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The current paper is dedicated to developing a (3 + 1) decomposition for the minimal gravitational
Standard-Model Extension. Our setting is explicit diffeomorphism violation and we focus on the background
fields known in the literature as u and s#*. The Hamiltonian formalism is developed for these contributions,
which amounts to deriving modified Hamiltonian and momentum constraints. We then study the connection
between these modified constraints and the modified Einstein equations. Implications are drawn on the form
of the background fields to guarantee the internal consistency of the corresponding modified-gravity
theories. In the course of our analysis, we obtain a set of consistency requirements for u and certain sectors of
s*. We argue that the constraint structure remains untouched when these conditions are satisfied. Our results
shed light on explicit violations of diffeomorphism invariance and local Lorentz invariance in gravity. They
may turn out to be valuable for developing a better understanding of effective modified-gravity theories.
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I. INTRODUCTION

Lorentz invariance is one of the foundations of the current
scientific paradigm that has shaped our understanding of
nature at both small and large length scales. The Standard
Model (SM) rests on global Lorentz symmetry and provides a
description of elementary particles in terms of quantum fields
defined in Minkowski spacetime. This fundamental sym-
metry implies that measurements performed in two identical
experiments moving uniformly with respect to each other
provide results based on the same laws of nature connected
by a Lorentz transformation. Thus, the form of the laws of
nature does not depend on the state of uniform motion. An
analogous property exists for measurements made with an
apparatus and an identical rotated one. The latter viewpoint is
called particle Lorentz invariance in the literature.'

General Relativity (GR) is a theory based on a dynamical
spacetime in which the physical laws are invariant with
respect to diffeomorphisms. It also exhibits local Lorentz
symmetry in the tangent space T, at a point p of a
spacetime manifold M [1,2], such that the results of
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"The concept of “invariance under active Lorentz transforma-
tions” is frequently used in Minkowski spacetime, but such a
notion does not correspond to particle Lorentz invariance in the
presence of background fields. A background field would trans-
form like a four-tensor under active Lorentz transformations, but
remains fixed under particle Lorentz transformations, since it is
beyond control through experimentalists.
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two measurements of the same quantity are connected
with each other by a local Lorentz transformation. This
applies, in particular, when the first is performed in a freely
falling inertial reference frame and the second in a boosted
frame with respect to the first. The same holds true for two
freely falling inertial frames whose axes enclose a fixed
angle. The vierbein (tetrad) formalism allows us to trans-
form from a general spacetime frame described by the
metric g, of the (curved) manifold M to a freely falling
frame at a particular spacetime point where the metric
corresponds to that of Minkowski spacetime. Such a
transformation makes local Lorentz invariance explicit.

GR also exhibits invariance under general coordinate
transformations. The latter relate the same objects in the
manifold, such as points and curves, expressed in different
coordinates with each other. In contrast, diffeomorphisms
establish relations between different objects without
changing the coordinates. They can be interpreted as
spacetime-dependent translations and are the active coun-
terparts of general coordinate transformations (see, e.g.,
page 133 of [2]). In particular, diffeomorphisms are
represented by differentiable maps from a manifold onto
itself, M — M, where the corresponding inverse maps are
also required to be differentiable.”

*Manifolds that are related by a diffeomorphism can be
considered as geometrically equivalent. A diffeomorphism
may change how a manifold is embedded into an ambient space,
but its intrinsic geometry remains untouched.

© 2021 American Physical Society
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Because of diffeomorphism invariance, only two of the
ten metric components correspond to physical, propagating
degrees of freedom. This property is made transparent in
the (3 + 1) decomposition of spacetime developed by
Arnowitt, Deser, and Misner (denoted as the ADM decom-
position in the remainder of the paper) [3,4]. In the ADM
formulation, four-dimensional spacetime is foliated with
spacelike hypersurfaces (of constant time) that evolve with
respect to time. The foliation itself is governed by a lapse
function N and a shift vector with components N’ and
permits constructing a Hamiltonian associated with GR.
The conjugate momenta for the spatial metric components
gij = q;; are nonzero, whereas those associated with N and
N' are zero showing that there are four primary first-class
constraints in GR [5]. The latter exist due to the covariant
structure of this theory. Therefore, N and N' are unphysical
and represent gauge degrees of freedom. In addition,
the Hamiltonian and momentum constraints arise as a
set of four secondary first-class constraints. They generate
spacetime diffeomorphisms and spatial diffeomorphisms,
respectively.

A violation of (local) Lorentz invariance is the most
prominent signal for physics at the Planck scale, which was
shown to arise in particular string field theories [6—10] as
well as in loop quantum gravity [11,12]. Furthermore, this
effect occurs in other settings such as noncommutative
spacetime structures [13—15], spacetime foams [16-18],
nontrivial spacetime topologies [19-22], and Horava-
Lifshitz gravity [23]. The strong suppression of Lorentz
violation effects at low energy scales has led to the
necessity of conceiving ultrasensitive tests for their possible
detection [24].

The Standard-Model Extension (SME) [25-27] is a
comprehensive field theory framework to parametrize
deviations from Lorentz invariance, and it allows us to
compare the results of different experiments with each
other. The incorporation of Lorentz violation in the SME is
through background fields arising as vacuum expectation
values of tensor-valued fields. The latter imply preferred
spacetime directions and involve controlling coefficients
that describe the strength of Lorentz violation. Suitable
contractions of background fields with SM field operators
result in expressions invariant under coordinate transfor-
mations (observer Lorentz transformations). The minimal
SME includes field operators of mass dimensions 3 and 4,
whereas the nonminimal SME contains field operators of
mass dimensions >5 [28-30]. Since the controlling coef-
ficients in a nongravitational context are usually’ assumed
to be independent of the spacetime coordinates, the SME
exhibits translation invariance. As a consequence, energy
and momentum are conserved quantities.

One of the few studies on effects related to spacetime-
dependent coefficients in Minkowski spacetime is provided
by [31].

In the presence of gravity, the situation is more subtle.
The notions of global Lorentz violation and translation
noninvariance in Minkowski spacetime are replaced by two
fundamentally distinct concepts: local Lorentz violation
and diffeomorphism violation. To incorporate these con-
cepts into the SME language, a generic background field in
a curved spacetime manifold M must have both contri-
butions defined in a spacetime frame and contributions
given in a local inertial reference frame. A gravitational
version of the SME has been put forward in a series of
papers [32-39] to study these aspects. The spacetime
manifold itself is described by the metric tensor g,, and
formal transitions between a spacetime frame and a local
inertial frame are provided by vierbeins e,“. In the pure-
gravity sector, background fields in spacetime frames are
suitably contracted with objects built from the Riemann
curvature tensor, covariant derivatives, the Levi-Civita
tensor, and the spin connection wﬂ“b that endows spacetime
with a spin structure. These terms are constructed in a way
such that general coordinate invariance is maintained. The
presence of a background field in a local inertial frame
implies that the form of the laws of nature is different in
frames that are boosted or rotated with respect to the
original one.

The most recent article [39] rests on a better under-
standing of diffeomorphism and local Lorentz violation in
gravity acquired since the base of the gravitational SME
was laid in [32]. It widely extends the findings of [32] and
introduces additional concepts such as global local Lorentz
transformations and manifold Lorentz transformations that
are combinations of diffeomorphisms and local Lorentz
transformations. The latter can be considered analogous to
global Lorentz transformations in Minkowski spacetime.
An almost flat spacetime setting, which is sufficient for
various studies in practice such as propagating gravitational
waves [35,38,40,41] or modified dispersion relations in
linearized gravity [42], is also introduced. Therefore, [39]
provides many additional possibilities of how to construct
terms leading to observable pure-gravity effects that are not
in accordance with GR. By employing a powerful notation,
an infinite number of such terms covering the mass
dimensions <8 is stated. Furthermore, contributions involv-
ing individual matter fields as well as those endowed with
the entire SM gauge symmetry are compiled, too.

It is paramount to emphasize that in the setting of
nondynamical background fields in gravity, the physics
of a background field depends on whether it is described by
a contravariant, covariant or mixed observer tensor, i.e., the
position of spacetime indices plays a crucial role. The
reason is that the spacetime metric changing the index
position is a dynamical object proper, i.e., it must be taken
into account in variations of the action. The authors of [39]
emphasize this issue again (although not for the first time).
Thus, explicitly Lorentz-violating contributions formulated
in terms of a covariant background field or a contravariant
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one (in a spacetime frame) must be considered as distinct
models. To avoid conflicts, we will state background fields
with upper indices only as done in [32]. Such a distinction
is unnecessary for local Lorentz indices, since the
Minkowski metric, which is used to lower and raise these
indices, is a nondynamical object by definition.

In a gravitational field, the notion of a constant back-
ground field loses its meaning. While a covariantly constant
background field cannot even be defined in most curved
manifolds that are of interest in gravity [32], even such a
field would depend on the spacetime coordinates.
Therefore, apart from local Lorentz violation, the gravita-
tional SME may exhibit diffeomorphism violation,”
in general [32,39]. For the effective modified-gravity
theory5 that we will be considering, any variation in the
number of degrees of freedom and any symmetry departure,
including a violation of diffeomorphism invariance, are
expected to show up in the constraint structure as well as
the Poisson algebra between the canonical variables
and the constraints. This assertion is particularly true
when counting the number of degrees of freedom, which
depends crucially on the number of first- and second-class
constraints.

In the current paper, we intend to apply the ADM
decomposition to two sectors of the minimal gravitational
SME to understand the implications of explicit diffeo-
morphism violation on the gravitational degrees of free-
dom. The ADM decomposition is more than suitable for
such an analysis, since it renders the constraint structure
transparent. Within the effective framework, we consider
the following three points as crucial:

(i) Obtain the standard results of GR in the limit of

vanishing controlling coefficients.

(i) Maintain the same number of physical, propagating
degrees of freedom (2) in the modified-gravity
theory.

(iii) Implement the diffeomorphism group Diff(M) in
the sense of GR as differentiable mappings from a
manifold onto itself, M — M, given by the trans-
formation f:x* — f*(x).

An investigation of the minimal gravitational SME by
means of the ADM formulation [46,47] has been published
recently, i.e., our study has some overlap with the latter
article. However, we will focus on other aspects—including
the points mentioned above—and present the results in a
different manner. Note also that our background fields carry
upper spacetime indices compared to those used in the
latter papers. Thus, in light of the comments made

“Nlustrations of the concepts of general coordinate trans-
formations and diffeomorphisms in the presence of background
fields can be found in [43].

Reviews on modified-gravity theories are provided by
[44,45]. The latter references also include material on the
gravitational SME, but the focus is on models of spontaneous
diffeomorphism and Lorentz violation in this context.

previously on the position of spacetime indices in theories
with explicit diffeomorphism violation, our model is
physically nonequivalent to the one studied in [46,47].
Furthermore, applying the ADM formalism does not
require working in a weak-field regime, as it was done
in [48] to find the Hamiltonian using modified Poisson
brackets and deformed constraints. Thus, scenarios of
strong gravitational fields in the presence of diffeomor-
phism violation could be studied occurring, e.g., during the
creation of gravitational waves [49,50].

The paper is organized as follows. In Sec. II we explain
the concepts and mathematical relationships in the ADM
formalism with an emphasis on those that are of direct
relevance for us. Section III provides a summary of the
minimal gravitational SME. It is followed by Sec. IV that
constitutes the foundation of the article for the subsequent
calculations. Here we review how to derive the Hamiltonian
of GR and carry out analogous computations for both the
s#* and the u term of the gravitational SME. These studies
imply modified Hamiltonian and momentum constraints in
the presence of the aforementioned background fields. In
Sec. V we intend to understand how the constraints and the
modified Finstein equations are related with each other.
This analysis will enable us to derive requirements for the
internal consistency of a modified-gravity theory resting on
explicit diffeomorphism violation. Section VI is dedicated
to a brief investigation of the constraint structure as well as
the Hamilton equations. By evaluating suitable Poisson
brackets between canonical variables and constraints we
will demonstrate that the modified constraints still generate
both spacetime diffeomorphisms and spatial diffeomor-
phisms, respectively. Last but not least, our findings are
concluded on in Sec. VII.

The main body of the text is dedicated to presenting and
interpreting the central results as well as to providing
conceptual discussions. Detailed derivations and compu-
tations are relegated to the Appendices. The latter can be
skipped by readers who are primarily interested in the
results and their implications, but they may be valuable to
researchers who want to base their investigations on the
findings of this article. Appendix A gives an account on the
most important geometrical formulas that are indispensable
to carry out the ADM decomposition of the SME.
Calculational details on constructing the Hamiltonians of
the gravitational SME are presented in Appendix B.
Appendix C states some remarks on a modified ADM
decomposition that plays a role for a subset of the s*
coefficients. In the course of the investigations, it has turned
out that suitable boundary terms must be included in the
action and the derivation of those is shown in Appendix D.
Appendix E presents the most crucial steps in deriving the
modified Einstein equations from the action, as they are
valuable to understand the necessity of the boundary terms
mentioned before. Subsequently, in Appendix F we show in
a very detailed manner how to relate the Hamiltonian and
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momentum constraints to the modified Einstein equations.
Useful formulas on the ADM decomposition of covariant
derivatives of background fields are derived here that are
probably not to be found anywhere in the existing literature.
Furthermore, in Appendix G we give calculational details
on how to compute functional derivatives of the ADM-
decomposed action. These results provide further support
for our arguments. Last but not least, in Appendix H we
introduce a helpful counting scheme based on the canonical
variables of the ADM decomposition. The latter allowed us
to check any relation involving ADM variables for (dimen-
sional) consistency and turned out to be a useful tool for
finding calculational errors.

II. THE ADM DECOMPOSITION

The ADM formulation of General Relativity [1,3,4]
furnishes a decomposition of spacetime into space and
time leading to a description of the gravitational phase
space by means of a Hamiltonian. The Hamiltonian
formulation starts with selecting a special foliation of the
generic spacetime manifold M that is to be covered by a
chart of coordinates X*. We start by choosing a temporal
coordinate that we call ¢+ where X° does not necessarily
correspond to t. The spatial coordinates that are employed
for the decomposition will be denoted as x'. By considering
a flow of time

Z”EW’ (1)

the four-dimensional manifold M decomposes into space-
like hypersurfaces X, at fixed instants of time ¢.

We pick two spacelike hypersurfaces X, and X, 4, with
constant ¢ and ¢ + dt, respectively. The lapse of proper time
between the lower and upper hypersurface is Ndt, which is
why the scalar function N = N(t, x, y, z) is called the lapse
in the literature. We define the unit timelike vector n* that
indicates the path of proper time z. In general, as long as ¢
does not correspond to proper time, there is a misalignment
between # and n*:

N N (2)

The latter vector is called the shift and it depends on both
time and the spatial coordinates.

To grasp a better understanding of the foliation, we
provide an illustrative interpretation (see Ref. [1]) of the
lapse N and the shift N¥, cf. Fig. 1. Let the two hyper-
surfaces Z,, X, 4; be modeled by metal sheets and let them
be separated by connectors wielded at both sheets. The
connectors have a well-defined length Ndr that the lapse is
characteristic for. The latter is not necessarily constant,
but depends on which hypersurfaces are connected to
each other as well as where the connectors are placed.

3
| /
i / Zt+<5t
AR Ndt
B n* tH
3 Pl
O dx + Ndt W

FIG. 1. Two hypersurfaces X, and X, 4 that are linked via
connectors illustrated by blue lines. A connector links the point
P* = (,x') on the lower sheet to the point Q* = (¢ +dt, x' —
N'dt) on the upper one. The axis of a connector points along the
direction n*. The four-vector # indicates the direction between
the point (¢, x') on the lower hypersurface and (¢ + dr, x' + dx')
on the upper one. The points where the connectors are wielded are
represented by crosses (see also Ref. [1]).

We consider a particular connector wielded to the lower
sheet at a point with spatial coordinates x'.

To construct a stable and rigid structure, the connectors
must be orthogonal to the lower sheet at the point x’. As the
upper sheet differs from the lower one, this connector is not
necessarily orthogonal to the upper sheet, as well. This also
means that the connector linking %, 4, and X, ,4, cannot be
placed at the same spatial coordinates x’ on the upper sheet,
as it would not be orthogonal to this sheet at x’. For the
connector to be orthogonal, it must be placed at a point
x! — Nidt on £, 4,. This requirement introduces a vector N
with components N’ = N'(t, x,y, z) that is tangent to the
sheet and corresponds to the spatial components of NV
introduced in Eq. (2). We deduce that N = 0, i.e., N* is
purely spacelike. Also, the shift vector is zero when the
connector is automatically perpendicular to the second
sheet such that the next connector can be placed directly
above the previous one. This scenario does not occur in
general, though.

With this construction in mind, we consider a point
(¢, x') on E, and move to another point (¢ + dz, x' + dx’) on
2.4 by following the flow of time; see Eq. (1). Let the
geometry of the hypersurface X, be described by the three-
metric ¢;; = g;;(t,x"). The latter corresponds to the spa-
tial components of the metric g,, = g,,(t, x') describing
the geometry of the ambient spacetime. To compute the
infinitesimal path length interval squared between the
points (7,x") and (¢ + dt, x' + dx'), we need the following
ingredients. The infinitesimal distance perpendicular to the
lower hypersurface is Nd¢, as we have already argued
above. Furthermore, the infinitesimal vector pointing from
x' to x' + dx' in the lower hypersurface is dx’ + N'dt. The
path length interval squared then reads
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ds? = g;;(dx’ + N'dr)(dx/ + N/dr) — N2d?
= q;dx'dx/ + 2N didx’ + (NN — N*)d?. (3)

The spatial metric g;; is employed to pull indices up and
down of the shift vector, as the latter lives completely in the
hypersurface. Identifying the path length interval of Eq. (3)
with

ds? = Gudxtdx”, (4)

we identify the decomposed spacetime metric as

N, N — N? N;
9 = . (5)
N; qij

Its inverse can be cast into the form

(—1/N2 N//N? >

7= o
Ni/N?*  4ii — NINJi/N?

(6)

The four-vector n# points along the difference between the
two points P* and Q" of Fig. 1 lying on top of each other:

1
Q" — P¥ = Nntdt = ( _Ni )dt, (7)

which is why

" <—;v/7N> o

Lowering the index with the spacetime metric implies that
n, is purely timelike:

n, = <_ON> 9)

We define

0 o
¢’ =g +n'nt = ], (10)
0 qu

which is interpreted as the induced (inverse) metric on a
spatial hypersurface X, generalized to M. The lower

(3 x 3) block can contain nonzero entries only. Pulling
down the second index with the metric of Eq. (5) implies

. (0 0f> a1
v = iosi )
N' 5

The latter tensor satisfies the important property

7".q", = 4", (12)

i.e., it is a projector. Furthermore, it obeys
q",n* =0, (13)

which is why it can be employed to project vectors and
tensors defined on M into the hypersurface ¥,. Note that
the projector as stated in Eq. (11) only involves non-
dynamical objects by definition.

In this context we would like to comment on a set of
coordinates that can be very valuable when dealing with
particular problems: Gaussian normal coordinates (also
known as synchronous coordinates). The latter are char-
acterized by the choices N = 1 and N’ = 0, i.e., the lapse
function is a coordinate-independent scalar and the shift
vector is discarded. Then, the time coordinate corresponds
to proper time for an observer remaining at fixed spatial
coordinates. Furthermore, the unit vector pointing along
time is perpendicular to the unit vectors pointing along each
spatial dimension (see, e.g., page 717 of [1]). In Gaussian
normal coordinates it holds that n* = * [see Eq. (2)]. We
will be referring to these coordinates at some points in
the paper.

III. THE SME GRAVITY SECTOR

The action of the minimal gravitational SME is a
modification of the Einstein-Hilbert (EH) action that is
invariant with respect to general coordinate transformations
[32,39]. It is written as

S, = / d*x(L£© 4 £, (14)
M
with
£0) — \/2‘9 4R, (15a)
K

L= Vz_g (kR)””Q"(“)R
K

(15b)

HvQo

Here, £ is the EH Lagrangian without cosmological
constant and £’ is a minimal SME term containing a
background field (kg)#*¢° that transforms as a four-tensor
under general coordinate transformations. Besides,
x = 872Gy with Newton’s constant Gy, g = det(g,,) and
(4)Rmm is the Riemann curvature tensor defined in the four-
dimensional spacetime manifold M. Its single contraction
@R, = @R, is the Ricci tensor and its double con-
traction R = WR* corresponds to the Ricci scalar.

We work in a scenario of explicit diffeomorphism
violation in gravity, i.e., (kg)*?° is a nondynamical
tensor-valued background field defined in a spacetime
frame of the curved manifold M. For simplicity and as
we do not consider spontaneous diffeomorphism violation
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in this article, no confusion should arise by omitting the bar
proposed to be put on top of such coefficients [39].
However, to clarify the physics in local frames, we can
benefit from considering a background vierbein denoted by
(e), that arises, in principle, from solving the Einstein
field equations in the vacuum [39].

In contrast to a scenario in Minkowski spacetime, a
globally constant tensor in the sense of a vanishing
covariant derivative at each point in M does not exist
for a general manifold. Therefore, we must assume
that the background field is coordinate dependent:
(kg)ve’ = (kg)"e°(x). According to the third line of
Table II in [39], a term of the form of Eq. (15b) does
not imply local Lorentz violation at the level of the
Lagrange density. However, suitable combinations of the
coefficients with background vierbeins may give rise to
preferred directions in local frames at each point x* of the
manifold implying local Lorentz violation. We will come
back to this point later.

The no-go result of the SME gravity sector [32,39]
implies that explicit diffeomorphism and local
Lorentz violation clash with specific properties of
(pseudo-)Riemannian geometry such as the second
Bianchi identity of the Riemann curvature tensor. This
finding requires that certain Noether identities linked to the
invariance under general coordinate transformations must
be satisfied for a consistent setting [51,52]. A descriptive
interpretation of the no-go result is that a nondynamical
background field cannot absorb or emit momentum, which
is why it cannot account for the momentum transfer of a test
particle moving along a geodesic in M [51]. This issue is
neatly avoided by considering spontaneous Lorentz viola-
tion, i.e., a dynamical background field that satisfies its own
field equations. In such scenarios both massless and
massive propagating modes of the background field can
be excited. The massless modes correspond to propagating
fluctuations of preferred directions, whereas the massive
modes are interpreted as fluctuations of the strength of
Lorentz violation or, in other words, the size of the
controlling coefficients.

Bjorken initially proposed the idea of spontaneous
Lorentz violation back in 1963 [53] to explain the photon
as a massless Goldstone boson. In the aftermath, further
physicists took this idea over to gravity to interpret the
graviton as a Goldstone boson linked to a spontaneous
breakdown of local Lorentz and diffeomorphism invariance
[54,55]. More recent works in the context of electrody-
namics are [56-58] and for gravity we refer to [59-62]
where the mechanism suggested in [59] is even considered
as a solution of the cosmological-constant problem. In the
context of gravity, it was demonstrated that an alternative
gravity theory called cardinal gravity [61,62] can be
constructed by means of a bootstrap method from a
linearized theory with a two-tensor field that undergoes
spontaneous Lorentz violation. At energies much lower

than the Planck scale, this theory corresponds to GR, but it
significantly differs from GR near the Planck energy.

Spontaneous Lorentz violation was investigated in great
detail in toy theories known as bumblebee models in
Minkowski spacetime [63—-67] as well as in the presence
of gravity [68,69]. The focus in the latter works lies on a
profound understanding of the Goldstone and Higgs-like
modes. A particular model of a purely timelike vector field
and its implications for matter particles was analyzed in
[70]. References [71-73] give an account of a scenario of
an antisymmetric two-tensor acquiring a vacuum expect-
ation value. Papers have also been written on black-hole
solutions in the presence of bumblebee-type Lorentz
violation [74—78]. Note that spontaneous Lorentz violation
was demonstrated to occur in open-string field theory, too
[6-10]. The latter finding was a motivation for constructing
a comprehensive low-energy effective field theory frame-
work for Lorentz violation that we now know as the SME.

An alternative to spontaneous Lorentz and diffeomor-
phism violation could be explicit symmetry violation in a
more general geometry that does not rely on the quadratic
restriction of path length functionals in Riemannian geo-
metry [79,80]. A promising framework is Finsler geometry
[81-83], as it was shown that classical-particle analogs
based on the SME [84] move along geodesics in certain
Finsler spaces [85,86]. This discovery stimulated a vast
series of articles on classical-particle descriptions in
Lorentz-violating background fields as well as their con-
nections to Finsler geometry [87-100].

However, recent findings suggest that the no-go result is
not as restrictive as it was believed to be for almost
15 years. There may be scenarios of explicit Lorentz
violation and/or diffeomorphism violation in gravity where
the Stiickelberg trick can be used to create massless
propagating modes by introducing a set of additional scalar
fields [101]. This construction allows for a consistent
description of explicit symmetry violations that does not
contradict the Bianchi identity V,G* = 0 (where G* is
the FEinstein tensor). Also, it is possible to satisfy the
consistency conditions perturbatively in certain cases
[102]. Recently, even analyses of experimental data
[103,104] were carried out to constrain coefficients giving
rise to explicit symmetry violation in gravity. We take these
findings as a justification for considering explicit diffeo-
morphism violation in a Riemannian setting. In this work,
we will also provide new insights and precise results in
such a context.

The minimal-gravity modification of Eq. (15b) is usually
rewritten as follows [32]:

= \/2;9 (L' 4 L6 4 L), (16a)

with
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L' = —y*R, (16b)
L6) = grv(4) R, (16¢)
L0 =GR, 0. (16d)

The decomposition of £’ shown above has turned out to be
valuable. First, u = u(x) is a Lorentz scalar dependent on
spacetime position, which is why it implies diffeomor-
phism violation. Derivatives of u(x) for the coordinates can
give rise to a preferred direction in a local frame [39,105].
Therefore, this contribution is also able to induce local
Lorentz violation without this being obvious at a first place.
In the setting of spontaneous diffeomorphism violation
with only weak gravitational fields present, u can be
removed by a field redefinition (see Sec. III in [33]). We
will see that the u term is more subtle in the presence of
explicit diffeomorphism violation. Second, s* = s#*(x) is
a two-tensor-valued background field that can be taken as
symmetric due to the symmetry of the Ricci tensor.

The four-tensor-valued background field ##¢> = #+¢°(x)
has the symmetries of the Riemann tensor. It does not seem
to play arole in physical observables in the post-Newtonian
limit and this interesting observation was coined the
“t puzzle” [106]. The reason for that peculiar property
seems to be the approximative scheme employed in most
phenomenological studies of local Lorentz and diffeo-
morphism violation in gravity, because it relies on an
asymptotically flat spacetime. If this assumption is not
made such as in cosmology, #*¢° can give rise to significant
effects providing tight constraints on these coefficients
[102,107].

Note that the following form of the Lagrange density
expressed in terms of irreducible pieces of the Riemann
curvature tensor is sometimes employed [33]:

L= _\/2;g (_u(4)R + S;w(4)RL/ + tleG(4) C/ADQG)’ (17)

with the trace-free Ricci tensor (4)RZ,, and the four-
dimensional Weyl tensor (4)Cm,g,,. The latter inherits all
the symmetries from the Riemann tensor, but it does not
involve nonvanishing traces, anymore. Hence, by using
Eq. (17), the trace of s#* as well as the single and double
traces of #*?° have been extracted, which leaves nine
independent components of s* and ten of #*¢° [32].
However, throughout the paper we will be employing
the form of Eq. (16). As will become clear later, special
care has to be taken in our setting when performing field
redefinitions to move such traces from one term to another.
In the context of spontaneous diffeomorphism violation,
Eq. (17) can be interpreted as following directly from
Eq. (15b) by extracting the single and double traces of the
Riemann curvature tensor. When diffeomorphism invari-
ance is violated explicitly, though, the background fields ,

s, and #*?° in Eq. (16) should be taken as definitions
independent of (kg)#“¢° occurring in Eq. (15b).
Furthermore, u, s**, and #*?° of Eq. (16) are assumed to
be independent of each other, i.e., we will leave traces
where they are and avoid transferring them between
different contributions.

Although the background fields u, s#, and #*¢° do not
imply local Lorentz violation at the level of the Lagrange
density, quantities like s°” = s*(e),*(e),” and 1% =
7 (e) “(e),"(e),  (e),* (that must be interpreted as mere
definitions) can give rise to preferred orientations in a local
frame where an experiment is performed [39]. Considering
the modification of the dispersion relation of gravitational
waves in the regime of weak gravitational fields, #¢° leads
to birefringence in contrast to s#* that does not do so [35].
Therefore, there is an analogy between s*¥ (#*¢°) and the
nonbirefringent (birefringent) part of the CPT-even back-
ground field (ky)*¢” of the SME photon sector. Indeed,
appropriate field redefinitions allow for transforming
between photon sector and gravity sector coefficients such
that matter-gravity experiments are only sensitive to com-
binations of such coefficients [101].

IV. HAMILTONIAN FORMULATION
OF A GRAVITY THEORY

The Hamiltonian formulation of GR is the foundation for
many prototypes of quantum gravity [108] as well as field
theories coupled to gravity (see [109] for an example
involving Schrodinger theory) and modified-gravity theo-
ries, in general [110,111]. The Hamiltonian itself is a
powerful tool to define the total mass, momentum, and
angular momentum of a gravitational system. The ADM
formalism provides a set of suitable canonical variables and
a means to obtain the GR Hamiltonian. It permits gaining a
better understanding of the physics on hypersurfaces
characteristic for a particular spacetime, e.g., the event
horizon of a black hole, which is a null hypersurface in the
corresponding four-dimensional spacetime [112,113].

The Hamiltonian formulation also uncovers that GR is
characterized by constraints [5]. Theories subject to con-
straints play a pivotal role in physics [114]. A constraintis a
relation between the canonical variables that reduces the
number of variables that can be considered as physical.
Hence, in a constrained theory not every canonical variable
does necessarily describe a physical degree of freedom, but
there are some variables that correspond to mere gauge
degrees of freedom. Constraints appear, e.g., in classical
(non)relativistic mechanics, electrodynamics, and GR [5].
In the following sections, we will first of all obtain modified
constraints where their structure will only by revealed in
Sec. VI towards the end of the main text.

Note that the constraints of GR are given in terms of the
canonical variables. However, a Hamiltonian in the context
of the ADM formulation is first obtained as a function of
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the extrinsic curvature describing the embedding of space-
like hypersurfaces X, into the spacetime manifold M. The
latter must be eliminated in favor of the canonical momen-
tum density to obtain the relationships that are usually
interpreted as constraints in phase space. Nevertheless, we
will sometimes also employ the terminology “constraint”
for the original relationships depending on the extrinsic
curvature.

A. General relativity

We start by briefly reviewing how to derive the
Hamiltonian associated with GR in the context of the
ADM formalism. Consider the EH action without cosmo-
logical constant:

SO — /d4 V=Yg, (18)

2K

With the help of the expression in Eq. (A19), the EH action
can be written as [108]

5O = / ¢V R K2 4 KK 42V, (0K — ),
M 2K
(19)

where g = det(g;;), R is the Ricci scalar associated with Z,,
and K;; the extrinsic-curvature tensor defined by

1
K= 2N(q" D;N; - D,N;). (20)
Furthermore, K = K'; corresponds to the trace of the latter
and a, is the acceleration that is linked to the derivative of
the lapse function [see Eq. (A1)]. In what follows, we will
discard the total covariant derivative (last term) in Eq. (19),
which leads to a boundary term when the integral over X, is
computed. Although this procedure seems to be of minor
importance, it turns out to be an essential point and we will
come back to it in Sec. IV C.
There are ten canonical variables in GR: the lapse function
N, the three shift vector components N’ and the six spatial-
metric components g;;. To obtain the Hamilton density
associated with the EH Lagrange density, we need the time
derivatives ¢;; that follow from Eq. (20) and are given by

The canonical momentum density associated with g;; is

LY _a (K — ¢K). (22)

ij_
(70) 0q; 2«

Considering the Legendre transformation and using Eq. (21),
we obtain a preliminary form of the Hamilton density:

WO — Y4 [N(R+ K* -
2K

+2(KD;N'

K;;K")

— KYD;N;)]. (23)
An integration over the spatial hypersurface X, provides the
Hamiltonian. Performing suitable partial integrations and

expressing the extrinsic curvature in terms of the canonical
momentum leads to

HO) — / BrHO — _ f L(vey + NG, (24)
I Zz
with
Co=R+K?—K;K", (24b)
C; = 2(D;K! - D;K). (24c)

To carry out the canonical analysis of the EH Hamilton
density in Eq. (24), we must express the extrinsic curvature in
terms of the phase space variables, in particular, the canonical
momentum (7,)”. By doing so, we obtain

K= | -] K= —om )
as well as the Hamilton density
HO = NC, + N'C,, (26a)
with the Hamiltonian and momentum constraint
Co = \2/';1 (m0)" (7o) — (”20)2 - *z/—fR, (26b)
C; = —2D;(no);. (26¢)

where 7, is understood as the trace of the canonical
momentum: 7y = (7;)";. Note that the prefactor in
Eq. (24) has been absorbed into C(, and C;. The contribution
in Eq. (24a) proportional to the lapse function involves the
spatial part of the Ricci scalar as well as the extrinsic
curvature. The part in Eq. (24a) linear in the shift vector
does not depend on the internal geometry of the spatial
hypersurface, but only on the way it is embedded into the
four-dimensional manifold.

B. Minimal gravitational SME

At first, we will focus on the s#¥ sector of the minimal
gravitational SME defined by Eq. (16¢). The background
field s*¥ can be decomposed into three parts:

s = q%q" 5" — (¢"

0P+ P %) s + nonfs™, (27)
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where we introduce the notation s/ = ¢',4/,s** for the part
projected entirely into X,. In addition, we define a mixed
(vectorial) part via s™ = ¢’ ,n,s" as well as a scalar part
s"™ =n,n,s" projected completely along the direction
perpendicular to %,. Equation (27) has to be considered as
an identity. Note that we will interpret s™ and s"™™ as new
degrees of freedom independent of s#* and the lapse
function N or the shift vector N'. As long as diffeo-
morphism invariance is violated explicitly by the non-
dynamical field s**, we can think of s™ and s™ as being
defined in the manner above. When diffeomorphism
invariance is violated spontaneously, it could be questioned
whether such definitions make sense, as they would mix
dynamical and nondynamical objects.

In the second contribution to the Lagrange density £’ of
Eq. (16) the background field s** is contracted with the
four-dimensional Ricci tensor. As a first step, Eq. (10)
enables us to express the Lagrange density in terms of
quantities defined on %;:

PR = g7¢s,5 R
= (g = nn)(q" — n’n®)s5,5 YR
Ry~ 20 PR,
+ 105, 5D Ry nl. (28)

In the second step, we will benefit from the following
relations that give possible contractions of the Ricci tensor
with the projector ¢, and the four-vector n*:

*3q9°sYR :lz:K —lDDN—i—R
pa 6 vo N mipé N prs B

-+ KK/)’(; - ZK”/}K”(;, (293)

q"sn* R, = D,K"s — DyK, (29b)

1 1
"R g = = Lok + G DpDIN — K1K,,. - (29¢)

where £, is the Lie derivative [see Egs. (5.31) and (5.32) of
[2]] along the four-vector m* = Nn* and D, denotes the
three-dimensional covariant derivative. We refer to
Refs. [108,115,116] for details on their derivation and to
Appendix A for a compilation of valuable formulas in this
context. Equation (29a) describes how the four-dimen-
sional Ricci tensor is projected completely into a spacelike
hypersurface X,. The result involves the three-dimensional
Ricci tensor, products of the extrinsic-curvature tensor as
well as suitable derivatives of the extrinsic curvature and
the lapse function. Equation (29b) is the contracted
Codazzi-Mainardi relation. It describes a partial projection
of the Ricci tensor into X, and involves three-dimensional
covariant derivatives of the extrinsic curvature only. Last
but not least, Eq. (29c¢) states the complete projection of the

Ricci tensor along the direction orthogonal to X,. This
particular projection contains contributions similar to those
in Eq. (29a), but it is devoid of the three-dimensional Ricci
tensor or its trace.

Performing the decomposition of Eqgs. (16b) and (16c)
implies

4
L=y (30a)
a=1
where
Ny/q i 1 1
L/(l) = 75’] <NEmKU _NDID]N + RIJ
+ KK;; - 2K/K,j>, (30b)
N .
L£'? = 2—\/6_1 [2s™(D,K — D,K")], (30c)
K

JC) :_\/qsnn -—L,K+—D;D'N-KK;; |, (30d)
2K N N

Nyqg (2 2 ,
'@ =2yl =L, K—=D;D'N+R
L o u(NEm N Di +

Now, the associated canonical momentum density reads

o & N
— = 7 @i, (31)
9q;; ;

()i =

Starting from these relations, we will obtain the Hamilton
density,

H = (”/)ij‘.]ij =L, (32)

where calculational details will be relegated to Appendix B
unless they are worthwhile to be mentioned in the main
text. Note that the total Hamilton density simply follows
from adding the modification to the EH part:

H=HO +H = (79)"q;; = LO + (') — L'
= (mo+ ) q;; — (LO 4+ )= 7 — L, (33)

where 7'/ is the total canonical momentum density and £
the total Lagrange density.

1. Decoupling the sectors

Based on Eq. (27), s* can be decomposed into three
sectors. In what follows, we intend to analyze these sectors
independently of each other. This can be accomplished by
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choosing particular observer frames where only one of the
three sets s/, s™, and s™ provides nonzero coefficients.
For example, if one is interested in s™™ only, we would
consider an observer frame where all components of s#*
vanish except of s%°. We will precisely follow this strategy,
as the three sectors have distinct characteristics that can be
exploited in the computations. Hence, we will just focus on
a single sector and turn off the remaining ones to simplify
the analysis without losing generality.

2. Purely spacelike sector

Consider the purely spacelike modification given by
Eq. (30b) (to be added to the EH Lagrangian later) with the
remaining modifications turned off. In general, Lie deriv-
atives with respect to m* involve time derivatives, which is
why the term L,,K;; implies time derivatives of the
extrinsic curvature according to

L,Ki; =K

- LyK (34)

7
Such time derivatives give rise to additional second-order
time derivatives of the induced metric. This finding would
eventually force us to consider the Ostrogradsky formalism
of higher-derivative theories [117-121]. To avoid this
problem, we follow the method introduced in [122] and
employ an identity that allows for shifting time derivatives
from the extrinsic curvature to the Lorentz-violating back-
ground:

1 .. . ,
NSIJEmKij = V”(n”Kijs”) - KKI'J'SU

1 i,
_ﬁKijEmsl]' (35)

Here, the Lie derivative of the purely spacelike background
field with respect to m* reads

L,,s9 = §7 — Lysl, (36a)
Lys = N¥Dy s — (D N)s* — (D N7)s’k.  (36b)

Let us now rewrite Eq. (30b):
N.\/q y 1 .
L0 = 2_\,{_ |:vﬂ(nﬂKijs )= NKij‘Cms]
(1
—SU<NDI'D]'N—R,'J'+2KliKlj>:|. (37)

Integrating over the first contribution above within the
action leads to another boundary term [cf. Eq. (19)] that we
discard. This step will turn out to be crucial to understand
the results (see Sec. IVC). So we omit the covariant-
derivative term and consider instead

Vi S
E(l) = E [—K,-j[:ms” - Sl]DiDjN

+ Ns'(R;; — 2K' K ;)]. (38)
After some calculation (for details we refer to Appendix B 1),

the Hamiltonian associated with the Lagrange density is
given by

HO = — [ @x Y (nel) 4 NicD),  (39)
s, 2K
with
€y = sU(Ry; + 2K'K};) — D;D ;s (39b)

1 A o
¢! =—q;Dy [Nﬁmsk" +2(sMK7 + 57K ) | (39¢)

We see that H(!) has a structure similar to that of the EH
Hamiltonian in Eq. (24). Time derivatives of the lapse
function and the shift vector do not occur. Note the presence
of the problematic term L,,s" that appears in the modifica-
tion of C; of Eq. (24¢) and is proportional to the inverse of the
lapse function. Therefore, it does not fit into the usual
structure of the Hamiltonian. Understanding the physical
implications of this contribution will turn out to be of
paramount importance as a base for the internal consistency
of the theory and we will return to this problem later.

The next step is to consider the total Hamiltonian
H=HOY +HY with H® of Eq. (24) and HV stated
in Eq. (39). Our goal now is to eliminate the extrinsic-
curvature tensor in H in favor of the canonical momentum
7'/ associated with H. To do so, we first need an expression
for 7'/ that is obtained in Eq. (B3). As K ; is symmetric, the
canonical momentum employed in the Legendre trans-
formation can be symmetrized, whereupon we cast the
latter result into the form

al = \2/—3 {K” -q"K - ﬁEmS” — (s"K7, + s/'K"))

. 1 g
_ V4 (G”“”Kab - Ems”> , (40a)

2K 2N

with the four-tensor (symmetrized in the first and second
pair of indices):

Gl.](lb — 5 (qlaq]b + qlhq./u) —_ q”qab
L g s gt 4 s 1 g, (400)

Inverting the canonical momentum for the extrinsic curva-
ture and its trace gives
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2k

Kab—Gabij<\/q ”-l-—E S’J> (41a)

2k .. 1 .
K = q*Gpii| —=77 +—L,,s" ], 41b
G (35 Es). 1)

with the inverse tensor G ;; satisfying

b1 b b

chl]Gl]u _E(écaad +6d056 ) (42)

Note that the fourth-rank tensor in Eq. (40b) for s/ = 0 is
proportional to an object known as the Wheeler-DeWitt
metric in the literature [cf., for example, Eq. (7.45) in [5]].
Its inverse in the diffeomorphism-invariant setting is readily
found to be

1
0
GE'd>ij =3 (4ci9aj + Gaidej = deadij)s (43)

which is a valuable object in GR to invert Eq. (22) for the
extrinsic curvature leading to Eq. (25).

For a generic s it seems challenging to find an inverse in
closed form. There are two possibilities of proceeding.
First, a special case for s” could be considered, e.g., a
decomposition into suitably chosen four-vectors. The exact
inverse G4;; can be computed for such cases. Second, we
were able to determine the inverse G;; for a generic s at
first order in the controlling coefficients. To be as general as
possible, we choose the second approach. It is reasonable to
propose a suitable Ansarz for G 4;; that involves all fourth-
rank tensors constructed from ¢*/ and s% at first order in s/,
Contracting the latter with Eq. (40b) and requiring Eq. (42)
at first order in the controlling coefficients implies a linear
system of equations for the parameters. Solving this system
provides the parameters of the Ansatz. The computation is
performed best with computer algebra and the result reads

(1 - s“)ch‘]iﬂ

(Scaij + Sijqca) (44)

o _1
GCdl] 2 [qcthj + 9aidcj —
+ ScjGai T Saidej —

where the latter reproduces Eq. (43) for vanishing s%/. This
finding is one of the few places throughout the paper where
we use lower-index controlling coefficients for conven-
ience. We will now restrict our consideration to background
fields that satisfy the requirement £,,s = 0 such that the
constraint structure is standard. This particular choice is to
be discussed at the end of Sec. IVB and will find
substantial additional motivation for it in Sec. V.

By considering the Hamilton density H(!) associated
with H) and expressing K;; in terms of z/ in Eq. (39b),
we deduce the total Hamllton density

HO + HO = NV 4+ Nicth, (45)

with the modified Hamiltonian constraint

il = ¢y —ocll), (46a)
) )=
1 % (sYR;j — D;D;s"), (46b)

where Cj is given by Eq. (26b) with 7z replaced by z. The
latter result is valid at first order in the controlling
coefficients and under the requirement that L£,,s" = 0.
Performing the analogous replacement in Eq. (39c), we
make an interesting discovery. The standard part implies

—\/Ta(DkK’”' —D'K) = =2[Dya* + s¥' D x,

+Sik(Dlﬂ'lk —Dkﬂ') +7l'lekSil
—|—ﬂikD[Slk—ﬂDkSik]+"', (47)

where all contributions beyond linear order in the control-
ling coefficients have been dropped. In the modification
given by Eq. (39¢), it is sufficient to employ the standard
relations of Eq. (25):

ﬂDk(Sleil 4 SilKkl)
K

= 2Dk |:Skl <7l'il —_ géil) + sil <7l'kl - g6k1>:|

= 2Dk[Sklﬂ'il + Sllﬂ'kl - Slkﬂ'} (48)

Thus, all diffeomorphism-violating contributions of
Egs. (47) and (48) cancel each other. Then, the momentum
constraint remains unmodified at first order in diffeomor-
phism violation:

c" = ¢, = 2D, (49)
with C; stated in Eq. (26c).

3. Mixed sector

In contrast to the Lagrange density of the purely space-
like sector, £ given by Eq. (30c) involves the covariant
derivative defined on the spacelike hypersurface. The latter
does not give rise to time derivatives of the extrinsic
curvature. However, to be capable of shifting the spatial
covariant derivatives to the vector-valued background field
s™, we add a suitable boundary term to the Lagrange
density. Note that the latter is not integrated over the
spacetime boundary (such as those to be considered in
Sec. IV C), but over the boundary of the spacelike hyper-
surface X,. Hence, the corresponding integral is two-
dimensional and runs over the coordinates z employed

124042-11



CARLOS M. REYES and MARCO SCHRECK

PHYS. REV. D 104, 124042 (2021)

to parametrize the boundary 0%, Then, the Lagrangian
reads

1 .
L® == [/ d3x,/gNs™(D,K — D,K",)
K %,
oz,

1 .
- / d3x\/21N{sm (DK — DK,
K z,

- %Di[N(Ksi“ - K'js™)] } (50)

with a properly normalized three-vector r that is
orthogonal to J%,. The associated Lagrange density has
the form

9 ni i i
£® :%{Ns "(D,K—D,K';)—D;[N(Ks™—K';s/m)]}

:gN[Kl]DlSJn —KDiSin +ai(Kiijn —Ksin)]. (51)
Based on the latter result, we can directly obtain the
canonical momentum and the Hamilton density via a
Legendre transformation. Details of the computation are
relegated to Appendix B 2. The Hamiltonian is

HO — _ [ eV (NCP + Nacy,  (52a)
s, 2k
with
¢ =o, (52b)
¢ = qu[D,(a” + D")s™ + D, (a” + D")s™
—2D"(a; + D;)s™). (52¢)

Interestingly, C, in Eq. (24b) is not affected by the
coefficients s™ and the modification of C; of Eq. (24c)
is independent of the extrinsic curvature. The form of the
Lagrange density £ suggests that it must be interpreted as
a constraint that does not affect the dynamics. A possible
explanation is given by the intriguing finding that £(>) can
be generated at first order in the controlling coefficients via
a modified ADM decomposition (see Appendix C). The
latter is characterized by an effective shift vector that
includes the controlling coefficients s™. Thus, we conclude
that the mixed coefficients s™ are mere gauge degrees of
freedom.

Despite this result, expressing the previous constraints in
terms of the canonical momentum density z*/ may still
provide further insight. Considering H(© + H? with the
Hamilton density H? of the mixed sector, the total

canonical momentum of Eq. (B5) can be inverted for the
extrinsic curvature when we write

= \2/_6 (K'Y — qUK + 77), (53a)
K
o , ‘
n.z] — E [(ar + Dr)ssn + (as _’_DA)SVII}
—q"(a; + D;)s™. (53b)

Note that 7'/ does not depend on the extrinsic curvature. By
employing the inverse Wheeler-DeWitt metric of Eq. (43),
we obtain

_ 0 (25 ~i'>
Ky =G| —=n" =7
’ ’”(ﬁ

= \2/_1;1 <7Tab - g%;;) — Tap + g qap-  (54)
The total Hamilton density then has the form
HO +H® = NCP + NoC, (55a)
with the Hamiltonian constraint
cl = cy+scl, (55b)

~2
5CY = 7w — 2imil + ‘2/—3 <fzi/fz,~ ;- %) (55¢)

where 7, in Cy must be replaced by 7z of Eq. (53a), and the
momentum constraint
pii = gt - V4

V1
7.
2

- (55d)

2 _ j
CY = -2D;PI,,
In principle, the latter can be interpreted as a redefined
momentum constraint with the redefined momentum den-
sity PY. A short computation then also reveals that

2 N P?
c - K <P’1Pij B _) _ \/_ZIR. (56)
Va 2 2K

These results are another indication for s™ not conveying
any physical information. We were able to reproduce the
Hamiltonian and momentum constraint of EH theory stated
in Egs. (26b) and (26¢) simply by absorbing the controlling
coefficients s™ into the momentum density. The only
caveat is that we are putting nondynamical coefficients
s™ into the canonical momentum P, which is a dynamical
entity. However, this procedure corresponds to performing
a mere shift of the original canonical momentum z*/ that
does not even depend on the extrinsic curvature [see 7'/
in Eq. (53b)].
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4. Purely timelike sector

To obtain the Hamiltonian associated with the purely
timelike sector based on Eq. (30d), we employ the relation

1

NSM(K - LyK) =V, (n"Ks"™) — K*s™
|
- NK(S““ - ENSnn), (57)

which is similar to Eq. (35). Inserting the latter into £'C)
leads to

N\/g 1
1(3) — -V 1K gin K nn
L e { L (n*Ks™) + N LS

1 . .
+ g0 (N D;D'N — KVK;; + K2>} . (58)

Note the similarity to Eq. (37). Again, we discard the
covariant-derivative contribution that would provide a
boundary term in the action (see Sec. IV C). So we consider

LB = \2/—6 [s""(D,D'N — NKVK;; + NK?)
p :

+ KL, s"™], (59a)
where the Lie derivative of the scalar background field s™"
can simply be understood as a directional derivative:

1
nn __ nn
— L, s" = ntV,s"",

. (59b)

The Hamiltonian corresponding to £ is derived in
Appendix B 3. It reads

HO — _ d3x\2/—‘7(chf>+N“C§f)), (60a)
s, K

with

C(()3> — DiDiSnn + snn(Kinl_j — K2)’ (60b)

Cl@ =D, (% L, s" + 2s'"‘K> —2D;(s"™K/;).  (60c)
Note the similarities, but also the differences of the latter
modifications of Cy,C; in comparison to Egs. (39b) and
(39¢). Such as for the purely spacelike sector, the con-
tribution £,,s™ deviates from the conventional constraint
structure, as it is proportional to the inverse of the lapse
function. This term will also play a pivotal role for the
consistency of the purely timelike sector, as will become
evident later.

Let us now introduce the total Hamiltonian H =
H© + H®) with the total canonical momentum 7'/

associated. The modified 7"/ is obtained by adding
Egs. (22) and (B7). Inverting the latter via the inverse of
the Wheeler-DeWitt metric in Eq. (43) implies the extrinsic
curvature in terms of the canonical momentum:

G<O)4. 2K =
K., — b (=2 ij = ij
ab 1 — ¢nn \/aﬂ 2q

1 2K b1 =
=1_,m [% (ﬂab _EQuh> +anh]- (61a)

The covariant directional derivative of s™™ with respect to
n# [cf. Eq. (59b)],

(61b)

had to be isolated before computing the inverse. Therefore,
the total Hamiltonian in canonical variables follows from
adding Eqgs. (24) and (60) and expressing the extrinsic
curvature in terms of the canonical momentum via Eq. (61):

HO + HO) = NCJ) 4 NaC, (62a)

with the modified Hamiltonian constraint

2
(3) 2k ij T \/Zj a nn
cY=__ =" (g, — V) _YYR+DD
O = et (=7 5 @ DD
= 34
— =), 62b
o= <” 8k > (620)
and the momentum constraint
¥ =c,=-2D,m,0. (62¢)

As before, the diffeomorphism-violating contributions in
the momentum constraint, which follows from Eqs. (24c¢)
and (60c), cancel when the latter is written as a function of
the total canonical momentum [cf. Eq. (49)].

5. Scalar sector

According to Eq. (16b), the minimal gravitational SME
also contains a scalar background field called u. In the
context of spontaneous diffeomorphism violation, u can be
eliminated in the PPN formalism by redefining the gravi-
tational field, i.e., 1 — u is merely a scaling factor in this
case. However, in the current section, we will demonstrate
that the fate of u in the setting of explicit diffeomorphism
violation is much more subtle. As u comes together with
the Ricci scalar, the corresponding Lagrange density of
Eq. (16b) can be decomposed by applying Egs. (A12) and
(A15). The result is given by Eq. (30e). Now, the identity
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1 1
—ul,K=V,(n"Ku)— K*u ——KL,u, (63)
N N

which is analogous to Egs. (35) and (57), allows us to move
derivatives from the extrinsic curvature to the background
scalar u modulo a total covariant derivative:

2
49 = 2V, (n"K 2K*u+ =KL
NG u(n*Ku) + 2K u + v KLmt

2 , 3
- (—ND,»D’N +R+ K>+ K,-.,-K”> u

2 .
= =2V, (n"Ku) + N (KL, u+ uD;D'N)

—(R—K*+ K;;K')u. (64)

A suitable boundary term added to the action eliminates the
total derivative (see Sec. IV C). Taking this boundary term
into account implies the form of the Lagrange density that
we are going to work with:

N
LW = \/_ {N (KL,,u+ uD;D'N)
- (R-K?>+ Ki.,-Kij)u] ) (65)

A Legendre transformation (see Appendix B 4) leads to the
Hamiltonian

H® — ‘f(co N+CUN),  (66a)
Er
where
€)Y = ~(R+K? = KyK")u+2D,D'u.  (66b)
W = 2[ ( Lu+ MK) Dj<qui):|' (66¢)

We now consider the theory based on the total Hamiltonian
H=H®Y + H®. The total canonical momentum can be
inverted for the extrinsic curvature via the inverse Wheeler-
DeWitt metric of Eq. (43):

(0)
Kab _ Gablj <2K i Tq’f>
1—u \/6

_ |z L
*1_1/‘ \/a Tab anb anb )

where we introduced a symbol for the Lie derivative of the
background field:

(67a)

1
T=—L,u (67b)
N
Now, the total Hamilton density reads
HO + H® = Nl + NicW, (68a)

with the modified Hamiltonian and momentum constraint:

2
(4) 2K ..U \/ﬁ .
Co == |77’ = | =5 [(1—=u)R+2D;D'
=iy (o =) =5l R+ 2000
T 3V/q
+1_u<n— " Y), (68b)
c\Y = —2Dzi, (68¢)

The momentum constraint is unaffected by diffeomorphism
violation such as for the purely spacelike and timelike
sectors of s#; cf. Egs. (49) and (62c). Note the parallels to
Eq. (62b), although no curvature term is induced by s™™ in
contrast to u.

A further interesting conclusion can be drawn from
supposing that u arises from a nonvanishing trace of s#*. In
the case of spontaneous diffeomorphism violation, this
argument is usually developed to disregard the trace of s#¥
as an unobservable contribution. We then choose s* =
ug” and use Gaussian normal coordinates where
s/ = uq". Inserting the latter into the Lagrange densities
of the purely spacelike and purely timelike sector of
Egs. (38) and (59a) results in

2K 1 i i
Nﬂcm =5 (KL, (ug) + ug'’D;D;N|
+ug(Ry; — 2K' Ky
| .
=2uK; ;K" — N (KL,,u+ uD;D'N)
1 ,
N (KL,,u+ uD;D'N) + uR, (69a)
2K 1 .
LB =—-— (KL D,D'N
N (KL, + uD;D'N)

The sum of both corresponds to the negative of Eq. (65), as
expected. In contrast, if we insert s = ug"’ in Gaussian
normal coordinates into the modifications of C, given by
Egs. (39b) and (60b), we obtain
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¢ =c +cy)
= M(R + 2K”KU) - DiDiu - DiDiu
- u(KUKU - Kz)

which is off from the negative of Eq. (66b) by a term
2uK" K ;;. The reason for this mismatch is found in the Lie
derivative term of Eq. (38). The canonical momentum
provides an additional contribution:

£ N .
ﬂ"l—— \/.(NMK,,q q"l>—\2/—ful("’, (71)

G 2k

where we can use that ¢'* = —¢"g,;,4’*. Thus, C(()")
Eq. (70) has to be endowed with a correction term given by

gy D va uK 2NK* = Nva (QuK yK*.  (72)
2k 2K

Note that the prefactor and a global minus sign was
extracted from Egs. (39c) and (60b). So we reproduce
Eq. (66b) only under these circumstances. This finding
teaches us a crucial lesson. In the setting of explicit
diffeomorphism violation, a statement like s** = ug” is
simply meaningless, as the background fields are non-
dynamical, but the metric is a dynamical object [see the
discussion below Eq. (17)].6

Hence, it is then also not possible to absorb the u term of
Eq. (16b) into the gravitational field to eliminate it. The
important message is that u becomes a physical object
when explicit diffeomorphism violation is considered. One
cannot get rid of it by a simple field redefinition.

C. Generalized Gibbons-Hawking-York
boundary term

In what follows, we will comment on the time derivatives
of the extrinsic curvature that occur in the ADM-decom-
posed EH Lagrange density of Eq. (14) as well as in the
modifications of Egs. (30b), (30d), and (30e) via the Lie
derivative L,,. These time derivatives imply that the
Lagrangians contain second-order time derivatives of the
metric, which is puzzling, as the (modified) Einstein
equations themselves are of second order in time

°An analogous situation occurs when including the extended
Chern-Simons  term  ¢*“[JA,0,A, into (1 + 2)-dimensional
electrodynamics [123]. This effective term can be absorbed into
the gauge field via the redefinition A, = A, + €,,,0"A% in order
to rewrite the Lagrange density in terms of a new field strength
tensor as —4F,, F* with F,, =8,A, - ,A,. In spite of this
form hiding the additional degrees of freedom, the latter still
provides a parity-violating theory. The example presented dem-
onstrates that field redefinitions have to be carried out and
interpreted with care.

[cf. Egs. (62) and (63) in [32] and Egs. (6) and (7) in
[33]). Although the EH action contains second-order time
derivatives of the metric (see the definition of the Ricci
scalar), the Einstein equations themselves do not involve
time derivatives of the metric higher than 2. To gain a better
understanding of this peculiar property, we consult
Ref. [124] (see page 297) that provides a powerful
decomposition of the EH action as follows:

/d4\/“ Md4\/’

2K

1 A(y=gv")
— | d——, 73
+ 2k J m * Ox* (733)
with the quantities W and w* given by
W= g/ﬂ/(]"Q”O_FO'DQ - Fﬂﬂurgﬂg)’ (73b)
Wl = gaﬁr%aﬂ - gial—waw (730)

where ['#,, are the Christoffel symbols of four-dimensional
spacetime. By following this procedure, /—gW involves
only first-order derivatives of the metric, whereas all second-
order derivatives of the metric are put into 9, (,/=gw*). This
decomposition works, as the Ricci scalar is linear in the
second-order time derivatives of the metric. Note that W is
not a Lorentz scalar and w” is not a four-vector.

An explicit computation (for example, done with the
powerful Mathematica package xTensor [125]) demon-
strates that a variation of the first term on the right-hand
side of Eq. (73a) with respect to the metric leads to \/=gG,,
with the Einstein tensor G . Interestingly, [124] claims that
a variation of the second term is zero, as it is a term on the
boundary 9 M of the spacetime manifold M. Therefore, it
is not expected to contribute to the field equations.
However, research done in the 1970s revealed that the
situation is more subtle. As the second term on the right-
hand side of Eq. (73a) depends on second-order derivatives
of the metric, the corresponding surface term still contains
first-order time derivatives of the dynamical field g,,. In
general, Hamilton’s principle requires that variations of
dynamical fields vanish on the boundary, which means
8Gulorm = 0 for GR. However, the requirement that first-
order derivatives of these variations also vanish on the
boundary is too strong and should not be implemented, if
one does not want to change Hamilton’s principle. So
04(89,)|opm # 0 must be assumed. Then the boundary
term cannot simply be set to zero, which is a particular
situation in GR, as the EH action already involves second-
order derivatives of the dynamical fields.

Since there is a contribution on the boundary, the latter
can only be canceled by subtracting a suitable term from the
action. It is called the Gibbons-Hawking-York (GHY) term
[44,126—128] and it has the form
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e
SGHY:_f dSJ’\/gK’ (74)
K Jom

where ¢ = F1 for a spacelike (timelike) boundary and y are
the coordinates on the boundary. As its derivation is not
found in a number of GR books, we present the essential
arguments and calculational steps in Appendix D 1. By
doing so, the reader will also be able to understand better
how the computation must be adapted to the settings of the
s# and u terms of the gravitational SME.

The ADM decomposition of the EH Lagrange density
based on Eq. (14) provides an alternative explanation of the
GHY boundary term. The Lagrange density involves a first-
order time derivative of the metric within the extrinsic
curvature tensor via Egs. (20) and (21). Second-order time
derivatives of the metric occur in the covariant-derivative
term of Eq. (14). By considering this contribution inside the
action with N,/q = /=g, we have

l/ d*x\/=gV, (" K — a*) sz dy/gK, (75)
K JM K Jom

where we employ n-a=0 and n’>= e.' The result
corresponds to Eq. (74). Therefore, the ADM formalism
gives rise to the GHY boundary term automatically. The
latter is needed to cancel the first-order derivatives of the
metric on the boundary.

Let us now focus on the diffeomorphism-violating
modification of the EH Lagrange density given by £'(*)
in Eq. (16c). We observed that the Lagrange density of the
mixed sector of £'*) stated in Eq. (30c) is completely
devoid of second-order time derivatives of the metric, as it
only contains covariant derivatives defined in the spacelike
hypersurface. In fact, we introduced a boundary term for
this sector in Eq. (50). However, the latter lived on the
boundary 0%, of a spacelike hypersurface as opposed to
the boundary OM of the spacetime manifold. Furthermore,
the motivation for introducing this term was completely
different and did not have any relation with second-order
time derivatives of the metric.

In contrast, the situation is quite different for both the
purely timelike and the purely spacelike sector whose
Lagrange densities are given by Egs. (30b) and (30d),
respectively. They involve first-order time derivatives of
K;j and K via the Lie derivative along m*. Therefore,
second-order time derivatives of g;; are implied. Formally,
a similar decomposition as that of Eq. (73) can still be
carried out, since £(*) is linear in the second-order time
derivatives of the metric, as well:

"Note that the four-vector n¥ orthogonal to X, can be employed
as a vector normal to the boundary. The relevant parts of M in
this context are interpreted as hypersurfaces X, being timelike or
spacelike.

/ Y9 wp / 4 Y "I

M 2K m M 2K

1 A(/=gw!*
/ g (v/=gw"*")
M

e TVETE ) (76a)

Ox* ’

with modified quantities W) and w(*):

W = e 10, = 1%, 7

'c
Ho'vQ

1
+ 2_9 (Fgugaug - rgﬂyan)}

10,0, —T¢,,0,5", (76b)

Wil = s¥TA y — stoTv . (76¢)
The second-order derivatives of the metric are absorbed in
84(\/—_gw<5)’1), whereas W) only involves first-order time
derivatives. A study analogous to that done before shows
that there are nonvanishing contributions on the boundary
originating from a variation of the second term on the right-
hand side of Eq. (76a). The outcome is that modified GHY
terms must be introduced to compensate these effects.
Details of the procedure are presented in Appendix D 2.
We also take into account £/ in Eq. (16b), which is
straightforward, since it has the same structure as the EH
Lagrangian. The indispensable boundary terms are then
found to be given by

£
Smod -
GHY 2K oM

d3y\/§[s’7Kl-j — (s"™ 4 2u)K]. (77)
Hence, there is a boundary term for the purely spacelike
part of s#* governed by the controlling coefficients s/, a
second one for the purely timelike part parametrized by s™",
and a third one for u. The mixed part of s** does not have an
associated boundary term of this form, though
[cf. Eq. (50)]. Note that an additional global factor of 2
does not occur for s*/ as well as s"™ as opposed to the GHY
term in Eq. (74).

At this point we may look at the ADM formalism again.
Integrating the total-derivative contributions in Egs. (37),
(58), and (64) gives rise to exactly the same surface terms
that we found above:

1 . .
—/ d4x1/—gvﬂ(n”Kijs”):iy{ d*y\/qK;js7, (78a)
2k M 2K OM

1 €
I d*x./=aV (n*Ks"™M) = — — d3 K™,
2K/M VGV (K™ 2Kjéw1 yVaKs
(78b)

—1/ d4x,/—gVM(n”Ku)——fyé dy/gKu.  (78¢c)
M K Jom
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In the setting of the u and s*¥ coefficients, the ADM
formalism still correctly provides suitable surface terms
that are generalizations of the GHY term. They are
necessary to compensate the additional first-order time
derivatives of the metric on the boundary that arise due to
diffeomorphism violation. Note that modified GHY boun-
dary terms associated with the minimal gravitational SME
were also considered in [106].

We are interested in the boundary contributions intro-
duced above to understand how to treat the second-order
time derivatives of the metric properly that occur in
Egs. (30b), (30d), and (30e). Second- and higher-order
time derivatives of the dynamical fields may lead to
additional propagating degrees of freedom that are unphys-
ical (such as ghosts). In the nonminimal SME such
unphysical degrees of freedom are very common. They
are often neglected in phenomenological analyses in the
low-energy limit of quantum field theories based on the
Lee-Wick procedure [129,130]. However, ghosts cannot
simply be discarded when quantum corrections are taken
into account and the internal consistency of such theories
must be questioned and investigated (see, e.g., [131-142]
where this list is not claimed to be exhaustive).

In the minimal SME, Lorentz-violating contributions can
introduce additional first-order time derivatives of the
dynamical fields. For example, additional time derivatives
are known to occur in the Dirac fermion sector for certain
choices of the dimensionless c, d, e, f, and g coefficients
[26,27]. These time derivatives spoil the conventional time
evolution of spinor solutions of the Dirac equation, but it is
well-known that they can be removed by suitable field
redefinitions in spinor space [143—145]. In spite of that, the
Lagrange density of the minimal (nongravitational) SME
does not exhibit second-order time derivatives of dynamical
fields.

In general, second-order time derivatives of the dynami-
cal fields must be treated with the method developed by
Ostrogradsky [117-121]. This procedure is usually
employed in the context of the nonminimal SME only.
Hence, it must be considered as more than surprising that
this approach should be necessary to deal with the second-
order time derivatives of the metric in Egs. (30b), (30d), and
(30e), which are based on the minimal SME. The argument
made via Eq. (76) is a justification for transferring the first-
order time derivatives from K ; to s via Eq. (35), from K
to s™ with the help of Eq. (57), and from K to u by means
of Eq. (63). In this process, generalized GHY boundary
terms are introduced to cancel the first-order time deriv-
atives of the metric on the boundary. Thus, the
Ostrogradsky method is not needed.

As a consequence of our procedure, first-order time
derivatives of the diffeomorphism-violating fields s%/, s,
and u arise, which reveals two important properties of these
contributions. First, the number of degrees of freedom must
be conserved when applying Egs. (35), (57), and (63).

In principle, the procedure transfers the degrees of freedom
that come with the additional time derivatives of the
extrinsic curvature to s, s™ and u. For s” and u this
means that the background fields must somehow absorb
these degrees of freedom.

Recall that we work in the setting of explicit diffeo-
morphism violation, wherewith s/ must be considered as a
nondynamical tensor-valued function that is projected into %,
from an initially chosen s#. Hence, s” is not capable of
absorbing any dynamical degrees of freedom, which indi-
cates a mismatch. This behavior is how the well-known clash
between explicit diffeomorphism violation and Riemannian
geometry [32] manifests itself within the ADM formalism
applied to this particular sector. The argument is similar for u.
However, as will be discussed in Sec. V, this mismatch can
possibly be resolved when taking into account a certain set of
consistency conditions for the background fields.

Moreover, when the time derivatives are transferred from
K to s™ in the purely timelike sector [see Eq. (57)], they do
not only act on s, but they imply time derivatives of the
lapse function. An interpretation of this behavior is that
some of the gauge degrees of freedom of GR can become
dynamical in this sector. The significance of that observa-
tion is highly obscure. On the other hand, both the purely
spacelike sector and the scalar sector do not involve any
time derivatives of the lapse function or the shift vector, i.e.,
these gauge degrees of freedom remain nondynamical in
the presence of s/ and u, respectively. This additional
problem specific to the purely timelike sector can also be
tackled by introducing a suitable requirement for s™", as
will become clear in Sec. V.

In short, based on the previous discussion as well as the
form of the modifications of C; in Egs. (39¢) and (66c), one
might be tempted to restrict the purely spacelike and the
scalar sector to such background fields satisfying
L,,s7 =0 and L, u = 0, respectively. These conditions
mean that s/ and u, respectively, are generated by the flow
defined by the four-vector m* and they are necessary
requirements for the internal consistency of these sectors.
The conclusion is that s and u chosen suitably in this
manner could, indeed, imply a base for constructing
consistent sectors of the minimal gravitational SME that
violate diffeomorphism invariance explicitly. Furthermore,
a similar requirement £,,s™™ = 0 could be employed [see
also the modification of C; obtained in Eq. (60c)]. Note that
we consider s™" as a new degree of freedom independent of
s* and N, i.e., we will not think of it as a quantity that
involves time derivatives §° and N separately. The forth-
coming section will provide further substance to these
(preliminary) claims.

V. FIELD EQUATIONS AND CONSTRAINTS

It is remarkable that in the ADM formalism there are
direct relationships between the Einstein equations and the
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Hamiltonian constraint as well as the momentum con-
straint. These relations involve suitable contractions of the
Einstein equations with the projector ¢, and the four-
vector n¥. We intend to give a brief summary of how this
procedure works for GR. After that, we will be trying to
tackle the diffeomorphism-violating modifications in an
analogous way. Although the method applied to GR is
rather unproblematic, its application to scenarios with
explicit diffeomorphism violation has turned out to be a
formidable task requiring tedious computations. A large
part of those will be moved to Appendix F. However, the
procedure will eventually imply several rewarding findings.

A. General relativity

The structure of GR allows us to relate the field
equations with the Hamiltonian and momentum con-
straints. We consider the Einstein equations of GR,

(Toa)? = WG, (79a)
where
WG — @R _ ga/i
(Tona)? = \/2_5559 ‘:ﬂ‘ (79b)

with the Einstein tensor (G* in four-dimensional space-
time and the Belinfante energy-momentum tensor (7', )%
linked to a matter Lagrange density L, Since we are not
taking matter into account, we will set (T, )% = 0.
Suitable projections of the Einstein equations imply the
Hamiltonian and momentum constraints (expressed in
terms of the extrinsic curvature). First, a total projection
along the direction orthogonal to %, leads to Eq. (24b):

2n,nYVGP = 2n,ns Y RP — n? IR

= (R + KZ - KUKI] - 2nanﬂ<4)R“ﬁ)
+ 2nn; YR
- Co, (80)

where we employed Egs. (A12) and (A15). Second, a
mixed projection parallel to X, and along the direction
orthogonal to X, implies Eq. (24c¢):

Zqi(lnﬂ(4)Gaﬂ _ 2qiunﬂ(4)Raﬂ _ 2qial’la(4)R
= 2(D,KV - DIK) = C'. (81)

Here we used the contracted Codazzi-Mainardi relation of
Eq. (A20b).

B. Minimal gravitational SME: s# term

The modification of the Einstein equations follows from
varying the action

§6) = / dxL), (82)
M

with £'(*) given by Eq. (16¢). The result is well-known and
is stated in Egs. (6) and (7) of [33]. Without a matter source
and for a nonzero s** only, the modified Einstein equations
amount to

0= (4)Gaﬂ _ (TRS)(Zﬁ, (833)
1
(T)% = S [fPs Ry + V, V5P 4V, Vs
V2598 _ ga/}vﬂvyslw]. (83b)

Note that the modified Einstein equations stated in
Egs. (62) and (63) of [32] have a slightly different form
where the corresponding (7%%)% has been reprinted in
Eq. (F3) for completeness. The latter field equations are
valid for a modification of GR given by the action

S = / d*x V YR, (84)

i.e., for a background field with lower indices (although the
field equations are expressed in terms of s#¥ with both
indices raised by the metric). This finding shows that for
explicit diffeomorphism violation, the field theories defined
by the action §'®) of Eq. (82) and S”®) of Eq. (84) are not
equivalent. More emphasis is put on this property in the
recent work [39] (see also the remarks made in Sec. I).
Since our setting is based on the action of Eq. (82), our
analysis will be resting on the modified Einstein equa-
tions (83). For the purpose of clarification, a short deriva-
tion of the modified field equations is provided in
Appendix E.

We now intend to find out whether there are possible
connections between the modified Einstein equations and
the constraints derived in Sec. IV B. To do so, we will have
to compute suitable contractions of (T%)% in Eq. (83) with
n, and q“g, respectively. The computations turned out to be
challenging and revealed further interesting insights.
Details are presented in Appendix F.

There is an additional peculiarity with respect to Eq. (27)
that we have employed to decompose s** into a purely
spacelike, a mixed, and a purely timelike sector. The latter
decomposition must be considered as an identity and the
individual parts depend on the coordinates chosen for
the ADM decomposition. The situation is most clear for
the purely spacelike part. According to its definition as

s = =q', g’ 5", the purely spacelike part definitely
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involves coefficients of s# with spacelike indices
only—independently of the exact form of the projectors.
However, the same does not hold true for the mixed and
purely timelike sectors. The problem is best understood by
looking at the following explicit example. At first, the only
coefficient of s#* that contributes to the purely timelike
sector is s%, as s" = s*n,n, = N*s®. However, for a
nonzero shift vector the purely timelike sector of the
decomposition in Eq. (27) then reads

(s)

oty = (nnPs™M) = < : A N _>s00, (85)
timelike _N] NIN]

which obviously involves coefficients other than s%°. The
behavior is similar for the mixed sector. Thus, a nonzero
shift vector implies that the purely timelike and mixed
sector couple to each other as well as to the purely spacelike
one. If one does not want to pick particular observer frames
with specific forms of s#¥ (see Sec. IV B 1), such couplings
between different sectors can be avoided by employing
Gaussian normal coordinates [115,116] where N = 1 and
N = 0. A slight generalization of Gaussian normal coor-
dinates including a nontrivial lapse function N can also be
considered. It is indispensable, though, to work with a zero
shift vector if one wants to avoid that different sectors
couple to each other.

1. Field equations for s
In what follows, we will obtain the suitable projections
of the modified Einstein equations. Calculational details are
shown in Appendix F 1. A complete projection of Eq. (83)
along the direction orthogonal to X, implies

2nanﬂ(TRS)aﬂ = —(Klinlsij + KKijSij + Sinij

- qﬂaqy/}vyvbsaﬂ)' (86)

The final term is involved. Evaluating it with care gives
rise to

q”aq”ﬁvﬂvbs”ﬂ = DID]SU - Kll'Kjlsij + KK”SU
1

_NKij'Cmsija (87)

with the Lie derivative of the purely spacelike background
given by Eq. (36b). Now we obtain the following intriguing
result:

2nany(TR)P = — [Sij(Rij +2K';K}j) = DiDsY
I '
+ NKU’C’”S

1 y
= —(C(()) +NKij£msj>v (88)

with C(()l) given by Eq. (39b). Thus, the modification of the
Einstein equations completely projected along the direction
orthogonal to X, almost equals the modification of C, but
there is an additional contribution given by the Lie
derivative of the purely spacelike background tensor with
respect to m.

Evaluating the mixed projection of Eq. (83b) is even
more involved. An intermediate result reads

2¢* ng(TR)P = —siD,K * — K;;D*s'V — a; K" ;s7*
+ 2K ;;D's’* + KD;s™
— (Kr*1 + K*)) Vs
+ 1,4 34",V, VY + 54V, K, (89)

and finally, we obtain

1 . . .
2qkanﬁ(TRS)“ﬁ = —{—D,» [ﬁﬁms’k—FZs”‘K’,} +K,~jDks’J }
——[g¥C)" +-2D,(s'K*)) + K, ;D¥ 5], (90)
with the modification Cgl) of C; given by Eq. (39c).

2. Field equations in the mixed sector

In Sec. IV B 3 we have brought up convincing arguments
for the mixed sector involving only gauge degrees of
freedom. Therefore, we do not consider it worthwhile to
compute projections of (T%)# for this particular sector.

3. Field equations for s™

To avoid couplings with the other sectors, we will be
working with coordinates such that N = 0. For the purely
timelike sector there is the peculiarity that an additional
contribution must be taken into account for the field
equations that comes from varying the action. We have that

5(s"n*n*R,,) D s"R,,6(n"n")
= S““Rﬂy&(qﬂ” - gﬂy)
= —s""R,,09", (91)
according to Eq. (10). Thus, an extra term emerges within

the diffeomorphism-violating modification of Eq. (83b)
where the minus sign is extracted:

(TRs)a[i — (TRs)aﬁ + Snngaﬂg/}lew
— (TRS)aﬁ + snnRaﬁ' (92)

Then, a complete projection along the direction

perpendicular to %, implies
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2nanﬂ(TRs)“ﬂ = —[D;D's"™ + s““(Kinij - K?)
+ Kn*V 5"

1
_ —(C(()3) _NKEmsnn>’ (93)

with C(()3) stated in Eq. (60b). Carrying out a projection
along X, with respect to one index and a projection along n*
for the second index results in

2¢* ng(TR)P = —[D¥(n#V ;™™ + 25" K )
—2D;(s""K/*) — KD*s"]
— _(qkch) — KDksmm), (94)

where C§3) of Eq. (60c) can be employed here. Details on
how to arrive at these results are relegated to Appendix F 2.

C. Minimal gravitational SME: u term
Without a matter source and only the u term present, the
modification of the Einstein equations is obtained from
varying

5 — / dx L), (95)
M

with £/ given by Eq. (16b). Then,

0= (4)Ga/3 _ (TRM>UCﬂ’ (968.)
1
(TR — -5 (VeVPu + VIVay)
+ V2 + uGP, (96b)

A short derivation of this result is also presented in
Appendix E. As we did before, we can compute suitable
projections of the modified Einstein equations completely
orthogonal to ¥, and partially into %,:

2
2nng(TR)P = — (C(()4) - NKE,,M) ., (97a)

24" g (TR = —(gM'C}") = 2KD*u),  (97b)
with CE)4), C§4> given by Egs. (66b) and (66¢), respectively.
Computational details are presented in Appendix F 3.

D. Concluding remarks

To summarize, projections of the diffeomorphism-
violating modifications (7%)%, (TR*)% for the purely
spacelike, the purely timelike, and the scalar sector with g#,
and n* do not completely provide the Hamiltonian and
momentum constraints (expressed in terms of the extrinsic
curvature). In contrast to GR, there are correction terms. To
substantiate these outcomes, we will be taking a deeper

look at additional properties of the ADM action in the
forthcoming section.

E. Functional derivatives of ADM action

In the current section we intend to compute functional
derivatives of the ADM action with respect to the lapse
function and the shift vector. The first is expected to be
connected to the Hamiltonian constraint, whereas the second
is associated with the momentum constraint [146].
Calculational details are shown in Appendix G. First, for
the ADM-decomposed EH action of Eq. (19) we obtain

58O /g
SN —XCO, (98a)
ss© /g
BNF 2k Ok (98b)

with Cy, C; given by Egs. (24b) and (24c), respectively. To
find out whether or not analogous relationships exist in the
context of the background fields s** and u, we consider the
modifications of the GR action within the ADM formalism.
The latter read

50 = / d*xL' ), (99)
M

with the Lagrangians given by Egs. (30b)—(30e) for
ie€{l1,2,3,4}. Computing the functional derivatives
implies

88D g (L ] 1

- _Nv7 —K.. i 1
SN 2 (CO o Kk ) oo
88"V \/a j j

SN :\2/—1;[Cl(<)+KijDksl']+2Di(sl]Kkj)]’ (100b)
88 a0 2 mpi _ on

= e (G0~ DAN(K = smK)] b (100c)
55’ q 0

s :2_;<C’(<)’ (100d)
58 VA (o6) _1gr (100e)
SN 2 \ 0 TNTE ) )
551(3) \/a (3) nn

N = e (@) = KDs™). (100f)
08 _ V(o 2 pp (100g)
SN 2\ 0 TNt ¢
8S'W /g

NS Z_\C (Y —2KDu). (100h)
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Several observations are in order. First, in contrast to GR,
there is no complete match between the functional deriva-
tives and the constraints for the purely spacelike, the purely
timelike, and the scalar sector. There are additional contri-
butions that involve products of the extrinsic curvature and
Lie derivatives or covariant derivatives of the background
fields. Second, there is a match for the Hamiltonian constraint
of the mixed sector modulo a boundary term on 0%,.
Interestingly, the momentum constraint of the mixed sector
matches perfectly without any additional contributions.
Third, note the similarities between the purely timelike
and the scalar sectors that are also evident in the boundary
terms of Eqgs. (78b) and (78c).

F. Consistency requirements

In what follows, we will draw some intriguing con-
clusions from the projections of the modified Einstein
equations and the functional derivatives of the ADM
actions. We do so for the purely spacelike and the purely
timelike sector of s#* as well as for u. Since the mixed
sector of s#¥ involves gauge degrees of freedom only, it will
not be taken into consideration. For the purely spacelike
sector we start by comparing Eqs. (88) and (90) with the
corresponding functional derivatives of the ADM action:

7(1)
oS8 o \/a I’lanﬁ(TRs)aﬁ,

—_— = 101
55"V V4 i

= - TRs)ab, 101b
= L (1) (101b)

For the purely timelike sector, we compare Eqgs. (93) and
(94) with the suitable functional derivatives:

55'3)
= A (TR, (102a)
55" V4

= -7 TRs)aP 102b
5Nk K« Q(zn/)'( ) ( )

Finally, we take Eqgs. (97a) and (97b) from the scalar sector
and compare those to the associated functional derivatives:

5 A
— _ u\ap
N - nang(TH), (103a)
584
__v4 gk gny (TR (103b)

5Nk K

Thus, we conclude that the functional derivatives of the
ADM-decomposed actions with respect to the lapse func-
tion are proportional to the associated modifications of the
Einstein equations completely projected along the direction
orthogonal to X,. Furthermore, the functional derivatives
for the shift covector are proportional to the mixed

projections of the modifications. In this context, discrep-
ancies do not arise for the purely spacelike, the purely
timelike, and the scalar sector.

Next, we compare the latter findings directly to the
Hamiltonian and momentum constraints. For the purely
spacelike sector we establish the correspondences

)

q 51
SN (D, wimg) = 2—\/;05 ), (104a)
g q 51
5Nk (S/(1)|£msif:0) = \2/,:01(() ¢ dico’ (104]3)

with C(()l) and C,El) given by Egs. (39b) and (39c). For the
purely timelike sector it has to hold that

o U \/q (3)
O (g0 = Ve
1) ’ \/5 3
O gy =Y
(5O ) = LI (105D

with (383) and C,(f) stated in Egs. (60b) and (60c). Last but
not least, for the scalar sector we deduce

0 _ V4

(5@ - (4) 1
SN (S Emu:0) 2K C() P ( 063)
6 ! \/6_1 4

(@) - 4)

sE (5 Ve =30G7| o (106b)

where (784) and C,(:‘) must be taken from Egs. (66b) and
(66¢). Hence, we conclude that for these three sectors being
internally consistent, the following necessary conditions
must be required:

L, s =0, (107a)
L,s" =0, (107b)
Lu=0 (107c)

In what follows, the latter will be denoted as consistency
conditions. In the context of the ADM decomposition, a
gravity theory endowed with s¥-, s™- or u-type back-
ground fields, which violate diffeomorphism invariance
explicitly, is likely to be internally consistent as long as the
Lie derivatives of these backgrounds with respect to the
vectorfield m* vanish. These consistency requirements are
directly connected to diffeomorphisms acting on the under-
lying spacetime manifold. Diffeomorphisms affect tensor-
fields in the tangent bundle and are generated by Lie
derivatives along arbitrary vectorfields. Thus, Eq. (107)
means that the corresponding background fields must be
invariant under diffeomorphisms generated by m* within
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the ADM formalism such that the modified-gravity theory
is consistent.

The recent findings demonstrate how a background field
violating diffeomorphism invariance explicitly must be
understood within gravity. A background field in the
nongravitational SME is defined to not transform cova-
riantly under particle Lorentz transformations, i.e., it is
defined as fixed under such transformations. Note that
diffeomorphisms in Minkowski spacetime are equivalent to
translations induced by a constant four-vector {#. Then, the
Lie derivative of a two-tensor-valued background
field k** simply corresponds to the directional derivative
along {#. An analogous consistency requirement would
amount to

Lok = LoV kv =0, (108)

For an arbitrary {* this condition is satisfied for
backgrounds k*¥ that do not depend on the spacetime
position (at least when expressed in terms of Cartesian
coordinates). In the context of the nongravitational
SME, constant controlling coefficients are usually
employed for two reasons. First, it is simpler to think of
a background as being constant. More importantly, coef-
ficients depending on the spacetime position violate trans-
lation invariance and, therefore, energy-momentum
conservation due to Noether’s theorem. This property
would imply additional complications that are beyond
studies of Lorentz violation.

However, in curved spacetime, a dependence of control-
ling coefficients on spacetime position must usually be
assumed. For example, V,s# =0 would only hold in
spacetimes known as parallelizable [32]. The latter are very
special choices and of lesser interest in the context of gravity.
Within the ADM formalism in gravity, Eq. (107) can be
interpreted as generalizations of Eq. (108) where the latter
implies energy-momentum conservation in Minkowski
spacetime.

A pictorial interpretation of the problems that arise with
explicit diffeomorphism violation in gravity is as follows.
The arguments to be made rely on test particles being
present in the curved spacetime manifold. Note that we
have not introduced a coupling term with matter in the
action, so far. Hence, rigorous studies of the interplay
between matter and diffeomorphism-violating background
fields will be done elsewhere. Nevertheless, we can make
some physical arguments to interpret the significance
of Eq. (107).

We can consider a test particle propagating in a curved
spacetime. The particle moving between two distinct points
follows a geodesic along which it is in free fall, i.e., its
acceleration vanishes. A background field giving rise to an
explicit violation of diffeomorphism invariance modifies
the geodesic equation, whereupon particle motion is

affected.® Then, the momentum of the particle will change
in a way that is not described by GR, but that has to be
accounted for by the background field. However, as the
latter is nondynamical, it is incapable of absorbing or
emitting momentum [51].

Similar arguments can be developed for light rays
propagating through a background field in curved space-
time. As long as the gravitational field is weak enough, the
eikonal approximation is a suitable approach (see, e.g.,
[147,148]). Then, the curved spacetime manifold is approx-
imately described by an inhomogeneous optical medium,
L.e., its refractive index is position dependent (and may
also depend on polarization). The presence of a diffeo-
morphism-violating background field leads to additional
optical effects such as anisotropy, dispersion, and
birefringence. In this context, a background field violating
diffeomorphism symmetry explicitly corresponds to a
nondynamical optical medium on top of the optical
medium ascribed to the curved spacetime manifold M.
Whenever a light ray changes its propagation direction, its
wave vector changes, whereupon this change must be
transferred between the light ray and the diffeomor-
phism-violating medium. Furthermore, in the presence of
an explicitly time-dependent medium, even energy is to be
transferred between both entities. However, a nondynam-
ical medium neither accomplishes the first nor the second.
Similar arguments were already developed in [94].

To solve the aforementioned problems, Eq. (107)
seems to include the necessary requirements that render
a nondynamical background capable of incorporating
energy-momentum transfer between a test particle and
the background consistently. There may be a certain notion
of energy-momentum that is conserved even for a non-
dynamical background satisfying Eq. (107). Whether or not
these quantities correspond to the Killing energy and
Killing momentum, which are associated with isometries
of the underlying spacetime manifold, remains an in-
triguing open question to be studied in the future.
Interestingly, an ansatz similar to Eq. (107) looks natural
to be imposed in the presence of an AdS space in order to
match isometries for tensor fields [149].

VI. ANALYSIS OF CONSTRAINTS AND
HAMILTON FIELD EQUATIONS

Finally, let us analyze the structure of modified
Hamiltonian and momentum constraints that we obtained
for Egs. (16b) and (16¢). In general, our analysis has been
based on a field theory described by a Lagrange density L.
A constraint is called primary when it follows directly from
the form of L. Such constraints occur for a certain

¥*Note that classical-particle analogs subject to certain types
of Lorentz violation described by the (nongravitational) SME
were shown to follow geodesics associated with Finsler
geometries [85].
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canonical variable, say ®, when the Lagrange density does
not involve the time derivative of the latter. The canonical
momentum

oL

o =56

(109)

associated with @ is then equal to zero. Therefore, it is not
possible to express & in terms of 1, which does not permit
deriving a Hamilton density via the Legendre transform.
Then a Hamilton density 7 is obtained from £ without
taking the constrained variable into consideration.
Subsequently the constraint is added to H via a
Lagrange multiplier £ to define an extended Hamiltonian
of the form H(*XY) = H + &I1. In the literature, a primary
constraint is written as

(110)

where &~ means “weakly equal to zero.” This notation is
used to indicate that Ilg is only taken to be zero when the
constraint is satisfied, which is not necessarily assumed in
computations right from the start. For example, setting
[y = 0 (“strongly equal to zero”) in H(XV would imply
that the term added with the Lagrange multiplier does not
contribute at all, which is undesired.

In what follows, the constraint structure of GR shall be
reviewed briefly (see, e.g., [5]). We start with a set of ten
canonical variables X; = {N, N', q,-j}. Note that the index
of X; is defined as a lower one although X; involves the
shift vector components N’ with an upper index. The
canonical momenta follow from the generic Lagrange
density £ via

M= (111)

leading to the set of ten canonical momenta IT' =
{zy, 7, 7} given as

oL oL 0L
= T=—, = —

= (112
94, (112)

By employing the canonical variables and momenta, we
define the Poisson bracket of two quantities F' = F(x),
G =G(¥') via

_ [ 5[ 8F G  SF &G

where /6@ denotes the variational derivative with respect
to the variable ®.

. (113)

A. General relativity

As the EH Lagrange density of Eq. (15a), which is also
contained in Eq. (19), does not involve time derivatives of
both the lapse function and the shift vector, the associated
canonical momenta vanish. Thus, according to the intro-
ductory explanations, we have already identified a set of
four primary constraints in GR:

n’N%(), 77:1-4210, (114)
whereupon we define
HE) = HO) 4 yzy + 0';, (115)

with the four Lagrange multipliers # and @'. The time
evolution of constraints is governed by suitable Poisson
brackets with the extended Hamilton density. As the
dependence of H(**) on the lapse function and the shift
vector is transparent, we quickly arrive at

{my, HV} = —C,, (116a)

{m;,, H®V} = —C;. (116b)
Each primary constraint I1g =~ 0 should be preserved in
time to not change the constraint structure. Its time
evolution is governed by

dI1
e {H(D’ H(eXt)} +

oMy
dr ’

o (117)

The partial time derivative on the right-hand side is only
needed when the primary constraint depends on time
explicitly. To preserve this primary constraint in time,
we must require that

dIly
— = 11
dr 0, (118)

which implies a further constraint that is called a secondary
one. Note that we must again talk of this secondary
constraint as being weakly equal to zero. Inserting
[1g = 0 directly would trivially result in a vanishing time
derivative. If the secondary constraint is not automatically
weakly equal to zero when the primary constraint satisfies
this property, this new constraint must be included into the
Hamilton density via another Lagrange multiplier {:

- IT
H(ext) > H(CXI) — H(O) + éHd) + Cdd—tq) . (119)

The procedure continues in this manner and may provide
even further constraints. Hence, in the context of GR, for
the primary constraints of Eq. (114) to be conserved, we
must impose the following secondary constraints:
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{7y, H®} = —Cy = 0, (120a)

{rm, H?} = —C; 0, (120b)

with Cy, C; of Egs. (26b) and (26c), respectively. The latter
finding now clearly demonstrates why C,, C; are consid-
ered as constraints in GR.

The last step and perhaps the most essential one to derive
the number of degrees of freedom in a constrained theory is
to identify the first- and second-class constraints [5,114].
Imagine that we have a set of n constraints {¢,} with
a=1,2,...,n. A constraint Q is called first-class if it has
weakly vanishing Poisson brackets with each member of
the set {¢,}, i.e., {0, ¢, } =~ 0 for all a. It is called second-
class if at least one Poisson bracket is not weakly equal to
zero: {0, ¢,} # 0 for not less than a single a. The Dirac
bracket can be defined from the latter, which allows for
imposing second-class constraints strongly equal to zero
[5]. The total number of physical degrees of freedom then
corresponds to (see, e.g., page 29 in [114])

Nyot = (Nph_le_N2>’ (121)

N[ =

where Ny, is the number of phase space variables and N,
(N,) is the number of first-class (second-class) constraints.
Note that the number of first-class constraints has a weight
factor of 2 showing that these contribute differently to the
number of degrees of freedom than second-class con-
straints. In particular, GR involves 20 phase space variables
in total (ten metric components and ten conjugate
momenta). Equations (114) and (120) comprise a set of
eight first-class constraints, whereas there are no second-
class constraints. Then, N, =20, Ny =8, and N, =0,
which implies Ny, = 2 corresponding to the correct
number of physical, propagating degrees of freedom, as
expected.

In gravity, the Hamiltonian and momentum constraints,
which are first class, play an essential role in the context of
diffeomorphisms. In general, diffeomorphisms are gener-
ated by vector fields y. A representation of the diffeo-
morphism algebra in the tangent bundle of the spacetime
manifold, where tensor fields of arbitrary rank are defined,
is given by the Lie derivative £,,. In what follows, we will
compute Poisson brackets of the canonical variables g;;, i
with the Hamiltonian and momentum constraints according
to Eq. (113). The constraints will be integrated over with
the lapse function and the shift vector chosen as smearing

functions. The following important results can then be
derived within GR [150,151]:

{asto. [ e, N )]

= qji(x)D;N*(x) + g (x)D;N*(x)

= Lngij(x), (122a)
{mato. [ @veom}
= N¥(x) Dy’ (x) + 7'/ (x) D N¥(x)
— 7% (x) D NI (x) — /¥ (x) DN (x)
L (x), (122b)

For the second of these Poisson brackets it is crucial to take
into account that 7'/ transforms as a tensor density. These
findings mean that the momentum constraint is the gen-
erator of spatial diffeomorphisms in the spacelike hyper-
surfaces X, as these are connected to the shift vector N
[150]. Furthermore, we obtain

{aston. [ | EICoING) | = 2N Ky (1)

= Qij(x) - CN%’;‘(X)
= Lin‘]ij (X),

where Egs. (20) and (25) are understood to be used here.
This relation means that the Hamiltonian constraint gen-
erates spacetime diffeomorphisms connected to the four-
vector m* [150]. Finally, we can confirm the validity of the
first set of Hamilton’s field equations:

é]ij(x) = {‘Iij(x)’/ZI d3yH<°>(y)},

with H(©) given by Eq. (26a). The latter Hamilton equations
are interpreted as geometrical identities and should not be
modified as long as Riemannian geometry is taken as the
foundation of a modified-gravity theory. The second of
Hamilton’s field equations involves the canonical momen-
tum 7/ and conveys information on the dynamics.

(123)

(124)

B. Minimal gravitational SME: s* term

By adding suitable modified GHY boundary terms to the
action (see Sec. IV C for their construction), we were able
to move all additional time derivatives acting on the
extrinsic curvature to the diffeomorphism-violating back-
ground fields. Now, a further support of the consistency
conditions in Eq. (107) is provided by the following
argument. As long as these requirements are satisfied,
the modifications H(!**) of the Hamilton densities pro-
vided by Egs. (39), (60), and (66) neither involve time
derivatives of the lapse function nor of the shift vector.
Hence, the constraints provided by Eq. (114) remain
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primary ones in a gravity theory modified by the presence
of sV, s™ and u. Furthermore, the structure of the
modified Hamilton densities in terms of N and N’ remains
standard, whereupon Eq. (116) still holds with the corre-

sponding C(()1'3’4> of Egs. (46), (62b), and (68b) and CECI’M)
of Egs. (49), (62c), and (68c) inserted. Then the
Hamiltonian and momentum constraints remain secondary
constraints and the structure of these constraints is not
modified by diffeomorphism violation, as proposed right at
the beginning of the paper. To be able to make a statement
on the number of degrees of freedom based on Eq. (121),
we would need to check whether or not the modified
constraints remain first-class and what is the constraint
algebra. Such investigations will be pursued in a future
paper. Let us now compute the Poisson brackets previously
considered for EH theory in the diffeomorphism-violating
setting under consideration.

1. Hamilton equation in the purely spacelike sector

For the purely spacelike sector, the Poisson bracket of
Eq. (46) with the induced metric implies

{astor. [ | @yc N |

2
= N—K [2(71'[]' + Sikﬂ'jk + Sjkﬂik - Sijﬂ')

Va

—(n— sk + 25k1”k1)‘]ij]

1 2K a
=2NG.), (WH ”> = 2NK;, (125)

with the modified inverse Wheeler-deWitt metric of
Eq. (44). The variables on the right-hand side of the first
equality sign in the latter relation are understood to depend
on the coordinates x. From now on, such dependencies are
omitted for brevity. As the momentum constraint remains
unmodified at first order in the controlling coefficients,
Eq. (122a) can be taken over. Therefore, the first of
Hamilton’s field equations of Eq. (124) remains valid for
the purely spacelike sector—at least at first order in
diffeomorphism violation.

2. Hamilton equation in the mixed sector

We are already aware of the mixed sector involving mere
gauge degrees of freedom. Nevertheless, we will take a
brief look at the constraint structure that has to reduce to
that of EH theory when the analysis of Sec. IVB 3 is
correct. We will consider the Poisson bracket of the induced
metric with the smeared Hamiltonian constraint CO2 given
by Eq. (55b):

{q,-,-<x>, / L <y>N<y>} = 4% (mj - gqﬂ)

For the momentum constraint we can directly reproduce

Eq. (122) with C, replaced by CE)Z). Clearly, these outcomes
are expected when employing the redefined momentum
density P/ of Eq. (55d).

3. Hamilton equation in the purely timelike sector

Let us now evaluate the Poisson bracket of the smeared
Hamiltonian constraint C(()3> of Eq. (62b) with the induced
metric according to Eq. (123):

{asto. [ ey NG) |

2N |2k 7 =
=i g (e ) | =2,

which corresponds to the expected result when the extrinsic
curvature of Eq. (61) is taken into account. As the
momentum constraint remains unmodified when expressed
in terms of the canonical momentum density, Eq. (122)

(127)

remains valid when C, is substituted by C(<)3). Furthermore,
the first of Hamilton’s field equations given by Eq. (124)
still applies.

C. Minimal gravitational SME: u term

Repeating the procedure employed for the three sectors
of s** for Eq. (68b) implies

{arton. [ ey ING) |

2N [ 2k T T
_ 2K T Y e Yo | — vk, (128
l—u [\/‘OI <ﬂl] un> "2 qu] o (129

as expected, when Eq. (67a) is employed. The momentum
constraint remains again unmodified, as reported in
Eq. (68c). Under these conditions, both Eqs. (122) and
(124) are not in conflict with the current setting.

D. Final remarks

Thus, we conclude that the first set of Hamilton’s field
equations (124) remains valid for the canonical Hamiltonians
in the presence of the diffeomorphism-violating contribu-
tions that we have been focusing on in this article. This
finding is reasonable, as we do not modify the geometrical
setting. The second set of Hamilton’s field equations is linked
to the modified Einstein equations [Egs. (83) and (96)] and is
expected to involve modifications in comparison to GR. We
will delve into this problem in a future work.
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VII. CONCLUSIONS AND OUTLOOK

In the current work we employed the ADM formalism
[3.4] to investigate a modified theory of gravity charac-
terized by the observer Lorentz tensor s#* as well the
observer scalar u of the minimal gravitational SME [32].
We worked in the setting of explicit diffeomorphism
violation, i.e., the background fields s** and u did not
arise dynamically, but they were put into the action by
hand. The main objective was to understand within the
ADM formalism what kind of restrictions Riemannian
geometry poses on s** and u, in other words, how the
no-go result in the context of the gravitational SME [32]
becomes manifest in this formalism.

To do so, we decomposed the diffeomorphism-violating
background field s#¥ into three sectors. The first was
formed from the subset of six independent purely spacelike
coefficients s/, The second contained the vector-valued
object s™ endowed with a single spacelike index only and
the third involved the single Lorentz scalar s™ without
spacelike indices. We obtained the Hamiltonians associated
with each of the three sectors of s# as well as for # and
were able to identify modified Hamiltonian and momentum
constraints. To derive the Hamiltonians, it turned out to be
crucial to include modified GHY boundary terms in the
action that allowed us to move time derivatives from the
extrinsic-curvature tensor to the diffeomorphism-violating
background field in an unambiguous manner.

One interesting outcome is that the mixed sector is
governed by mere gauge degrees of freedom, i.e., the
coefficients s™ are unphysical, as they can be absorbed into
a redefinition of the shift vector. In other words, diffeo-
morphism invariance is restored in this sector, since the
would-be diffeomorphism-violating coefficients s™ are
simply unobservable. This observation may even have
implications for phenomenology. If s™ is comprised,
indeed, by gauge degrees of freedom, it is meaningless
to constrain these coefficients by experiment. Instead, they
should be disregarded in any phenomenological study of
explicit diffeomorphism violation in gravity. Note that this
finding can most probably not be taken over to spontaneous
diffeomorphism violation, as then s™ would be dynamical
and it does not make sense to say that they are absorbed into
the nondynamical shift vector. Another remarkable prop-
erty is that the scalar background u in the context of explicit
diffeomorphism violation cannot be removed by a redefi-
nition of the gravitational field. Hence, the latter is physical,
in fact, and could be searched for in experiments.
Therefore, we conclude that explicit and spontaneous
diffeomorphism violation can be distinguished from each
other in experimental searches.

We also tried to connect the Hamiltonian and momentum
constraints to suitable functional derivatives of the ADM
actions as well as to projections of the modified Einstein
equations along directions orthogonal and parallel to the
spacelike hypersurfaces. For the spacelike, timelike, and

scalar sectors we found a match under a set of consistency
requirements given by Eq. (107) in the text: £,,s" =0,
L,,s" =0, and L,,u = 0. The latter are considered as the
central results of this work. These conditions are interpreted
as consequences of the no-go result [32] applied to the
pure-gravity sector.

However, Eq. (107) can also be interpreted as the very
base of a setting where the no-go result might be avoided as
long as the background fields satisfy these conditions.
In general, a violation of diffeomorphism invariance via
the nondynamical background fields « and s** changes the
constraint structure of GR, as expected. The parts of the
Hamiltonian proportional to N and N’ lose their funda-
mental property of being constraints, whereupon problems
of technical nature arise. Requiring that the secondary
constraints be stationary is likely to imply further sets of
new constraints whose time evolution has to be studied
again. This procedure may quickly get out of control if new
constraints arise steadily. By taking into account Eq. (107),
modifications of GR are considered that are still close
enough to GR. However, only a derivation of the constraint
algebra can clarify whether or not additional constraints
arise. The latter is a worthwhile project that merits further
analysis. Furthermore, whether or not the conditions of
Eq. (107) can be disregarded without rendering the con-
straint analysis unfeasible, will also be subject to future
studies.

In Gaussian normal coordinates, in particular, the first
relation of Eq. (107) requires that the background field s/
does not exhibit an explicit dependence on the time
coordinate. An arbitrary dependence on the spatial coor-
dinates does not seem to be in conflict with Riemannian
geometry, though. In summary, the benefits of using the
ADM formalism in a setting of diffeomorphism violation in
gravity are apparent. One has additional control over
diffeomorphism violation and understands better whether
or not there are unphysical sets of coefficients. A future
analysis based on a covariant canonical formulation (see
[152] for a review) could be a worthwhile task to do.

The analysis performed in the current article may pave
new pathways of exciting research in the context of explicit
diffeomorphism violation and/or local Lorentz violation in
gravity. First, we intend to better understand the connection
between the consistency conditions and the no-go result. To
do so, it will be necessary to include matter fields into the
pure-gravity sector and to treat them within the ADM
formalism. Second, performing an analogous study for the
coefficients #?° [32] of the minimal gravitational SME
will be reasonable. Such an investigation could provide
further insights into the problem known as the “t puzzle”
[106,153]. Third, our expectation is that the ADM formal-
ism will also be valuable in the context of the nonminimal
gravitational SME [39]. An intriguing question is whether
nonminimal diffeomorphism violation in gravity implies
additional consistency requirements linked to the higher
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derivatives in the action. Last but not least, the obtained
results are highly promising to find applications in phe-
nomenological studies of explicit diffeomorphism and local
Lorentz violation in the context of cosmology or scenarios
of strong gravitational fields such as black holes.
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APPENDIX A: MATHEMATICAL APPENDIX

Here we intend to provide a compilation of the essential
geometrical formulas that our work rests on. The books and
papers [112,113,115,116] serve as primary references for
these results.

1. Extrinsic curvature

The covariant derivative in the spacetime manifold M is
denoted as Vﬂ, whereas the covariant derivative on a space-
like hypersurface %, is called D,. The four-acceleration a,
associated with a foliation via spacelike hypersurfaces is a
measure for how n, changes covariantly along itself
[115,116]. It holds that

D,N

N

a,=n"V,n, = =D,InN, (A1)
i.e., it can be expressed via the covariant derivative D,
linked to the induced metric of Eq. (10) and the lapse

function N. This acceleration is tangent to the hypersurface:
n-a=0. (A2)

Note that a, = 0 in Gaussian normal coordinates. Next, we
define the extrinsic-curvature tensor as

K;w = quqo—uvgnn' (A3)
Due to the property
nK,, = K,n" =0, (A4)

the extrinsic curvature lives completely in X,. The extrinsic
curvature is symmetric and can be expressed via the Lie
derivative of g,, with respect to m* = Nn” [108]:

1

» (43)

Kﬂl/ = qqﬂqavv(gno’) = ‘cmqlw’
where a pair of parentheses enclosing a set of indices
indicates symmetrization. The latter quantity is a measure
for the curvature of a hypersurface Z, due to its embedding
in M. It is in stark contrast to the intrinsic curvature of a
manifold that is given by the Riemann curvature tensor and
does not require an embedding into an ambient (higher-
dimensional) manifold. By considering the spacelike part
of Eq. (A3), we have

K;;=Din;=0;n; —T*;n,. (A6)
As the first term vanishes in the latter, we obtain Eq. (20),
which is a highly valuable result in the Hamiltonian
description of GR.

Both the acceleration of Eq. (Al) and the extrinsic
curvature of Eq. (20) play a pivotal role in projecting the
intrinsic curvature of M into the hypersurface %,. Tensors
defined in the ambient manifold M will be denoted by a
label “(4).” For brevity, the analogous label “(3)” for
quantities defined in X, will be dropped. We take the
commonly used viewpoint that tensors defined on a
spacelike hypersurface X, can be extended into the space-
time M via suitable pull-back and push-forward operations
[115,116]. By doing so, the extrinsic curvature of Eq. (20)
is extended into M via [115,116]

Koo = Von, + a,n,, (A7)
where, for brevity, we omit the index (4). Whenever the
extrinsic curvature occurs with spatial indices, Eq. (A6) is
understood to be employed. Note that we take over the sign
convention of [108], but different sign conventions are also
common (see, e.g., [1,47,115,116]). In addition, Eq. (A4)
also holds for Eq. (A7), which follows from

0=V,(n,n") =2n"V,n, = 2n"K,,. (A8)
This property emphasizes again that the extrinsic curvature
lives in the spatial hypersurface X, entirely. The trace K of
the extrinsic curvature is defined via the contraction of
Eq. (A7) with the spacetime metric:

K=K, = V,n". (A9)

Alternatively, Eq. (A6) can be contracted with g;;.

2. Decomposition formula for curvature tensors

As a starting point, we quote the Gauss relation (some-
times also called the Gauss-Codazzi equation) that gives
the projection of the Riemann curvature tensor into X;:

qﬂaqyﬁquq66(4)Rﬂyga = Raﬂy5 =+ KayK/}zS - KﬂyKaﬁ‘ (AIO)
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Thus, a projection of the Riemann curvature tensor in M
into the spacelike hypersurface induces the curvature tensor
in this hypersurface plus correction terms that involve the
extrinsic curvature. This property is not a surprise, as the
hypersurface ¥, is embedded into M.

The Gauss relation of Eq. (A10) can be contracted once
to provide a valuable result for the projected Ricci curvature
into the hypersurface:

q”aqyﬂ <4)R;w + Qaynngﬂnﬁ “) R#ygv

:Ra/}+KKa/}_KaﬂKﬂﬁ’ (All)
with the trace K of the extrinsic curvature stated in
Eq. (A9). In this relation, the Riemann curvature tensor
cannot be eliminated, but it must be kept. Another con-
traction results in the scalar Gauss relation that has the form

@R +2WR,, nn* = R+ K> — K, K". (A12)
A highly valuable equation links the spatial projection of
the Ricci tensor to the extrinsic curvature as follows:

1 1
quﬁq05(4)Ryo_ = NﬁmKﬂé — NDﬂD&N

+ Rys + KKps — 2K 5K 5. (A13)

By using Eq. (A11) together with
q"L,Kgs = L, K +2NK*K,,. (A14)

we obtain

vpoR, = 1 L, K Lp DPN — K"K Al5
nn vo — _N m +N B - pv* ( )

The Ricci scalar can be decomposed by applying
Egs. (A12) and (A15):

@R =R+ K*— K;;KV = 2WR,,n"n*

2

2 4 y
=y LnK =5 DiD'N + R+ K*+K; ;K. (Al6)

Also, there are some helpful results involving the accel-
eration:

V,a" = D;a' + a;a’, (Al7a)
1
D/}a{, -+ a/;a,; = ND/;DUN (A17b)
Now, by using
1
NﬁmK =n*V,K =V, (n*K) — K, (A18a)

D;D'N = D;(Na') = N(a;a’ + D;a") = NV,a*, (Al8b)

it is clear that Eq. (A16) can be brought into the form
occurring in the ADM-decomposed EH action of Eq. (19):

2 y
“R =2V, (n'K) = - DiD'N + R = K + K;;KY

= R— K>+ K, K® + 2V, (n"K — a). (A19)

Finally, it is possible to project the Riemann curvature
tensor partially into the hypersurface X, [115,116]. The
result involves covariant derivatives of the extrinsic curva-
ture defined within the hypersurface:

qy()ngqﬂflqv/1(4)RQaﬂy = DaKyﬂ - DﬁKya' (Azoa)

The latter bears the name Codazzi-Mainardi relation.
Contracting it once implies

¢"sn*WR,, = D,K"5 — DsK. (A20b)

Note that all relations derived before are identities, as they
stand. In principle, tensors (or parts of tensors) live in the
spacelike hypersurface, if contractions of the corresponding
Lorentz indices with n# give zero. These indices can, in
principle, be interpreted as spatial ones. In particular, if
n"¥,, =0 of a spacetime tensor ¥,, , we do not lose
any information by considering ¥;, . For example, this
holds for the extrinsic curvature K, the acceleration a,,
and the covariant derivative D, on the hypersurface.

APPENDIX B: HAMILTONIAN FORMULATION

The current section will provide computational details
on how to perform Legendre transformations to obtain
Hamiltonians from the Lagrange densities of the
modified-gravity theory under consideration. In particular,
we derive the Hamiltonians given by Eqgs. (39), (52), (60),
and (66).

1. Purely spacelike sector

We employ the Lie derivative stated in Eq. (36a). As the
latter result only involves quantities and derivatives defined
in the spatial hypersurface, it is clear that the Lie derivative
L,,s" does not depend on ¢,,. Based on Egs. (37) and (38),
the canonical momentum of £(!) is given by

ﬂ'(l)rs — N\/aaf(l) ,
2k 04,

(Bla)

with
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o ’ { 1 K (3 = LysY) + sV D;D;N] oK 0K, q"¥, 1

Thus,
10K;; ... y K/'K,;
:—_—t -IJ_E 17 _2l]¥' Blb
N 551” (S NS ) N 661” ( ) af(l) 5ri5sj , i 5 i 5riq1s K+ K lb‘rlésj
9, N2 T oN TN
At this point we will benefit from Eq. (21) that is still valid 171 _ _
in the presence of explicit diffeomorphism violation as long Y (ﬁ L,s" +sVK*; + s"K r,') . (B3)

as Riemannian geometry is imposed. In a more general
Finsler setting, this relation would probably be subject to

. . . .
modifications. In addition, we take advantage of To obtain the Hamilton density H(), we perform a

Legendre transformation. Note that the presence of the
oK 55 | integral measure d’x,/g allows us to carry out partial
“ab _ gabZa”b _ K, (B2a) integrations of the spatial covariant derivative D;. By doing
0q;; 2N 2 so, we arrive at

Kab

HO = 2Wiig, — £0)
|

1 . oo oo
—;Cmsl] +SIZKJ1 +SJIKIZ:| (2NKU +Dle +D]Nl)

2c [2N
+g[l{ij£msij + SU(DleN—NRU + 2NKllKlj)}
i\/a 1 ij il g j il g7i ij 1
—2— - ﬁﬁmsj + s K][+S]Kl (DINJ+D]NZ) +S](D1DJN—NRU —2NK iK[j)
K

2

A

q 1 . doi - .
_ V4 {— {N L5 +2(s"KJ; + s/ K ,)] D;N; + s"(D;D;N — NR,; — 2NK’iK,j)}

i. 1 . - I L .
pi \2/—6 {Dl [ﬁﬁms” + 2(SIZK]1 + SJZKII):| Nj + [Dl'DjSl] — S”(Rij + ZKIlKl/)}N}, (B4)
K

where “p.i.” stands for partial integration. The latter result implies Eq. (39).

2. Mixed sector

We derive the canonical momentum density from £ stated in Eq. (51):

ﬂ(2)rs — aﬁ(Z)
0q s
\/6 qiréjs ) qrs ) C]ir5js ) qrs ]
:_N D JII__D m ) Jn__ m
x| an PR TP el gy s TN
q r r\ oS rs )
= YT+ D)™ — (e + D,)s"]
Sﬁ“;{—q [(a"+ D")s™ + (a* + D%)s™ = 2¢"*(a; + D;)s™], (B5)
K

where the latter has been symmetrized in the last step. A Legendre transformation provides the corresponding Hamilton
density:
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HO) = z@rsg  — £
)™ + (a* + D*)s™ —2¢" (a; + D;)s™|(2NK,; + D,N, + D,N,)

q

—_ N r Dr
4k [+
_ Vg i(a; + D;)s™ = K(a; + D;)s™]
K

= z—q [(a”+ D")s™ + (a* + D*)s™ — 2¢g"(a; + D;)s™|D,N,

K
2\2/—6 [2(D*a; + D*D;)s™ — (D,a” + D,D")s*® — (D,a* + D,D*)s™|N,. (B6)

K

This finding leads to the result quoted in Eq. (52).
3. Purely timelike sector
We compute the canonical momentum of £3) by using Eqgs. (58) and (59a):
N /qof®)
ﬂ(S)rs — \/q f , (B7a)
2k 04,y
where
af® 9K .
_ 1y/ ¢nn nn K2 —-KiK..
60, 0a" T gy, 2
1 qrs nn nn
=—|— WK —K™)|. B7b
[ s 5K = K7) (B70)

A suitable Legendre transformation results in

HO) = 2O, — £®
Vi [KL,,s™ + s™(D;D'N — NK'K;; + NK?)]

Va1 . . .
=—|=—=q"L,,s" + s"(¢"K — KY)|(2NK;; + D;N; + D;N;) — —
S |5 Ems™ 5" (g )| @NKij +DiN;j+D;N;) ==
\/a 1 nn nn i nn 2 ij ij nn i ij 2
= NE'"S +2s""K |D;N' +2s""(NK* — NKVK;; — K D;N;)—s""(D;D'N — NKVK;; + NK*)
K
p.i. \/a 1 nn nn i nn grij i nn nn ij 2
—2— _Di Nﬁms +2S K N—l—ZDl(S K])NJ_N[DIDS +S (K]K”_K )] . (BS)
P .
The Hamiltonian of Eq. (60) is a direct implication of the latter result.
4. Scalar sector
Finally, the canonical momentum density associated with the Lagrange density of Eq. (65) reads
o Z LY _Vala" . gk - k) (BY)
AN ="—|—=L,u - ul,
66111 2k | N " 9

whereupon we can compute the Hamilton density:
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H@ = @Ky @
_ Vel
2k |N

T %

Carrying out suitable partial integrations implies Eq. (66).

APPENDIX C: MODIFIED ADM
DECOMPOSITION

To understand the mixed sector based on Eq. (30c) better,
we perform an ADM decomposition with an effective shift
vector

N'=N' - Ns™, (C1)
i.e., the diffeomorphism-violating degrees of freedom of
this sector are put into the shift vector. In analogy to

Eq. (20), the corresponding effective extrinsic-curvature
tensor is now defined as

N . 1
Va4 [(R + K* — K;;K"7)uN — 2uD;D'N + 2 (N Lu+ uK) D,N' - 2K¥uD\N,|.

~q"'Lu + (g"K - Kkl)”] (2NKyy + DNy + DiNy) — 4 2(KLyu +uD;D'N) = N(R = K* + K;;K" )]

2K

(B10)

3 1 N 3
Ki; ET(Qij —D;N; - D;N;).

(€2)
Besides, we define a Lagrange density that has a form

analogous to that of the ADM-decomposed EH Lagrange
density (19):

. N o
£O = f(R - K> + K;;KY),
. .

(C3)

where the conventional shift vector is replaced by the
effective one in Eq. (C1). Boundary terms are disregarded.
We then evaluate

Y 1 . oo . oo .
KKV :W{ilijéll" —2q;[D'(N/ = Ns/") + D/(N' = Ns™)]

+[Di(Nj = Nsj™) + D;(N; = Ns;")|[D'(N/ = Ns™) + D/(N' = Ns™)]}

| j i i PN o T
24_1\,2{611‘1‘61’ —24;;[D'(N/ = Ns/*) + D/(N' = Ns™)] = 2(D;N; + D;N;)[D'(Ns/*) + D’(Ns™)],

where we dropped terms beyond linear order in the
controlling coefficients. Thereupon,

U . 1 .
KKV = K;;K" +2—N2(‘]ij —D;N; - D;N;)
x [D'(Ns/™) + D/(Ns™)]

o . o
= KK + 5 Kj[D'(Ns™) + DI(Ns™)

2 . .
= KinU +NKUD[(NS]“). (CS)
In an analogous manner we get
K2 2 2 in
K =K +NKD,-(NS ). (Co6)

Hence, it is possible to write

(C4)
[
N(K? - K;;KV) ~ N(K*> - K;;K")
+2[KD;(Ns™) — K;;D'(Ns/™)]
2 N(K? - KK
—2Ns™(D,K — D;K7})], (C7)

after suitable partial integrations where the surface
terms are discarded again. Therefore, at first order in
diffeomorphism violation, the following correspondence
holds:

L£O) = £0) _ £@), (C8)

with £ of Eq. (19) and the diffeomorphism-violating
piece £?) of Eq. (30c). Hence, we have shown that at first
order in diffeomorphism violation, the coefficients of the
mixed sector can be absorbed into a redefined shift
vector. This demonstration is another argument for s™
being gauge degrees of freedom (see the discussion in
Sec. IV B 3).
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APPENDIX D: BOUNDARY TERMS
IN THE ACTION

In this section we present detailed computations on how to
obtain the (modified) GHY boundary terms that play a
crucial role when moving time derivatives from the extrinsic
curvature to the background fields in the Lagrange densities
of Egs. (30b), (30d), and (30e). The corresponding results are
presented and interpreted in Sec. IV C.

1. General relativity: Gibbons-Hawking-York
boundary term

We would like to compute the variation of the second
term on the right-hand side of Eq. (73a). In local-frame
coordinates we have that g, =7n,, 0J,9, =0, and
I*,, =0, but 9,0,9,, # 0 and 9,I'*,, # 0. Therefore, in
these coordinates we can express the variation of the second
term as

5/ d4x78(\/__”w{)
M Ox*

= [ sl — ). (01

M ox

Note that the Minkowski metric is a nondynamical object.
The contributions that transform I'*,, nonlinearly under
general coordinate transformations cancel when the varia-
tion of the Christoffel symbols is considered, whereupon
ol'*,, transforms as a tensor. Then the above integrand is a
Lorentz scalar in a local frame, which means that it is a
Lorentz scalar in an arbitrary frame. Hence, we can

generalize this expression to arbitrary coordinates and
obtain

—ow*
5//\/1 d%m—//wd“x\/zﬁviw, (D2a)

Ox*

VA= g PS5 — 2T . (D2b)
Inserting the variation of the Christoffel symbols expressed
in terms of covariant derivatives leads to

VA= gaﬂgﬂg(vaég()ﬂ - vgéga/)’)' (D3)

To apply Gauss’s theorem to the right-hand side of
Eq. (D2a), the integrand must be contracted with the
normal vector n* associated with the boundary. Therefore,

/ d*x/=gV,V* :% 3y /qen, V2, (D4)
M oM

where ¢ = —1 for timelike 7, (spacelike boundary) and
€ =1 for spacelike n, (timelike boundary). Coordinates
denoted as y are used on the boundary. We now decompose
the four-metric on the boundary into the induced metric and

a combination of normal vectors according to Eq. (10).
Then,

l’l,{‘//1 = “ﬁng(va(‘)'ggﬁ - Vgégaﬂ)
= (qaﬁng + nanﬂng)(vaéggﬂ - vngaﬂ)
= qaﬁng(voﬁggﬂ - vgég(xﬁ)

= —q"nV ,59,p. (D5)
The contribution involving three normal vectors is elimi-
nated, as it is contracted with an antisymmetric term. In the
last step we took into account that the induced metric is
fixed on the boundary as is g,,: 6¢,,|s = 0. Therefore,
directional derivatives of the variation within the boundary
can safely be set to zero, which eliminates the first term.
However, taking assumptions on the derivative of the
variation along directions perpendicular to the boundary
is beyond Hamilton’s principle applied to field theory.
Thus, the remaining term provides a nonvanishing con-
tribution on the boundary that reads

—& % d3y\/§q“/’n<’vgégaﬁ. (D6)
OM

In fact, this term is canceled by the Gibbons-Hawking-York
(GHY) boundary term added to the action. We employ the
extrinsic curvature defined in Eq. (20) to obtain

6K = —q“ﬁér’laﬁnl
1
= _qaﬂiglg(vaéggﬂ + vﬂég()a - vgégaﬂ)nﬂ
1
= _q(l/} 5 n()(vaéggﬁ + vﬂégga - Vgégaﬂ)

1
= 5 q“ﬁngvgc‘igaﬂ, (D7)
where we again used that derivatives of variations along the
boundary vanish. So we identify n,V* = —6K /2 based on
Eq. (D5). Therefore, to cancel Eq. (D6), we must add the
GHY boundary term of Eq. (74) to the EH action.

2. Gravitational SME: Modified boundary terms

Now we would like to evaluate the variation of the
second term on the right-hand side of Eq. (76a). As before,
we employ local coordinates:

— ()
5 / i 2=
M Ox*

0
= //M d4XW [v _’7<saﬂ§r/1a/} - S/m5ryav)]’ (D8)

X

which is a scalar with respect to general coordinate trans-
formations. Thus, in general coordinates it can be written as
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— ()
5 / gt V=) Vg}”): / d*x/=gV,0",  (D9a)
M Ox M

Q" = sy — §706TY . (D9b)

Inserting the variations of the Christoffel symbols results in

Q/{ = Saﬂglgvaéggﬁ

~ ST g+ 57 g7Y,5g,). (DIO)
and a subsequent contraction with n, implies
n,Q* = s”/’ngvaﬁggﬁ
- % (sneV ;89,5 + ;5™ ¢"7V ,8g,,).  (D11)

We can now benefit again from the decomposition of s*¥
stated in Eq. (27). For each of the three terms this
decomposition gives rise to

sV 89,5 = [4°,4" 5" = (q°,n” + ¢ ,n*)s™
+ n“n/’s““]nevaéggﬂ

= (n*n’s™ — ¢# ,ns"™)nV,8g,5. (D12a)
Saﬂngvgégaﬂ = [qayqﬁusm/ - 2qaynﬁsun
+ n*n’s"™|nV ,8g,p. (D12b)

njsa/lngaégyu =n, [qayqluslw - (qo’yn]L + q/lyna)sun
+ nanisnn]guyvaégyy
= —n%(g"" = nn’)s""V,ég,,

= (n*n? — g )n*s"™V ,64,,. (D12c)
Computing the linear combination of these terms that forms
n,Q% many contributions cancel each other. In particular,
cancelations occur for all terms involving the mixed
coefficients s*" and for the purely timelike ones s™
multiplied by n®n”V,5g,s. What remains is

n, 0" =

(qwsnnnavaégyu - qayqﬂvslwngvgégaﬁ)' (D13)

N =

So there is a nonvanishing contribution on the boundary
given by

/d4x\/—_gV,1Q'1:]{ d3y\/§£n,1Q’1. (D14)
M oM

As in the case of GR, we try to reproduce this contribution
via variations of suitable coordinate scalars on the boun-
dary that are formed from the controlling coefficients and
the extrinsic-curvature tensor. There are not too many

possibilities, but we can consider s K,; and the trace K.
The variation of the first contraction gives

8(s"Kj) = sY6K ; = sUq%q’ 18(V qnp))
= 5'q%qP ;(—0T" ypn;)

1
= —3574%4d";(¢"" = n'n®)

X (v(lég/iﬁ + v/iégaﬁ - vﬁég(zﬂ)n/l

1 .
= —q"’iqﬂjs”n‘svgégaﬂ. (D15)

2

Therefore, by employing the previous result of Eq. (D7),
we deduce that

n, 0" = s"™5K — 5(s**K,,,), (D16)

which implies the boundary terms stated in Eq. (77). Note

that the boundary contribution associated with the u term

simply follows from scaling the GHY boundary contribu-
tion by the factor of (1 — u).

APPENDIX E: DERIVATION OF MODIFIED
EINSTEIN EQUATIONS

For clarification, we will provide a brief derivation of the
modified field equations stated in Egs. (83) and (96). All
quantities are defined in the spacetime manifold M and, for
brevity, the superscript “(4)” is omitted throughout this
section. In what follows, we will benefit from the variation
of the metric determinant:

1
ov/=g=—3 V=99ap59" . (E1)

Furthermore, we need the variation of the Ricci tensor
given by the Palatini identity:

SR, = V817 35 — VoI 5, (E2a)
1
51—%;41/ = Egip (vﬂégpv =+ vuégpy - vpég/,w)' (Ezb)
Last but not least, the contracted Palatini identity
gaﬁaRaﬁ = (vavﬁ - gaﬁvz)égaﬁ’ (E3)

as well as the variations involving the inverse metric,

59(1/} = (wégﬂygyﬁf (E4a)

9aﬁ59”ﬁ = _g( lﬂég(z/} ’ (E4b)

will also turn out to be valuable. Now, a variation of the EH
action implies
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1 1
—— [ a*x| (= v=g9%59,, | R
2k J m x[<2 99" gaﬁ)

VT =)oy TRYO | (9

580

The second term is a total derivative. However, its treatment
is subtle, as it involves second-order derivatives of the
metric variation. In accordance with Hamilton’s principle,
this contribution can only be discarded when taking into
account a boundary term as described in Sec. IV C. Then,

550 = / dx Y2 (—GP)sg,  (E6a)
M 2K
1
G = R~ R, (E6b)

with the Einstein tensor G**. The latter finding implies the
Einstein equations without matter

G = 0. (E7)

Varying the diffeomorphism-violating contribution of the
action given by Eqgs. (16b) and (95) leads to

58 = / d*x V [ u(VVP — g%N2)5g,5+ uG8g,p),
(E8)

where fluctuations du of the nondynamical background do
not occur. A double partial integration with suitable
boundary terms taken into account implies

55 — / d4x—V2_g(uG“ﬁ — VNP u+ ¢ NV?u)8g,5. (E9)
M

K

Hence, we arrive at Eq. (96b). Finally, the variation of the
action given by Eqgs. (16¢) and (82) is considered:

1
586) = " *x[(8y/=9)s" R, + /=gs** (6R,,)

+ V=9(65")R,,].

The last term vanishes in the setting of explicit diffeo-
morphism violation, because the background field does not
exhibit fluctuations in this case: ds* = 0. We then employ
Eq. (E4b) to obtain

(E10)

(Ella)

sst) /M V2 < ”ﬁs””R#U>5g,l/,, (E11b)

55( / d4x V sﬂ”(V 5ri ) (Ellc)
5se) = — / dx VI (9, 51%,,). (E11d)
M 2K

To treat Eq. (El11c), we perform integrations by parts, use
Eq. (E2b), and rename some indices to arrive at

55(23) _/ d4x \/— (v V"s”ﬁ+v Vel —V2s "/")69(1/;.

2k 2
(E12)
We now apply the same procedure to 5Sgs):
s v—g1
58y :/ dhe s 2( —V, Vs ¢%)5g,5.  (E13)
K

Summing all the contributions and performing a symmet-
rization leads to Eq. (83b).

APPENDIX F: PROJECTIONS OF MODIFIED
EINSTEIN EQUATIONS

In the current section we are going to present detailed
computations showing how to arrive at the results presented
in Sec. V B. For brevity, we will introduce the following
observer two-tensors:

(TR) = P OR,,. (Fla)

(TRs)" = s ORP (F1b)

(TRs)# = sPn®)Ra (Flc)

(TF)# =V, Vesth,  (TE)? =V, Vs, (Fld)
(TEs)" =V, Vs, (TEs)# = ¢V V,s*.  (Fle)

Now, the tensor (TR%)# given in Eq. (83b) is expressed in
terms of these quantities as follows:

(T00) = () + (T80 = (T80) = (74))

1
;
4y (TR). (F2)

For completeness, note that the analogous tensor occurring
in the modified Einstein equations in [32] reads
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(TRS)(I[)’ — (Tllh‘)aﬂ _ (Tgx)(l/} _ (T:I%?S)(lﬁ

1
ST+ (1)

- (T8) — (T, (F3)

Obviously, there are two additional terms involving the
tensors (TX%)* showing that the theory based on the lower-
index background field s,, in the setting of explicit
diffeomorphism violation is different from the theory
described by (16c¢) that this paper rests on. Hence, we will
be working with Eq. (F2) instead of Eq. (F3).

1. Purely spacelike sector
For this sector, it is paramount to employ the key

equation:

q”aq”ﬂvﬂvvs“ﬁ = DiDjSij — KliKﬂSij + KKUSU

1 .
Lkt (Fa)
L5 = m*,s" + s"'O;,N/ + s/'9,N',  (F4b)

which is to be derived as follows. We start by expressing
the covariant derivatives in X, in terms of projected
covariant derivatives of the four-dimensional spacetime
manifold:

Da(D/)’Sa/}) = qjaqﬂ[iq”uqﬂavl(l)ysw—)
= qﬂuqﬂovl(qauqyﬁqﬂyvas/}y)' (FS)

Now we apply the outer covariant derivative providing four
terms:

Vil@®uq" 9% Vas"") = (Vag®)d 50° Va8
+ g% (V24" 5) 4%,V o5
+q%4"5(V24°, )V as”
+4%4"59°, VY o577 (F6)

Each of these four contributions must be evaluated:

r = q"q":((V29%)4" 397,V s
= qiﬁqﬂyvl(nanﬂ)vasﬁy
= qiﬂqﬂyna(vﬂnu)vasﬁy

= ¢*pq" ,n°K;,V 5" = KpnV,sP7,  (FTa)

r=q4" 14" (V1d" 5) a0,V as"|
= q',q%, V(0" ) Vs
= ¢',q%, (V" )ngV s
= q",q%, K;*ngV s = K, g% ,ngV o sP"

= Kq®,ngV,s, (F7b)

rs = q*,q",[q%.4" 5(V14°, )V o 5" ]
= ¢ 3q",V;,(n°n, )V "
= qll/iqaa(vina)nyvasﬁy

= ¢*4q° K,V os"" = Kn,V 5", (F7c)

re =44 (0" 4" 59", ViV os"]
= q'5q" V, Vs (F7d)
Now, considering a purely spacelike s#*, we employ

0=V, (Kq*,nss")

= Kq"y(Vanﬂ)sﬁV + Kq”ynﬁv(lsﬁy, (F8a)
0 =V, (Ks"n,s")
= K;*(Von,)s’ + K5*n,V s, (F8b)
to reformulate the second and third term:
ry = —Kq*,(Vang)s’’ = —Kq® K 455"
= —KK s/, (F9a)
ry = —Kz*(Von,)s” = —Kz"K ,,s"". (F9b)
Finally, by organizing all contributions, we have
q’lﬁq"yvlvasﬂy = DaD/;s”/” + K"/;Kays/ﬁ’
+ KKp,s"" — K4,n"V,sP.  (F10)

Introducing the Lie derivative on s/ and considering only
spacelike indices on the right-hand side of the latter relation
implies Eq. (F4).

a. Orthogonal projection

First of all, based on Egs. (35) and (A13), we obtain the
following contraction of the background tensor with the
projected Ricci tensor into X

1 . .
slaqﬂ/lquam)Rm/ = _NKijﬁmslj + vﬂ(nMKist)
1 g
—sY NDleN + SURI']'

— 25K, K", (F11)
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We also employ

1
—K
N

wlms? = K, ,n*V, st — ZKWK”,MM.

Then,

nanﬂ(Tllh)aﬂ = nan/}g{lﬂq#ﬂqyasiﬁ(z‘)Ruv

1 -
= - Vﬂ(n”Ka/;s“ﬂ) - Kﬂynavas’“’ - SUNDiDjN + SURij s

nanﬁ(Tfs)aﬁ = nan[fvuva(qy/lqﬁasla)
= —a,a,5" + K,,s"°K?, — s*°V,a, — a,V ;5" — n°K ,;,V ,s*
= nng(T%)?P,
nanﬂ(Tgs)aﬂ = nanﬂv2 (qaﬂqﬂysm/) = Z(KﬂiK/wSﬁa - alaaslg)’
nan/}(T%{v)aﬁ = nan/}gaﬂvﬂvv(qﬂkql/ﬂsd)
= —[Vﬂ(n”Kaﬁs“ﬂ) + (V”aﬁ)s"ﬂ + a/;VMs”ﬁ - KK(,/;s"ﬁ
+ a Vs — agaps™ — K¥ K, s + n'K V5% + ¢* 14" sV, V 5.

Summing all these contributions implies

2nnp(TR)P = nang|(TF)™ + 2(T{) = (T§*)% = (T5°)7]

1 .
= —a,a55" — K"K ;5" — KK 1557 — 5*°V,a, + s' NDiDjN —sYR;; + q"aq”ﬂvﬂvys“ﬂ.

We now use that
sD,a, = s'°q%1q° N ya5 = sV 4ap,
in combination with Eq. (A17b) to obtain
1
5PV a5 = S’IUNDADGN - s*a,a,.
Finally, by employing Eq. (F4), we deduce
Rsyap _ 1 j ik _ Gij ij_ 1 ij
2nan/,»(T ) = 5 -2K inkS - S RU -+ Dl'DjS - NKU'C’”S .
The latter corresponds to Eq. (88).

b. Mixed projection

Here it is reasonable to employ the following form of the Lie derivative of the background:
1
Nﬁms’l" = n"V,s — (a,n* + K*,)s"* — (a,n® + K°,)s*.

For any tensor T, with spacelike lower indices we have

1
T,h,navas/l" = TAG(K]L”S”O- + Ko‘”s/lﬂ> + T}aﬁﬁmsig.
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In the forthcoming analysis we only consider those terms that are nonzero when contracted with q"an,}. We also take s* as
purely spacelike, which tells us that n,5** = 0. Then,

qka”ﬂ(Tfs)aﬂ = qk(znﬁvuva(qy/lqﬂaslg)
= ¢ gV, [(V9q")dP 5% + q*, (V24P ,)s" + ¢*,167 o (V2577)]
= ¢ an5[(V9q" ) (V,dl5) 5™ + (V,q"3) (Vg ;)5
+ ¢, (V. VeGP )s% + ¢ 3(VeqP ) (V.5%) 467 1(V.dP 1) (V57
= g* np|Knfa,s* + a;n’ K, s + q* 0P (V K, — K% a,)s" + ¢* ;0 K,V ,s* + ¢* ;0P K, V5]
= —K*,a,5" — D,(K*,s") — K,;,D*s%. (F20)

In an analogous manner, we obtain

q* g (T)P = ¢*4n,V V(147 15™)

= Ka;s* — a, K%;s* + n*V,a,s* + n*q* 3,V 5" + K* ,a,s*

+ nyq*(Kn, + a;)V°s* + n,K*,n, V25" + n,q" 4",V , Vs, (F21)
as well as
q"anﬂ(T?)“ﬁ = qka"ﬂv%qazqﬁash)
= —¢“)[V,K¥, =V, (n"a,)]s* = 24", (K", — na,)V 5% (F22)
whereby
danp(TF) = gy (TH) = 0. (F23)

Performing the sum of Eqgs. (F20)-(F23), leads to Eq. (89). To simplify this result, it is important to find
naqyllqko'vuvasﬂ” = vl/(naqb/lqkavaslﬂ) - vb (naqy/lqko‘)(vasﬂﬁ)' (F24)

We need to consider the two pieces:
1
naqyiqkavasﬂ{; = qy/lqko' (ﬁ Emsio— + Kll#slm + Kﬂ#sﬂ”> ’ (F253)

Vo (1.9"14" ) (V') = [K1aq" s + Knanyq*s + naa;q* sn K ing + ngn* K5 V5. (F25b)
Finally, some algebra gives rise to
n.q’,q*,V, Vs = VU(K”Ms”k + Kkﬂs””) — K,,q" Vs’ + Kaﬂs”k - aﬁKﬂﬂs"k - nk(KMKiﬂs”" + KMK"MSX")
+ D (% cmsik> . (F26)

2. Purely timelike sector
Here we must compute the projections of (77)% + s"R% with (TR*)% given by Eq. (F2).

a. Orthogonal projection

We start by deriving the complete projection along the direction orthogonal to X, [see also Eq. (92)]. The individual
contributions amount to
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ngng (TR = s"n,nsR% = s™(K;;K' + n*V,K - V,a"), (F27a)

nang (TR = nang[(V,Ves™)nn? + (V2s")(V,n¥)nf + (V,s"™)(Von*)nP + s"(V,Von¥)nf 4 s"n*V,Ven|
= nng[(V, Vo™ )n¥nf + (Vs"™)KnP + V,s" (K™ — n®a*)n”
+ s"(V, K% — n°V,a*)n’ + s"n*(V,K? — n*V,a’))
= —(ngn*V,Vos™ + n, Vos"™K + gV, s" — s" K, K™ + 5™V, a" + s"aza’), (F27b)

nang(TR)? = nong[(V,VFn®)nPs™ + n®(V,VEnP)s™™ + nnfV VHsmn]

= ngng[(V,KF*)n’s™ — n#(V,,a®)nPs™™ + n*(V,K¥)s"™ — n®(V ,a’)n#s™ + n®nPV ,Vrsmn]

= —n,(V,KF*)s™ + n#n,(V,a®)s™ — ng(V,K*)s™ + ngnt (V,a)s™ + V, VHgon

= 25" (K, K" — a,a%) + V ,VFs™", (F27c¢)
ngng(TX)? = -V [(a* + n*K)s™ + n*n*V,,s"|

= —[(V,a")s" + a"V ,s" 4 (V,n*)Ks"™ + n*(V,K)s"™ + n* KV s""

+ (V,n#*)n*V, 5™ 4 n#(V,n* )V, s" 4 n#n*V, V5"
= —[s""V,a" + 24"V ;5" + s"V,(n*K) + 2Kn*V,s"" + n*n*V ,V, s""]. (F274)

Here we used that

0 = V,(ngngs"n"K?) = nongs"™n*V, K% (F28a)
0=V, (ngs"K®) = (V,n,)s"K® + n,s""V,K* = s" K, K* + n,s"V, K*, (F28b)
0=V, (s"n*nza’) = s"n*(V,ng)a’ + s"™n*ngV,af = s"™agal + s"n*nsV,a’. (F28¢)

Summing the individual terms implies

2nanp|(TRS) 4 s"RY) = s"(K* — K;;K) — ¢*,V,V*s™. (F29)
By employing
7', V,Vos"™ = ¢*_q,*V,Vos" = D D%s" — %Kﬁms““, (F30)
we get
2nng[(TR)% 4 s"*RYP] = s"(K* — K;;K") — D;D's™ + %Kﬁms‘“‘, (F31)

which corresponds to Eq. (93). We still have to prove Eq. (F30). It is reasonable to proceed as for Eq. (F4), although it turns
out that the current computations are much less involved:

D,D*s"™ = g/ Vs(D*s™) = ¢ V(g% V's™) = ¢ ,(Vsq®,)V's™ + ¢ ,q*,V sV s™. (F32)
The second term just corresponds to the left-hand side of Eq. (F30). The first contribution can be reformulated as
4’ «(Vsq®,)V7s™ = ¢ (Vn®n,)V7s™ = ¢F ,(Vyn®)n, V75"
= ¢’ (K% — a®ng)n, V' s"™ = Kn'V,s" = %Kﬁms““, (F33)

which directly implies Eq. (F30).
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b. Mixed projection

The mixed projections are given as follows:
naq"p(TF) = naq*s(T7)7 =0, (F34a)

neq* 5 (T )P = nog* 4V, [(VOn¥ )l s™ + n¥ (Von)s™ 4 nvnf (Vos™))]
= naqkﬂ[(van”)(vynﬂ)s““ + (V,n*) (Ve )s™ + n*(V,Vonf)s™ + n* (VP )V s" + n¥ (V, n#)Vesmn)
= n,q*s[-n“a’K Ps"™ — Kn"a’s™ + n*(V,K?P)s™ — nn*(V,a’)s™ — n"n*a’V ,s"™ + a’Vos™]
= ak(s"K + 2n*V,s"") + s"nv'V, ak, (F34b)

noq* 5(TE)P = n,q" sV, [(VPn")nos™ + n*(VFPn®)s™ 4 n¥n®(VEs))|

noq* s[(V, VP )nn™ + (VPp¥)n®V,s™ + n*(V,VPn®)s™ + (V,n")n*VPs™ 4 nn®V, Vs

= n,q"s[(V,K" — K, Pa*)n"s"™ + KP*nV s + n*V, KP?s"™ + Kn*VFs™ + n*nV, VP smn]

— sk VKP4 s v K E— KRV, s 4 sty gk eV K — K g VP — gk gV, P gnn

= —s"V,K* + s"q,K* — K¥D;s™ 4 " n,n*V, K% — KD*s™ — nv gk ;,V, VP, (F34c)

naq* 5 (TR = n,g* ;¥ ,[(VFn®)nP s™™ 4 n®(VEn/)s™ 4 n®nf VHsmn]

= n,q" 5[n*(V,V¥nP)s™ 4 2n%(VFnP )V ,s™]

= n,q"4[n*(V, K" — Ka — n*V ,,aP)s™ + 2n*(K* — n*a)V 5™

= s"(—¢"sV, K" + Ka* + ¢*sn*V ,aP) + 2(a*n* — K*)V 5™, (F34d)
By summing all the terms, we obtain

Znaqkﬂ(TRx)a/J — snnaiKik + KkiDisnn + snnnanuvDKak _ KDkSnn _ nuqkﬁvpv/}snn‘ (F35)

To evaluate the contraction of the extra contribution given by Eq. (92), we employ the contracted Codazzi-Mainardi relation
stated in Eq. (A20b):

nyq*s(s"R*¥) = s"(D;K* — D*K). (F36)
Furthermore, we use
0 = s""n*V,(n,K%) = s"a,K* + s"n,n*V, K%, (F37)
as well as
1 )
n*q* sV, VPs™ = Dk (N Lms‘“‘> — KK D;s™™, (F38)

to cast the mixed projection into its final form:
1 . :
znaqkﬂ[(TRs)aﬂ + SnnRaﬂ] — _Dk (ﬁ Cmsnn> + ZSHH(DiK'k _ DkK) + 2KkzDisnn _ KDksnn
1 :
= —-DF <N L,,s™ + 2s““K> +2D;(s"K"y) + KD¥s™, (F39)

The latter result corresponds to Eq. (94). The validity of Eq. (F38) remains to be shown. We start by considering the
covariant derivative of the Lie derivative:
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DF <l Lms““> = D¥(n*V ,,s"™) = ¢*, V¥ (n*V,s™)

N

= ¢*, (V' n*)V,s"™ + g n# VPV s
= q*, (K" — a'n’)V,s" + qkyn”V”V”s““

— KkiDl_snn + qkynyv”VDsnn,

(F40)

as the indices of the double covariant derivative in the last term can be switched:

v,V

Thus, Eq. (F38) is confirmed.

S =V,0,s"™ =0,0,s" —T",,0,s" = 9,0,s"™ —T",0,s™ = V,V,s"".

(F41)

3. Scalar sector

The scalar sector rests on the modification (T%*)* of the Einstein equations given by Eq. (96b). Its purely orthogonal

projection follows from

nang (TR = —nnyVeVPu — g,V NPy +u (R

Here we can use Egs. (A15), (A16), and (F30) to derive

. 2 1 1
2nang(TR)? = —2D,D'u + ﬁKﬁmu +2u [—NﬁmK + ND

y L2
=(R+ K>~ K;;K'")u—2D;D'u + KL,

1 1
nn + 5(4)R) = =4V VU +u (Rm, + —<4)R> .

: (F42)

1
N

DIN —KVK 1£ K D.D'N 1R K*+K;. KV
i - ij+ﬁm__i +§(+ +K;;KV)

(F43)

which results in Eq. (97a). Furthermore, we compute the mixed projection of the modification in benefiting from Eq. (F38)
as well as the contracted Codazzi-Mainardi relation of Eq. (A20b). Then,

2n,q" 5 (TR ) = =2n,g" 5(V*VPu + VPN u) + 2un,g* ;R

. 1 .
= 2K*D;u — 2D* (N Lmu> +2u(D;K™* — D*K)

=2 {—Dk G Lmu) + D;(uk™*) — uD"K} )

The latter corresponds to Eq. (97b).

APPENDIX G: FUNCTIONAL DERIVATIVES
OF ADM ACTION

In the current section we intend to present some details
on the computation of functional derivatives of ADM-
decomposed actions with respect to the lapse function and
the shift vector. The corresponding results serve as a base
for Sec. VE.

1. General relativity

To compute functional derivatives of the ADM action for
the lapse function, we benefit from the result that K and K;;
scale with 1/N. Therefore,

(F44)

5(NK?)
ON

S(NK ;K"

= —K2.
SN

= —K;;K",

Hence, Eq. (98a) immediately follows. The derivatives of
the shift vector are a bit more involved. To evaluate them,
implicit partial integrations with respect to the measure
d3x,/q are performed where surface terms are discarded.
A partial integration having been carried out is indicated by
a covariant derivative acting to the left. Then we obtain the
following general result:
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it s ip ipi Licipi ipj
Nf <t KJ——(ék/D +6,D) = = (8,/Dif + 8,/ D), i(Nsini)—s’fR,, (Gée)
2 2 SN J
(@) 5
. . . . —(—2NsinilKlj) = 2sini1Klj, (G4d)
with a generic spacetime coordinate-dependent tensor f oN

ith its indi itted for brevity). Then, ) . .
(with its indices omitted for brevity). Then leading to Eq. (100a). For the derivatives with respect to the

S(NK, ;K ' SINK2 shift vector we use
OINK,K7) " ) _ 2D'K . SINKT) - )_ 2DK.  (G3)
ON ON -
1) 5(K; ]) . S y
o S i (K Lys) =——= L5 + Ky (Lys¥),  (G5a)
A combination of the latter findings implies Eq. (98b). oN N oN
4 ij 1 i o
2. Standard-Model extension: s** term SNK (2NsVK; K ) (2N ]) SN¥ (K le ) (G5b)

We perform the analogous computations for the ADM-
decomposed actions based on the three Lagrange densities
of Egs. (30b)—(30d).

From Eq. (G2) we deduce that

5(K;; . )
( ]‘!)ﬁms’f = ﬁ sl —7 Kij
SN SN

a. Purely spacelike sector

1 .
We employ the following results: =3 (giDi + quD; )(ﬁ LysY >
I} i 1 ij 1 ij
5N (K ,C N ) = N(Kijﬁms ), (G4a) = qjkDi ﬁ[,ms . (G6)
i ij _ ij We now evaluate the functional derivative of the Lie
(=s"D;D;N) = —D;D;s', (G4b)
N / / | derivative:
1) i
116 k(ﬁms ) KijW(ENS )
1) .
—Kij—= N [N"D,,s" — (D, N¥)sPl — (DPNJ)S’P}

_Kl'j(DkSlj + 5kispj5p + 5kjsip5p)
—(KijDkSij + KkjSpjﬁp + Kiksip5p>
= _[KijDkSij +2Dp(KkjSPj>] (G7)

Finally, applying Eq. (G2) again results in

o o o
K. K _ Kl K. K. K
(2NSU) (SN ( il ) 2NS”( 5N il + il a7k 5N l])

= (quD; + quD))(s"K';) + (q;,D' 4 5,'D;) (s" K ;)
=2[D;(sVK ;) + quD;(s7K"})]. (G8)

Using these findings provides Eq. (100b).

3. Mixed sector

Based on Eq. (G1), we perform implicit partial integrations to obtain
Ni"a(DK D K/;) D(Ni“)6K+D(Ni“)5Kf
Ky J— . —_ . L) = — . Ky PR . Ky JR— .
oN ! 7 ' ON / OoN '
1 ; 1 ;
= NDI(NS n)K — NDJ(NS Il)Kj
1

= G DiIN(s"K — s K'))]. (G9)
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Adding the other contribution with the lapse function eliminated leads to

552
ON

2 ) o
= S DIN(smK = K]

A A . 1 o
=2 [stiK = S"DiK'; + 1 Di(Ns™)K = = Dy(Ns™) K,

which implies Eq. (100c). Furthermore, we employ Eq. (G2) again to derive

) 1 168 .
2Ns™ — DK = —2N {—Di(Ns”‘)] — K/,
N

ON

as well as

) . 1 15
2Ns™ —— (D,K;]) = 2N [— D j(Nsm)} — K

SNk

(G10)
5Nk J
= Dle in 5,/D 1D Ns™
= —9 4%/ Ni<NS)+k jﬁi(s)
1 . . .
= _2Dk |:NDi(Nsm):| = —ZDk(CliSm —+ Dism), (Glla)
N SN
. 1 . |1 .
—~{avni[ 0,005 + [0y ||
= —{D; lD (Ns™)| + q; D’ iD~(Ns"“)
i N k ki N J
= —[Di(aksi" —+ DkSin) —+ qkiDj(ajSin + Djsin)]. (Gllb)

These findings result in Eq. (100d).

4. Purely timelike sector

Here we use that

o K

— (KL, s"™) = —— nn G12

2 (KL,s™) = =1Ly (G12)
which is a consequence of Eq. (G1). In addition,

o (s"D;D'N) = D;D's"™ (G13)

5N l l *

These results immediately provide Eq. (100e). To compute
the derivatives for the shift vector, we need

0

W ([:msnn) = _vksnn’

(G14)

as well as

o 1 o .
[: nn K — N _E nn Kl_
SN (N e ) GNF
1 (1 . 1
= E |:qkiDl (Nﬁmsnn> + 5lei (ﬁﬁmsnn)}

1
:Dk (ﬁﬁmsnn>7 (GIS)

and

s )
(K* - K;;K'i) = 2D, (Ks™)

N
S SNk

—2DiI(s™Ky).  (G16)

which follow from Eq. (G2). Thus, we arrive at Eq. (100f).

APPENDIX H: COUNTING SCHEME

To check the consistency of expressions in the context of
the ADM formalism, it turned out to be valuable to
associate a set of “units” to the various quantities that play
arole in this paper. These units count how often the induced
metric g;; (or the four-dimensional spacetime metric g,,)
occurs in a certain expression. Hence, we start with

124042-42



HAMILTONIAN FORMULATION OF AN EFFECTIVE MODIFIED ...

PHYS. REV. D 104, 124042 (2021)

lg]=1.  ld'j]=1[a/1=0. [¢']=-1. (Hla)
val=3. (H1b)
9. =1, [¢]=-1. [J/=g/=2. (Hlc)

Then, from Egs. (5) and (8) we immediately deduce that

NI=1.  WI=0.  N=3. (H2)

=2 =3 (H2b)

We define both partial derivatives and covariant derivatives
with lower indices as “dimensionless,” which is why

al=1. W=y (H3a)
[Dth] =1, [Nl] =0, [Nl] =1, (H3b)
4] =0,  [a"]=-1. (H3c)

The latter follow from Eq. (A1). From the definition of the
Christoffel symbol, the Riemann tensor and its contractions
as well as from Egs. (Hla), we quickly obtain

[["] =0, [R' ] =0, Riju) =1,  (Hda)

R;]=0, [Rl=-1. [RYV]=-2.  (Hdb)

ij

The form of the EH Lagrange density (14) and the
Hamilton density (23) implies immediately

(L] =[H]=1 (H5)
Based on Eq. (A9), we choose
1 1 . g
[Kij]zi’ [K]:_E’ [K]]*—Z’ (H6)

which is consistent with Eq. (HS). From the definitions of
the canonical momenta we get

[77] =0, 7] =1, [7;;] =2, (HTa)

(H7b)

[”N] :%-

Finally, it is possible to assign the same units to the

diffeomorphism-violating background fields.
Equation (16) provides

[s/w] =1, [s/ty] = [sﬂb] =0, (H8a)

[s#] = -1, [u] =0, [trec] = =2, (H8b)

The reason for these results is that s,, plays an analogous
role as the metric, i.e., it is contracted with R*. Also,

(H9)

which follows from their definitions under Eq. (28) as well
as Eq. (H2b). A generic rule is that each lower Lorentz
index leads to a dimension of 1/2, whereas each upper one
implies a dimension of —1/2. For consistency, each term in
a sum of contributions must have the same dimension.
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