðrÞ by ω in the definition of
Y2 in order to get a system which does not involve powers
of ω higher than 2, or equivalently which is at most second
order in time if one inverts the Fourier transform (2.6).

3. Polar perturbations

After fixing the gauge, polar perturbations are para-
metrized by four families of functions Hlm

0 , Hlm
1 , Hlm

2 and
Klm as shown in Appendix A 2. The nonvanishing metric
perturbations then read

htt ¼ AðrÞ
X
l;m

Hlm
0 ðt; rÞYlmðθ;φÞ;

htr ¼
X
l;m

Hlm
1 ðt; rÞYlmðθ;φÞ; ð2:12Þ

hrr ¼
1

AðrÞ
X
l;m

Hlm
2 ðt; rÞYlmðθ;φÞ;

hab ¼
X
l;m

Klmðt; rÞgabYlmðθ;φÞ; ð2:13Þ

where AðrÞ≡ 1 − rs=r is included in the definitions for
later convenience, and the indices a or b in the last equation
are the angles θ or φ.
The linearized Einstein’s equations yield seven distinct

equations, which can be found in (B1) of Appendix B.
After a few manipulation, also discussed in Appendix B,
one finds that these equations of motion can be reduced to
two first-order equations only. In the frequency domain,
they read

dY
dr

¼ MðrÞY; MðrÞ ¼ 1

3rs þ 2λr

0
B@

rsð3rsþðλ−2ÞrÞ−2r4ω2

rðr−rsÞ
2iðλþ1ÞðrsþλrÞþ2ir3ω2

r2

irð9r2s−8λr2þ8ðλ−1ÞrsrÞþ4ir5ω2

2ðr−rsÞ2
2r4ω2−rsð3rsþ3λrþrÞ

rðr−rsÞ

1
CA ð2:14Þ

where now the two components of Y are defined by
Y1ðrÞ≡ KðrÞ and Y2ðrÞ≡H1ðrÞ=ω. Similarly to the axial
sector, the definition of Y2 is motivated by the fact that the
resulting system involves at most ω2 terms.

B. Schrödinger-like equation and effective potential

In both axial and polar sectors, the equations of motion
have been recast in the form of a system consisting simply
of two first-order differential equations (with respect to the
radial variable), namely (2.11) for axial perturbations and
(2.14) for polar perturbations. In both cases, we now recall
how this system can be rewritten as a Schrödinger-like
equation.

1. From the first order system to the
Schrödinger-like equation

As shown in [3,4], one can rewrite these systems as a
single second order (in radial derivatives) Schrödinger-like
equation for a unique dynamical variable. Reformulating
a first order system of this kind as a Schrödinger equation
is, in general, not an easy task because one has to ensure
that the Schrödinger equation is second order in time and
in space. It requires, in particular, a decoupling of the
dynamical variables involved in the original first order
system and a “clever” choice for the dynamical variable that
should satisfy the second order Schrödinger equation.

In this section, we will describe how this works for the
two systems (2.11) and (2.14) which take the general form

dY
dr

¼ MðrÞY; ð2:15Þ

where the coefficients of the matrix M are polynomials (of
degree at most 2) in ω and rational functions in r.
First, we consider the general (linear) change of vector

YðrÞ ¼ PðrÞŶðrÞ; ð2:16Þ

where Ŷ is a new column vector and the two dimensional
invertible matrix P has not been fixed at this stage. We also
define a new radial coordinate r� and introduce the
“Jacobian” of the transformation nðrÞ≡ dr=dr�. Now,
the idea is to show that it is possible to find a matrix P
such that the new system satisfied by Ŷ takes the canonical
form

dŶ
dr�

¼
�

0 1

VðrÞ − ω2 0

�
Ŷ; ð2:17Þ

where the potential VðrÞ depends on r, but not on ω.
Somehow, the first component Ŷ1 plays the role of the
“momentum” conjugate to the second component Ŷ2 which
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would immediately implies that Ŷ1 is the “canonical”
variable satisfying the required Schrödinger-like equation

d2Ŷ1

dr2�
þ ðω2 − VðrÞÞŶ1 ¼ 0: ð2:18Þ

2. Axial modes

Applying this procedure to the system (2.11) for the axial
perturbations is rather simple.1 Indeed, the appropriate
transition matrix is given by

PðrÞ ¼
�

1 − rs=r r

−ir2=ðr − rsÞ 0

�
; ð2:20Þ

while nðrÞ ¼ 1 − rs=r, which means that r� coincides with
the “tortoise” coordinate,

r� ≡
Z

dr
1 − rs=r

¼ rþ rs lnðr=rs − 1Þ: ð2:21Þ

Finally the effective potential VoddðrÞ for the axial pertur-
bations takes the form

VoddðrÞ ¼
�
1 −

rs
r

�
2ðλþ 1Þr − 3rs

r3
: ð2:22Þ

Note that this potential vanishes both at spatial infinity
(r → þ∞) and at the horizon (r → rs).

3. Polar modes

The case of polar perturbations is slightly more involved.
Starting from the system (2.14), we find that the transition
matrix leading to a canonical form (2.17) is given by2

P ¼

0
B@

3r2sþ3λrsrþ2r2λðλþ1Þ
2r2ð3rsþ2λrÞ 1

−iþ irs
2ðr−rsÞ þ

3irs
3rsþ2λr − ir2

r−rs

1
CA; ð2:23Þ

with, in addition, nðrÞ ¼ 1 − rs=r, which means that r� is
still the tortoise coordinate (2.21). Finally, the correspond-
ing potential VevenðrÞ reads

VevenðrÞ¼
�
1−

rs
r

�
9r3sþ18r2srλþ12rsr2λ2þ8r3λ2ð1þλÞ

r3ð3rsþ2rλÞ2 :

ð2:24Þ

Despite their different analytic forms, we notice in Fig. 1
that the potentials VoddðrÞ and VevenðrÞ are quite similar,
although distinct. In fact, there exists an underlying sym-
metrybetween these twopotentials, further explained in [13],
leading to the isospectrality theorem which states that the
spectra of axial and polar perturbations are exactly the same.

4. Quasinormal modes and boundary conditions

Finding quasinormal modes requires to impose the
appropriate boundary conditions: the modes must be out-
going at infinity and ingoing at the horizon.
Since both Vodd and Veven go to zero at infinity and at the

horizon, Eq. (2.18) becomes asymptotically

d2X̂1

dr2�
þ ω2X̂1 ≈ 0 ðr� → �∞Þ; ð2:25Þ

where ≈ is an equality up to subleading corrections.3

Therefore, at both boundaries, the function X̂1 behaves like

FIG. 1. Illustration of the effective potentials (for axial and
polar modes) for a Schwarzschild black hole. The parameters are
such that rs ¼ 2 (i.e., the mass of the black is 1 in natural units)
and l ¼ 2 here.

1When one changes variables according to (2.16), the new
variable Ŷ satisfies the differential equation

dŶ
dr�

¼ M̂ Ŷ; M̂ ≡ nðrÞðP−1MP − P−1P0Þ; ð2:19Þ

where P0 is the derivative of P with respect to r, M is the matrix
introduced in (2.11) while M̂ is the matrix entering in the system
(2.17). They take a similar form M ¼ M½0� þ ω2M½2� and M̂ ¼
M̂½0� þ ω2M̂½2� where the expressions of M½0�, M½2�, M̂½0� and M̂½2�
are trivially obtained. As P does not depend on ω, the relation
between M and M̂ translates into the two matricial relations
M̂½2� ¼ nðrÞP−1M½2�P and M̂½0� ¼ nðrÞðP−1M½0�P−P−1P0Þ which
can be viewed as 8 equations for the 6 unknowns nðrÞ, VðrÞ
together with the four components of P. Interestingly, the system
is not overdetermined and admits a solution for P (2.20), for the
potential VðrÞ (2.22) and for the function nðrÞ which can be
shown to be associated with the tortoise coordinate (2.21). Details
can be found in the Appendix D of the companion paper.

2We follow the same method as the one described in the
previous footnote for the axial mode.

3Near the horizon, V ¼ Oðr − rsÞ for both potentials, hence
we assume r2sω2 ≫ r=rs − 1. At infinity, V ¼ Oð1=r2Þ for both
potentials as well, hence we assume ω2r2 ≫ 1 in this limit.
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X̂1ðrÞ ≈Aeiωr� þ Be−iωr� ; ð2:26Þ

where A and B are integration constants which take
different values at the horizon and at infinity.
The physical interpretation of these modes is more

transparent if we include their time dependence explicitly,
which gives

�
X̂1ðt; rÞ ≈Ahore−iωðt−r�Þ þ Bhore−iωðtþr�Þ when r→ rs;

X̂1ðt; rÞ ≈A∞e−iωðt−r�Þ þ B∞e−iωðtþr�Þ when r→∞:

ð2:27Þ
We can interpret each term as a radially propagating wave:
the terms proportional to Ahor and A∞ are outgoing while
the terms proportional toBhor andB∞ are ingoing. Imposing
a purely outgoing behavior at infinity and a purely ingoing
behavior at the horizon, i.e., such thatAhor ¼ 0 andB∞ ¼ 0
severely restricts the possible values of ω. These values can
be found numerically by integrating the Schrödinger-like
equation (see [14] and the reviews [15–18]).
Finally, one can easily deduce the asymptotic expansion

of the original gravitational perturbations using the trans-
formations (2.16). For the axial modes, the leading order
terms at infinity are thus given by

h0ðrÞ ≈ iωrðA∞eiωr� − B∞e−iωr� Þ;
h1ðrÞ ≈ −iωrðA∞eiωr� þ B∞e−iωr� Þ; ð2:28Þ

while the leading order terms at the horizon read

h0ðrÞ ≈ iωrsðAhoreiωr� − Bhore−iωr� Þ;

h1ðrÞ ≈ −
iωr2s
ε

ðAhoreiωr� þ Bhore−iωr� Þ; ð2:29Þ

where we have introduced the variable ε≡ r − rs which
satisfies ε ≪ rs near the horizon.
For the polar modes, the leading order terms at infin-

ity are

KðrÞ ≈ iωðA∞eiωr� − B∞e−iωr�Þ;
H1ðrÞ ≈ rω2ðA∞eiωr� − B∞e−iωr� Þ; ð2:30Þ

while the leading terms at the horizon are a bit more
involved and read

KðrÞ ≈ λþ 1þ 2iωrs
rs

Ahoreiωr�

þ λþ 1 − 2iωrs
rs

Bhore−iωr� ; ð2:31Þ

H1ðrÞ ≈
irsωð1 − 2iωrsÞ

2ε
Ahoreiωr�

þ irsωð1þ 2iωrsÞ
2ε

Bhore−iωr� : ð2:32Þ

In the next section, we will recover these asymptotic
behaviors in a completely different way.

III. FIRST ORDER APPROACH TO
SCHWARZSCHILD PERTURBATIONS

As we have seen in Sec. II B, finding a (second-order)
Schrödinger-like equation for the metric perturbations
starting from the Einstein equations requires some manip-
ulations of the equations of motion and an appropriate
choice of the function that verifies the Schrödinger-like
equation.
The rest of this paper will be devoted to obtaining the

asymptotic behaviors of the perturbations by using a
different method. Although this is of course not necessary
for the perturbations of Schwarzschild in general relativity,
our method may prove to be very useful in situations where
a Schrödinger-like system is not obvious to find or even
impossible to reach. In such a case, one would need an
alternative method to determine the asymptotic limits of the
solutions of the system, and from them, to compute the
quasinormal modes.
The general method will be described in a systematic

way in the next section. As the general procedure is
somewhat tedious, we have preferred to present it first,
in a pedestrian way, for the perturbations of Schwarzschild.
A more mathematically minded reader might prefer to jump
directly to the next section and later come back to this
section to find a particular application of the general
method.

A. Method

Ignoring the traditional Schrödinger reformulation, we
now go back to the original first-order system given in
(2.11) or (2.14). Schematically, we thus have a first-order
system of the form

dY
dr

¼ MðrÞY; ð3:1Þ

where YðrÞ is a column vector andMðrÞ a square matrix. In
order to study the system at spatial infinity, say, i.e., when
r → ∞, one can expand the matrix MðrÞ in powers of r,

MðrÞ ¼ Mprp þ � � � þM0 þM−1
1

r
þO

�
1

r2

�
ð3:2Þ

where all the matrix coefficients Mi are r-independent. We
stop here the expansion at order 1=r, which is sufficient for
the simplest cases, but higher orders might be needed in
general.
If all matrices Mi are diagonal, it is immediate to

integrate the truncated system, which then consists of n
ordinary differential equations of the form
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y0ðrÞ ¼
�
λprp þ � � � þ λ0 þ

μ

r

�
yðrÞ; ð3:3Þ

whose solution is

yðrÞ¼y0eqðrÞrμ; qðrÞ¼ λp
pþ1

rpþ1þ���þλ0r: ð3:4Þ

Putting together these n solutions, we thus get the solution
to the system (3.1), assuming all matrices Mi in (3.2) are
diagonal, in the form

YðrÞ ¼ eϒðrÞrΔFðrÞY0 ð3:5Þ

where Y0 is a constant vector, corresponding to the n
integration constants, ϒ is a diagonal matrix whose
coefficients are polynomials of degree at most pþ 1, Δ
is a constant diagonal matrix and FðrÞ is a matrix which is
regular at infinity (i.e., whose limit is finite).
Of course, in general, the matrices Mi are not diagonal

but, remarkably, it is always possible to transform the
truncated system into a fully diagonal system, in a finite
number of steps following an algorithm introduced in
[19–22], which we will present in full details in the next
section.
At each step in the algorithm, one introduces a new

vector Ỹ, related to the vector Y of the previous step by

Y ¼ PỸ;

where P is an invertible matrix so that the previous system
(3.1) is transformed into a new, but equivalent, system of
the form

dỸ
dr

¼ M̃ðrÞỸ; M̃ðrÞ≡ P−1MP − P−1 dP
dr

: ð3:6Þ

The idea is then to choose an appropriate transition matrix
P at each step in order to diagonalize, order by order, the
matrices that appear in the expansion of M. Once all
the matrices are diagonalized, one can integrate directly the
diagonal system, as we have seen earlier, and obtain the
general asymptotic solution of the system.
For the asymptotic behavior near the horizon, one

proceeds in the same way by noting that the variable
z ¼ 1=ðr − rsÞ goes to infinity when r → rs. In the rest of
this section, we will illustrate the algorithm by considering
in turn the asymptotic behaviors of the axial and polar
modes.

B. Axial modes

The analysis of the asymptotic behavior of the first order
system (2.11) is relatively simple and instructive. We recall
that the system is of the form

dY
dr

¼ MðrÞY; ð3:7Þ

with

YðrÞ≡
�

h0ðrÞ
h1ðrÞ=ω

�
;

MðrÞ≡
�

2=r 2iλðr − rsÞ=r3 − iω2

−ir2=ðr − rsÞ2 −rs=rðr − rsÞ

�
: ð3:8Þ

1. Asymptotic analysis at spatial infinity

We first study the asymptotic behavior at spatial infinity,
i.e., when r → ∞. The asymptotic expansion of the matrix
MðrÞ at large r reads

MðrÞ ¼ M0 þ
1

r
M−1 þO

�
1

r2

�
; M0 ≡ −i

�
0 ω2

1 0

�
;

M−1 ≡ 2

�
1 0

−irs 0

�
: ð3:9Þ

The leading term M0 is diagonalizable and one can go to a
basis where it is diagonal, by introducing the new vector
Yð1Þ defined by

Y ≡ Pð1ÞYð1Þ; Pð1Þ ¼
�
ω −ω
1 1

�
: ð3:10Þ

According to (3.6), this gives the new system

dYð1Þ

dr
¼ Mð1ÞYð1Þ;

Mð1ÞðrÞ ¼ Mð1Þ
0 þ 1

r
Mð1Þ

−1 þO
�
1

r2

�
; ð3:11Þ

with

Mð1Þ
0 ≡

�−iω 0

0 iω

�
;

Mð1Þ
−1 ≡

�−iωrs þ 1 iωrs − 1

−iωrs − 1 iωrs þ 1

�
: ð3:12Þ

We need some extra work to diagonalize the next-to-

leading order matrix Mð1Þ
−1 while keeping the leading order

matrix diagonal.
This can be achieved by introducing a new vector Yð2Þ

defined by

Yð1Þ ≡ Pð2ÞYð2Þ; Pð2Þ ¼ I þ 1

r
Ξ; ð3:13Þ

where I is the identity matrix and Ξ a constant matrix.
Indeed, it is immediate to see that such a change of variable
leads to the equivalent differential system,
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dYð2Þ

dr
¼ Mð2ÞYð2Þ;

Mð2ÞðrÞ ¼ Mð2Þ
0 þ 1

r
Mð2Þ

−1 þO
�
1

r2

�
; ð3:14Þ

with

Mð2Þ
0 ¼ Mð1Þ

0 ; Mð2Þ
−1 ¼ Mð1Þ

−1 þ ½Mð1Þ
0 ;Ξ�: ð3:15Þ

The leading matrix remains unchanged while one can

easily find a matrix Ξ so that Mð2Þ
−1 is diagonal. Notice that

Ξ appears in (3.15) only in a commutator with the diagonal

matrix Mð1Þ
0 , hence the diagonal part of Ξ is irrelevant and

we can already fix the diagonal terms of Ξ to 0. In this case,

the solution to (3.15) with Mð2Þ
−1 diagonal is unique and

given by

Ξ ¼ 1

2iω

�
0 iωrs − 1

iωrs þ 1 0

�
: ð3:16Þ

We have thus managed to obtain a fully diagonalized
system, up to order 1=r, with the matrix

Mð2ÞðrÞ ¼
�−iω 0

0 iω

�
þ 1

r

�
1 − iωrs 0

0 1þ iωrs

�

þO
�
1

r2

�
: ð3:17Þ

This system can be immediately integrated in the form
(3.5), and the asymptotic solution reads

Yð2ÞðrÞ ¼ ð1þOð1=rÞÞ
�
c−e−iωrr1−iωrs

cþeþiωrr1þiωrs

�
; ð3:18Þ

where c� are integration constants. Taking into account the
time dependency e−iωt of the modes, the two components

Yð2Þ∓ of Yð2Þ are of the form

e−iωtYð2Þ∓ ðrÞ ¼ ð1þOð1=rÞÞc∓re−iωðt�ðrþrs ln rÞÞ

¼ c∓ðrþOð1ÞÞe−iωðt�r�Þ; ð3:19Þ

where it is convenient to use the “tortoise” coordinate r�,
introduced in (2.21), noting that

r� ¼ rþ rs lnðr=rs − 1Þ ¼ rþ rs ln rþOð1Þ: ð3:20Þ

As a consequence, one can identify Yð2Þ
− as an ingoing mode

and Yð2Þ
þ as an outgoing mode at spatial infinity.

Finally, we can return to the original vector Y thanks to
the transformation

Y ¼ Pð1ÞPð2ÞYð2Þ ¼
�
ω −ω
1 1

��
1þ Ξ

r

�
Yð2Þ; ð3:21Þ

in order to obtain the asymptotic expansion of the two
original gravitational perturbations h0 and h1 at spatial
infinity,

h0ðrÞ ¼ ωðc−e−iωr� − cþeþiωr� ÞðrþOð1ÞÞ; ð3:22Þ

h1ðrÞ ¼ ωðc−e−iωr� þ cþeþiωr� ÞðrþOð1ÞÞ: ð3:23Þ

One can immediately check that these expressions
agree with the asymptotic expansion (2.28) obtained
from the Schrödinger-like equation (with c−¼−iB∞ and
cþ¼−iA∞).

2. Asymptotic analysis near the black hole horizon

Let us now study the behavior of the axial modes near the
horizon. In this case, it is convenient to introduce the new
radial variable ε≡ r − rs and expand the matrix M for the
system (3.8) in powers of ε. One finds4

MðεÞ ¼ 1

ε2
M2 þ

1

ε
M1 þM0 þOðεÞ; ð3:25Þ

with the matrix coefficients

M2 ≡
�

0 0

−ir2s 0

�
; M1 ≡

�
0 0

−2irs −1

�
;

M0 ≡
�
2=rs −iω2

−i 1=rs

�
: ð3:26Þ

An important difference with the previous situation is that
the leading term M2 is no longer diagonalizable but
nilpotent instead. We thus need to first perform a trans-
formation that yields a diagonalizable leading matrix,
taking advantage of the derivative term in (3.6). This
can be done with the transformation

Y ≡ Pð1ÞYð1Þ; Pð1ÞðεÞ≡
�
1 0

0 1=ε

�
; ð3:27Þ

leading to the new system

4Note that ε goes to zero here, in contrast to the previous case
where the variable r was going to infinity. One could work in a
fully analogous system by using the variable z ¼ 1=ε, with the
system

dY
dz

¼ M̃ðzÞY; M̃¼−
1

z2
Mðz−1Þ¼−M2−M1

1

z
−M0

1

z2
: ð3:24Þ

In the present case, one must push the expansion up to order 1=z2
because the leading matrix M2 is nilpotent.
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dYð1Þ

dε
¼ Mð1ÞYð1Þ;

Mð1ÞðεÞ ¼ −
1

ε

�
0 iω2

ir2s 0

�
þOð1Þ: ð3:28Þ

The transformation (3.27) has eliminated the term in 1=ε2

in the expansion and the leading term Mð1Þ
1 is now

diagonalizable, so that only the expansion of Mð1Þ up to
order 1=ε is required (see discussion in the footnote). It is

worth noticing that Mð1Þ
1 receives contributions from M2,

M1 and M0. In particular, some of its coefficients involve
the frequency ω which is originally present only in M0.
The final step of the analysis consists in diagonalizing

the system (3.28), via the transformation

Yð1Þ ¼ Pð2ÞYð2Þ; Pð2Þ ≡
�
ω −ω
rs rs

�
; ð3:29Þ

leading to

dYð2Þ

dε
¼ Mð2ÞYð2Þ;

Mð2ÞðεÞ≡ 1

ε

�−iωrs 0

0 iωrs

�
þOð1Þ: ð3:30Þ

Integrating this equation yields

Yð2ÞðεÞ ¼ ð1þOðεÞÞ
�
c−ε−iωrs

cþεþiωrs

�

¼ ð1þOðεÞÞ
�
c−e−iωr�

cþeþiωr�

�
; ð3:31Þ

where we have again expressed the result in terms of the
tortoise coordinate r�, which behaves as r� ¼ rs ln εþ
Oð1Þ near the horizon. One can immediately recognize the
ingoing and outgoing modes at the horizon.
Finally, one can return to the original functions, via

Y ¼ Pð1ÞPð2ÞYð2Þ, and derive the expressions

h0ðrÞ ¼ ωðc−e−iωr� − cþeþiωr� Þð1þOðεÞÞ; ð3:32Þ
h1ðrÞ ¼

ωrs
ε

ðc−e−iωr� þ cþeþiωr�Þð1þOðεÞÞ; ð3:33Þ

which coincide with the asymptotic expansions (2.29)
obtained from the Schrödinger-like equation (with
c− ¼ −irsBhor, cþ ¼ −irsAhor).

C. Polar modes

The dynamics of the polar perturbations is described by
the first-order system (2.14), of the form

dY
dr

¼ MðrÞY; with YðrÞ≡
�

KðrÞ
H1ðrÞ=ω

�
; ð3:34Þ

and the matrix

MðrÞ ¼ 1

3rs þ 2λr

� rsð3rsþðλ−2ÞrÞ−2r4ω2

rðr−rsÞ
2iðλþ1ÞðrsþλrÞþ2ir3ω2

r2

irð9r2s−8λr2þ8ðλ−1ÞrsrÞþ4ir5ω2

2ðr−rsÞ2
2r4ω2−rsð3rsþ3λrþrÞ

rðr−rsÞ

�
: ð3:35Þ

1. Asymptotic analysis at spatial infinity

Expanding (3.35) in powers of r, one gets

MðrÞ ¼
�

0 0

iω2

λ 0

�
r2 þ

0
B@ − ω2

λ 0

irsω2ð4λ−3Þ
2λ2

ω2

λ

1
CArþ

0
B@ − ð2λ−3Þrsω2

2λ2
iω2

λ

−2iþ 3ið4λ2−4λþ3Þr2sω2

4λ3
ð2λ−3Þrsω2

2λ2

1
CA

þ 1

r

0
B@ − ð4λ2−6λþ9Þr2sω2

4λ3
− 3irsω2

2λ2

ið8ð1−2λÞλ3rs−ð27−4λðλð8λ−9Þþ9ÞÞr3sω2Þ
8λ4

ð4λ2−6λþ9Þr2sω2

4λ3

1
CAþO

�
1

r2

�
: ð3:36Þ

In contrast with the axial modes at spatial infinity, the
leading matrix is of order r2 and is nilpotent. So, in
principle, one needs to apply a procedure similar to the
near-horizon analysis of axial modes, which will be
presented in full generality in the next section, and then

diagonalize in turn all subsequent orders. All this involves
many steps which are straightforward but rather tedious to
describe.
To shorten our discussion, we provide directly the trans-

formation that combines all these intermediate steps, given by
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Y ¼ PỸ; P ¼
�
S þ T S − T

U − V U þ V

�
; ð3:37Þ

with the functions

SðrÞ≡ iðr − rsÞðð2λ − 3Þrs þ 4λrÞ
4λr

þ iλ
2rω2

;

T ðrÞ≡ ð1 − 2λÞrs þ 2ð1þ 2λÞr
4rω

;

UðrÞ≡ r2 þ 2λ − 3

4λ
rsr; VðrÞ≡ ir

2ω
: ð3:38Þ

This leads to the new system

dỸ
dr

¼ M̃ðrÞỸ;

M̃ðrÞ ¼
�
iω 0

0 −iω

�
þ
�−1þ iωrs 0

0 −1 − iωrs

�
1

r

þO
�
1

r2

�
; ð3:39Þ

which is diagonal and whose solution is

ỸðrÞ ¼
�
c−e−iωrr−1−iωrs

cþeþiωrr−1þiωrs

�
ð1þOð1=rÞÞ

¼ 1

r

�
c−e−iωr�

cþeþiωr�

�
ð1þOð1=rÞÞ: ð3:40Þ

This result is very similar to that obtained for axial perturba-
tions (3.18), even though the asymptotic expansion of the
matrixM is rather different. In terms of the original functions,
we find

KðrÞ ¼ i
ω
H1ðrÞ

¼ iðc−e−iωr� þ cþeþiωr� Þð1þOð1=rÞÞ; ð3:41Þ

which agreewith (2.30) (with c− ¼ −ωB∞ and cþ ¼ ωA∞).

2. Asymptotic analysis at the black hole horizon

We finally turn to the near-horizon behavior of polar
modes. The expansion of the matrix (3.35) in terms of the
small parameter ε≡ r − rs yields

MðεÞ ¼ 1

ε2
M2 þ

1

ε
M1 þM0 þOðεÞ; M2 ¼

�
0 0

γ2 0

�
;

M1 ¼
�
α1 0

γ1 δ1

�
; M0 ¼

�
α0 β0

γ0 δ0

�
; ð3:42Þ

where only a few of the coefficients αI , βI and γI will be
needed explicitly.

Once more, the dominantM2 is a nilpotent matrix and, as
in the axial case, we use the transformation

Y ¼ Pð1ÞYð1Þ with Pð1ÞðεÞ≡
�
1 0

0 1=ε

�
; ð3:43Þ

which gives the new system

dYð1Þ

dε
¼ Mð1ÞYð1Þ;

Mð1ÞðεÞ ¼ 1

ε

�
α1 β0

γ2 1þ δ1

�
þOð1Þ; ð3:44Þ

with the coefficients

α1 ¼−ð1þ δ1Þ ¼
1þ λ− 2r2sω2

3þ 2λ
;

β0 ¼
2i
r2s

ðλþ 1Þ2þ r2sω2

3þ 2λ
; γ2 ¼

ir2s
2

1þ 4r2sω2

3þ 2λ
: ð3:45Þ

The leading matrix can now be diagonalized via the
transformation

Yð1Þ ¼ Pð2ÞYð2Þ; with Pð2Þ ¼
�
α − β αþ β

1 1

�
and

α ¼ α1
γ2

; β ¼ iωrs
γ2

: ð3:46Þ

leading to the system

dYð2Þ

dε
¼ Mð2ÞYð2Þ;

Mð2Þ ¼ 1

ε

�−iωrs 0

0 iωrs

�
þOð1Þ: ð3:47Þ

Note that this expression is extremely simple and does not
involve λ, as expected, even though it appears explicitly in
Mð1Þ. We obtain immediately the asymptotic behavior of
Xð2Þ near the horizon

Yð2ÞðεÞ ¼ ð1þOðεÞÞ
�
c−e−iωr�

cþeþiωr�

�
; ð3:48Þ

which reproduces the same result as for the axial mode
(3.31). In terms of the original gravitational functionsH1ðrÞ
and KðrÞ, using the transformation Y ¼ Pð1ÞPð2ÞYð2Þ, we
recover the result (2.32), with

cþ ¼ i
2
rsð1 − 2iωrsÞAhor

c− ¼ −
i
2
rsð1þ 2iωrsÞBhor: ð3:49Þ
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This completes our study of all asymptotic behaviors of
Schwarzschild perturbations, demonstrating that one can
recover the standard results directly from the linearized
Einstein’s equations, without resorting to the Schrödinger-
like reformulation of the system.

D. Quasinormal modes

Several powerful numerical methods have been devel-
oped for the computation of quasinormal modes when the
system is of the form (1.1), but these methods cannot be
directly applied to the more general first-order system we
are dealing with. In this section, we use a simple numerical
method to show how the Schwarzschild quasinormal
modes can be recovered numerically, using directly the
first-order system instead of the Schrödinger equa-
tion (2.18). We restrict ourselves to the polar modes and
consider the system (3.34)–(3.35). The computation of the
axial quasinormal modes would be completely similar.
By definition of the quasinormal modes, we impose that

the solutions are outgoing at spatial infinity and ingoing at
the horizon, which means, using the results of Sec. III B,
that the two components of the vector Y satisfy

Y1ðrÞ≡ KðrÞ ¼ K∞ðrÞeiωr� ¼ K̃∞ðrÞeiωrriωrs ð3:50Þ

¼ KhðrÞe−iωr� ¼ K̃hðrÞðr − rsÞ−iωrs ; ð3:51Þ

whereK∞ (and K̃∞) is finite at infinity whileKh (and K̃h) is
finite at the horizon, and also

Y2ðrÞ≡H1ðrÞ=ω ¼ H∞ðrÞreiωr�
¼ H̃∞ðrÞeiωrr1þiωrs ð3:52Þ

¼ HhðrÞε−1e−iωr� ¼ H̃hðrÞðr − rsÞ−1−iωrs ; ð3:53Þ

where againH∞ (and H̃∞) is finite at infinity whileHh (and
H̃h) is finite at the horizon.
Therefore, we look for solutions of (3.34)–(3.35) using

the ansatz

KðrÞ ¼ eiωrriωrs
�
r − rs
r

�
−iωrs

fKðrÞ;

H1ðrÞ ¼ eiωrr1þiωrs

�
r − rs
r

�
−1−iωrs

fHðrÞ; ð3:54Þ

where the functions fK and fH are supposed to be finite
(hence bounded) both at the horizon and at spatial infinity,
in agreement with the required boundary conditions.
Furthermore, we introduce the new variable

u ¼ 2rs
r

− 1; ð3:55Þ

so that the black hole horizon is located at u ¼ 1 and spatial
infinity at u ¼ −1. Each function entering in the Eqs. (3.54)

is now treated as a function of u and the system of
equations (3.34)–(3.35) can be expressed in the form

P11ðuÞfKðuÞ þ P12ðuÞfHðuÞ þQ1ðuÞf0KðuÞ ¼ 0;

P21ðuÞfKðuÞ þ P22ðuÞfHðuÞ þQ2ðuÞf0HðuÞ ¼ 0; ð3:56Þ

where a prime denotes here a derivative with respect to u,
and the functions Pij and Qi are polynomials in u. This is
possible because the matrixM given in (3.35) contains only
rational fractions of r.
In order to solve the system (3.56) numerically, we adapt

the spectral method presented in [23] and we decompose
fKðuÞ and fHðuÞ onto a basis of Chebyshev polynomials.
The facts that the functions Pij and the Qi are polynomials
(hence C∞-functions) and the Chebyshev polynomials are
bounded at the boundaries ensure the boundedness of
fKðuÞ and fHðuÞ which is sufficient to enforce the required
boundary conditions. This is called a “behavioral” boun-
dary condition [24].
Then, any smooth and continuous complex-valued

function gðuÞ defined on the interval ½−1; 1� can be written
as an infinite sum of Chebyshev polynomials TnðuÞ,

gðuÞ ¼
X∞
n¼0

gnTnðuÞ; ð3:57Þ

where gn are complex coefficients. We can approximate the
function g by truncating this series at a given order N, the
approximation getting better as N is increased. Hence, we
decompose the two functions fK and fH as follows,

fKðuÞ ≈
XN
n¼0

αnTnðuÞ; fHðuÞ ≈
XN
n¼0

βnTnðuÞ; ð3:58Þ

where αn and βn are complex coefficients. Notice that the
symbol ≈ means that we truncated the series at an order N,
then the equality is not exact.
The next step is to express the differential system (3.56)

as a linear system for the coefficients αn and βn, which is
always possible due to fundamental relations satisfied by
Chebyshev polynomials.5 As a consequence, the differ-
ential system (3.56) can be recast as the following system of
algebraic equations

MNðωÞVNðαn; βnÞ ¼ 0; ð3:60Þ

5The Chebyshev polynomials satisfy the properties

T 0
nðuÞ ¼

X
m−n¼2kþ1

2m
1þ δn0

TmðuÞ;

ðuTnÞðuÞ ¼
X
m

1

2
ðð1þ δn;1Þδn−1;m þ δnþ1;mÞTmðuÞ; ð3:59Þ

where δm;n is the Kronecker symbol and k ∈ N in the first sum.
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where MN is a 2ðN þ 1Þ × 2ðN þ 1Þ matrix whose expan-
sion in powers of ω reads

MNðωÞ ¼ MN½0� þMN½1�ωþMN½2�ω2; ð3:61Þ

while the 2ðN þ 1Þ-dimensional vector VNðαn; βnÞ is such
that

TVNðαn;βnÞ≡ ðα0; � � � ; αN; β0; � � � ; βN Þ: ð3:62Þ

Following [23], we can reformulate this system as

M̃NðωÞṼNðαn; βnÞ ¼ 0; ð3:63Þ

where the matrix M̃N is now of dimension 4ðN þ 1Þ and
defined by

M̃N ¼ M̃N½0� þ M̃N½1�ω and M̃N½0� ¼
�
MN½0� MN½1�
0 I

�
;

M̃N½1� ¼
�

0 MN½2�
−I 0

�
: ð3:64Þ

Finding the values of ω such that the system (3.63) is
nontrivial is called a generalized eigenvalues problem and
can be done by a numerical engine such asMathematica or
SciPy. In practice, we have computed the eigenvalues for
different values of N and identified the ones that (almost)

coincide when N varies. There are also nonphysical
spurious modes (due to the finite size approximation),
which strongly depend on N and must be discarded. The
quasinormal modes thus identified, plotted in Fig. 2,
coincide with the well-known first quasinormal modes of
Schwarzschild.
This result demonstrates that it is feasible to compute

quasinormal modes directly from the first-order system,
even if our numerical approach is rather crude and gives a
very low precision with respect to the sophisticated
methods used in the traditional approach.

IV. GENERAL ANALYSIS

As we have seen in the previous section, it is possible to
compute the quasinormal modes of black holes in general
relativity without reformulating the linearized Einstein
equations in terms of a Schrödinger-like equation. The
advantage of this method is that it can be straightforwardly
generalized to the study of black holes in theories of
modified gravity where it might be difficult or impossible
to reduce the linearized equations to a Schrödinger-
like form.
In this section, we present a systematic algorithm for a

generic first-order system of the form (3.7), which has been
developed in the mathematics literature, first in [19] and
more recently in [20–22,25,26]. The various steps of the
algorithm presented in this section are summarized in the
flowchart diagram depicted in Appendix C.

FIG. 2. Quasinormal modes numerically found by Mathematica for rs ¼ 1 and l ¼ 2 (λ ¼ 2). The blue dots are generalized
eigenvalues for N ¼ 30, the orange dots generalized eigenvalues for N ¼ 60, and the red dots are the modes detected (eigenvalues that
change by a factor 10−3 or less). All the dots present on the imaginary axis correspond to spurious modes. We observe a symmetry with
respect to the imaginary axis. The positions of the first modes are ω0 ¼ �0.747 − 0.178i, ω1 ¼ �0.693 − 0.548i and
ω2 ¼ �0.602 − 0.957i.
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A. Asymptotic solution: overview

We consider a general system of first-order ordinary
differential equations of the form

dY
dz

¼ MðzÞY; ð4:1Þ

where Y is a n-dimensional column vector, M an n × n-
dimensional matrix and z a real variable defined in some
interval. In the following, we will consider only the
asymptotic behavior when z → þ∞, but it is straightfor-
ward to extend the algorithm near a finite value z0 where the
system is singular, by a suitable change of the variable z.
We then assume that one can expand M in powers of z,

up to some order (depending on the required precision of
the asymptotic expansion) as follows,

MðzÞ ¼ Mrzr þ � � � þM0 þ…Mr−fzr−f þOðzr−f−1Þ

¼ zr
Xf
k¼0

Mr−kz−k þOðzr−f−1Þ; ð4:2Þ

where the integer r is called the Poincaré rank of the
system, and the Mi are z-independent matrices. In most
cases,6 the general solution to the system (4.1) admits an
asymptotic expansion of the form [19]

YðzÞ ¼ eϒðzÞrΔFðzÞY0; ð4:3Þ

where Y0 is a constant vector, corresponding to n integra-
tion constants, ϒ is a diagonal matrix whose coefficients
are polynomials of degree at most rþ 1, Δ is a constant
diagonal matrix and FðzÞ is a matrix which is regular at
infinity.
The goal of the algorithm presented below is to deter-

mine explicitly the expression (4.3) up to some irrelevant
sub-leading terms. As we have already seen in the previous
section, the guiding principle in order to obtain this
expression is to fully diagonalize the differential system,
up to the appropriate order, by using iteratively trans-
formations of the vector Y into a new vector Ỹ, of the form

YðzÞ ¼ PðzÞỸðzÞ;

where P is an invertible matrix. The system (4.1) is then
transformed into a new but equivalent differential system,
given by

dỸ
dz

¼ M̃ðzÞỸ; M̃ðzÞ≡ P−1MP − P−1 dP
dz

: ð4:4Þ

The endpoint of this procedure is a system where the matrix
coefficients in the expansion of the form (4.2) are diagonal
at each order. It is then immediate to integrate the system
and to find the solution in the form (4.3), as discussed in
Sec. III A.
In the following subsections, we describe the algorithm

step by step. We have also inserted two subsections that
contain examples chosen to illustrate some of the finer
points of the algorithm. The algorithm contains several
branches, depending on whether the leading termMr in the
expansion of MðzÞ is diagonalizable or not.

B. Case 1: The leading term is diagonalizable

The simplest situation is when the leading matrix Mr is
diagonalizable, with each eigenvalue of multiplicity 1. In
this case, one first uses the transformation Y ¼ Pð1ÞYð1Þ

where Pð1Þ is a constant matrix that diagonalizesMr, which
gives the new system

dYð1Þ

dz
¼ Mð1ÞYð1Þ;

Mð1ÞðzÞ ¼ Drzr þMð1Þ
r−1z

r−1 þ � � � þMð1Þ
0

þMð1Þ
−1

1

z
þO

�
1

z2

�
; ð4:5Þ

where the matrix Dr is diagonal.
One then seeks to transform the next-to-leading matrix

Mð1Þ
r−1 into a diagonal matrix (if it is not already) without

affecting the diagonal form of the leading order. This can be
accomplished with a new transformation

Yð1Þ ¼ Pð2ÞYð2Þ; Pð2ÞðzÞ ¼ I þ 1

z
Ξð2Þ; ð4:6Þ

where Ξð2Þ is a constant matrix. Indeed, this yields the new
system

dYð2Þ

dz
¼ Mð2ÞYð1Þ;

Mð2ÞðzÞ ¼ Drzr þDr−1zr−1 þMð2Þ
r−2z

r−2 þ � � �

þMð2Þ
−1

1

z
þO

�
1

z2

�
; ð4:7Þ

with

Dr−1 ¼ Mð1Þ
r−1 þ ½Dr;Ξð2Þ�; ð4:8Þ

6Note that, in some cases, the variable z in the expression (4.3)
differs from the variable z in the original system (4.1), because a
change of variable is necessary, as will be discussed around
Eq. (4.21). Moreover, the special case where MðzÞ ¼ M−1=zþ
Oðz−2Þ with M−1 nilpotent leads to a ln z behavior at large z, as
discussed at the end of Sec. IV C.
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which is imposed to be diagonal via an appropriate choice7

for Ξð2Þ. Furthermore, Dr−1 is the diagonal part of Mð1Þ
r−1.

One can proceed similarly to “diagonalize” all the
other terms, order by order, until one gets a system of
the form8

dYðrþ2Þ

dz
¼ Mðrþ2ÞYðrþ2Þ;

Mðrþ2ÞðzÞ ¼ Drzr þ � � � þD0 þD−1
1

z
þO

�
1

z2

�
; ð4:9Þ

where all matrices are diagonal up to order 1=z. The system
can then be immediately integrated, to yield

Yðrþ2ÞðzÞ ¼ eϒðzÞzΔFðzÞY0; Δ≡D−1;

ϒðzÞ≡Dr
zrþ1

rþ 1
þ � � � þD0z; ð4:10Þ

where Y0 is a constant vector.
The asymptotic expansion of the original vector Y

can be simply deduced from the combined transformations,
i.e.,

Y ¼ Pð1ÞPð2Þ � � �Pðrþ2ÞYðrþ2Þ: ð4:11Þ

Since the PðjÞ are polynomials of 1=z, Y has exactly the
same exponential behavior (in its asymptotic expansion)
as Yðrþ2Þ.
The above procedure is not directly applicable if the

leading matrix Mr has eigenvalues of multiplicity higher
than one. In such a case, writing Mr in a block diagonal
form, with eigenvalues λi of multiplicity mi, one applies a
transformation

Yð1Þ ¼ Pð2ÞYð2Þ; ð4:12Þ

where Pð2Þ has the same block structure as Mr, with the

blocks Bi of size mi ×mi defined as Bi ¼ expð λi
rþ1

zrþ1Þ if
mi ≥ 2 and Bi ¼ 1 if mi ¼ 1. For example, if the leading

matrix is Mr ¼ Diagðλ1; λ1; λ2Þ, with r ¼ 1, then the
transformation is Pð2Þ ¼ Diagðexpðλ1 z2

2
Þ; expðλ1 z2

2
Þ; 1Þ.

Such a transformation puts the multidimensional blocks
to zero, allowing one to pursue the algorithm with the
subleading terms. One must however be careful when
coming back to the original variable Yð1Þ, since the trans-
formation Pð2Þ will greatly affect the computed asymptotic
behavior.

C. Case 2: The leading term is nondiagonalizable,
similar to a single-block Jordan matrix

Solving asymptotically a system where the dominant
term Mr is not diagonalizable is more challenging. The
basic idea consists in finding a transformation where the
leading term of the new matrix becomes diagonalizable.
This can be done by reducing progressively the Poincaré
rank of the system until the leading term is diagonalizable,
in which case the procedure of the previous subsection
becomes applicable. If the leading term never gets diago-
nalizable down to the rank r ¼ −1, then the general
formula (4.3) for the asymptotic expansion is not valid
but the system can nevertheless be integrated explicitly.
The reduction of the Poincaré rank together with the

diagonalization of the leading term is done in different
steps, which we now describe, first when the leading term is
similar to a Jordan matrix with a single block. The case of a
Jordan matrix with several blocks will be discussed later, in
section IV E.

1. Step 1. Transformation to a Jordan block

Starting from the asymptotic expansion (4.2) of the
matrix M, we use the transformation X ¼ Pð1ÞXð1Þ to write

Mð1Þ
r ¼ P−1

ð1ÞMrPð1Þ in a Jordan canonical form (although

with a lower triangular matrix). We assume here that Mð1Þ
r

contains a single (lower triangular) Jordan block with
eigenvalue λ, i.e., of the form

Mð1Þ
r ¼

0
BBBBB@

λ 0 � � �
1 λ 0 � � �
0 1 λ 0 � � �
..
.

1
CCCCCA

≡ λI þ JðnÞ; ð4:13Þ

where JðnÞ has the property to be nilpotent (we recall that n
is the dimension of the matrix).

2. Step 2. Transformation to a nilpotent matrix

We then apply the transformation

Yð1Þ ¼Pð2ÞYð2Þ; Pð2ÞðzÞ≡ exp

�
λ

rþ 1
zrþ1

�
I; ð4:14Þ

7To find Ξ such that the matrix D̃ ¼ M þ ½D;Ξ� is diagonal,
M being arbitrary and D diagonal, one notices that ½D;Ξ�ij ¼
ðdi − djÞΞij where di are the eigenvalues of D. Consequently, D̃
is given by the diagonal component ofM and the coefficients of Ξ
satisfy ðdi − djÞΞij þMij ¼ 0, which always admit at least one
solution for each Ξij as long as all di are different.

8Note that we could have proceeded in a single step by
introducing the new variable Ỹ defined by Y ¼ PðzÞỸ with
PðzÞ ¼ P0 þ 1

z P1 þ � � � þ 1
zrþ1 Prþ1 and determining the constant

matrices Pj so that M̃ðzÞ is equal to (4.9). The calculation we
have just done proves this is possible with Ỹ ¼ Yðrþ2Þ.
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which renders the leading term nilpotent9

Mð2ÞðzÞ ¼ JðnÞzr þMð2Þ
r−1z

r−1 þ � � � þMð2Þ
0

þMð2Þ
−1

1

z
þO

�
1

z2

�
: ð4:16Þ

3. Step 3. Normalization and reduction of the Poincare´
rank

The next step consists in reducing the Poincaré rank of
the system by using the transition matrix

PðzÞ ¼ Dðn; zÞ

≡

0
BBBBBBBB@

1 0 0 � � � � � � 0

0 z 0 � � � � � � 0

0 0 z2 0 � � � 0

..

. . .
. ..

.

0 � � � � � � zn−1

1
CCCCCCCCA
; ð4:17Þ

which satisfies the useful property

P−1JðnÞP ¼ 1

z
JðnÞ: ð4:18Þ

A transformation with the above P will thus reduce the
order of the leading term JðnÞzr, but will also affect the
sub-dominant terms in the expansion (4.16) of Mð2Þ, in
particular Mð2Þ

r−1 which could generate terms whose order is
higher than r − 1 in the new matrix.
To avoid this situation, we need first to “normalize” the

system, with the transformation

Pð3ÞðzÞ ¼ I þ 1

z
Λð3Þ; ð4:19Þ

where Λð3Þ is a constant matrix, chosen such that such that

the next-to-leading order matrix Mð3Þ
r−1 in the new matrix

expansion contains only zeros except possibly in the first
row. Let us stress that this transformation leaves the leading
term of the expansion unchanged. The new system asso-
ciated with Mð3Þ is said to be normalized.
One can then perform the transformation generated by

the transition matrix

Pð4ÞðzÞ ¼ Dðn; zÞ; ð4:20Þ

which, in most cases, gives a reduced Poincaré rank.
There are however a few exceptions where the reduction
does not work. These special cases require a more
general transformation, with a transition matrix of the
form

Pð4ÞðzÞ ¼ Dðn; zp=qÞ; ð1 ≤ p ≤ q ≤ nÞ ð4:21Þ

where p and q are co-prime integers. For example, when
n ¼ 4, the possible choices are f1=4; 1=3; 1=2; 2=3; 3=4; 1g,
where the last value corresponds to the generic case (4.20).
To identify the appropriate value of p=q, one must test
successively the possiblevalues, in decreasing order, until the
transformation (4.21) effectively leads to a system with a
lower Poincaré rank. The corresponding value ofp=q is said
to be “admissible”. In practice, this can be understood as a
change of variable,10 z being replaced by u ¼ zp=q.

4. Step 4. Diagonalizable or not diagonalizable?

The next step depends on the nature of the system
ðYð4Þ;Mð4ÞÞ, which possesses a lower Poincaré rank than
the initial system. If the leading term of Mð4Þ is diago-
nalizable, one proceeds as in Sec. IV B.
If Mð4Þ is not diagonalizable, one needs to reduce again

the Poincaré rank of the system, unless one has already
reached r ¼ −1, in which case one can jump directly to the
next paragraph. Otherwise, one must distinguish the
following different cases.

(i) If the leading term is similar to a single-block Jordan
matrix and we took p=q ¼ 1 in the previous step, we
repeat the procedure of this subsection.

(ii) If the leading term is similar to a single-block Jordan
matrix but we took p=q < 1 in the previous step,
we discard the last step, and start again with the
normalized system Mð3Þ. However, this time, we
normalize the system up to second order: after
having normalized M−1, we repeat the procedure
with z2 instead of z in Pð3Þ (4.19) and require that
M−2 has a specific form. Details can be found in
[20]. If necessary, one can pursue the normalization
to higher orders.

(iii) If the Jordan canonical form of the leading term
contains several blocks, we go to Sec. IV E.

Eventually we obtain either a system with a diagonaliz-
able leading term, which can be solved following
Sec. IV B, or a system of Poincaré rank r ¼ −1 with a
nilpotent leading term. In the latter case, the solution is
equivalent to a polynomial of ln z at large z. Indeed, a
system of the form9This follows from the relation

P−1
ð2ÞðzrðλI þ JðnÞÞPð2Þ − P−1

ð2Þ
dPð2Þ
dz

¼ zrðMð1Þ
r − λIÞ ¼ zrJðnÞ:

ð4:15Þ

10In this case, the asymptotic expansion of the solution may
have an exponential behavior where the argument QðzÞ is not a
polynomial of z but rather a polynomial of z1=q.
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dY
dz

¼ μ0
z

0
BBBBB@

0 0 � � �
1 0 0 � � �
0 1 0 0 � � �
..
.

1
CCCCCA
Y; ð4:22Þ

where μ0 is an arbitrary constant, is easily integrated. The
components Yi (for 1 ≤ i ≤ n) are obtained iteratively and
are given by Y1ðzÞ ¼ ξ1, Y2ðzÞ ¼ ξ1 ln zþ ξ2 and more
generally,

YiðzÞ ¼
Xi

j¼1

ξj
ði − jÞ! ðμ0 ln zÞ

i−j; ð4:23Þ

where the ξi are n constants of integration. All the
components of Y are thus polynomials of ln z at large z.

D. An example with a nilpotent leading term

Let us give a concrete example of the procedure used for
systems with a nilpotent leading term. We consider the two-
dimensional system defined by

dY
dz

¼MðzÞY; MðzÞ ¼
�
0 1

0 0

�
z2þ

�
1 0

0 −1

�
; ð4:24Þ

and let us determine its asymptotic solution at large z,
following the algorithm described above.
We first put the leading term in its lower triangular

Jordan form:

Pð1Þ ¼
�
0 1

1 0

�

⇒ Mð1ÞðzÞ ¼
�
0 0

1 0

�
z2 þ

�−1 0

0 1

�
: ð4:25Þ

Since the leading term is already nilpotent, step 2 is
irrelevant. Moreover, the system is already normalized
since the next-to-leading order term vanishes.
We can thus move directly to the reduction of the

order of the system and consider the transformation of
the form (4.17):

Pð2ÞðzÞ ¼
�
1 0

0 z

�

⇒ Mð2ÞðzÞ ¼
�
0 0

1 0

�
zþ

�−1 0

0 1

�
: ð4:26Þ

The order has been reduced but the leading term is still
nilpotent. Since the reduction was obtained via a trans-
formation with p=q ¼ 1, we continue the process by doing
a new iteration of the algorithm. We first normalize the
system with a transformation of the form (4.19),

Pð3ÞðzÞ ¼ I þ 1

z

�
0 −1
0 0

�

⇒ Mð3ÞðzÞ ¼
�
0 0

1 0

�
zþ

�
0 1

0 −1

�
1

z
þ
�
0 −2
0 0

�
1

z2
;

ð4:27Þ

and again reduce the order of the system with the
transformation

Pð4ÞðzÞ ¼
�
1 0

0 z

�

⇒ Mð4ÞðzÞ ¼
�
0 1

1 0

�
þ
�
0 −2
0 −2

�
1

z
: ð4:28Þ

The leading term is now diagonalizable. We diagonalize it
explicitly, via

Pð5Þ ¼
�−1 1

1 1

�

⇒ Mð5ÞðzÞ ¼
�−1 0

0 1

�
þ
�

0 0

−2 −2

�
1

z
; ð4:29Þ

then we diagonalize the next-to-leading term, with a
transformation of the form (4.6),

Pð6ÞðzÞ ¼
�

1 0

1=z 1

�

⇒Mð6ÞðzÞ ¼
�−1 0

0 1

�
þ
�
0 0

0 −2

�
1

z
þO

�
1

z2

�
: ð4:30Þ

We have thus managed to fully diagonalize the system,
which immediately gives us the asymptotic solution

Yð6ÞðzÞ ¼ ð1þOð1=zÞÞ
� expð−zÞ 0

0 1
z2 expðzÞ

�
Y0;

Y0 ≡
�
ξ1

ξ2

�
; ð4:31Þ

where Y0 is a constant column vector. As a consequence, to
obtain the behavior of Y in the original system, we use the
combined transformations

Y ¼
�Y6

j¼1

PðjÞ

�
Yð6Þ; ð4:32Þ

which implies

YðzÞ¼ ð1þOð1=zÞÞ
�
ξ1 expð−zÞz2þξ2 expðzÞ

−2ξ1 expð−zÞ

�
: ð4:33Þ
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For this particular example, it turns out that the original
system (4.24) can be solved exactly, with the solution

YðzÞ¼
�1

2
ξ1 expð−zÞð1þ2zþ2z2Þþξ2 expðzÞ

−2ξ1 expð−zÞ

�
: ð4:34Þ

One can thus check that the asymptotic solution (4.33)
agrees with the asymptotic behavior of the exact solution.

E. Case 3: Mr is similar to a Jordan matrix
with several blocks

We now briefly discuss (without entering into too many
details, which can be found in [20]) the more general case
where Mr is block diagonalizable and its canonical Jordan
form admits several Jordan blocks. The first two steps of
Sec. IV C still apply to this case and one can find a
transformation (with a constant matrix P) such that the new
system associated withMð2Þ (we use the same notation as in

Sec. IV C) has a block diagonal leading term Mð2Þ
r with

Jordan lower triangular blocks, each block being either
nilpotent or 1-dimensional:

Mð2Þ
r ¼

0
BBBBBBBBBBBBB@

Jðn1Þ 0 � � �
0 Jðn2Þ 0 � � �
..
.

0 . .
.

0 � � �
..
.

0 λ1 0 � � �
..
.

0 λ2 0

..

.
0 . .

.

1
CCCCCCCCCCCCCA

;

JðnÞ≡

0
BBBBB@

0 0 � � �
1 0 0 � � �
0 1 0 0 � � �
..
.

1
CCCCCA
: ð4:35Þ

The Jordan form is chosen so that the blocks JðnÞ are
ordered by decreasing size (n1 ≥ n2 ≥ � � �). Wewill use this
block structure as a layout for the block structure of the
other matrices that appear in the expansion of Mð2Þ. And
each block will be denoted by two indices, ðKLÞ, corre-
sponding to a submatrix of dimensions nK × nL.
The principle of the diagonalization procedure is similar

to what was done in Secs. IV B and IV C. However, it is
now possible to have both diagonalizable blocks and
nilpotent blocks. Those must be dealt with separately to
get the full asymptotic behavior of the system. In order to
do this, one can generalize the order-by-order procedure of
Sec. IV B: this is called the “splitting lemma” in [20]. It is
not detailed here, but can be understood by considering

blocks instead of scalars in the computations of
Sec. IV B.11

One can use this lemma to block diagonalizeMð2Þ, order
by order: the two global blocks considered will be the

nilpotent part ofMð2Þ
r and its diagonalizable part. The latter

can be dealt with using the procedure given in Sec. IV B,
while the former must be addressed using a generalized
version of the procedure given in Sec. IV C. We give here
more details about the last part and, in the rest of this

section, assume without loss of generality that Mð2Þ
r con-

tains only nilpotent blocks, such that

Mð2Þ
r ¼

0
BBBBBB@

Jðn1Þ 0 � � �
0 Jðn2Þ 0 � � �
..
.

0 Jðn3Þ 0 � � �
..
. . .

.

1
CCCCCCA

ðwith n1 ≥ n2 ≥ � � � ≥ nlastÞ: ð4:37Þ
The procedure in such a case requires to put the system in a
specific normalized form. For a matrix M, obtained at a
generic step in the algorithm, one says that the matrix is
“normalized up to order s” if all its leading terms
Mr; � � �Mr−s have their ðKLÞ blocks verifying the follow-
ing properties:

(i) either all rows are equal to zero except possibly the
first one if K ≤ L,

(ii) or all columns are equal to zero except possibly the
last one if K > L.

In order to reach this normalized form, one must use a
succession of transformations12 PnormðkÞ of the form

PnormðkÞ ¼ I þ 1

zk
Λ; ð4:38Þ

where k varies from 1 to s. The matrix Λ is a constant
matrix, whose coefficients must be chosen, similarly to Ξ in
(4.6), such that the new matrix M is normalized, in the
sense defined above (Λ is uniquely defined if one requires
that all its blocks ΛKL have zero last row if K ≤ L and zero

11In the case where Mð2Þ
r consists of a 2-block Jordan matrix,

one would use a transformation of the form

P ¼
�

I
Pp

j¼1 Ξjz−jPp
j¼1 Λjz−j I

�
; ð4:36Þ

where the Ξj and Λj are constant matrices. Such a transformation,

which generalizes (4.6), enables us to transform eachMð2Þ
r−j in the

same block diagonal form as Mð2Þ
r with a convenient choice

of Ξi and Λi. Therefore, the initial system gives two decoupled
subsystems and, for each one, we proceed along the same lines as
in the previous section.

12Let us emphasize on the fact that the hierarchy n1 ≥ n2 ≥ � � �
is crucial for this step to succeed.
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first column if K > L). The procedure is iterative: if the
system is normalized up to order k, it is possible to
normalize it up to order kþ 1 by applying a transformation
Pnormðkþ 1Þ. Indeed, this transformation will not modify
any term of order higher than r − k − 1.
The complete procedure to reduce the Poincaré rank of

the matrix is then the following:
1. one starts with s ¼ 1;

2. one normalizes the system up to order s using
PnormðkÞ transformations;

3. if Mr−s is not block-diagonal, one uses a trans-
formation PuðnÞ ¼ diagðIn1 ; In2 ;…; zsInlastÞ and one
goes back to step 113;

4. if it is block-diagonal, one uses a Pp=q transforma-
tion, which is a block form of (4.17) or (4.21):

Pp=q ¼

0
BBBBBB@

Dðn1; zp=qÞ 0 � � �
0 Dðn2; zp=qÞ 0 � � �
..
.

0 Dðn3; zp=qÞ 0 � � �
..
. . .

.

1
CCCCCCA
; ð4:39Þ

where the matrices Dðn; zÞ have been defined in
(4.17) and p and q are either co-prime integers (with
1 ≤ p ≤ q ≤ n1) or equal in the case p=q ¼ 1;

5. if no Pp=q transformation is admissible (see the
definition after 4.21), one goes back to step 1 with s
increased by one. Otherwise, one stops here.

Thanks to the above procedure, one obtains either a system
depending on z with a reduced Poincaré rank, or a new
system depending on zp=q with a non-nilpotent leading
term. In the former case, one can simply pursue with the
algorithm. In the latter case, one can change variables by
writing w ¼ zp=q and start the algorithm again.

F. A higher dimensional example with p=q ≠ 1

We now present a higher dimensional (n ¼ 5) example,
adapted from [22],where the dominant term in the asymptotic
expansion of the matrixM has a non trivial canonical Jordan
form with two Jordan blocks. The matrix MðzÞ is given by

MðzÞ ¼

0
BBBBBB@

0 z3 −z 1 2z

−z2 z 0 −z 0

z 1 0 z3 1

1 −z 1 z z3

z 0 −3z 0 −1

1
CCCCCCA

≡M3z3 þM2z2 þM1zþM0; ð4:40Þ

where the leading term M3 is nilpotent and has a 2-block
Jordan structure.
We perform a first transformation Y ¼ Pð1ÞYð1Þ so that the

leading term has now the following Jordan (lower triangular)
canonical form (the matrix Pð1Þ can easily been deduced):

Mð1ÞðzÞ ¼

0
BBBBBB@

−1 0 −3z 0 z

z3 z 1 −z 1

1 z3 0 1 z

0 −z 0 z −z2

2z 1 −z z3 0

1
CCCCCCA

⇒ Mð1Þ
3 ¼

0
BBBBBB@

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 1 0

1
CCCCCCA
: ð4:41Þ

The block structure of Mð1Þ
3 defines the layout that we

will be using to compute the asymptotic expansion of the
solution.
We notice that the next-to-leading term Mð1Þ

2 in the
expansion ofMð1Þ is already normalized. Therefore, we can
immediately try to reduce the order of the system thanks to
a new transformation Yð1Þ ¼ Pð2ÞYð2Þ,

Pð2Þ ¼

0
BBBBBB@

1 0 0 0 0

0 z 0 0 0

0 0 z2 0 0

0 0 0 1 0

0 0 0 0 z

1
CCCCCCA

⇒ Mð2Þ ¼

0
BBBBBB@

−1 0 −3z3 0 z2

z2 z − 1
z z −1 1

1
z2 z2 − 2

z
1
z2 1

0 −z2 0 z −z3

2 1 −z2 z2 − 1
z

1
CCCCCCA
: ð4:42Þ

13It is proved in [20] that after a finite number of steps, one always
gets a block-diagonal subleading term, which means that this
procedure stops at some point and that one can go on with step 4.
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However, we immediately see that the order of the
system has not diminished. This example falls in the cases
where we need to change the variable z or, equivalently,
i.e., to make a transformation of the form (4.21) for each
Jordan block, We must therefore cancel the previous
transformation (4.42) and instead consider Yð1Þ ¼ P̃ð2ÞỸð2Þ,
with

P̃ð2ÞðzÞ ¼

0
BBBBBB@

1 0 0 0 0

0 zp=q 0 0 0

0 0 z2p=q 0 0

0 0 0 1 0

0 0 0 0 zp=q

1
CCCCCCA
: ð4:43Þ

Following the method described below Eq. (4.21), we
note that the largest Jordan block is of dimension 3,
therefore we should take 2 coprime integers between 1
and 3 for p and q with p ≤ q. The possible choices for the
ratio p=q belong to the set f1=3; 1=2; 2=3g, since p=q ¼ 1
does not work. The largest value is p=q ¼ 2=3, which gives
for the matrix Mð3Þ the expression

0
BBBBBB@

−1 0 −3z7=3 0 z5=3

z7=3 z − 2
3z z2=3 −z1=3 1

1
z4=3

z7=3 − 4
3z

1
z4=3

z1=3

0 −z5=3 0 z −z8=3

2z1=3 1 −z5=3 z7=3 − 2
3z

1
CCCCCCA
: ð4:44Þ

We observe that the subdiagonal terms have order 7=3. To
keep this value of p=q, we must make sure that no other
term behaves like zα with α > 7=3. However in this case
there is a z8=3 term. Therefore, the value 2=3 is not
admissible and we have to consider the next possible
choice which is p=q ¼ 1=2. Such a change of variable
leads to the matrix

M̃ð2Þ ¼

0
BBBBBBBB@

−1 0 −3z2 0 z3=2

z5=2 z − 1
2z

ffiffiffi
z

p
−

ffiffiffi
z

p
1

1
z z5=2 − 1

z
1
z

ffiffiffi
z

p

0 −z3=2 0 z −z5=2

2
ffiffiffi
z

p
1 −z3=2 z5=2 − 1

2z

1
CCCCCCCCA
: ð4:45Þ

Now, it verifies the requirements and we thus keep the value
p=q ¼ 1=2 and continue the process.
The previous change of variable leads to a differential

system where the coefficients of Mð3Þ are noninteger
powers functions of z. To apply the algorithm, we have
to make a change of coordinate so that the system involves
only integer powers of z. This can easily be done by
introducing the new coordinate u defined by z ¼ u2.

As a consequence, the new differential system is now
given by

dYð3Þ

du
¼Mð3ÞðuÞYð3Þ;

Mð3ÞðuÞ ¼

0
BBBBBB@

−2u 0 −6u5 0 2u4

2u6 2u4−1
u 2u2 −2u2 2u

2
u 2u6 − 2

u
2
u 2u2

0 −2u4 0 2u3 −2u6

4u2 2u −2u4 2u6 − 1
u

1
CCCCCCA
; ð4:46Þ

where Yð3ÞðuÞ≡ Ỹð2ÞðzÞ and Mð3ÞðuÞ≡ 2uM̃ð2ÞðzÞ with
z ¼ u2. As the leading term is not nilpotent, we keep
the value of p=q. If it had been nilpotent, we would have
had to go back one step and normalize up to the next order.
We can continue the algorithm with this new system: we

will to do a new change of variables, reduce the order, and
decouple the system... We will not present more steps as the
rest of the computations is similar to what was done here
and in previous sections. Nonetheless, for the sake of
completeness, we give the final result. We show that, after
enough steps of the algorithm, the initial system can be
equivalently reformulated as

dYð4Þ

dw
¼ Mð4ÞðwÞYð4Þ; ð4:47Þ

where w ¼ z1=6 and Mð4ÞðwÞ is the following diagonal
matrix

Mð4ÞðwÞ ¼Diag½34=3ð1− i
ffiffiffi
3

p
Þw19þ 2w11;

−2× 34=3w19þ 2w11;34=3ð1þ i
ffiffiffi
3

p
Þw19þ 2w11;

6iw20þ 3w11;−6iw20þ 3w11� þOðw9Þ; ð4:48Þ

up to order Oðw9Þ. Integrating such a system is immediate
and yields the leading orders of the asymptotic expansion
of Yð4Þ from which we can extract the asymptotic expansion
of the original variable Y.

V. CONCLUSION

In this work, we have studied the asymptotic behaviors,
both at spatial infinity and near the horizon, of the linear
perturbations about Schwarzschild black holes. Instead of
following the traditional approach that consists in rewriting
the equations of motion in the form of a stationary
Schrödinger-like equation, which is second-order with
respect to the radial coordinate, we have worked directly
with the first-order equations of motion (in the frequency
domain). For this direct approach to the asymptotic behavior,
we have used an algorithm that has been developed in several
recent articles published in mathematical journals.
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The principle of this algorithm is to transform the
differential system, via successive changes of functions,
until it can be written in an explicitly diagonal form, up to
the required order (in the small parameter characterising the
asymptotic regime). This procedure automatically provides
the combination of the metric perturbations that encapsu-
lates the physical degree of freedom in this asymptotic
region and enables one to separate the ingoing and out-
going physical modes. Although we have worked in the
standard Regge-Wheeler gauge, the same approach would
work similarly for any other gauge choice.
Beyond its application to the perturbations of black

holes, this systematic approach to the asymptotic behavior
could be very useful for similar problems in other domains
of physics. This is why we have devoted the last part of this
paper to a pedagogical presentation of the algorithm, with a
few illustrative examples.
For black holes, the knowledge of the asymptotic

behavior of the perturbations is an indispensable first step
in the determination of the quasinormal modes. Indeed,
these modes are characterized by the following boundary
conditions: a purely outgoing behavior at spatial infinity
and purely ingoing behavior at the horizon. Imposing these
boundary conditions, we have shown that the known
quasinormal modes can be recovered numerically, without
resorting to the Schrödinger-like formulation, thus provid-
ing an alternative approach to the standard method. We
stress that our rudimentary numerical calculation was
simply to illustrate the feasibility of this new approach,
without trying to reach the precision and efficiency of the
powerful numerical methods that have been developed in
the traditional approach.
This novel approach could be especially useful in the

context of generalized black hole solutions, for instance in
modified gravity theories, where the equations of motion
for the perturbations are different and extra fields can be
present. In a companion paper, we have applied the same
algorithm to a few black holes solutions within scalar-
tensor theories that belong to the most general known
family: DHOST (degenerate higher-order scalar-tensor)
theories. The same method could be applied to the study
of other types of black holes, or even completely different
physical systems.
As a final remark, let us stress that this approach could be

used to get some analytical insight on the asymptotic
behavior of the modes by looking directly at the structure of
the matrix coefficients that are relevant. In this sense, it
might provide a prediagnosis tool to explore the healthiness
of some black hole solutions without resorting to a full
numerical investigation.
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APPENDIX A: GAUGE TRANSFORMATIONS

For completeness, we summarise in this Appendix the
gauge fixing procedure for polar and axial perturbations
about a Schwarzschild black hole in general relativity, as
originally discussed in [3,4].
Due to the invariance of the theory under space-time

diffeomorphisms, the metric perturbations are not com-
pletely determined hμν. Indeed, any infinitesimal change of
coordinates xμ → xμ þ ξμ induces the transformation

hμν → hμν þ∇μξν þ∇νξμ ðA1Þ

at the linear level. These transformations can be “projected”
in the axial or polar sectors, which we examine in turn.

1. Axial perturbations: Regge-Wheeler gauge

Before gauge fixing, axial perturbations are parametrized
by three families of functions hlm0 , hlm1 and hlm2 of the
variables ðr; tÞ, according to

htθ ¼
1

sin θ

X
l;m

hlm0 ðt; rÞ∂φYlmðθ;φÞ;

htφ ¼ − sin θ
X
l;m

hlm0 ðt; rÞ∂θYlmðθ;φÞ;

hrθ ¼
1

sin θ

X
l;m

hlm1 ðt; rÞ∂φYlmðθ;φÞ;

hrφ ¼ − sin θ
X
l;m

hlm1 ðt; rÞ∂θYlmðθ;φÞ;

hab ¼ sin θ
X
l;m

hlm2 ðt; rÞϵcðaDc∂bÞYlmðθ;φÞ; ðA2Þ

where, in the last equation, the indices a and b belong to the
set fθ;φg, ϵab is the totally antisymmetric symbol such that
ϵθφ ¼ þ1 and Da is the 2-dimensional covariant derivative
associated with the metric of the 2-sphere dθ2 þ sin2θdφ2.
More explicitly, the angular components of the metric can
be written

hθθ¼
X
l;m

1

sinθ
hlm2 ðt;rÞð∂θ∂φ−cotanθ∂φÞYlmðθ;φÞ; ðA3Þ
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hθφ¼hφθ

¼−
X
l;m

sinθhlm2 ðt;rÞ
�
lðlþ1Þ

2
þ∂2

θ

�
Ylmðθ;φÞ; ðA4Þ

hφφ ¼ −
X
l;m

hlm2 ðt; rÞ sin θ ð∂θ∂φ − cotanθ ∂φÞYlmðθ;φÞ:

ðA5Þ
All the other components of the axial perturbations vanish.
In the axial sector, the nonzero components of the

generator ξμ that preserves the odd parity of the perturbations
can be decomposed into spherical harmonics as follows,

ξθ ¼
X
l;m

ξlmðt; rÞ∂θYl;mðθ;φÞ;

ξφ ¼
X
l;m

ξlmðt; rÞ∂φYl;mðθ;φÞ; ðA6Þ

and the induced gauge transformations on the functions h0,
h1 and h2 are given, according to (A1), by

h0→ h0− _ξ; h1 → h1−ξ0 þ2

r
ξ; h2→ h2−2ξ; ðA7Þ

where we have dropped the indices (lm) for simplicity.
A dot and a prime denote a derivative with respect to t and
r, respectively.
As a consequence, one can always choose a gauge in

which hlm2 ¼ 0 which is the well-known Regge-Wheeler
gauge for the axial perturbations [3]. Notice that this gauge
choice is possible for l ≥ 2 only (the cases l ¼ 0 and
l ¼ 1 will be discussed later below).

2. Even-parity or polar perturbations: Zerilli gauge

Before gauge fixing, polar perturbations of the metric are
parametrized by seven families of functions Hlm

0 , Hlm
1 ,

Hlm
2 , αlm, βlm, Klm and Glm of the variables ðr; tÞ which

appear in the components of the metric perturbations as
follows,

htt ¼ AðrÞ
X
l;m

Hlm
0 ðt; rÞYlmðθ;φÞ;

htr ¼
X
l;m

Hlm
1 ðt; rÞYlmðθ;φÞ; ðA8Þ

hrr ¼
1

AðrÞ
X
l;m

Hlm
2 ðt; rÞYlmðθ;φÞ; ðA9Þ

hta ¼
X
l;m

βlmðt; rÞ∂aYlmðθ;φÞ;

hra ¼
X
l;m

αlmðt; rÞ∂aYlmðθ;φÞ; ðA10Þ

hab ¼
X
l;m

Klmðt; rÞgabYlmðθ;φÞ

þ
X
l;m

Glmðt; rÞDaDbYlmðθ;φÞ: ðA11Þ

More precisely, the angular part of the metric can be
written as

hθθ ¼
X
l;m

Klmðt; rÞYlmðθ;φÞ

þ
X
l;m

Glmðt; rÞ∂2
θYlmðθ;φÞ; ðA12Þ

hθφ ¼ hφθ

¼ −
X
l;m

Glmðt; rÞcotanθ ∂φYlmðθ;φÞ; ðA13Þ

hφφ¼
X
l;m

sin2θKlmðt;rÞYlmðθ;φÞ

þ
X
l;m

Glmðt;rÞð∂2
φþsinθ cosθ∂θÞYlmðθ;φÞ: ðA14Þ

Similarly to the axial sector, this parametrization is
redundant and can be simplified by gauge fixing. Now,
linear diffeomorphisms which preserve even-parity
of the metric components are generated by vector fields
ξ whose components decompose into spherical harmonics
as follows,

ξt ¼
X
l;m

Tlmðt; rÞYlmðθ;φÞ;

ξr ¼
X
l;m

Rlmðt; rÞYlmðθ;φÞ;

ξθ ¼
X
l;m

Θlmðt; rÞ∂θYlmðθ;φÞ;

ξφ ¼
X
l;m

Θlmðt; rÞ∂φYlmðθ;φÞ: ðA15Þ

Here Tlm, Rlm and Θlm are arbitrary functions of ðt; rÞ.
These linear diffeomorphisms induce gauge transforma-
tions on the functions that parametrize metric perturbations
according to

Hlm
0 ðt; rÞ → Hlm

0 ðt; rÞ þ 2

AðrÞ
_Tlmðt; rÞ þ A0ðrÞRlmðt; rÞ;

Hlm
1 ðt; rÞ → Hlm

1 ðt; rÞ þ _Rlmðt; rÞ þ T 0lmðt; rÞ

þ A0ðrÞ
AðrÞ T

lmðt; rÞ;

Hlm
2 ðt; rÞ → Hlm

2 ðt; rÞ þ 2AðrÞR0lmðt; rÞ − A0ðrÞRlmðt; rÞ;
βlmðt; rÞ → βlmðt; rÞ þ Tlmðt; rÞ þ _Θlmðt; rÞ;
αlmðt; rÞ → αlmðt; rÞ þ Rlmðt; rÞ þ Θ0lmðt; rÞ

−
2

r
Θlmðt; rÞ;

Klmðt; rÞ → Klmðt; rÞ þ 2AðrÞ
r

Rlmðt; rÞ;
Glmðt; rÞ → Glmðt; rÞ þ 2Θlmðt; rÞ: ðA16Þ
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An immediate consequence of the gauge transformations is
that one can choose the gauge parameter ξ such that
Glm ¼ 0 by fixing Θlm, then αlm ¼ 0 and βlm ¼ 0 by
fixing Rlm and Tlm respectively, in the case where l ≥ 2.
This gauge is known as the Zerilli gauge [4] (see [27] for a
recent presentation in the context of modified gravity).

3. Monopole and dipole perturbations

We consider here the special cases l ¼ 0 and l ¼ 1.

a. Axial modes

For the axial modes, the components hab vanish iden-
tically for l ¼ 1 (axial perturbations do not have l ¼ 0
components) which means that h2 does not show up in
the components of the metric. Hence, when l ¼ 1, it is
necessary to make a different gauge choice. In general, one
chooses h1 ¼ 0 which fixes the gauge parameter ξ up to a
function of the form CðtÞr2. Therefore, h0 inherits a
residual gauge invariance given by h0 → h0 þ FðtÞr2
where FðtÞ is an arbitrary function. Then h0 can be shown
to satisfy the equation of motion,

2h0ðrÞ − rh00ðrÞ ¼ 0: ðA17Þ

Therefore, the mode h0 is not propagating.

b. Polar modes

Let us now turn to polar perturbations. In the case l ¼ 0,
H0, H1, H2 and K are the only nonvanishing components
of the metric perturbations whereas T and R are the only
nonvanishing components of the gauge parameter (so that
the gauge transformation preserves the monopole). As in
the general case, one can choose R to fix K ¼ 0. Then, one
can in principle make use of T to get rid of H1 (we could
have also set H0 ¼ 0). Finally, we are left with only two
nonvanishing functions which are either H2 or H0 and we
will compute the corresponding equations of motion in the
next section.
The main difference, concerning the gauge fixing,

between the general case and the case l ¼ 1 lies in the
fact that, in the latter, hab can be shown to depend on the
difference G − K only, so that one can fix K ¼ 0 without
loss of generality. Furthermore, one can make the gauge
fixing G ¼ 0 by an appropriate choice of Θ. Then, one
makes use of T to fix β ¼ 0. Finally, one uses the remaining
free gauge function R to fix α ¼ 0. At the end, we are left
with the three nonvanishing functions H0, H1 and H2. The
dynamics of these three free parameters will be studied in
the next section as well.
Concerning the monopole (l ¼ 0), we showed in Sec. II

A 3 that its dynamics is fully described in terms of the
functions H0 and H2 only, as all the others can be sent to 0
by gauge fixing. Thus the equations of motion simplifies
drastically and, after some calculations, give

H0ðrÞ−H2ðrÞ¼0; H2ðrÞþðr−rsÞH0
2ðrÞ¼0: ðA18Þ

The solution readsH2ðrÞ ¼ C=ðr − rsÞ and the mode is not
propagating.
Finally, the dynamics of the polar dipole (l ¼ 1) is

described by the three nonvanishing functions H0, H1 and
H2 which satisfy the three independent equations,

2H2ðrÞ þ ðr− rsÞH0
2ðrÞ ¼ 0; H1ðrÞ þ iωH2ðrÞ ¼ 0;

H0ðrÞ þ ðrs − rÞH0
0ðrÞ− 2irωH1ðrÞ þH2ðrÞ ¼ 0: ðA19Þ

Indeed, the full set of the original Einstein equations is
equivalent to this one which can easily be solved explicitly
but its solution is not relevant for our purpose. Nonetheless,
we see immediately from the equations that, like the
monopole, the polar dipole does not propagate. This is
why we do not consider it in the rest of the paper.

APPENDIX B: EQUATIONS OF MOTION
FOR THE POLAR PERTURBATIONS

In this appendix, we present the equations of motion
satisfied by the polar perturbations and show how the
system (2.14) is obtained. The Euler-Lagrange equations
equations of motion (2.4) yield, in the polar sector,

Ett ¼ −2ðλþ 2Þ
�
1 −

rs
r

�
H2ðt; rÞ − 2λ

�
1 −

rs
r

�
Kðt; rÞ

−
2

r
ðr − rsÞ2

∂H2

∂r þ
�
6r − 11rs þ

5r2s
r

� ∂K
∂r

þ 2ðr − rsÞ2
∂2K
∂r2 ¼ 0;

Etr ¼ −2ðλþ 1ÞH1ðt; rÞ − 2r
∂H2

∂t þ r
2r − 3rs
r − rs

∂K
∂t

þ 2r2
∂2K
∂t∂r ¼ 0;

Err ¼ −2
λþ 1

1 − rs=r
H0ðt; rÞ þ

2

1 − rs=r
H2ðt; rÞ

þ 2λ

1 − rs=r
Kðt; rÞ þ 2r

∂H0

∂r − r
2r − rs
2ðr − rsÞ

∂K
∂r

−
4r2

r − rs

∂H1

∂t þ 2r4

ðr − rsÞ2
∂2K
∂t2 ¼ 0;

Etθ ¼ −
rs
r
H1ðt; rÞ − ðr − rsÞ

∂H1

∂r þ r
∂H2

∂t þ r
∂K
∂t ¼ 0;

Erθ ¼
2r − 3rs
2ðr − rsÞ

H0ðt; rÞ −
2r − rs
2ðr − rsÞ

H2ðt; rÞ − r
∂H0

∂r
þ r

∂K
∂r þ r2

r − rs

∂H1

∂t ¼ 0;
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Eθθ ¼
2rþ rs

2

∂H0

∂r þ 2r − rs
2

∂H2

∂r − ð2r − rsÞ
∂K
∂r

þ rðr − rsÞ
∂2H0

∂r2 − rðr − rsÞ
∂2K
∂r2 − r

2r − rs
r − rs

∂H1

∂t
− 2r2

∂2H1

∂t∂r þ r3

r − rs

∂2H2

∂t2 þ r3

r − rs

∂2K
∂t2 ¼ 0;

Eθφ ¼ H0ðt; rÞ −H2ðt; rÞ ¼ 0: ðB1Þ

The equations of motion Etφ ¼ 0, Erφ ¼ 0 and Eφφ ¼ 0 are
identical to Etθ ¼ 0, Erθ ¼ 0 and Eθθ ¼ 0, respectively.
We can immediately solve the last equation of the system

(B1) and replace H2 by H0 in all the other equations. We
thus get six equations for only three independent functions
K, H0 and H1, and we want to extract three “simple”
independent equations out of them. One can then note that
the combination

E ≡ irs
4ωrðr − rsÞ

Etr þ
1

2
Err þ Erθ ðB2Þ

is purely algebraic, i.e., it does not involve any derivatives
of the functions. Moreover, we find that the system Etr, Etθ,
Erθ, E enables us to recover Ett and Eθθ so that we can
restrict immediately to the system formed by these four
equations which, after some simple calculations, are given
by the system of differential equations

K0ðrÞ − 1

r
H0ðrÞ −

iðλþ 1Þ
ωr2

H1ðrÞ þ
1

r
2r − 3rs
2ðr − rsÞ

KðrÞ ¼ 0;

H0
1ðrÞ þ

iωr
r − rs

H0ðrÞ þ
rs

rðr − rsÞ
H1ðrÞ þ

iωr
r − rs

KðrÞ ¼ 0;

H0
0ðrÞ −K0ðrÞ þ rs

rðr − rsÞ
H0ðrÞ þ

iωr
r − rs

H1ðrÞ ¼ 0;

ðB3Þ

together with the algebraic equation

�
3rs
r

þ 2λ

�
H0ðrÞ þ

�
irsðλþ 1Þ

ωr2
− 2iωr

�
H1ðrÞ

þ 3r2s þ 2rsð2λ − 1Þr − 4λr2 þ 4ω2r4

2rðr − rsÞ
KðrÞ ¼ 0:

One equation is still redundant. However, we can solve the
algebraic equation for H0 and substitute its expression into
the first three equations. This shows that the third is not
independent from the first two. Finally, we obtain

K0ðrÞ ¼ 3r2s þ rsðλ − 2Þr − 2ω2r4

rðr − rsÞð3rs þ 2λrÞ KðrÞ

þ i
ωr2

�
λþ 1þ −rsðλþ 1Þ þ 2ω2r3

3rs þ 2λr

�
H1ðrÞ;

H0
1ðrÞ ¼

irð9r2s þ 8rsðλ − 1Þr − 8λr2 þ 4ω2r4Þ
2ðr − rsÞ2ð3rs þ 2λrÞ ωKðrÞ

−
3r2s þ rsð1þ 3λÞr − 2ω2r4

rðr − rsÞð3rs þ 2λrÞ H1ðrÞ; ðB4Þ

and we obtain the required form (2.14) with the definitions
X1ðrÞ≡ KðrÞ and X2ðrÞ≡H1ðrÞ=ω.

APPENDIX C: FLOWCHART
FOR THE ALGORITHM

In this appendix, we draw a flowchart to illustrate the
algorithm that we are using to compute the asymptotic
behavior of a solution of a first order system.
It should be noted that, in principle, one can skip the first

question “Is the leading term diagonalizable?” and put
directly the leading order term in its Jordan form. Indeed,
when the leading term is diagonalizable, putting it into its
Jordan form is equivalent to diagonalizing it and the
resulting Jordan matrix is made of d one-dimensional
blocks where d is the dimension of the system, thus of
the matrix. Therefore, the procedure for splitting the system
into several subsystems described in Sec. IV E is in this
case equivalent to the procedure described in Sec. IV B
where we are treating several blocks.
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