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The current paper is dedicated to developing a (3þ 1) decomposition for the minimal gravitational
Standard-Model Extension. Our setting is explicit diffeomorphism violation andwe focus on the background
fields known in the literature as u and sμν. The Hamiltonian formalism is developed for these contributions,
which amounts to deriving modified Hamiltonian and momentum constraints. We then study the connection
between these modified constraints and the modified Einstein equations. Implications are drawn on the form
of the background fields to guarantee the internal consistency of the corresponding modified-gravity
theories. In the course of our analysis, we obtain a set of consistency requirements for u and certain sectors of
sμν.We argue that the constraint structure remains untouched when these conditions are satisfied. Our results
shed light on explicit violations of diffeomorphism invariance and local Lorentz invariance in gravity. They
may turn out to be valuable for developing a better understanding of effective modified-gravity theories.
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I. INTRODUCTION

Lorentz invariance is one of the foundations of the current
scientific paradigm that has shaped our understanding of
nature at both small and large length scales. The Standard
Model (SM) rests onglobalLorentz symmetry and provides a
description of elementary particles in terms of quantum fields
defined in Minkowski spacetime. This fundamental sym-
metry implies that measurements performed in two identical
experiments moving uniformly with respect to each other
provide results based on the same laws of nature connected
by a Lorentz transformation. Thus, the form of the laws of
nature does not depend on the state of uniform motion. An
analogous property exists for measurements made with an
apparatus and an identical rotated one. The latter viewpoint is
called particle Lorentz invariance in the literature.1

General Relativity (GR) is a theory based on a dynamical
spacetime in which the physical laws are invariant with
respect to diffeomorphisms. It also exhibits local Lorentz
symmetry in the tangent space Tp at a point p of a
spacetime manifold M [1,2], such that the results of

two measurements of the same quantity are connected
with each other by a local Lorentz transformation. This
applies, in particular, when the first is performed in a freely
falling inertial reference frame and the second in a boosted
frame with respect to the first. The same holds true for two
freely falling inertial frames whose axes enclose a fixed
angle. The vierbein (tetrad) formalism allows us to trans-
form from a general spacetime frame described by the
metric gμν of the (curved) manifold M to a freely falling
frame at a particular spacetime point where the metric
corresponds to that of Minkowski spacetime. Such a
transformation makes local Lorentz invariance explicit.
GR also exhibits invariance under general coordinate

transformations. The latter relate the same objects in the
manifold, such as points and curves, expressed in different
coordinates with each other. In contrast, diffeomorphisms
establish relations between different objects without
changing the coordinates. They can be interpreted as
spacetime-dependent translations and are the active coun-
terparts of general coordinate transformations (see, e.g.,
page 133 of [2]). In particular, diffeomorphisms are
represented by differentiable maps from a manifold onto
itself,M → M, where the corresponding inverse maps are
also required to be differentiable.2
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1The concept of “invariance under active Lorentz transforma-

tions” is frequently used in Minkowski spacetime, but such a
notion does not correspond to particle Lorentz invariance in the
presence of background fields. A background field would trans-
form like a four-tensor under active Lorentz transformations, but
remains fixed under particle Lorentz transformations, since it is
beyond control through experimentalists.

2Manifolds that are related by a diffeomorphism can be
considered as geometrically equivalent. A diffeomorphism
may change how a manifold is embedded into an ambient space,
but its intrinsic geometry remains untouched.
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Because of diffeomorphism invariance, only two of the
ten metric components correspond to physical, propagating
degrees of freedom. This property is made transparent in
the (3þ 1) decomposition of spacetime developed by
Arnowitt, Deser, and Misner (denoted as the ADM decom-
position in the remainder of the paper) [3,4]. In the ADM
formulation, four-dimensional spacetime is foliated with
spacelike hypersurfaces (of constant time) that evolve with
respect to time. The foliation itself is governed by a lapse
function N and a shift vector with components Ni and
permits constructing a Hamiltonian associated with GR.
The conjugate momenta for the spatial metric components
gij ≡ qij are nonzero, whereas those associated with N and
Ni are zero showing that there are four primary first-class
constraints in GR [5]. The latter exist due to the covariant
structure of this theory. Therefore, N and Ni are unphysical
and represent gauge degrees of freedom. In addition,
the Hamiltonian and momentum constraints arise as a
set of four secondary first-class constraints. They generate
spacetime diffeomorphisms and spatial diffeomorphisms,
respectively.
A violation of (local) Lorentz invariance is the most

prominent signal for physics at the Planck scale, which was
shown to arise in particular string field theories [6–10] as
well as in loop quantum gravity [11,12]. Furthermore, this
effect occurs in other settings such as noncommutative
spacetime structures [13–15], spacetime foams [16–18],
nontrivial spacetime topologies [19–22], and Hořava-
Lifshitz gravity [23]. The strong suppression of Lorentz
violation effects at low energy scales has led to the
necessity of conceiving ultrasensitive tests for their possible
detection [24].
The Standard-Model Extension (SME) [25–27] is a

comprehensive field theory framework to parametrize
deviations from Lorentz invariance, and it allows us to
compare the results of different experiments with each
other. The incorporation of Lorentz violation in the SME is
through background fields arising as vacuum expectation
values of tensor-valued fields. The latter imply preferred
spacetime directions and involve controlling coefficients
that describe the strength of Lorentz violation. Suitable
contractions of background fields with SM field operators
result in expressions invariant under coordinate transfor-
mations (observer Lorentz transformations). The minimal
SME includes field operators of mass dimensions 3 and 4,
whereas the nonminimal SME contains field operators of
mass dimensions ≥5 [28–30]. Since the controlling coef-
ficients in a nongravitational context are usually3 assumed
to be independent of the spacetime coordinates, the SME
exhibits translation invariance. As a consequence, energy
and momentum are conserved quantities.

In the presence of gravity, the situation is more subtle.
The notions of global Lorentz violation and translation
noninvariance in Minkowski spacetime are replaced by two
fundamentally distinct concepts: local Lorentz violation
and diffeomorphism violation. To incorporate these con-
cepts into the SME language, a generic background field in
a curved spacetime manifold M must have both contri-
butions defined in a spacetime frame and contributions
given in a local inertial reference frame. A gravitational
version of the SME has been put forward in a series of
papers [32–39] to study these aspects. The spacetime
manifold itself is described by the metric tensor gμν and
formal transitions between a spacetime frame and a local
inertial frame are provided by vierbeins eμa. In the pure-
gravity sector, background fields in spacetime frames are
suitably contracted with objects built from the Riemann
curvature tensor, covariant derivatives, the Levi-Civita
tensor, and the spin connection ωμ

ab that endows spacetime
with a spin structure. These terms are constructed in a way
such that general coordinate invariance is maintained. The
presence of a background field in a local inertial frame
implies that the form of the laws of nature is different in
frames that are boosted or rotated with respect to the
original one.
The most recent article [39] rests on a better under-

standing of diffeomorphism and local Lorentz violation in
gravity acquired since the base of the gravitational SME
was laid in [32]. It widely extends the findings of [32] and
introduces additional concepts such as global local Lorentz
transformations and manifold Lorentz transformations that
are combinations of diffeomorphisms and local Lorentz
transformations. The latter can be considered analogous to
global Lorentz transformations in Minkowski spacetime.
An almost flat spacetime setting, which is sufficient for
various studies in practice such as propagating gravitational
waves [35,38,40,41] or modified dispersion relations in
linearized gravity [42], is also introduced. Therefore, [39]
provides many additional possibilities of how to construct
terms leading to observable pure-gravity effects that are not
in accordance with GR. By employing a powerful notation,
an infinite number of such terms covering the mass
dimensions≤8 is stated. Furthermore, contributions involv-
ing individual matter fields as well as those endowed with
the entire SM gauge symmetry are compiled, too.
It is paramount to emphasize that in the setting of

nondynamical background fields in gravity, the physics
of a background field depends on whether it is described by
a contravariant, covariant or mixed observer tensor, i.e., the
position of spacetime indices plays a crucial role. The
reason is that the spacetime metric changing the index
position is a dynamical object proper, i.e., it must be taken
into account in variations of the action. The authors of [39]
emphasize this issue again (although not for the first time).
Thus, explicitly Lorentz-violating contributions formulated
in terms of a covariant background field or a contravariant

3One of the few studies on effects related to spacetime-
dependent coefficients in Minkowski spacetime is provided
by [31].
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one (in a spacetime frame) must be considered as distinct
models. To avoid conflicts, we will state background fields
with upper indices only as done in [32]. Such a distinction
is unnecessary for local Lorentz indices, since the
Minkowski metric, which is used to lower and raise these
indices, is a nondynamical object by definition.
In a gravitational field, the notion of a constant back-

ground field loses its meaning. While a covariantly constant
background field cannot even be defined in most curved
manifolds that are of interest in gravity [32], even such a
field would depend on the spacetime coordinates.
Therefore, apart from local Lorentz violation, the gravita-
tional SME may exhibit diffeomorphism violation,4

in general [32,39]. For the effective modified-gravity
theory5 that we will be considering, any variation in the
number of degrees of freedom and any symmetry departure,
including a violation of diffeomorphism invariance, are
expected to show up in the constraint structure as well as
the Poisson algebra between the canonical variables
and the constraints. This assertion is particularly true
when counting the number of degrees of freedom, which
depends crucially on the number of first- and second-class
constraints.
In the current paper, we intend to apply the ADM

decomposition to two sectors of the minimal gravitational
SME to understand the implications of explicit diffeo-
morphism violation on the gravitational degrees of free-
dom. The ADM decomposition is more than suitable for
such an analysis, since it renders the constraint structure
transparent. Within the effective framework, we consider
the following three points as crucial:

(i) Obtain the standard results of GR in the limit of
vanishing controlling coefficients.

(ii) Maintain the same number of physical, propagating
degrees of freedom (2) in the modified-gravity
theory.

(iii) Implement the diffeomorphism group DiffðMÞ in
the sense of GR as differentiable mappings from a
manifold onto itself, M → M, given by the trans-
formation f∶xμ → fμðxÞ.

An investigation of the minimal gravitational SME by
means of the ADM formulation [46,47] has been published
recently, i.e., our study has some overlap with the latter
article. However, we will focus on other aspects—including
the points mentioned above—and present the results in a
different manner. Note also that our background fields carry
upper spacetime indices compared to those used in the
latter papers. Thus, in light of the comments made

previously on the position of spacetime indices in theories
with explicit diffeomorphism violation, our model is
physically nonequivalent to the one studied in [46,47].
Furthermore, applying the ADM formalism does not
require working in a weak-field regime, as it was done
in [48] to find the Hamiltonian using modified Poisson
brackets and deformed constraints. Thus, scenarios of
strong gravitational fields in the presence of diffeomor-
phism violation could be studied occurring, e.g., during the
creation of gravitational waves [49,50].
The paper is organized as follows. In Sec. II we explain

the concepts and mathematical relationships in the ADM
formalism with an emphasis on those that are of direct
relevance for us. Section III provides a summary of the
minimal gravitational SME. It is followed by Sec. IV that
constitutes the foundation of the article for the subsequent
calculations. Here we review how to derive the Hamiltonian
of GR and carry out analogous computations for both the
sμν and the u term of the gravitational SME. These studies
imply modified Hamiltonian and momentum constraints in
the presence of the aforementioned background fields. In
Sec. V we intend to understand how the constraints and the
modified Einstein equations are related with each other.
This analysis will enable us to derive requirements for the
internal consistency of a modified-gravity theory resting on
explicit diffeomorphism violation. Section VI is dedicated
to a brief investigation of the constraint structure as well as
the Hamilton equations. By evaluating suitable Poisson
brackets between canonical variables and constraints we
will demonstrate that the modified constraints still generate
both spacetime diffeomorphisms and spatial diffeomor-
phisms, respectively. Last but not least, our findings are
concluded on in Sec. VII.
The main body of the text is dedicated to presenting and

interpreting the central results as well as to providing
conceptual discussions. Detailed derivations and compu-
tations are relegated to the Appendices. The latter can be
skipped by readers who are primarily interested in the
results and their implications, but they may be valuable to
researchers who want to base their investigations on the
findings of this article. Appendix A gives an account on the
most important geometrical formulas that are indispensable
to carry out the ADM decomposition of the SME.
Calculational details on constructing the Hamiltonians of
the gravitational SME are presented in Appendix B.
Appendix C states some remarks on a modified ADM
decomposition that plays a role for a subset of the sμν

coefficients. In the course of the investigations, it has turned
out that suitable boundary terms must be included in the
action and the derivation of those is shown in Appendix D.
Appendix E presents the most crucial steps in deriving the
modified Einstein equations from the action, as they are
valuable to understand the necessity of the boundary terms
mentioned before. Subsequently, in Appendix F we show in
a very detailed manner how to relate the Hamiltonian and

4Illustrations of the concepts of general coordinate trans-
formations and diffeomorphisms in the presence of background
fields can be found in [43].

5Reviews on modified-gravity theories are provided by
[44,45]. The latter references also include material on the
gravitational SME, but the focus is on models of spontaneous
diffeomorphism and Lorentz violation in this context.
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momentum constraints to the modified Einstein equations.
Useful formulas on the ADM decomposition of covariant
derivatives of background fields are derived here that are
probably not to be found anywhere in the existing literature.
Furthermore, in Appendix G we give calculational details
on how to compute functional derivatives of the ADM-
decomposed action. These results provide further support
for our arguments. Last but not least, in Appendix H we
introduce a helpful counting scheme based on the canonical
variables of the ADM decomposition. The latter allowed us
to check any relation involving ADM variables for (dimen-
sional) consistency and turned out to be a useful tool for
finding calculational errors.

II. THE ADM DECOMPOSITION

The ADM formulation of General Relativity [1,3,4]
furnishes a decomposition of spacetime into space and
time leading to a description of the gravitational phase
space by means of a Hamiltonian. The Hamiltonian
formulation starts with selecting a special foliation of the
generic spacetime manifold M that is to be covered by a
chart of coordinates Xμ. We start by choosing a temporal
coordinate that we call t where X0 does not necessarily
correspond to t. The spatial coordinates that are employed
for the decomposition will be denoted as xi. By considering
a flow of time

tμ ≡ ∂Xμ

∂t ; ð1Þ

the four-dimensional manifold M decomposes into space-
like hypersurfaces Σt at fixed instants of time t.
We pick two spacelike hypersurfaces Σt and Σtþdt with

constant t and tþ dt, respectively. The lapse of proper time
between the lower and upper hypersurface is Ndt, which is
why the scalar function N ¼ Nðt; x; y; zÞ is called the lapse
in the literature. We define the unit timelike vector nμ that
indicates the path of proper time τ. In general, as long as t
does not correspond to proper time, there is a misalignment
between tμ and nμ:

Nμ ≡ tμ − Nnμ: ð2Þ

The latter vector is called the shift and it depends on both
time and the spatial coordinates.
To grasp a better understanding of the foliation, we

provide an illustrative interpretation (see Ref. [1]) of the
lapse N and the shift Nμ, cf. Fig. 1. Let the two hyper-
surfaces Σt, Σtþdt be modeled by metal sheets and let them
be separated by connectors wielded at both sheets. The
connectors have a well-defined length Ndt that the lapse is
characteristic for. The latter is not necessarily constant,
but depends on which hypersurfaces are connected to
each other as well as where the connectors are placed.

We consider a particular connector wielded to the lower
sheet at a point with spatial coordinates xi.
To construct a stable and rigid structure, the connectors

must be orthogonal to the lower sheet at the point xi. As the
upper sheet differs from the lower one, this connector is not
necessarily orthogonal to the upper sheet, as well. This also
means that the connector linking Σtþdt and Σtþ2dt cannot be
placed at the same spatial coordinates xi on the upper sheet,
as it would not be orthogonal to this sheet at xi. For the
connector to be orthogonal, it must be placed at a point
xi − Nidt on Σtþdt. This requirement introduces a vector N
with components Ni ¼ Niðt; x; y; zÞ that is tangent to the
sheet and corresponds to the spatial components of Nμ

introduced in Eq. (2). We deduce that N0 ¼ 0, i.e., Nμ is
purely spacelike. Also, the shift vector is zero when the
connector is automatically perpendicular to the second
sheet such that the next connector can be placed directly
above the previous one. This scenario does not occur in
general, though.
With this construction in mind, we consider a point

ðt; xiÞ on Σt and move to another point ðtþ dt; xi þ dxiÞ on
Σtþdt by following the flow of time; see Eq. (1). Let the
geometry of the hypersurface Σt be described by the three-
metric qij ¼ qijðt; xiÞ. The latter corresponds to the spa-
tial components of the metric gμν ¼ gμνðt; xiÞ describing
the geometry of the ambient spacetime. To compute the
infinitesimal path length interval squared between the
points ðt; xiÞ and ðtþ dt; xi þ dxiÞ, we need the following
ingredients. The infinitesimal distance perpendicular to the
lower hypersurface is Ndt, as we have already argued
above. Furthermore, the infinitesimal vector pointing from
xi to xi þ dxi in the lower hypersurface is dxi þ Nidt. The
path length interval squared then reads

FIG. 1. Two hypersurfaces Σt and Σtþdt that are linked via
connectors illustrated by blue lines. A connector links the point
Pμ ¼ ðt; xiÞ on the lower sheet to the point Qμ ¼ ðtþ dt; xi −
NidtÞ on the upper one. The axis of a connector points along the
direction nμ. The four-vector tμ indicates the direction between
the point ðt; xiÞ on the lower hypersurface and ðtþ dt; xi þ dxiÞ
on the upper one. The points where the connectors are wielded are
represented by crosses (see also Ref. [1]).
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ds2 ¼ qijðdxi þ NidtÞðdxj þ NjdtÞ − N2dt2

¼ qijdxidxj þ 2Nidtdxi þ ðNaNa − N2Þdt2: ð3Þ

The spatial metric qij is employed to pull indices up and
down of the shift vector, as the latter lives completely in the
hypersurface. Identifying the path length interval of Eq. (3)
with

ds2 ¼ gμνdxμdxν; ð4Þ

we identify the decomposed spacetime metric as

gμν ¼
�
NaNa − N2 Nj

Ni qij

�
: ð5Þ

Its inverse can be cast into the form

gμν ¼
�
−1=N2 Nj=N2

Ni=N2 qij − NiNj=N2

�
: ð6Þ

The four-vector nμ points along the difference between the
two points Pμ and Qμ of Fig. 1 lying on top of each other:

Qμ − Pμ ≡ Nnμdt ¼
�

1

−Ni

�
dt; ð7Þ

which is why

nμ ¼
�

1=N

−Ni=N

�
: ð8Þ

Lowering the index with the spacetime metric implies that
nμ is purely timelike:

nμ ¼
�−N

0i

�
: ð9Þ

We define

qμν ≡ gμν þ nμnν ¼
�

0 0j

0i qij

�
; ð10Þ

which is interpreted as the induced (inverse) metric on a
spatial hypersurface Σt generalized to M. The lower
ð3 × 3Þ block can contain nonzero entries only. Pulling
down the second index with the metric of Eq. (5) implies

qμν ¼
�

0 0j

Ni δij

�
: ð11Þ

The latter tensor satisfies the important property

qμνqνϱ ¼ qμϱ; ð12Þ

i.e., it is a projector. Furthermore, it obeys

qμνnν ¼ 0; ð13Þ

which is why it can be employed to project vectors and
tensors defined on M into the hypersurface Σt. Note that
the projector as stated in Eq. (11) only involves non-
dynamical objects by definition.
In this context we would like to comment on a set of

coordinates that can be very valuable when dealing with
particular problems: Gaussian normal coordinates (also
known as synchronous coordinates). The latter are char-
acterized by the choices N ¼ 1 and Ni ¼ 0, i.e., the lapse
function is a coordinate-independent scalar and the shift
vector is discarded. Then, the time coordinate corresponds
to proper time for an observer remaining at fixed spatial
coordinates. Furthermore, the unit vector pointing along
time is perpendicular to the unit vectors pointing along each
spatial dimension (see, e.g., page 717 of [1]). In Gaussian
normal coordinates it holds that nμ ¼ tμ [see Eq. (2)]. We
will be referring to these coordinates at some points in
the paper.

III. THE SME GRAVITY SECTOR

The action of the minimal gravitational SME is a
modification of the Einstein-Hilbert (EH) action that is
invariant with respect to general coordinate transformations
[32,39]. It is written as

Sg ¼
Z
M

d4xðLð0Þ þ L0Þ; ð14Þ

with

Lð0Þ ¼
ffiffiffiffiffiffi−gp
2κ

ð4ÞR; ð15aÞ

L0 ¼
ffiffiffiffiffiffi−gp
2κ

ðkRÞμνϱσð4ÞRμνϱσ: ð15bÞ

Here, Lð0Þ is the EH Lagrangian without cosmological
constant and L0 is a minimal SME term containing a
background field ðkRÞμνϱσ that transforms as a four-tensor
under general coordinate transformations. Besides,
κ ¼ 8πGN with Newton’s constant GN , g≡ detðgμνÞ and
ð4ÞRμνϱσ is the Riemann curvature tensor defined in the four-
dimensional spacetime manifold M. Its single contraction
ð4ÞRμν ≡ ð4ÞRϱ

μϱν is the Ricci tensor and its double con-
traction ð4ÞR≡ ð4ÞRμ

μ corresponds to the Ricci scalar.
We work in a scenario of explicit diffeomorphism

violation in gravity, i.e., ðkRÞμνϱσ is a nondynamical
tensor-valued background field defined in a spacetime
frame of the curved manifold M. For simplicity and as
we do not consider spontaneous diffeomorphism violation
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in this article, no confusion should arise by omitting the bar
proposed to be put on top of such coefficients [39].
However, to clarify the physics in local frames, we can
benefit from considering a background vierbein denoted by
heiμa that arises, in principle, from solving the Einstein
field equations in the vacuum [39].
In contrast to a scenario in Minkowski spacetime, a

globally constant tensor in the sense of a vanishing
covariant derivative at each point in M does not exist
for a general manifold. Therefore, we must assume
that the background field is coordinate dependent:
ðkRÞμνϱσ ¼ ðkRÞμνϱσðxÞ. According to the third line of
Table II in [39], a term of the form of Eq. (15b) does
not imply local Lorentz violation at the level of the
Lagrange density. However, suitable combinations of the
coefficients with background vierbeins may give rise to
preferred directions in local frames at each point xμ of the
manifold implying local Lorentz violation. We will come
back to this point later.
The no-go result of the SME gravity sector [32,39]

implies that explicit diffeomorphism and local
Lorentz violation clash with specific properties of
(pseudo-)Riemannian geometry such as the second
Bianchi identity of the Riemann curvature tensor. This
finding requires that certain Noether identities linked to the
invariance under general coordinate transformations must
be satisfied for a consistent setting [51,52]. A descriptive
interpretation of the no-go result is that a nondynamical
background field cannot absorb or emit momentum, which
is why it cannot account for the momentum transfer of a test
particle moving along a geodesic in M [51]. This issue is
neatly avoided by considering spontaneous Lorentz viola-
tion, i.e., a dynamical background field that satisfies its own
field equations. In such scenarios both massless and
massive propagating modes of the background field can
be excited. The massless modes correspond to propagating
fluctuations of preferred directions, whereas the massive
modes are interpreted as fluctuations of the strength of
Lorentz violation or, in other words, the size of the
controlling coefficients.
Bjorken initially proposed the idea of spontaneous

Lorentz violation back in 1963 [53] to explain the photon
as a massless Goldstone boson. In the aftermath, further
physicists took this idea over to gravity to interpret the
graviton as a Goldstone boson linked to a spontaneous
breakdown of local Lorentz and diffeomorphism invariance
[54,55]. More recent works in the context of electrody-
namics are [56–58] and for gravity we refer to [59–62]
where the mechanism suggested in [59] is even considered
as a solution of the cosmological-constant problem. In the
context of gravity, it was demonstrated that an alternative
gravity theory called cardinal gravity [61,62] can be
constructed by means of a bootstrap method from a
linearized theory with a two-tensor field that undergoes
spontaneous Lorentz violation. At energies much lower

than the Planck scale, this theory corresponds to GR, but it
significantly differs from GR near the Planck energy.
Spontaneous Lorentz violation was investigated in great

detail in toy theories known as bumblebee models in
Minkowski spacetime [63–67] as well as in the presence
of gravity [68,69]. The focus in the latter works lies on a
profound understanding of the Goldstone and Higgs-like
modes. A particular model of a purely timelike vector field
and its implications for matter particles was analyzed in
[70]. References [71–73] give an account of a scenario of
an antisymmetric two-tensor acquiring a vacuum expect-
ation value. Papers have also been written on black-hole
solutions in the presence of bumblebee-type Lorentz
violation [74–78]. Note that spontaneous Lorentz violation
was demonstrated to occur in open-string field theory, too
[6–10]. The latter finding was a motivation for constructing
a comprehensive low-energy effective field theory frame-
work for Lorentz violation that we now know as the SME.
An alternative to spontaneous Lorentz and diffeomor-

phism violation could be explicit symmetry violation in a
more general geometry that does not rely on the quadratic
restriction of path length functionals in Riemannian geo-
metry [79,80]. A promising framework is Finsler geometry
[81–83], as it was shown that classical-particle analogs
based on the SME [84] move along geodesics in certain
Finsler spaces [85,86]. This discovery stimulated a vast
series of articles on classical-particle descriptions in
Lorentz-violating background fields as well as their con-
nections to Finsler geometry [87–100].
However, recent findings suggest that the no-go result is

not as restrictive as it was believed to be for almost
15 years. There may be scenarios of explicit Lorentz
violation and/or diffeomorphism violation in gravity where
the Stückelberg trick can be used to create massless
propagating modes by introducing a set of additional scalar
fields [101]. This construction allows for a consistent
description of explicit symmetry violations that does not
contradict the Bianchi identity ∇μGμν ¼ 0 (where Gμν is
the Einstein tensor). Also, it is possible to satisfy the
consistency conditions perturbatively in certain cases
[102]. Recently, even analyses of experimental data
[103,104] were carried out to constrain coefficients giving
rise to explicit symmetry violation in gravity. We take these
findings as a justification for considering explicit diffeo-
morphism violation in a Riemannian setting. In this work,
we will also provide new insights and precise results in
such a context.
The minimal-gravity modification of Eq. (15b) is usually

rewritten as follows [32]:

L0 ¼
ffiffiffiffiffiffi−gp
2κ

ðL0ðuÞ þ L0ðsÞ þ L0ðtÞÞ; ð16aÞ

with
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L0ðuÞ ¼ −uð4ÞR; ð16bÞ

L0ðsÞ ¼ sμνð4ÞRμν; ð16cÞ

L0ðtÞ ¼ tμνϱσð4ÞRμνϱσ: ð16dÞ

The decomposition of L0 shown above has turned out to be
valuable. First, u ¼ uðxÞ is a Lorentz scalar dependent on
spacetime position, which is why it implies diffeomor-
phism violation. Derivatives of uðxÞ for the coordinates can
give rise to a preferred direction in a local frame [39,105].
Therefore, this contribution is also able to induce local
Lorentz violation without this being obvious at a first place.
In the setting of spontaneous diffeomorphism violation
with only weak gravitational fields present, u can be
removed by a field redefinition (see Sec. III in [33]). We
will see that the u term is more subtle in the presence of
explicit diffeomorphism violation. Second, sμν ¼ sμνðxÞ is
a two-tensor-valued background field that can be taken as
symmetric due to the symmetry of the Ricci tensor.
The four-tensor-valued background field tμνϱσ ¼ tμνϱσðxÞ

has the symmetries of the Riemann tensor. It does not seem
to play a role in physical observables in the post-Newtonian
limit and this interesting observation was coined the
“t puzzle” [106]. The reason for that peculiar property
seems to be the approximative scheme employed in most
phenomenological studies of local Lorentz and diffeo-
morphism violation in gravity, because it relies on an
asymptotically flat spacetime. If this assumption is not
made such as in cosmology, tμνϱσ can give rise to significant
effects providing tight constraints on these coefficients
[102,107].
Note that the following form of the Lagrange density

expressed in terms of irreducible pieces of the Riemann
curvature tensor is sometimes employed [33]:

L00 ¼
ffiffiffiffiffiffi−gp
2κ

ð−uð4ÞRþ sμνð4ÞRT
μν þ tμνϱσð4ÞCμνϱσÞ; ð17Þ

with the trace-free Ricci tensor ð4ÞRT
μν and the four-

dimensional Weyl tensor ð4ÞCμνϱσ. The latter inherits all
the symmetries from the Riemann tensor, but it does not
involve nonvanishing traces, anymore. Hence, by using
Eq. (17), the trace of sμν as well as the single and double
traces of tμνϱσ have been extracted, which leaves nine
independent components of sμν and ten of tμνϱσ [32].
However, throughout the paper we will be employing
the form of Eq. (16). As will become clear later, special
care has to be taken in our setting when performing field
redefinitions to move such traces from one term to another.
In the context of spontaneous diffeomorphism violation,
Eq. (17) can be interpreted as following directly from
Eq. (15b) by extracting the single and double traces of the
Riemann curvature tensor. When diffeomorphism invari-
ance is violated explicitly, though, the background fields u,

sμν, and tμνϱσ in Eq. (16) should be taken as definitions
independent of ðkRÞμνϱσ occurring in Eq. (15b).
Furthermore, u, sμν, and tμνϱσ of Eq. (16) are assumed to
be independent of each other, i.e., we will leave traces
where they are and avoid transferring them between
different contributions.
Although the background fields u, sμν, and tμνϱσ do not

imply local Lorentz violation at the level of the Lagrange
density, quantities like sab ≡ sμνheiμaheiνb and tabcd ≡
tμνϱσheiμaheiνbheiϱcheiσd (that must be interpreted as mere
definitions) can give rise to preferred orientations in a local
frame where an experiment is performed [39]. Considering
the modification of the dispersion relation of gravitational
waves in the regime of weak gravitational fields, tμνϱσ leads
to birefringence in contrast to sμν that does not do so [35].
Therefore, there is an analogy between sμν (tμνϱσ) and the
nonbirefringent (birefringent) part of the CPT-even back-
ground field ðkFÞμνϱσ of the SME photon sector. Indeed,
appropriate field redefinitions allow for transforming
between photon sector and gravity sector coefficients such
that matter-gravity experiments are only sensitive to com-
binations of such coefficients [101].

IV. HAMILTONIAN FORMULATION
OF A GRAVITY THEORY

The Hamiltonian formulation of GR is the foundation for
many prototypes of quantum gravity [108] as well as field
theories coupled to gravity (see [109] for an example
involving Schrödinger theory) and modified-gravity theo-
ries, in general [110,111]. The Hamiltonian itself is a
powerful tool to define the total mass, momentum, and
angular momentum of a gravitational system. The ADM
formalism provides a set of suitable canonical variables and
a means to obtain the GR Hamiltonian. It permits gaining a
better understanding of the physics on hypersurfaces
characteristic for a particular spacetime, e.g., the event
horizon of a black hole, which is a null hypersurface in the
corresponding four-dimensional spacetime [112,113].
The Hamiltonian formulation also uncovers that GR is

characterized by constraints [5]. Theories subject to con-
straints play a pivotal role in physics [114]. A constraint is a
relation between the canonical variables that reduces the
number of variables that can be considered as physical.
Hence, in a constrained theory not every canonical variable
does necessarily describe a physical degree of freedom, but
there are some variables that correspond to mere gauge
degrees of freedom. Constraints appear, e.g., in classical
(non)relativistic mechanics, electrodynamics, and GR [5].
In the following sections, wewill first of all obtain modified
constraints where their structure will only by revealed in
Sec. VI towards the end of the main text.
Note that the constraints of GR are given in terms of the

canonical variables. However, a Hamiltonian in the context
of the ADM formulation is first obtained as a function of
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the extrinsic curvature describing the embedding of space-
like hypersurfaces Σt into the spacetime manifold M. The
latter must be eliminated in favor of the canonical momen-
tum density to obtain the relationships that are usually
interpreted as constraints in phase space. Nevertheless, we
will sometimes also employ the terminology “constraint”
for the original relationships depending on the extrinsic
curvature.

A. General relativity

We start by briefly reviewing how to derive the
Hamiltonian associated with GR in the context of the
ADM formalism. Consider the EH action without cosmo-
logical constant:

Sð0Þ ¼
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

ð4ÞR: ð18Þ

With the help of the expression in Eq. (A19), the EH action
can be written as [108]

Sð0Þ ¼
Z
M

d4x
N

ffiffiffi
q

p
2κ

½R − K2 þ KijKij þ 2∇μðnμK − aμÞ�;

ð19Þ

where q≡ detðqijÞ, R is the Ricci scalar associated with Σt,
and Kij the extrinsic-curvature tensor defined by

Kij ¼
1

2N
ð _qij −DiNj −DjNiÞ: ð20Þ

Furthermore, K ≡ Ki
i corresponds to the trace of the latter

and aμ is the acceleration that is linked to the derivative of
the lapse function [see Eq. (A1)]. In what follows, we will
discard the total covariant derivative (last term) in Eq. (19),
which leads to a boundary term when the integral over Σt is
computed. Although this procedure seems to be of minor
importance, it turns out to be an essential point and we will
come back to it in Sec. IV C.
There are ten canonical variables inGR: the lapse function

N, the three shift vector components Ni and the six spatial-
metric components qij. To obtain the Hamilton density
associated with the EH Lagrange density, we need the time
derivatives _qij that follow from Eq. (20) and are given by

_qij ¼ 2NKij þDiNj þDjNi: ð21Þ

The canonical momentum density associated with _qij is

ðπ0Þij ¼
∂Lð0Þ

∂ _qij ¼
ffiffiffi
q

p
2κ

ðKij − qijKÞ: ð22Þ

Considering theLegendre transformation and using Eq. (21),
we obtain a preliminary form of the Hamilton density:

Hð0Þ ¼ −
ffiffiffi
q

p
2κ

½NðRþ K2 − KijKijÞ
þ 2ðKDiNi − KijDiNjÞ�: ð23Þ

An integration over the spatial hypersurface Σt provides the
Hamiltonian. Performing suitable partial integrations and
expressing the extrinsic curvature in terms of the canonical
momentum leads to

Hð0Þ ¼
Z
Σt

d3xHð0Þ ¼ −
Z
Σt

d3x
ffiffiffi
q

p
2κ

ðNC0 þ NiCiÞ; ð24aÞ

with

C0 ¼ Rþ K2 − KijKij; ð24bÞ

Ci ¼ 2ðDjK
j
i −DiKÞ: ð24cÞ

To carry out the canonical analysis of the EH Hamilton
density inEq. (24), wemust express the extrinsic curvature in
terms of the phase spacevariables, in particular, the canonical
momentum ðπ0Þij. By doing so, we obtain

Kij ¼ 2κffiffiffi
q

p
�
ðπ0Þij −

π0
2
qij

�
; K ¼ −

κffiffiffi
q

p π0; ð25Þ

as well as the Hamilton density

Hð0Þ ¼ NC0 þ NiCi; ð26aÞ

with the Hamiltonian and momentum constraint

C0 ¼
2κffiffiffi
q

p
�
ðπ0Þijðπ0Þij −

ðπ0Þ2
2

�
−

ffiffiffi
q

p
2κ

R; ð26bÞ

Ci ¼ −2Djðπ0Þji; ð26cÞ

where π0 is understood as the trace of the canonical
momentum: π0 ≡ ðπ0Þii. Note that the prefactor in
Eq. (24) has been absorbed into C0 and Ci. The contribution
in Eq. (24a) proportional to the lapse function involves the
spatial part of the Ricci scalar as well as the extrinsic
curvature. The part in Eq. (24a) linear in the shift vector
does not depend on the internal geometry of the spatial
hypersurface, but only on the way it is embedded into the
four-dimensional manifold.

B. Minimal gravitational SME

At first, we will focus on the sμν sector of the minimal
gravitational SME defined by Eq. (16c). The background
field sμν can be decomposed into three parts:

sαβ ¼ qαμqβνsμν − ðqανnβ þ qβνnαÞsνn þ nαnβsnn; ð27Þ
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where we introduce the notation sij ≡ qiμqjνsμν for the part
projected entirely into Σt. In addition, we define a mixed
(vectorial) part via sin ≡ qiμnνsμν as well as a scalar part
snn ≡ nμnνsμν projected completely along the direction
perpendicular to Σt. Equation (27) has to be considered as
an identity. Note that we will interpret sin and snn as new
degrees of freedom independent of sμν and the lapse
function N or the shift vector Ni. As long as diffeo-
morphism invariance is violated explicitly by the non-
dynamical field sμν, we can think of sin and snn as being
defined in the manner above. When diffeomorphism
invariance is violated spontaneously, it could be questioned
whether such definitions make sense, as they would mix
dynamical and nondynamical objects.
In the second contribution to the Lagrange density L0 of

Eq. (16) the background field sμν is contracted with the
four-dimensional Ricci tensor. As a first step, Eq. (10)
enables us to express the Lagrange density in terms of
quantities defined on Σt:

sαβð4ÞRαβ ¼ gαγgβδsγδð4ÞRαβ

¼ ðqαγ − nαnγÞðqβδ − nβnδÞsγδð4ÞRαβ

¼ sγδqαγq
β
δ
ð4ÞRαβ − 2nδsγδqαγnβð4ÞRαβ

þ nγnδsγδð4ÞRαβnαnβ: ð28Þ

In the second step, we will benefit from the following
relations that give possible contractions of the Ricci tensor
with the projector qμν and the four-vector nμ:

qνβqσδð4ÞRνσ ¼
1

N
LmKβδ −

1

N
DβDδN þ Rβδ

þ KKβδ − 2Kμ
βKμδ; ð29aÞ

qμβnνð4ÞRμν ¼ DμKμ
β −DβK; ð29bÞ

nνnσð4ÞRνσ ¼ −
1

N
LmK þ 1

N
DβDβN − KμνKμν; ð29cÞ

whereLm is the Lie derivative [see Eqs. (5.31) and (5.32) of
[2]] along the four-vector mμ ≡ Nnμ and Dμ denotes the
three-dimensional covariant derivative. We refer to
Refs. [108,115,116] for details on their derivation and to
Appendix A for a compilation of valuable formulas in this
context. Equation (29a) describes how the four-dimen-
sional Ricci tensor is projected completely into a spacelike
hypersurface Σt. The result involves the three-dimensional
Ricci tensor, products of the extrinsic-curvature tensor as
well as suitable derivatives of the extrinsic curvature and
the lapse function. Equation (29b) is the contracted
Codazzi-Mainardi relation. It describes a partial projection
of the Ricci tensor into Σt and involves three-dimensional
covariant derivatives of the extrinsic curvature only. Last
but not least, Eq. (29c) states the complete projection of the

Ricci tensor along the direction orthogonal to Σt. This
particular projection contains contributions similar to those
in Eq. (29a), but it is devoid of the three-dimensional Ricci
tensor or its trace.
Performing the decomposition of Eqs. (16b) and (16c)

implies

L0 ¼
X4
α¼1

L0ðαÞ; ð30aÞ

where

L0ð1Þ ¼ N
ffiffiffi
q

p
2κ

sij
�
1

N
LmKij −

1

N
DiDjN þ Rij

þ KKij − 2Ki
lKlj

�
; ð30bÞ

L0ð2Þ ¼ N
ffiffiffi
q

p
2κ

½2sinðDiK −DlKl
iÞ�; ð30cÞ

L0ð3Þ ¼N
ffiffiffi
q

p
2κ

snn
�
−
1

N
LmKþ 1

N
DiDiN−KijKij

�
; ð30dÞ

L0ð4Þ ¼ −
N

ffiffiffi
q

p
2κ

u

�
2

N
LmK −

2

N
DiDiN þ R

þK2 þ KijKij

�
: ð30eÞ

Now, the associated canonical momentum density reads

ðπ0Þij ≡ ∂L0

∂ _qij ¼
X4
α¼1

πðαÞij: ð31Þ

Starting from these relations, we will obtain the Hamilton
density,

H0 ¼ ðπ0Þij _qij − L0; ð32Þ

where calculational details will be relegated to Appendix B
unless they are worthwhile to be mentioned in the main
text. Note that the total Hamilton density simply follows
from adding the modification to the EH part:

H ¼ Hð0Þ þH0 ¼ ðπ0Þij _qij − Lð0Þ þ ðπ0Þij _qij − L0

¼ ðπ0 þ π0Þij _qij − ðLð0Þ þ L0Þ≡ πij _qij − L; ð33Þ

where πij is the total canonical momentum density and L
the total Lagrange density.

1. Decoupling the sectors

Based on Eq. (27), sμν can be decomposed into three
sectors. In what follows, we intend to analyze these sectors
independently of each other. This can be accomplished by
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choosing particular observer frames where only one of the
three sets sij, sin, and snn provides nonzero coefficients.
For example, if one is interested in snn only, we would
consider an observer frame where all components of sμν

vanish except of s00. We will precisely follow this strategy,
as the three sectors have distinct characteristics that can be
exploited in the computations. Hence, we will just focus on
a single sector and turn off the remaining ones to simplify
the analysis without losing generality.

2. Purely spacelike sector

Consider the purely spacelike modification given by
Eq. (30b) (to be added to the EH Lagrangian later) with the
remaining modifications turned off. In general, Lie deriv-
atives with respect to mμ involve time derivatives, which is
why the term LmKij implies time derivatives of the
extrinsic curvature according to

LmKij ¼ _Kij − LNKij: ð34Þ

Such time derivatives give rise to additional second-order
time derivatives of the induced metric. This finding would
eventually force us to consider the Ostrogradsky formalism
of higher-derivative theories [117–121]. To avoid this
problem, we follow the method introduced in [122] and
employ an identity that allows for shifting time derivatives
from the extrinsic curvature to the Lorentz-violating back-
ground:

1

N
sijLmKij ¼ ∇μðnμKijsijÞ − KKijsij

−
1

N
KijLmsij: ð35Þ

Here, the Lie derivative of the purely spacelike background
field with respect to mμ reads

Lmsij ¼ _sij − LNsij; ð36aÞ

LNsij ¼ NkDksij − ðDkNiÞskj − ðDkNjÞsik: ð36bÞ

Let us now rewrite Eq. (30b):

L0ð1Þ ¼ N
ffiffiffi
q

p
2κ

�
∇μðnμKijsijÞ −

1

N
KijLmsij

− sij
�
1

N
DiDjN − Rij þ 2Kl

iKlj

��
: ð37Þ

Integrating over the first contribution above within the
action leads to another boundary term [cf. Eq. (19)] that we
discard. This step will turn out to be crucial to understand
the results (see Sec. IV C). So we omit the covariant-
derivative term and consider instead

Lð1Þ ¼
ffiffiffi
q

p
2κ

½−KijLmsij − sijDiDjN

þ NsijðRij − 2Kl
iKljÞ�: ð38Þ

After some calculation (for detailswe refer toAppendixB 1),
the Hamiltonian associated with the Lagrange density is
given by

Hð1Þ ¼ −
Z
Σt

d3x
ffiffiffi
q

p
2κ

ðNCð1Þ0 þ NiCð1Þi Þ; ð39aÞ

with

Cð1Þ0 ¼ sijðRij þ 2Kl
iKljÞ −DiDjsij; ð39bÞ

Cð1Þi ¼ −qijDk

�
1

N
Lmskj þ 2ðsklKj

l þ sjlKk
lÞ
�
: ð39cÞ

We see that Hð1Þ has a structure similar to that of the EH
Hamiltonian in Eq. (24). Time derivatives of the lapse
function and the shift vector do not occur. Note the presence
of the problematic term Lmsij that appears in the modifica-
tion of Ci of Eq. (24c) and is proportional to the inverse of the
lapse function. Therefore, it does not fit into the usual
structure of the Hamiltonian. Understanding the physical
implications of this contribution will turn out to be of
paramount importance as a base for the internal consistency
of the theory and we will return to this problem later.
The next step is to consider the total Hamiltonian

H ¼ Hð0Þ þHð1Þ with Hð0Þ of Eq. (24) and Hð1Þ stated
in Eq. (39). Our goal now is to eliminate the extrinsic-
curvature tensor in H in favor of the canonical momentum
πij associated withH. To do so, we first need an expression
for πij that is obtained in Eq. (B3). As Kij is symmetric, the
canonical momentum employed in the Legendre trans-
formation can be symmetrized, whereupon we cast the
latter result into the form

πij ¼
ffiffiffi
q

p
2κ

�
Kij − qijK −

1

2N
Lmsij − ðsilKj

l þ sjlKi
lÞ
�

¼
ffiffiffi
q

p
2κ

�
GijabKab −

1

2N
Lmsij

�
; ð40aÞ

with the four-tensor (symmetrized in the first and second
pair of indices):

Gijab ¼ 1

2
ðqiaqjb þ qibqjaÞ − qijqab

−
1

2
ðsiaqjb þ sjaqib þ sibqja þ sjbqiaÞ: ð40bÞ

Inverting the canonical momentum for the extrinsic curva-
ture and its trace gives
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Kab ¼ Gabij

�
2κffiffiffi
q

p πij þ 1

2N
Lmsij

�
; ð41aÞ

K ¼ qabGabij

�
2κffiffiffi
q

p πij þ 1

2N
Lmsij

�
; ð41bÞ

with the inverse tensor Gabij satisfying

GcdijGijab ¼ 1

2
ðδcaδdb þ δd

aδc
bÞ: ð42Þ

Note that the fourth-rank tensor in Eq. (40b) for sij ¼ 0 is
proportional to an object known as the Wheeler-DeWitt
metric in the literature [cf., for example, Eq. (7.45) in [5]].
Its inverse in the diffeomorphism-invariant setting is readily
found to be

Gð0Þ
cdij ¼

1

2
ðqciqdj þ qdiqcj − qcdqijÞ; ð43Þ

which is a valuable object in GR to invert Eq. (22) for the
extrinsic curvature leading to Eq. (25).
For a generic sij it seems challenging to find an inverse in

closed form. There are two possibilities of proceeding.
First, a special case for sij could be considered, e.g., a
decomposition into suitably chosen four-vectors. The exact
inverse Gcdij can be computed for such cases. Second, we
were able to determine the inverse Gcdij for a generic sij at
first order in the controlling coefficients. To be as general as
possible, we choose the second approach. It is reasonable to
propose a suitable Ansatz for Gcdij that involves all fourth-
rank tensors constructed from qij and sij at first order in sij.
Contracting the latter with Eq. (40b) and requiring Eq. (42)
at first order in the controlling coefficients implies a linear
system of equations for the parameters. Solving this system
provides the parameters of the Ansatz. The computation is
performed best with computer algebra and the result reads

Gð1Þ
cdij ¼

1

2
½qciqdj þ qdiqcj − ð1 − sllÞqcdqij�

þ scjqdi þ sdiqcj − ðscdqij þ sijqcdÞ; ð44Þ
where the latter reproduces Eq. (43) for vanishing sij. This
finding is one of the few places throughout the paper where
we use lower-index controlling coefficients for conven-
ience. We will now restrict our consideration to background
fields that satisfy the requirement Lmsij ¼ 0 such that the
constraint structure is standard. This particular choice is to
be discussed at the end of Sec. IV B and will find
substantial additional motivation for it in Sec. V.
By considering the Hamilton density Hð1Þ associated

with Hð1Þ and expressing Kij in terms of πij in Eq. (39b),
we deduce the total Hamilton density

Hð0Þ þHð1Þ ¼ NCð1Þ
0 þ NiCð1Þ

i ; ð45Þ

with the modified Hamiltonian constraint

Cð1Þ
0 ¼ C0 − δCð1Þ

0 ; ð46aÞ

δCð1Þ
0 ¼ κffiffiffi

q
p ½4sijðπijπ − πkiπjkÞ − siiπ2�

þ
ffiffiffi
q

p
2κ

ðsijRij −DjDisijÞ; ð46bÞ

where C0 is given by Eq. (26b) with π0 replaced by π. The
latter result is valid at first order in the controlling
coefficients and under the requirement that Lmsij ¼ 0.
Performing the analogous replacement in Eq. (39c), we
make an interesting discovery. The standard part implies

−
ffiffiffi
q

p
κ

ðDkKki−DiKÞ¼−2½Dkπ
kiþ sklDkπ

i
l

þ sikðDlπ
l
k−DkπÞþπklDksil

þπikDlslk−πDksik�þ � � � ; ð47Þ

where all contributions beyond linear order in the control-
ling coefficients have been dropped. In the modification
given by Eq. (39c), it is sufficient to employ the standard
relations of Eq. (25):

ffiffiffi
q

p
κ

DkðsklKi
l þ silKk

lÞ

¼ 2Dk

�
skl

�
πil −

π

2
δil

�
þ sil

�
πkl −

π

2
δkl

��

¼ 2Dk½sklπil þ silπkl − sikπ�: ð48Þ

Thus, all diffeomorphism-violating contributions of
Eqs. (47) and (48) cancel each other. Then, the momentum
constraint remains unmodified at first order in diffeomor-
phism violation:

Cð1Þ
i ¼ Ci ¼ 2Djπ

j
i; ð49Þ

with Ci stated in Eq. (26c).

3. Mixed sector

In contrast to the Lagrange density of the purely space-
like sector, Lð2Þ given by Eq. (30c) involves the covariant
derivative defined on the spacelike hypersurface. The latter
does not give rise to time derivatives of the extrinsic
curvature. However, to be capable of shifting the spatial
covariant derivatives to the vector-valued background field
sin, we add a suitable boundary term to the Lagrange
density. Note that the latter is not integrated over the
spacetime boundary (such as those to be considered in
Sec. IV C), but over the boundary of the spacelike hyper-
surface Σt. Hence, the corresponding integral is two-
dimensional and runs over the coordinates z employed
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to parametrize the boundary ∂Σt. Then, the Lagrangian
reads

Lð2Þ ¼ 1

κ

�Z
Σt

d3x
ffiffiffi
q

p
NsinðDiK −DlKl

iÞ

−
I
∂Σt

d2z
ffiffiffi
q

p
riNðKsin − Ki

jsjnÞ
�

¼ 1

κ

Z
Σt

d3x
ffiffiffi
q

p
N

�
sinðDiK −DlKl

iÞ

−
1

N
Di½NðKsin − Ki

jsjnÞ�
�
; ð50Þ

with a properly normalized three-vector r that is
orthogonal to ∂Σt. The associated Lagrange density has
the form

Lð2Þ ¼
ffiffiffi
q

p
κ
fNsinðDiK−DlKl

iÞ−Di½NðKsin−Ki
jsjnÞ�g

¼
ffiffiffi
q

p
κ
N½Ki

jDisjn−KDisinþaiðKi
jsjn−KsinÞ�: ð51Þ

Based on the latter result, we can directly obtain the
canonical momentum and the Hamilton density via a
Legendre transformation. Details of the computation are
relegated to Appendix B 2. The Hamiltonian is

Hð2Þ ¼ −
Z
Σt

d3x
ffiffiffi
q

p
2κ

ðNCð2Þ0 þ NaCð2Þa Þ; ð52aÞ

with

Cð2Þ0 ¼ 0; ð52bÞ

Cð2Þa ¼ qab½Drðar þDrÞsbn þDrðab þDbÞsrn
− 2Dbðai þDiÞsin�: ð52cÞ

Interestingly, C0 in Eq. (24b) is not affected by the
coefficients sin and the modification of Ci of Eq. (24c)
is independent of the extrinsic curvature. The form of the
Lagrange densityLð2Þ suggests that it must be interpreted as
a constraint that does not affect the dynamics. A possible
explanation is given by the intriguing finding that Lð2Þ can
be generated at first order in the controlling coefficients via
a modified ADM decomposition (see Appendix C). The
latter is characterized by an effective shift vector that
includes the controlling coefficients sin. Thus, we conclude
that the mixed coefficients sin are mere gauge degrees of
freedom.
Despite this result, expressing the previous constraints in

terms of the canonical momentum density πij may still
provide further insight. Considering Hð0Þ þHð2Þ with the
Hamilton density Hð2Þ of the mixed sector, the total

canonical momentum of Eq. (B5) can be inverted for the
extrinsic curvature when we write

πij ¼
ffiffiffi
q

p
2κ

ðKij − qijK þ π̃ijÞ; ð53aÞ

π̃ij ¼ 1

2
½ðar þDrÞssn þ ðas þDsÞsrn�

− qrsðai þDiÞsin: ð53bÞ

Note that π̃ij does not depend on the extrinsic curvature. By
employing the inverse Wheeler-DeWitt metric of Eq. (43),
we obtain

Kab ¼ Gð0Þ
abij

�
2κffiffiffi
q

p πij − π̃ij
�

¼ 2κffiffiffi
q

p
�
πab −

π

2
qab

�
− π̃ab þ

π̃

2
qab: ð54Þ

The total Hamilton density then has the form

Hð0Þ þHð2Þ ¼ NCð2Þ
0 þ NaCð2Þ

a ; ð55aÞ

with the Hamiltonian constraint

Cð2Þ
0 ¼ C0 þ δCð2Þ

0 ; ð55bÞ

δCð2Þ
0 ¼ π̃π − 2π̃ijπ

ij þ
ffiffiffi
q

p
2κ

�
π̃ijπ̃ij −

π̃2

2

�
; ð55cÞ

where π0 in C0 must be replaced by π of Eq. (53a), and the
momentum constraint

Cð2Þ
i ¼ −2DjPj

i; Pij ≡ πij −
ffiffiffi
q

p
2κ

π̃ij: ð55dÞ

In principle, the latter can be interpreted as a redefined
momentum constraint with the redefined momentum den-
sity Pij. A short computation then also reveals that

Cð2Þ
0 ¼ 2κffiffiffi

q
p

�
PijPij −

P2

2

�
−

ffiffiffi
q

p
2κ

R: ð56Þ

These results are another indication for sin not conveying
any physical information. We were able to reproduce the
Hamiltonian and momentum constraint of EH theory stated
in Eqs. (26b) and (26c) simply by absorbing the controlling
coefficients sin into the momentum density. The only
caveat is that we are putting nondynamical coefficients
sin into the canonical momentum Pij, which is a dynamical
entity. However, this procedure corresponds to performing
a mere shift of the original canonical momentum πij that
does not even depend on the extrinsic curvature [see π̃ij

in Eq. (53b)].
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4. Purely timelike sector

To obtain the Hamiltonian associated with the purely
timelike sector based on Eq. (30d), we employ the relation

1

N
snnð _K − LNKÞ ¼ ∇μðnμKsnnÞ − K2snn

−
1

N
Kð_snn − LNsnnÞ; ð57Þ

which is similar to Eq. (35). Inserting the latter into L0ð3Þ
leads to

L0ð3Þ ¼ N
ffiffiffi
q

p
2κ

�
−∇μðnμKsnnÞ þ

1

N
KLmsnn

þ snn
�
1

N
DiDiN − KijKij þ K2

��
: ð58Þ

Note the similarity to Eq. (37). Again, we discard the
covariant-derivative contribution that would provide a
boundary term in the action (see Sec. IV C). So we consider

Lð3Þ ¼
ffiffiffi
q

p
2κ

½snnðDiDiN − NKijKij þ NK2Þ
þ KLmsnn�; ð59aÞ

where the Lie derivative of the scalar background field snn

can simply be understood as a directional derivative:

1

N
Lmsnn ¼ nμ∇μsnn: ð59bÞ

The Hamiltonian corresponding to Lð3Þ is derived in
Appendix B 3. It reads

Hð3Þ ¼ −
Z
Σt

d3x
ffiffiffi
q

p
2κ

ðNCð3Þ0 þ NaCð3Þa Þ; ð60aÞ

with

Cð3Þ0 ¼ DiDisnn þ snnðKijKij − K2Þ; ð60bÞ

Cð3Þi ¼ Di

�
1

N
Lmsnn þ 2snnK

�
− 2DjðsnnKj

iÞ: ð60cÞ

Note the similarities, but also the differences of the latter
modifications of C0; Ci in comparison to Eqs. (39b) and
(39c). Such as for the purely spacelike sector, the con-
tribution Lmsnn deviates from the conventional constraint
structure, as it is proportional to the inverse of the lapse
function. This term will also play a pivotal role for the
consistency of the purely timelike sector, as will become
evident later.
Let us now introduce the total Hamiltonian H ¼

Hð0Þ þHð3Þ with the total canonical momentum πij

associated. The modified πij is obtained by adding
Eqs. (22) and (B7). Inverting the latter via the inverse of
the Wheeler-DeWitt metric in Eq. (43) implies the extrinsic
curvature in terms of the canonical momentum:

Kab ¼
Gð0Þ

abij

1 − snn

�
2κffiffiffi
q

p πij −
Ξ
2
qij

�

¼ 1

1 − snn

�
2κffiffiffi
q

p
�
πab −

π

2
qab

�
þ Ξ

4
qab

�
: ð61aÞ

The covariant directional derivative of snn with respect to
nμ [cf. Eq. (59b)],

Ξ≡ 1

N
Lmsnn; ð61bÞ

had to be isolated before computing the inverse. Therefore,
the total Hamiltonian in canonical variables follows from
adding Eqs. (24) and (60) and expressing the extrinsic
curvature in terms of the canonical momentum via Eq. (61):

Hð0Þ þHð3Þ ¼ NCð3Þ
0 þ NaCð3Þ

a ; ð62aÞ

with the modified Hamiltonian constraint

Cð3Þ
0 ¼ 2κffiffiffi

q
p ð1 − snnÞ

�
πijπij −

π2

2

�
−

ffiffiffi
q

p
2κ

ðRþDaDasnnÞ

þ Ξ
2ð1 − snnÞ

�
π −

3
ffiffiffi
q

p
8κ

Ξ
�
; ð62bÞ

and the momentum constraint

Cð3Þ
a ¼ Ca ¼ −2Dbπa

b: ð62cÞ

As before, the diffeomorphism-violating contributions in
the momentum constraint, which follows from Eqs. (24c)
and (60c), cancel when the latter is written as a function of
the total canonical momentum [cf. Eq. (49)].

5. Scalar sector

According to Eq. (16b), the minimal gravitational SME
also contains a scalar background field called u. In the
context of spontaneous diffeomorphism violation, u can be
eliminated in the PPN formalism by redefining the gravi-
tational field, i.e., 1 − u is merely a scaling factor in this
case. However, in the current section, we will demonstrate
that the fate of u in the setting of explicit diffeomorphism
violation is much more subtle. As u comes together with
the Ricci scalar, the corresponding Lagrange density of
Eq. (16b) can be decomposed by applying Eqs. (A12) and
(A15). The result is given by Eq. (30e). Now, the identity
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1

N
uLmK ¼ ∇μðnμKuÞ − K2u −

1

N
KLmu; ð63Þ

which is analogous to Eqs. (35) and (57), allows us to move
derivatives from the extrinsic curvature to the background
scalar u modulo a total covariant derivative:

2κ

N
ffiffiffi
q

p L0ð4Þ ¼ −2∇μðnμKuÞ þ 2K2uþ 2

N
KLmu

−
�
−
2

N
DiDiN þ Rþ K2 þ KijKij

�
u

¼ −2∇μðnμKuÞ þ
2

N
ðKLmuþ uDiDiNÞ

− ðR − K2 þ KijKijÞu: ð64Þ

A suitable boundary term added to the action eliminates the
total derivative (see Sec. IV C). Taking this boundary term
into account implies the form of the Lagrange density that
we are going to work with:

Lð4Þ ¼ N
ffiffiffi
q

p
2κ

�
2

N
ðKLmuþ uDiDiNÞ

− ðR − K2 þ KijKijÞu
�
: ð65Þ

A Legendre transformation (see Appendix B 4) leads to the
Hamiltonian

Hð4Þ ¼ −
Z
Σt

d3x
ffiffiffi
q

p
2κ

ðCð4Þ0 N þ Cð4Þi NiÞ; ð66aÞ

where

Cð4Þ0 ¼ −ðRþ K2 − KijKijÞuþ 2DiDiu; ð66bÞ

Cð4Þi ¼ 2

�
Di

�
1

N
Lmuþ uK

�
−DjðuKj

iÞ
�
: ð66cÞ

We now consider the theory based on the total Hamiltonian
H ¼ Hð0Þ þHð4Þ. The total canonical momentum can be
inverted for the extrinsic curvature via the inverse Wheeler-
DeWitt metric of Eq. (43):

Kab ¼
Gð0Þ

abij

1 − u

�
2κffiffiffi
q

p πij −ϒqij
�

¼ 1

1 − u

�
2κffiffiffi
q

p
�
πab −

π

2
qab

�
þϒ

2
qab

�
; ð67aÞ

where we introduced a symbol for the Lie derivative of the
background field:

ϒ≡ 1

N
Lmu: ð67bÞ

Now, the total Hamilton density reads

Hð0Þ þHð4Þ ¼ NCð4Þ
0 þ NiCð4Þ

i ; ð68aÞ

with the modified Hamiltonian and momentum constraint:

Cð4Þ
0 ¼ 2κffiffiffi

q
p ð1−uÞ

�
πijπ

ij −
π2

2

�
−

ffiffiffi
q

p
2κ

½ð1−uÞRþ 2DiDiu�

þ ϒ
1−u

�
π−

3
ffiffiffi
q

p
4κ

ϒ

�
; ð68bÞ

Cð4Þ
k ¼ −2Diπ

i
k: ð68cÞ

The momentum constraint is unaffected by diffeomorphism
violation such as for the purely spacelike and timelike
sectors of sμν; cf. Eqs. (49) and (62c). Note the parallels to
Eq. (62b), although no curvature term is induced by snn in
contrast to u.
A further interesting conclusion can be drawn from

supposing that u arises from a nonvanishing trace of sμν. In
the case of spontaneous diffeomorphism violation, this
argument is usually developed to disregard the trace of sμν

as an unobservable contribution. We then choose sμν ¼
ugμν and use Gaussian normal coordinates where
sij ¼ uqij. Inserting the latter into the Lagrange densities
of the purely spacelike and purely timelike sector of
Eqs. (38) and (59a) results in

2κ

N
ffiffiffi
q

p Lð1Þ ¼ −
1

N
½KijLmðuqijÞ þ uqijDiDjN�

þ uqijðRij − 2Kl
iKljÞ

¼ 2uKijKij −
1

N
ðKLmuþ uDiDiNÞ

þ uR − 2uKijKij

¼ −
1

N
ðKLmuþ uDiDiNÞ þ uR; ð69aÞ

2κ

N
ffiffiffi
q

p Lð3Þ ¼ −
1

N
ðKLmuþ uDiDiNÞ

þ uKijKij − uK2: ð69bÞ

The sum of both corresponds to the negative of Eq. (65), as
expected. In contrast, if we insert sμν ¼ ugμν in Gaussian
normal coordinates into the modifications of C0 given by
Eqs. (39b) and (60b), we obtain
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CðuÞ0 ≡ Cð1Þ0 þ Cð3Þ0

¼ uðRþ 2KijKijÞ −DiDiu −DiDiu

− uðKijKij − K2Þ
¼ uðRþ K2 þ KijKijÞ − 2DiDiu; ð70Þ

which is off from the negative of Eq. (66b) by a term
2uKijKij. The reason for this mismatch is found in the Lie
derivative term of Eq. (38). The canonical momentum
provides an additional contribution:

πkl ¼ ∂Lð1Þ

∂ _qkl ⊃
N

ffiffiffi
q

p
2κ

�
1

N
uKijqikqjl

�
¼

ffiffiffi
q

p
2κ

uKkl; ð71Þ

where we can use that _qlk ¼ −qli _qijqjk. Thus, CðuÞ0 of
Eq. (70) has to be endowed with a correction term given by

πkl _qkl ⊃
ffiffiffi
q

p
2κ

uKkl2NKkl ¼ N
ffiffiffi
q

p
2κ

ð2uKklKklÞ: ð72Þ

Note that the prefactor and a global minus sign was
extracted from Eqs. (39c) and (60b). So we reproduce
Eq. (66b) only under these circumstances. This finding
teaches us a crucial lesson. In the setting of explicit
diffeomorphism violation, a statement like sμν ¼ ugμν is
simply meaningless, as the background fields are non-
dynamical, but the metric is a dynamical object [see the
discussion below Eq. (17)].6

Hence, it is then also not possible to absorb the u term of
Eq. (16b) into the gravitational field to eliminate it. The
important message is that u becomes a physical object
when explicit diffeomorphism violation is considered. One
cannot get rid of it by a simple field redefinition.

C. Generalized Gibbons-Hawking-York
boundary term

In what follows, we will comment on the time derivatives
of the extrinsic curvature that occur in the ADM-decom-
posed EH Lagrange density of Eq. (14) as well as in the
modifications of Eqs. (30b), (30d), and (30e) via the Lie
derivative Lm. These time derivatives imply that the
Lagrangians contain second-order time derivatives of the
metric, which is puzzling, as the (modified) Einstein
equations themselves are of second order in time

[cf. Eqs. (62) and (63) in [32] and Eqs. (6) and (7) in
[33]). Although the EH action contains second-order time
derivatives of the metric (see the definition of the Ricci
scalar), the Einstein equations themselves do not involve
time derivatives of the metric higher than 2. To gain a better
understanding of this peculiar property, we consult
Ref. [124] (see page 297) that provides a powerful
decomposition of the EH action as follows:

Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

ð4ÞR ¼
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

W

þ 1

2κ

Z
M

d4x
∂ð ffiffiffiffiffiffi−gp

wλÞ
∂xλ ; ð73aÞ

with the quantities W and wμ given by

W ¼ gμνðΓϱ
μσΓσ

νϱ − Γσ
μνΓϱ

σϱÞ; ð73bÞ

wλ ¼ gαβΓλ
αβ − gλαΓν

αν; ð73cÞ

where Γμ
νϱ are the Christoffel symbols of four-dimensional

spacetime. By following this procedure,
ffiffiffiffiffiffi−gp

W involves
only first-order derivatives of the metric, whereas all second-
order derivatives of the metric are put into ∂λð ffiffiffiffiffiffi−gp

wλÞ. This
decomposition works, as the Ricci scalar is linear in the
second-order time derivatives of the metric. Note that W is
not a Lorentz scalar and wλ is not a four-vector.
An explicit computation (for example, done with the

powerful Mathematica package xTensor [125]) demon-
strates that a variation of the first term on the right-hand
side of Eq. (73a) with respect to the metric leads to

ffiffiffiffiffiffi−gp
Gμν

with the Einstein tensorGμν. Interestingly, [124] claims that
a variation of the second term is zero, as it is a term on the
boundary ∂M of the spacetime manifold M. Therefore, it
is not expected to contribute to the field equations.
However, research done in the 1970s revealed that the
situation is more subtle. As the second term on the right-
hand side of Eq. (73a) depends on second-order derivatives
of the metric, the corresponding surface term still contains
first-order time derivatives of the dynamical field gμν. In
general, Hamilton’s principle requires that variations of
dynamical fields vanish on the boundary, which means
δgμνj∂M ¼ 0 for GR. However, the requirement that first-
order derivatives of these variations also vanish on the
boundary is too strong and should not be implemented, if
one does not want to change Hamilton’s principle. So
∂ϱðδgμνÞj∂M ≠ 0 must be assumed. Then the boundary
term cannot simply be set to zero, which is a particular
situation in GR, as the EH action already involves second-
order derivatives of the dynamical fields.
Since there is a contribution on the boundary, the latter

can only be canceled by subtracting a suitable term from the
action. It is called the Gibbons-Hawking-York (GHY) term
[44,126–128] and it has the form

6An analogous situation occurs when including the extended
Chern-Simons term ϵμνα□Aμ∂νAα into (1þ 2)-dimensional
electrodynamics [123]. This effective term can be absorbed into
the gauge field via the redefinition Āμ ≡ Aμ þ ϵμνα∂νAα in order
to rewrite the Lagrange density in terms of a new field strength
tensor as − 1

4
F̄μνF̄μν with F̄μν ¼ ∂μĀν − ∂νĀμ. In spite of this

form hiding the additional degrees of freedom, the latter still
provides a parity-violating theory. The example presented dem-
onstrates that field redefinitions have to be carried out and
interpreted with care.
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SGHY ¼ ε

κ

I
∂M

d3y
ffiffiffi
q

p
K; ð74Þ

where ε ¼ ∓1 for a spacelike (timelike) boundary and y are
the coordinates on the boundary. As its derivation is not
found in a number of GR books, we present the essential
arguments and calculational steps in Appendix D 1. By
doing so, the reader will also be able to understand better
how the computation must be adapted to the settings of the
sμν and u terms of the gravitational SME.
The ADM decomposition of the EH Lagrange density

based on Eq. (14) provides an alternative explanation of the
GHY boundary term. The Lagrange density involves a first-
order time derivative of the metric within the extrinsic
curvature tensor via Eqs. (20) and (21). Second-order time
derivatives of the metric occur in the covariant-derivative
term of Eq. (14). By considering this contribution inside the
action with N

ffiffiffi
q

p ¼ ffiffiffiffiffiffi−gp
, we have

1

κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ∇μðnμK − aμÞ ¼ ε

κ

I
∂M

d3y
ffiffiffi
q

p
K; ð75Þ

where we employ n · a ¼ 0 and n2 ¼ ε.7 The result
corresponds to Eq. (74). Therefore, the ADM formalism
gives rise to the GHY boundary term automatically. The
latter is needed to cancel the first-order derivatives of the
metric on the boundary.
Let us now focus on the diffeomorphism-violating

modification of the EH Lagrange density given by L0ðsÞ
in Eq. (16c). We observed that the Lagrange density of the
mixed sector of L0ðsÞ stated in Eq. (30c) is completely
devoid of second-order time derivatives of the metric, as it
only contains covariant derivatives defined in the spacelike
hypersurface. In fact, we introduced a boundary term for
this sector in Eq. (50). However, the latter lived on the
boundary ∂Σt of a spacelike hypersurface as opposed to
the boundary ∂M of the spacetime manifold. Furthermore,
the motivation for introducing this term was completely
different and did not have any relation with second-order
time derivatives of the metric.
In contrast, the situation is quite different for both the

purely timelike and the purely spacelike sector whose
Lagrange densities are given by Eqs. (30b) and (30d),
respectively. They involve first-order time derivatives of
Kij and K via the Lie derivative along mμ. Therefore,
second-order time derivatives of qij are implied. Formally,
a similar decomposition as that of Eq. (73) can still be
carried out, since LðsÞ is linear in the second-order time
derivatives of the metric, as well:

Z
M
d4x

ffiffiffiffiffiffi−gp
2κ

sμνð4ÞRμν ¼
Z
M
d4x

ffiffiffiffiffiffi−gp
2κ

WðsÞ

þ 1

2κ

Z
M
d4x

∂ð ffiffiffiffiffiffi−gp
wðsÞλÞ

∂xλ ; ð76aÞ

with modified quantities WðsÞ and wðsÞμ:

WðsÞ ¼ sμν
�
Γσ

μνΓϱ
σϱ − Γϱ

μσΓσ
νϱ

þ 1

2g
ðΓϱ

μϱ∂νg − Γϱ
μν∂ϱgÞ

�

þ Γϱ
μϱ∂νsμν − Γϱ

μν∂ϱsμν; ð76bÞ

wðsÞλ ¼ sαβΓλ
αβ − sλαΓν

αν: ð76cÞ

The second-order derivatives of the metric are absorbed in
∂λð ffiffiffiffiffiffi−gp

wðsÞλÞ, whereas WðsÞ only involves first-order time
derivatives. A study analogous to that done before shows
that there are nonvanishing contributions on the boundary
originating from a variation of the second term on the right-
hand side of Eq. (76a). The outcome is that modified GHY
terms must be introduced to compensate these effects.
Details of the procedure are presented in Appendix D 2.
We also take into account L0ðuÞ in Eq. (16b), which is
straightforward, since it has the same structure as the EH
Lagrangian. The indispensable boundary terms are then
found to be given by

Smod
GHY

¼ ε

2κ

I
∂M

d3y
ffiffiffi
q

p ½sijKij − ðsnn þ 2uÞK�: ð77Þ

Hence, there is a boundary term for the purely spacelike
part of sμν governed by the controlling coefficients sij, a
second one for the purely timelike part parametrized by snn,
and a third one for u. The mixed part of sμν does not have an
associated boundary term of this form, though
[cf. Eq. (50)]. Note that an additional global factor of 2
does not occur for sij as well as snn as opposed to the GHY
term in Eq. (74).
At this point we may look at the ADM formalism again.

Integrating the total-derivative contributions in Eqs. (37),
(58), and (64) gives rise to exactly the same surface terms
that we found above:

1

2κ

Z
M
d4x

ffiffiffiffiffiffi
−g

p ∇μðnμKijsijÞ¼
ε

2κ

I
∂M

d3y
ffiffiffi
q

p
Kijsij; ð78aÞ

−
1

2κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ∇μðnμKsnnÞ ¼ −
ε

2κ

I
∂M

d3y
ffiffiffi
q

p
Ksnn;

ð78bÞ

−
1

κ

Z
M

d4x
ffiffiffiffiffiffi
−g

p ∇μðnμKuÞ ¼ −
ε

κ

I
∂M

d3y
ffiffiffi
q

p
Ku: ð78cÞ

7Note that the four-vector nμ orthogonal to Σt can be employed
as a vector normal to the boundary. The relevant parts of ∂M in
this context are interpreted as hypersurfaces Σt being timelike or
spacelike.
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In the setting of the u and sμν coefficients, the ADM
formalism still correctly provides suitable surface terms
that are generalizations of the GHY term. They are
necessary to compensate the additional first-order time
derivatives of the metric on the boundary that arise due to
diffeomorphism violation. Note that modified GHY boun-
dary terms associated with the minimal gravitational SME
were also considered in [106].
We are interested in the boundary contributions intro-

duced above to understand how to treat the second-order
time derivatives of the metric properly that occur in
Eqs. (30b), (30d), and (30e). Second- and higher-order
time derivatives of the dynamical fields may lead to
additional propagating degrees of freedom that are unphys-
ical (such as ghosts). In the nonminimal SME such
unphysical degrees of freedom are very common. They
are often neglected in phenomenological analyses in the
low-energy limit of quantum field theories based on the
Lee-Wick procedure [129,130]. However, ghosts cannot
simply be discarded when quantum corrections are taken
into account and the internal consistency of such theories
must be questioned and investigated (see, e.g., [131–142]
where this list is not claimed to be exhaustive).
In the minimal SME, Lorentz-violating contributions can

introduce additional first-order time derivatives of the
dynamical fields. For example, additional time derivatives
are known to occur in the Dirac fermion sector for certain
choices of the dimensionless c, d, e, f, and g coefficients
[26,27]. These time derivatives spoil the conventional time
evolution of spinor solutions of the Dirac equation, but it is
well-known that they can be removed by suitable field
redefinitions in spinor space [143–145]. In spite of that, the
Lagrange density of the minimal (nongravitational) SME
does not exhibit second-order time derivatives of dynamical
fields.
In general, second-order time derivatives of the dynami-

cal fields must be treated with the method developed by
Ostrogradsky [117–121]. This procedure is usually
employed in the context of the nonminimal SME only.
Hence, it must be considered as more than surprising that
this approach should be necessary to deal with the second-
order time derivatives of the metric in Eqs. (30b), (30d), and
(30e), which are based on the minimal SME. The argument
made via Eq. (76) is a justification for transferring the first-
order time derivatives from Kij to sij via Eq. (35), from K
to snn with the help of Eq. (57), and from K to u by means
of Eq. (63). In this process, generalized GHY boundary
terms are introduced to cancel the first-order time deriv-
atives of the metric on the boundary. Thus, the
Ostrogradsky method is not needed.
As a consequence of our procedure, first-order time

derivatives of the diffeomorphism-violating fields sij, snn,
and u arise, which reveals two important properties of these
contributions. First, the number of degrees of freedom must
be conserved when applying Eqs. (35), (57), and (63).

In principle, the procedure transfers the degrees of freedom
that come with the additional time derivatives of the
extrinsic curvature to sij, snn, and u. For sij and u this
means that the background fields must somehow absorb
these degrees of freedom.
Recall that we work in the setting of explicit diffeo-

morphism violation, wherewith sij must be considered as a
nondynamical tensor-valued function that is projected intoΣt

from an initially chosen sμν. Hence, sij is not capable of
absorbing any dynamical degrees of freedom, which indi-
cates amismatch. This behavior is how thewell-known clash
between explicit diffeomorphism violation and Riemannian
geometry [32] manifests itself within the ADM formalism
applied to this particular sector. The argument is similar for u.
However, as will be discussed in Sec. V, this mismatch can
possibly be resolvedwhen taking into account a certain set of
consistency conditions for the background fields.
Moreover, when the time derivatives are transferred from

K to snn in the purely timelike sector [see Eq. (57)], they do
not only act on s00, but they imply time derivatives of the
lapse function. An interpretation of this behavior is that
some of the gauge degrees of freedom of GR can become
dynamical in this sector. The significance of that observa-
tion is highly obscure. On the other hand, both the purely
spacelike sector and the scalar sector do not involve any
time derivatives of the lapse function or the shift vector, i.e.,
these gauge degrees of freedom remain nondynamical in
the presence of sij and u, respectively. This additional
problem specific to the purely timelike sector can also be
tackled by introducing a suitable requirement for snn, as
will become clear in Sec. V.
In short, based on the previous discussion as well as the

form of the modifications of Ci in Eqs. (39c) and (66c), one
might be tempted to restrict the purely spacelike and the
scalar sector to such background fields satisfying
Lmsij ¼ 0 and Lmu ¼ 0, respectively. These conditions
mean that sij and u, respectively, are generated by the flow
defined by the four-vector mμ and they are necessary
requirements for the internal consistency of these sectors.
The conclusion is that sij and u chosen suitably in this
manner could, indeed, imply a base for constructing
consistent sectors of the minimal gravitational SME that
violate diffeomorphism invariance explicitly. Furthermore,
a similar requirement Lmsnn ¼ 0 could be employed [see
also the modification of Ci obtained in Eq. (60c)]. Note that
we consider snn as a new degree of freedom independent of
sμν and N, i.e., we will not think of it as a quantity that
involves time derivatives _s00 and _N separately. The forth-
coming section will provide further substance to these
(preliminary) claims.

V. FIELD EQUATIONS AND CONSTRAINTS

It is remarkable that in the ADM formalism there are
direct relationships between the Einstein equations and the
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Hamiltonian constraint as well as the momentum con-
straint. These relations involve suitable contractions of the
Einstein equations with the projector qμν and the four-
vector nμ. We intend to give a brief summary of how this
procedure works for GR. After that, we will be trying to
tackle the diffeomorphism-violating modifications in an
analogous way. Although the method applied to GR is
rather unproblematic, its application to scenarios with
explicit diffeomorphism violation has turned out to be a
formidable task requiring tedious computations. A large
part of those will be moved to Appendix F. However, the
procedure will eventually imply several rewarding findings.

A. General relativity

The structure of GR allows us to relate the field
equations with the Hamiltonian and momentum con-
straints. We consider the Einstein equations of GR,

ðTmatÞαβ ¼ ð4ÞGαβ; ð79aÞ

where

ð4ÞGαβ ¼ ð4ÞRαβ −
1

2
gαβð4ÞR;

ðTmatÞαβ ¼
2ffiffiffiffiffiffi−gp δLmat

δgαβ
; ð79bÞ

with the Einstein tensor ð4ÞGαβ in four-dimensional space-
time and the Belinfante energy-momentum tensor ðTmatÞαβ
linked to a matter Lagrange density Lmat. Since we are not
taking matter into account, we will set ðTmatÞαβ ¼ 0.
Suitable projections of the Einstein equations imply the

Hamiltonian and momentum constraints (expressed in
terms of the extrinsic curvature). First, a total projection
along the direction orthogonal to Σt leads to Eq. (24b):

2nαnβð4ÞGαβ ¼ 2nαnβð4ÞRαβ − n2ð4ÞR

¼ ðRþ K2 − KijKij − 2nαnβð4ÞRαβÞ
þ 2nαnβð4ÞRαβ

¼ C0; ð80Þ

where we employed Eqs. (A12) and (A15). Second, a
mixed projection parallel to Σt and along the direction
orthogonal to Σt implies Eq. (24c):

2qiαnβð4ÞGαβ ¼ 2qiαnβð4ÞRαβ − 2qiαnαð4ÞR

¼ 2ðDjKji −DiKÞ ¼ Ci: ð81Þ

Here we used the contracted Codazzi-Mainardi relation of
Eq. (A20b).

B. Minimal gravitational SME: sμν term

The modification of the Einstein equations follows from
varying the action

S0ðsÞ ¼
Z
M

d4xL0ðsÞ; ð82Þ

with L0ðsÞ given by Eq. (16c). The result is well-known and
is stated in Eqs. (6) and (7) of [33]. Without a matter source
and for a nonzero sμν only, the modified Einstein equations
amount to

0 ¼ ð4ÞGαβ − ðTRsÞαβ; ð83aÞ

ðTRsÞαβ ¼ 1

2
½gαβsμνRμν þ∇ν∇αsνβ þ∇ν∇βsνα

−∇2sαβ − gαβ∇μ∇νsμν�: ð83bÞ

Note that the modified Einstein equations stated in
Eqs. (62) and (63) of [32] have a slightly different form
where the corresponding ðT̃RsÞαβ has been reprinted in
Eq. (F3) for completeness. The latter field equations are
valid for a modification of GR given by the action

S00ðsÞ ¼
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

sμνð4ÞRμν; ð84Þ

i.e., for a background field with lower indices (although the
field equations are expressed in terms of sμν with both
indices raised by the metric). This finding shows that for
explicit diffeomorphism violation, the field theories defined
by the action S0ðsÞ of Eq. (82) and S00ðsÞ of Eq. (84) are not
equivalent. More emphasis is put on this property in the
recent work [39] (see also the remarks made in Sec. I).
Since our setting is based on the action of Eq. (82), our
analysis will be resting on the modified Einstein equa-
tions (83). For the purpose of clarification, a short deriva-
tion of the modified field equations is provided in
Appendix E.
We now intend to find out whether there are possible

connections between the modified Einstein equations and
the constraints derived in Sec. IV B. To do so, we will have
to compute suitable contractions of ðTRsÞαβ in Eq. (83) with
nα and qαβ, respectively. The computations turned out to be
challenging and revealed further interesting insights.
Details are presented in Appendix F.
There is an additional peculiarity with respect to Eq. (27)

that we have employed to decompose sμν into a purely
spacelike, a mixed, and a purely timelike sector. The latter
decomposition must be considered as an identity and the
individual parts depend on the coordinates chosen for
the ADM decomposition. The situation is most clear for
the purely spacelike part. According to its definition as
sij ≡ qiμqjνsμν, the purely spacelike part definitely
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involves coefficients of sμν with spacelike indices
only—independently of the exact form of the projectors.
However, the same does not hold true for the mixed and
purely timelike sectors. The problem is best understood by
looking at the following explicit example. At first, the only
coefficient of sμν that contributes to the purely timelike
sector is s00, as snn ¼ sμνnμnν ¼ N2s00. However, for a
nonzero shift vector the purely timelike sector of the
decomposition in Eq. (27) then reads

ðsαβÞj purely
timelike

¼ ðnαnβsnnÞ ¼
�

1 −Ni

−Nj NiNj

�
s00; ð85Þ

which obviously involves coefficients other than s00. The
behavior is similar for the mixed sector. Thus, a nonzero
shift vector implies that the purely timelike and mixed
sector couple to each other as well as to the purely spacelike
one. If one does not want to pick particular observer frames
with specific forms of sμν (see Sec. IV B 1), such couplings
between different sectors can be avoided by employing
Gaussian normal coordinates [115,116] where N ¼ 1 and
Ni ¼ 0. A slight generalization of Gaussian normal coor-
dinates including a nontrivial lapse function N can also be
considered. It is indispensable, though, to work with a zero
shift vector if one wants to avoid that different sectors
couple to each other.

1. Field equations for sij

In what follows, we will obtain the suitable projections
of the modified Einstein equations. Calculational details are
shown in Appendix F 1. A complete projection of Eq. (83)
along the direction orthogonal to Σt implies

2nαnβðTRsÞαβ ¼ −ðKl
iKjlsij þ KKijsij þ sijRij

− qμαqνβ∇μ∇νsαβÞ: ð86Þ

The final term is involved. Evaluating it with care gives
rise to

qμαqνβ∇μ∇νsαβ ¼ DiDjsij − Kl
iKjlsij þ KKijsij

−
1

N
KijLmsij; ð87Þ

with the Lie derivative of the purely spacelike background
given by Eq. (36b). Now we obtain the following intriguing
result:

2nαnβðTRsÞαβ ¼ −
�
sijðRij þ 2Kl

iKljÞ −DiDjsij

þ 1

N
KijLmsij

�

¼ −
�
Cð1Þ0 þ 1

N
KijLmsij

�
; ð88Þ

with Cð1Þ0 given by Eq. (39b). Thus, the modification of the
Einstein equations completely projected along the direction
orthogonal to Σt almost equals the modification of C0, but
there is an additional contribution given by the Lie
derivative of the purely spacelike background tensor with
respect to mμ.
Evaluating the mixed projection of Eq. (83b) is even

more involved. An intermediate result reads

2qkαnβðTRsÞαβ ¼ −sijDiKj
k − KijDksij − aiKi

jsjk

þ 2KijDisjk þ KDisik

− ðKγkλ þ Kk
λÞ∇αsαλ

þ nαqνλqkσ∇ν∇αsλσ þ skλ∇αKα
λ; ð89Þ

and finally, we obtain

2qkαnβðTRsÞαβ¼−
�
−Di

�
1

N
Lmsikþ2slkKi

l

�
þKijDksij

�

¼−½qklCð1Þl þ2DiðsilKk
lÞþKijDksij�; ð90Þ

with the modification Cð1Þl of Cl given by Eq. (39c).

2. Field equations in the mixed sector

In Sec. IV B 3 we have brought up convincing arguments
for the mixed sector involving only gauge degrees of
freedom. Therefore, we do not consider it worthwhile to
compute projections of ðTRsÞαβ for this particular sector.

3. Field equations for snn

To avoid couplings with the other sectors, we will be
working with coordinates such that Ni ¼ 0. For the purely
timelike sector there is the peculiarity that an additional
contribution must be taken into account for the field
equations that comes from varying the action. We have that

δðsnnnμnνRμνÞ ⊃ snnRμνδðnμnνÞ
¼ snnRμνδðqμν − gμνÞ
¼ −snnRμνδgμν; ð91Þ

according to Eq. (10). Thus, an extra term emerges within
the diffeomorphism-violating modification of Eq. (83b)
where the minus sign is extracted:

ðTRsÞαβ ↦ ðTRsÞαβ þ snngαμgβνRμν

¼ ðTRsÞαβ þ snnRαβ: ð92Þ

Then, a complete projection along the direction
perpendicular to Σt implies
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2nαnβðTRsÞαβ ¼ −½DiDisnn þ snnðKijKij − K2Þ
þ Knμ∇μsnn�

¼ −
�
Cð3Þ0 −

1

N
KLmsnn

�
; ð93Þ

with Cð3Þ0 stated in Eq. (60b). Carrying out a projection
along Σt with respect to one index and a projection along nμ

for the second index results in

2qkαnβðTRsÞαβ ¼ −½Dkðnμ∇μsnn þ 2snnKÞ
−2DjðsnnKjkÞ − KDksnn�

¼ −ðqklCð3Þl − KDksnnÞ; ð94Þ

where Cð3Þl of Eq. (60c) can be employed here. Details on
how to arrive at these results are relegated to Appendix F 2.

C. Minimal gravitational SME: u term

Without a matter source and only the u term present, the
modification of the Einstein equations is obtained from
varying

S0ðuÞ ¼
Z
M

d4xL0ðuÞ; ð95Þ

with L0ðuÞ given by Eq. (16b). Then,

0 ¼ ð4ÞGαβ − ðTRuÞαβ; ð96aÞ

ðTRuÞαβ ¼ −
1

2
ð∇α∇βuþ∇β∇αuÞ

þ gαβ∇2uþ uð4ÞGαβ: ð96bÞ
A short derivation of this result is also presented in
Appendix E. As we did before, we can compute suitable
projections of the modified Einstein equations completely
orthogonal to Σt and partially into Σt:

2nαnβðTRuÞαβ ¼ −
�
Cð4Þ0 −

2

N
KLmu

�
; ð97aÞ

2qkαnβðTRuÞαβ ¼ −ðqklCð4Þl − 2KDkuÞ; ð97bÞ

with Cð4Þ0 , Cð4Þl given by Eqs. (66b) and (66c), respectively.
Computational details are presented in Appendix F 3.

D. Concluding remarks

To summarize, projections of the diffeomorphism-
violating modifications ðTRsÞαβ, ðTRuÞαβ for the purely
spacelike, the purely timelike, and the scalar sector with qμν
and nμ do not completely provide the Hamiltonian and
momentum constraints (expressed in terms of the extrinsic
curvature). In contrast to GR, there are correction terms. To
substantiate these outcomes, we will be taking a deeper

look at additional properties of the ADM action in the
forthcoming section.

E. Functional derivatives of ADM action

In the current section we intend to compute functional
derivatives of the ADM action with respect to the lapse
function and the shift vector. The first is expected to be
connected to the Hamiltonian constraint, whereas the second
is associated with the momentum constraint [146].
Calculational details are shown in Appendix G. First, for
the ADM-decomposed EH action of Eq. (19) we obtain

δSð0Þ

δN
¼

ffiffiffi
q

p
2κ

C0; ð98aÞ

δSð0Þ

δNk ¼
ffiffiffi
q

p
2κ

Ck; ð98bÞ

with C0, Ck given by Eqs. (24b) and (24c), respectively. To
find out whether or not analogous relationships exist in the
context of the background fields sμν and u, we consider the
modifications of the GR action within the ADM formalism.
The latter read

S0ðiÞ ¼
Z
M

d4xL0ðiÞ; ð99Þ

with the Lagrangians given by Eqs. (30b)–(30e) for
i ∈ f1; 2; 3; 4g. Computing the functional derivatives
implies

δS0ð1Þ

δN
¼

ffiffiffi
q

p
2κ

�
Cð1Þ0 þ 1

N
KijLmsij

�
; ð100aÞ

δS0ð1Þ

δNk ¼
ffiffiffi
q

p
2κ

½Cð1Þk þ KijDksij þ 2DiðsijKkjÞ�; ð100bÞ

δS0ð2Þ

δN
¼

ffiffiffi
q

p
2κ

�
Cð2Þ0 −

2

N
Di½NðsjnKi

j − sinKÞ�
�
; ð100cÞ

δS0ð2Þ

δNk ¼
ffiffiffi
q

p
2κ

Cð2Þk ; ð100dÞ

δS0ð3Þ

δN
¼

ffiffiffi
q

p
2κ

�
Cð3Þ0 −

1

N
KLmsnn

�
; ð100eÞ

δS0ð3Þ

δNk ¼
ffiffiffi
q

p
2κ

ðCð3Þk − KDksnnÞ; ð100fÞ

δS0ð4Þ

δN
¼

ffiffiffi
q

p
2κ

�
Cð4Þ0 −

2

N
KLmu

�
; ð100gÞ

δS0ð4Þ

δNk ¼
ffiffiffi
q

p
2κ

ðCð4Þk − 2KDkuÞ: ð100hÞ
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Several observations are in order. First, in contrast to GR,
there is no complete match between the functional deriva-
tives and the constraints for the purely spacelike, the purely
timelike, and the scalar sector. There are additional contri-
butions that involve products of the extrinsic curvature and
Lie derivatives or covariant derivatives of the background
fields. Second, there is amatch for theHamiltonian constraint
of the mixed sector modulo a boundary term on ∂Σt.
Interestingly, the momentum constraint of the mixed sector
matches perfectly without any additional contributions.
Third, note the similarities between the purely timelike
and the scalar sectors that are also evident in the boundary
terms of Eqs. (78b) and (78c).

F. Consistency requirements

In what follows, we will draw some intriguing con-
clusions from the projections of the modified Einstein
equations and the functional derivatives of the ADM
actions. We do so for the purely spacelike and the purely
timelike sector of sμν as well as for u. Since the mixed
sector of sμν involves gauge degrees of freedom only, it will
not be taken into consideration. For the purely spacelike
sector we start by comparing Eqs. (88) and (90) with the
corresponding functional derivatives of the ADM action:

δS0ð1Þ

δN
¼ −

ffiffiffi
q

p
κ

nαnβðTRsÞαβ; ð101aÞ

δS0ð1Þ

δNk
¼ −

ffiffiffi
q

p
κ

qkαnβðTRsÞαβ: ð101bÞ

For the purely timelike sector, we compare Eqs. (93) and
(94) with the suitable functional derivatives:

δS0ð3Þ

δN
¼ −

ffiffiffi
q

p
κ

nαnβðTRsÞαβ; ð102aÞ

δS0ð3Þ

δNk
¼ −

ffiffiffi
q

p
κ

qkαnβðTRsÞαβ: ð102bÞ

Finally, we take Eqs. (97a) and (97b) from the scalar sector
and compare those to the associated functional derivatives:

δS0ð4Þ

δN
¼ −

ffiffiffi
q

p
κ

nαnβðTRuÞαβ; ð103aÞ

δS0ð4Þ

δNk
¼ −

ffiffiffi
q

p
κ

qkαnβðTRuÞαβ: ð103bÞ

Thus, we conclude that the functional derivatives of the
ADM-decomposed actions with respect to the lapse func-
tion are proportional to the associated modifications of the
Einstein equations completely projected along the direction
orthogonal to Σt. Furthermore, the functional derivatives
for the shift covector are proportional to the mixed

projections of the modifications. In this context, discrep-
ancies do not arise for the purely spacelike, the purely
timelike, and the scalar sector.
Next, we compare the latter findings directly to the

Hamiltonian and momentum constraints. For the purely
spacelike sector we establish the correspondences

δ

δN
ðS0ð1ÞjLmsij¼0Þ ¼

ffiffiffi
q

p
2κ

Cð1Þ0 ; ð104aÞ

δ

δNk ðS0ð1ÞjLmsij¼0Þ ¼
ffiffiffi
q

p
2κ

Cð1Þk

			
Lmsij¼0

; ð104bÞ

with Cð1Þ0 and Cð1Þk given by Eqs. (39b) and (39c). For the
purely timelike sector it has to hold that

δ

δN
ðS0ð3ÞjLmsnn¼0Þ ¼

ffiffiffi
q

p
2κ

Cð3Þ0 ; ð105aÞ

δ

δNk ðS0ð3ÞjLmsnn¼0Þ ¼
ffiffiffi
q

p
2κ

Cð3Þk

			
Lmsnn¼0

; ð105bÞ

with Cð3Þ0 and Cð3Þk stated in Eqs. (60b) and (60c). Last but
not least, for the scalar sector we deduce

δ

δN
ðS0ð4ÞjLmu¼0Þ ¼

ffiffiffi
q

p
2κ

Cð4Þ0 ; ð106aÞ

δ

δNk ðS0ð4ÞjLmu¼0Þ ¼
ffiffiffi
q

p
2κ

Cð4Þk

			
Lmu¼0

; ð106bÞ

where Cð4Þ0 and Cð4Þk must be taken from Eqs. (66b) and
(66c). Hence, we conclude that for these three sectors being
internally consistent, the following necessary conditions
must be required:

Lmsij ¼ 0; ð107aÞ

Lmsnn ¼ 0; ð107bÞ

Lmu ¼ 0: ð107cÞ

In what follows, the latter will be denoted as consistency
conditions. In the context of the ADM decomposition, a
gravity theory endowed with sij-, snn- or u-type back-
ground fields, which violate diffeomorphism invariance
explicitly, is likely to be internally consistent as long as the
Lie derivatives of these backgrounds with respect to the
vectorfield mμ vanish. These consistency requirements are
directly connected to diffeomorphisms acting on the under-
lying spacetime manifold. Diffeomorphisms affect tensor-
fields in the tangent bundle and are generated by Lie
derivatives along arbitrary vectorfields. Thus, Eq. (107)
means that the corresponding background fields must be
invariant under diffeomorphisms generated by mμ within
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the ADM formalism such that the modified-gravity theory
is consistent.
The recent findings demonstrate how a background field

violating diffeomorphism invariance explicitly must be
understood within gravity. A background field in the
nongravitational SME is defined to not transform cova-
riantly under particle Lorentz transformations, i.e., it is
defined as fixed under such transformations. Note that
diffeomorphisms in Minkowski spacetime are equivalent to
translations induced by a constant four-vector ζμ. Then, the
Lie derivative of a two-tensor-valued background
field kμν simply corresponds to the directional derivative
along ζμ. An analogous consistency requirement would
amount to

Lζkμν ¼ ζϱ∇ϱkμν ¼ 0: ð108Þ

For an arbitrary ζμ this condition is satisfied for
backgrounds kμν that do not depend on the spacetime
position (at least when expressed in terms of Cartesian
coordinates). In the context of the nongravitational
SME, constant controlling coefficients are usually
employed for two reasons. First, it is simpler to think of
a background as being constant. More importantly, coef-
ficients depending on the spacetime position violate trans-
lation invariance and, therefore, energy-momentum
conservation due to Noether’s theorem. This property
would imply additional complications that are beyond
studies of Lorentz violation.
However, in curved spacetime, a dependence of control-

ling coefficients on spacetime position must usually be
assumed. For example, ∇ϱsμν ¼ 0 would only hold in
spacetimes known as parallelizable [32]. The latter are very
special choices and of lesser interest in the context of gravity.
Within the ADM formalism in gravity, Eq. (107) can be
interpreted as generalizations of Eq. (108) where the latter
implies energy-momentum conservation in Minkowski
spacetime.
A pictorial interpretation of the problems that arise with

explicit diffeomorphism violation in gravity is as follows.
The arguments to be made rely on test particles being
present in the curved spacetime manifold. Note that we
have not introduced a coupling term with matter in the
action, so far. Hence, rigorous studies of the interplay
between matter and diffeomorphism-violating background
fields will be done elsewhere. Nevertheless, we can make
some physical arguments to interpret the significance
of Eq. (107).
We can consider a test particle propagating in a curved

spacetime. The particle moving between two distinct points
follows a geodesic along which it is in free fall, i.e., its
acceleration vanishes. A background field giving rise to an
explicit violation of diffeomorphism invariance modifies
the geodesic equation, whereupon particle motion is

affected.8 Then, the momentum of the particle will change
in a way that is not described by GR, but that has to be
accounted for by the background field. However, as the
latter is nondynamical, it is incapable of absorbing or
emitting momentum [51].
Similar arguments can be developed for light rays

propagating through a background field in curved space-
time. As long as the gravitational field is weak enough, the
eikonal approximation is a suitable approach (see, e.g.,
[147,148]). Then, the curved spacetime manifold is approx-
imately described by an inhomogeneous optical medium,
i.e., its refractive index is position dependent (and may
also depend on polarization). The presence of a diffeo-
morphism-violating background field leads to additional
optical effects such as anisotropy, dispersion, and
birefringence. In this context, a background field violating
diffeomorphism symmetry explicitly corresponds to a
nondynamical optical medium on top of the optical
medium ascribed to the curved spacetime manifold M.
Whenever a light ray changes its propagation direction, its
wave vector changes, whereupon this change must be
transferred between the light ray and the diffeomor-
phism-violating medium. Furthermore, in the presence of
an explicitly time-dependent medium, even energy is to be
transferred between both entities. However, a nondynam-
ical medium neither accomplishes the first nor the second.
Similar arguments were already developed in [94].
To solve the aforementioned problems, Eq. (107)

seems to include the necessary requirements that render
a nondynamical background capable of incorporating
energy-momentum transfer between a test particle and
the background consistently. There may be a certain notion
of energy-momentum that is conserved even for a non-
dynamical background satisfying Eq. (107). Whether or not
these quantities correspond to the Killing energy and
Killing momentum, which are associated with isometries
of the underlying spacetime manifold, remains an in-
triguing open question to be studied in the future.
Interestingly, an ansatz similar to Eq. (107) looks natural
to be imposed in the presence of an AdS space in order to
match isometries for tensor fields [149].

VI. ANALYSIS OF CONSTRAINTS AND
HAMILTON FIELD EQUATIONS

Finally, let us analyze the structure of modified
Hamiltonian and momentum constraints that we obtained
for Eqs. (16b) and (16c). In general, our analysis has been
based on a field theory described by a Lagrange density L.
A constraint is called primary when it follows directly from
the form of L. Such constraints occur for a certain

8Note that classical-particle analogs subject to certain types
of Lorentz violation described by the (nongravitational) SME
were shown to follow geodesics associated with Finsler
geometries [85].
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canonical variable, say Φ, when the Lagrange density does
not involve the time derivative of the latter. The canonical
momentum

ΠΦ ≡ ∂L
∂Φ ; ð109Þ

associated with Φ is then equal to zero. Therefore, it is not
possible to express _Φ in terms ofΠΦ, which does not permit
deriving a Hamilton density via the Legendre transform.
Then a Hamilton density H is obtained from L without
taking the constrained variable into consideration.
Subsequently the constraint is added to H via a
Lagrange multiplier ξ to define an extended Hamiltonian
of the form HðextÞ ≡Hþ ξΠΦ. In the literature, a primary
constraint is written as

ΠΦ ≈ 0; ð110Þ

where ≈ means “weakly equal to zero.” This notation is
used to indicate that ΠΦ is only taken to be zero when the
constraint is satisfied, which is not necessarily assumed in
computations right from the start. For example, setting
ΠΦ ¼ 0 (“strongly equal to zero”) in HðextÞ would imply
that the term added with the Lagrange multiplier does not
contribute at all, which is undesired.
In what follows, the constraint structure of GR shall be

reviewed briefly (see, e.g., [5]). We start with a set of ten
canonical variables Xi ¼ fN;Ni; qijg. Note that the index
of Xi is defined as a lower one although Xi involves the
shift vector components Ni with an upper index. The
canonical momenta follow from the generic Lagrange
density L via

Πi ≡ ∂L
∂Xi

; ð111Þ

leading to the set of ten canonical momenta Πi ¼
fπN; πi; πijg given as

πN ≡ ∂L
∂ _N

; πi ≡ ∂L
∂ _Ni ; πij ≡ ∂L

∂ _qij : ð112Þ

By employing the canonical variables and momenta, we
define the Poisson bracket of two quantities F ¼ FðxÞ,
G ¼ Gðx0Þ via

fF;Gg≡
Z
Σt

d3y

�
δF

δXiðyÞ
δG

δΠiðyÞ −
δF

δΠiðyÞ
δG

δXiðyÞ
�
; ð113Þ

where δ=δΦ denotes the variational derivative with respect
to the variable Φ.

A. General relativity

As the EH Lagrange density of Eq. (15a), which is also
contained in Eq. (19), does not involve time derivatives of
both the lapse function and the shift vector, the associated
canonical momenta vanish. Thus, according to the intro-
ductory explanations, we have already identified a set of
four primary constraints in GR:

πN ≈ 0; πi ≈ 0; ð114Þ

whereupon we define

HðextÞ ≡Hð0Þ þ ηπN þ θiπi; ð115Þ

with the four Lagrange multipliers η and θi. The time
evolution of constraints is governed by suitable Poisson
brackets with the extended Hamilton density. As the
dependence of HðextÞ on the lapse function and the shift
vector is transparent, we quickly arrive at

fπN;HðextÞg ¼ −C0; ð116aÞ

fπi; HðextÞg ¼ −Ci: ð116bÞ

Each primary constraint ΠΦ ≈ 0 should be preserved in
time to not change the constraint structure. Its time
evolution is governed by

dΠΦ

dt
¼ fΠΦ;HðextÞg þ ∂ΠΦ

∂t : ð117Þ

The partial time derivative on the right-hand side is only
needed when the primary constraint depends on time
explicitly. To preserve this primary constraint in time,
we must require that

dΠΦ

dt
≈ 0; ð118Þ

which implies a further constraint that is called a secondary
one. Note that we must again talk of this secondary
constraint as being weakly equal to zero. Inserting
ΠΦ ¼ 0 directly would trivially result in a vanishing time
derivative. If the secondary constraint is not automatically
weakly equal to zero when the primary constraint satisfies
this property, this new constraint must be included into the
Hamilton density via another Lagrange multiplier ζ:

HðextÞ ↦ H̃ðextÞ ¼ Hð0Þ þ ξΠΦ þ ζ
dΠΦ

dt
: ð119Þ

The procedure continues in this manner and may provide
even further constraints. Hence, in the context of GR, for
the primary constraints of Eq. (114) to be conserved, we
must impose the following secondary constraints:
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fπN;HðextÞg ¼ −C0 ≈ 0; ð120aÞ

fπi; HðextÞg ¼ −Ci ≈ 0; ð120bÞ

with C0, Ci of Eqs. (26b) and (26c), respectively. The latter
finding now clearly demonstrates why C0, Ci are consid-
ered as constraints in GR.
The last step and perhaps the most essential one to derive

the number of degrees of freedom in a constrained theory is
to identify the first- and second-class constraints [5,114].
Imagine that we have a set of n constraints fϕag with
a ¼ 1; 2;…; n. A constraint Q is called first-class if it has
weakly vanishing Poisson brackets with each member of
the set fϕag, i.e., fQ;ϕag ≈ 0 for all a. It is called second-
class if at least one Poisson bracket is not weakly equal to
zero: fQ;ϕag ≉ 0 for not less than a single a. The Dirac
bracket can be defined from the latter, which allows for
imposing second-class constraints strongly equal to zero
[5]. The total number of physical degrees of freedom then
corresponds to (see, e.g., page 29 in [114])

Ndof ¼
1

2
ðNph − 2N1 − N2Þ; ð121Þ

where Nph is the number of phase space variables and N1

(N2) is the number of first-class (second-class) constraints.
Note that the number of first-class constraints has a weight
factor of 2 showing that these contribute differently to the
number of degrees of freedom than second-class con-
straints. In particular, GR involves 20 phase space variables
in total (ten metric components and ten conjugate
momenta). Equations (114) and (120) comprise a set of
eight first-class constraints, whereas there are no second-
class constraints. Then, Nph ¼ 20, N1 ¼ 8, and N2 ¼ 0,
which implies Ndof ¼ 2 corresponding to the correct
number of physical, propagating degrees of freedom, as
expected.
In gravity, the Hamiltonian and momentum constraints,

which are first class, play an essential role in the context of
diffeomorphisms. In general, diffeomorphisms are gener-
ated by vector fields ψ . A representation of the diffeo-
morphism algebra in the tangent bundle of the spacetime
manifold, where tensor fields of arbitrary rank are defined,
is given by the Lie derivative Lψ . In what follows, we will
compute Poisson brackets of the canonical variables qij; πij

with the Hamiltonian and momentum constraints according
to Eq. (113). The constraints will be integrated over with
the lapse function and the shift vector chosen as smearing
functions. The following important results can then be
derived within GR [150,151]:

�
qijðxÞ;

Z
Σt

d3yCiðyÞNiðyÞ
�

¼ qjkðxÞDiNkðxÞ þ qikðxÞDjNkðxÞ
¼ LNqijðxÞ; ð122aÞ

�
πijðxÞ;

Z
Σt

d3yCiðyÞNiðyÞ
�

¼ NkðxÞDkπ
ijðxÞ þ πijðxÞDkNkðxÞ

− πikðxÞDkNjðxÞ − πjkðxÞDkNiðxÞ
¼ LNπ

ijðxÞ: ð122bÞ

For the second of these Poisson brackets it is crucial to take
into account that πij transforms as a tensor density. These
findings mean that the momentum constraint is the gen-
erator of spatial diffeomorphisms in the spacelike hyper-
surfaces Σt, as these are connected to the shift vector N
[150]. Furthermore, we obtain

�
qijðxÞ;

Z
Σt

d3yC0ðyÞNðyÞ
�

¼ 2NðxÞKijðxÞ

¼ _qijðxÞ − LNqijðxÞ
¼ LmqijðxÞ; ð123Þ

where Eqs. (20) and (25) are understood to be used here.
This relation means that the Hamiltonian constraint gen-
erates spacetime diffeomorphisms connected to the four-
vector mμ [150]. Finally, we can confirm the validity of the
first set of Hamilton’s field equations:

_qijðxÞ ¼
�
qijðxÞ;

Z
Σt

d3yHð0ÞðyÞ
�
; ð124Þ

withHð0Þ given by Eq. (26a). The latter Hamilton equations
are interpreted as geometrical identities and should not be
modified as long as Riemannian geometry is taken as the
foundation of a modified-gravity theory. The second of
Hamilton’s field equations involves the canonical momen-
tum πij and conveys information on the dynamics.

B. Minimal gravitational SME: sμν term

By adding suitable modified GHY boundary terms to the
action (see Sec. IV C for their construction), we were able
to move all additional time derivatives acting on the
extrinsic curvature to the diffeomorphism-violating back-
ground fields. Now, a further support of the consistency
conditions in Eq. (107) is provided by the following
argument. As long as these requirements are satisfied,
the modifications Hð1;3;4Þ of the Hamilton densities pro-
vided by Eqs. (39), (60), and (66) neither involve time
derivatives of the lapse function nor of the shift vector.
Hence, the constraints provided by Eq. (114) remain
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primary ones in a gravity theory modified by the presence
of sij, snn, and u. Furthermore, the structure of the
modified Hamilton densities in terms of N and Ni remains
standard, whereupon Eq. (116) still holds with the corre-

sponding Cð1;3;4Þ
0 of Eqs. (46), (62b), and (68b) and Cð1;3;4Þ

k
of Eqs. (49), (62c), and (68c) inserted. Then the
Hamiltonian and momentum constraints remain secondary
constraints and the structure of these constraints is not
modified by diffeomorphism violation, as proposed right at
the beginning of the paper. To be able to make a statement
on the number of degrees of freedom based on Eq. (121),
we would need to check whether or not the modified
constraints remain first-class and what is the constraint
algebra. Such investigations will be pursued in a future
paper. Let us now compute the Poisson brackets previously
considered for EH theory in the diffeomorphism-violating
setting under consideration.

1. Hamilton equation in the purely spacelike sector

For the purely spacelike sector, the Poisson bracket of
Eq. (46) with the induced metric implies

�
qijðxÞ;

Z
Σt

d3yCð1Þ
0 NðyÞ

�

¼ N
2κffiffiffi
q

p ½2ðπij þ sikπjk þ sjkπik − sijπÞ

− ðπ − skkπ þ 2sklπklÞqij�

¼ 2NGð1Þ
ijab

�
2κffiffiffi
q

p πab
�

¼ 2NKij; ð125Þ

with the modified inverse Wheeler-deWitt metric of
Eq. (44). The variables on the right-hand side of the first
equality sign in the latter relation are understood to depend
on the coordinates x. From now on, such dependencies are
omitted for brevity. As the momentum constraint remains
unmodified at first order in the controlling coefficients,
Eq. (122a) can be taken over. Therefore, the first of
Hamilton’s field equations of Eq. (124) remains valid for
the purely spacelike sector—at least at first order in
diffeomorphism violation.

2. Hamilton equation in the mixed sector

We are already aware of the mixed sector involving mere
gauge degrees of freedom. Nevertheless, we will take a
brief look at the constraint structure that has to reduce to
that of EH theory when the analysis of Sec. IV B 3 is
correct. Wewill consider the Poisson bracket of the induced
metric with the smeared Hamiltonian constraint Cð2Þ

0 given
by Eq. (55b):

�
qijðxÞ;

Z
Σt

d3yCð2Þ
0 ðyÞNðyÞ

�
¼ 4Nκffiffiffi

q
p

�
πij −

π

2
qij

�

þ Nðπ̃qij − 2π̃ijÞ
¼ 2NKij: ð126Þ

For the momentum constraint we can directly reproduce

Eq. (122) with C0 replaced by C
ð2Þ
0 . Clearly, these outcomes

are expected when employing the redefined momentum
density Pij of Eq. (55d).

3. Hamilton equation in the purely timelike sector

Let us now evaluate the Poisson bracket of the smeared
Hamiltonian constraint Cð3Þ

0 of Eq. (62b) with the induced
metric according to Eq. (123):
�
qijðxÞ;

Z
Σt

d3yCð3Þ
0 ðyÞNðyÞ

�

¼ 2N
1− snn

�
2κffiffiffi
q

p
�
πij −

π

2
qij

�
þΞ
4
qij

�
¼ 2NKij; ð127Þ

which corresponds to the expected result when the extrinsic
curvature of Eq. (61) is taken into account. As the
momentum constraint remains unmodified when expressed
in terms of the canonical momentum density, Eq. (122)

remains valid when C0 is substituted by Cð3Þ
0 . Furthermore,

the first of Hamilton’s field equations given by Eq. (124)
still applies.

C. Minimal gravitational SME: u term

Repeating the procedure employed for the three sectors
of sμν for Eq. (68b) implies
�
qijðxÞ;

Z
Σt

d3yCð4Þ
0 ðyÞNðyÞ

�

¼ 2N
1 − u

�
2κffiffiffi
q

p
�
πij −

π

2
qij

�
þϒ

2
qij

�
¼ 2NKij; ð128Þ

as expected, when Eq. (67a) is employed. The momentum
constraint remains again unmodified, as reported in
Eq. (68c). Under these conditions, both Eqs. (122) and
(124) are not in conflict with the current setting.

D. Final remarks

Thus, we conclude that the first set of Hamilton’s field
equations (124) remains valid for the canonicalHamiltonians
in the presence of the diffeomorphism-violating contribu-
tions that we have been focusing on in this article. This
finding is reasonable, as we do not modify the geometrical
setting. The second set ofHamilton’s field equations is linked
to themodified Einstein equations [Eqs. (83) and (96)] and is
expected to involve modifications in comparison to GR. We
will delve into this problem in a future work.
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VII. CONCLUSIONS AND OUTLOOK

In the current work we employed the ADM formalism
[3,4] to investigate a modified theory of gravity charac-
terized by the observer Lorentz tensor sμν as well the
observer scalar u of the minimal gravitational SME [32].
We worked in the setting of explicit diffeomorphism
violation, i.e., the background fields sμν and u did not
arise dynamically, but they were put into the action by
hand. The main objective was to understand within the
ADM formalism what kind of restrictions Riemannian
geometry poses on sμν and u, in other words, how the
no-go result in the context of the gravitational SME [32]
becomes manifest in this formalism.
To do so, we decomposed the diffeomorphism-violating

background field sμν into three sectors. The first was
formed from the subset of six independent purely spacelike
coefficients sij. The second contained the vector-valued
object sin endowed with a single spacelike index only and
the third involved the single Lorentz scalar snn without
spacelike indices. We obtained the Hamiltonians associated
with each of the three sectors of sμν as well as for u and
were able to identify modified Hamiltonian and momentum
constraints. To derive the Hamiltonians, it turned out to be
crucial to include modified GHY boundary terms in the
action that allowed us to move time derivatives from the
extrinsic-curvature tensor to the diffeomorphism-violating
background field in an unambiguous manner.
One interesting outcome is that the mixed sector is

governed by mere gauge degrees of freedom, i.e., the
coefficients sin are unphysical, as they can be absorbed into
a redefinition of the shift vector. In other words, diffeo-
morphism invariance is restored in this sector, since the
would-be diffeomorphism-violating coefficients sin are
simply unobservable. This observation may even have
implications for phenomenology. If sin is comprised,
indeed, by gauge degrees of freedom, it is meaningless
to constrain these coefficients by experiment. Instead, they
should be disregarded in any phenomenological study of
explicit diffeomorphism violation in gravity. Note that this
finding can most probably not be taken over to spontaneous
diffeomorphism violation, as then sin would be dynamical
and it does not make sense to say that they are absorbed into
the nondynamical shift vector. Another remarkable prop-
erty is that the scalar background u in the context of explicit
diffeomorphism violation cannot be removed by a redefi-
nition of the gravitational field. Hence, the latter is physical,
in fact, and could be searched for in experiments.
Therefore, we conclude that explicit and spontaneous
diffeomorphism violation can be distinguished from each
other in experimental searches.
We also tried to connect the Hamiltonian and momentum

constraints to suitable functional derivatives of the ADM
actions as well as to projections of the modified Einstein
equations along directions orthogonal and parallel to the
spacelike hypersurfaces. For the spacelike, timelike, and

scalar sectors we found a match under a set of consistency
requirements given by Eq. (107) in the text: Lmsij ¼ 0,
Lmsnn ¼ 0, and Lmu ¼ 0. The latter are considered as the
central results of this work. These conditions are interpreted
as consequences of the no-go result [32] applied to the
pure-gravity sector.
However, Eq. (107) can also be interpreted as the very

base of a setting where the no-go result might be avoided as
long as the background fields satisfy these conditions.
In general, a violation of diffeomorphism invariance via
the nondynamical background fields u and sμν changes the
constraint structure of GR, as expected. The parts of the
Hamiltonian proportional to N and Ni lose their funda-
mental property of being constraints, whereupon problems
of technical nature arise. Requiring that the secondary
constraints be stationary is likely to imply further sets of
new constraints whose time evolution has to be studied
again. This procedure may quickly get out of control if new
constraints arise steadily. By taking into account Eq. (107),
modifications of GR are considered that are still close
enough to GR. However, only a derivation of the constraint
algebra can clarify whether or not additional constraints
arise. The latter is a worthwhile project that merits further
analysis. Furthermore, whether or not the conditions of
Eq. (107) can be disregarded without rendering the con-
straint analysis unfeasible, will also be subject to future
studies.
In Gaussian normal coordinates, in particular, the first

relation of Eq. (107) requires that the background field sij

does not exhibit an explicit dependence on the time
coordinate. An arbitrary dependence on the spatial coor-
dinates does not seem to be in conflict with Riemannian
geometry, though. In summary, the benefits of using the
ADM formalism in a setting of diffeomorphism violation in
gravity are apparent. One has additional control over
diffeomorphism violation and understands better whether
or not there are unphysical sets of coefficients. A future
analysis based on a covariant canonical formulation (see
[152] for a review) could be a worthwhile task to do.
The analysis performed in the current article may pave

new pathways of exciting research in the context of explicit
diffeomorphism violation and/or local Lorentz violation in
gravity. First, we intend to better understand the connection
between the consistency conditions and the no-go result. To
do so, it will be necessary to include matter fields into the
pure-gravity sector and to treat them within the ADM
formalism. Second, performing an analogous study for the
coefficients tμνϱσ [32] of the minimal gravitational SME
will be reasonable. Such an investigation could provide
further insights into the problem known as the “t puzzle”
[106,153]. Third, our expectation is that the ADM formal-
ism will also be valuable in the context of the nonminimal
gravitational SME [39]. An intriguing question is whether
nonminimal diffeomorphism violation in gravity implies
additional consistency requirements linked to the higher
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derivatives in the action. Last but not least, the obtained
results are highly promising to find applications in phe-
nomenological studies of explicit diffeomorphism and local
Lorentz violation in the context of cosmology or scenarios
of strong gravitational fields such as black holes.
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APPENDIX A: MATHEMATICAL APPENDIX

Here we intend to provide a compilation of the essential
geometrical formulas that our work rests on. The books and
papers [112,113,115,116] serve as primary references for
these results.

1. Extrinsic curvature

The covariant derivative in the spacetime manifold M is
denoted as ∇μ, whereas the covariant derivative on a space-
like hypersurface Σt is called Dμ. The four-acceleration aμ
associated with a foliation via spacelike hypersurfaces is a
measure for how nμ changes covariantly along itself
[115,116]. It holds that

aμ ≡ nν∇νnμ ¼
DμN

N
¼ Dμ lnN; ðA1Þ

i.e., it can be expressed via the covariant derivative Dμ

linked to the induced metric of Eq. (10) and the lapse
functionN. This acceleration is tangent to the hypersurface:

n · a ¼ 0: ðA2Þ
Note that aμ ¼ 0 in Gaussian normal coordinates. Next, we
define the extrinsic-curvature tensor as

Kμν ≡ qϱμqσν∇ϱnσ: ðA3Þ
Due to the property

nμKμν ¼ Kμνnν ¼ 0; ðA4Þ
the extrinsic curvature lives completely in Σt. The extrinsic
curvature is symmetric and can be expressed via the Lie
derivative of qμν with respect to mμ ≡ Nnν [108]:

Kμν ¼ qϱμqαν∇ðϱnσÞ ¼
1

2N
Lmqμν; ðA5Þ

where a pair of parentheses enclosing a set of indices
indicates symmetrization. The latter quantity is a measure
for the curvature of a hypersurface Σt due to its embedding
in M. It is in stark contrast to the intrinsic curvature of a
manifold that is given by the Riemann curvature tensor and
does not require an embedding into an ambient (higher-
dimensional) manifold. By considering the spacelike part
of Eq. (A3), we have

Kij ¼ Dinj ¼ ∂inj − Γλ
ijnλ: ðA6Þ

As the first term vanishes in the latter, we obtain Eq. (20),
which is a highly valuable result in the Hamiltonian
description of GR.
Both the acceleration of Eq. (A1) and the extrinsic

curvature of Eq. (20) play a pivotal role in projecting the
intrinsic curvature of M into the hypersurface Σt. Tensors
defined in the ambient manifold M will be denoted by a
label “(4).” For brevity, the analogous label “(3)” for
quantities defined in Σt will be dropped. We take the
commonly used viewpoint that tensors defined on a
spacelike hypersurface Σt can be extended into the space-
timeM via suitable pull-back and push-forward operations
[115,116]. By doing so, the extrinsic curvature of Eq. (20)
is extended into M via [115,116]

Kϱσ ≡∇σnϱ þ aϱnσ; ðA7Þ

where, for brevity, we omit the index (4). Whenever the
extrinsic curvature occurs with spatial indices, Eq. (A6) is
understood to be employed. Note that we take over the sign
convention of [108], but different sign conventions are also
common (see, e.g., [1,47,115,116]). In addition, Eq. (A4)
also holds for Eq. (A7), which follows from

0 ¼ ∇νðnμnμÞ ¼ 2nμ∇νnμ ¼ 2nμKμν: ðA8Þ

This property emphasizes again that the extrinsic curvature
lives in the spatial hypersurface Σt entirely. The trace K of
the extrinsic curvature is defined via the contraction of
Eq. (A7) with the spacetime metric:

K ≡ gϱσKϱσ ¼ ∇μnμ: ðA9Þ

Alternatively, Eq. (A6) can be contracted with qij.

2. Decomposition formula for curvature tensors

As a starting point, we quote the Gauss relation (some-
times also called the Gauss-Codazzi equation) that gives
the projection of the Riemann curvature tensor into Σt:

qμαqνβqϱγqσδð4ÞRμνϱσ ¼RαβγδþKαγKβδ−KβγKαδ: ðA10Þ
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Thus, a projection of the Riemann curvature tensor in M
into the spacelike hypersurface induces the curvature tensor
in this hypersurface plus correction terms that involve the
extrinsic curvature. This property is not a surprise, as the
hypersurface Σt is embedded into M.
The Gauss relation of Eq. (A10) can be contracted once

to provide a valuable result for the projected Ricci curvature
into the hypersurface:

qμαqνβð4ÞRμν þ qαμnνqϱβnσð4ÞRμ
νϱσ

¼ Rαβ þ KKαβ − KαμKμ
β; ðA11Þ

with the trace K of the extrinsic curvature stated in
Eq. (A9). In this relation, the Riemann curvature tensor
cannot be eliminated, but it must be kept. Another con-
traction results in the scalar Gauss relation that has the form

ð4ÞRþ 2ð4ÞRμνnμnν ¼ Rþ K2 − KμνKμν: ðA12Þ

A highly valuable equation links the spatial projection of
the Ricci tensor to the extrinsic curvature as follows:

qνβqσδð4ÞRνσ ¼
1

N
LmKβδ −

1

N
DβDδN

þ Rβδ þ KKβδ − 2Kμ
βKμδ: ðA13Þ

By using Eq. (A11) together with

qβδLmKβδ ¼ LmK þ 2NKμνKμν; ðA14Þ

we obtain

nνnσð4ÞRνσ ¼ −
1

N
LmK þ 1

N
DβDβN − KμνKμν: ðA15Þ

The Ricci scalar can be decomposed by applying
Eqs. (A12) and (A15):

ð4ÞR ¼ Rþ K2 − KijKij − 2ð4ÞRμνnμnν

¼ 2

N
LmK −

2

N
DiDiN þ Rþ K2 þ KijKij: ðA16Þ

Also, there are some helpful results involving the accel-
eration:

∇μaμ ¼ Diai þ aiai; ðA17aÞ

Dβaσ þ aβaσ ¼
1

N
DβDσN: ðA17bÞ

Now, by using

1

N
LmK ¼ nμ∇μK ¼ ∇μðnμKÞ − K2; ðA18aÞ

DiDiN ¼ DiðNaiÞ ¼ Nðaiai þDiaiÞ ¼ N∇μaμ; ðA18bÞ

it is clear that Eq. (A16) can be brought into the form
occurring in the ADM-decomposed EH action of Eq. (19):

ð4ÞR ¼ 2∇μðnμKÞ −
2

N
DiDiN þ R − K2 þ KijKij

¼ R − K2 þ KabKab þ 2∇μðnμK − aμÞ: ðA19Þ

Finally, it is possible to project the Riemann curvature
tensor partially into the hypersurface Σt [115,116]. The
result involves covariant derivatives of the extrinsic curva-
ture defined within the hypersurface:

qγϱnσqμαqνβð4ÞRϱ
σμν ¼ DαKγ

β −DβKγ
α: ðA20aÞ

The latter bears the name Codazzi-Mainardi relation.
Contracting it once implies

qμβnνð4ÞRμν ¼ DμKμ
β −DβK: ðA20bÞ

Note that all relations derived before are identities, as they
stand. In principle, tensors (or parts of tensors) live in the
spacelike hypersurface, if contractions of the corresponding
Lorentz indices with nμ give zero. These indices can, in
principle, be interpreted as spatial ones. In particular, if
nμΨμν… ¼ 0 of a spacetime tensor Ψμν…, we do not lose
any information by considering Ψiν…. For example, this
holds for the extrinsic curvature Kμν, the acceleration aμ,
and the covariant derivative Dμ on the hypersurface.

APPENDIX B: HAMILTONIAN FORMULATION

The current section will provide computational details
on how to perform Legendre transformations to obtain
Hamiltonians from the Lagrange densities of the
modified-gravity theory under consideration. In particular,
we derive the Hamiltonians given by Eqs. (39), (52), (60),
and (66).

1. Purely spacelike sector

We employ the Lie derivative stated in Eq. (36a). As the
latter result only involves quantities and derivatives defined
in the spatial hypersurface, it is clear that the Lie derivative
Lmsij does not depend on _qkl. Based on Eqs. (37) and (38),
the canonical momentum of Lð1Þ is given by

πð1Þrs ¼ N
ffiffiffi
q

p
2κ

∂fð1Þ
∂ _qrs ; ðB1aÞ

with
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∂fð1Þ
∂ _qrs ¼ −

∂
∂ _qrs

�
1

N
½Kijð_sij − LNsijÞ þ sijDiDjN�

þ sijð2Ki
lKlj − RijÞ

�

¼ −
1

N

∂Kij

∂ _qrs ð_s
ij − LNsijÞ − 2sij

Ki
lKlj

∂ _qrs : ðB1bÞ

At this point we will benefit from Eq. (21) that is still valid
in the presence of explicit diffeomorphism violation as long
as Riemannian geometry is imposed. In a more general
Finsler setting, this relation would probably be subject to
modifications. In addition, we take advantage of

Kab ∂Kab

∂ _qij ¼ Kab δ
i
aδ

j
b

2N
¼ 1

2N
Kij; ðB2aÞ

∂K
∂ _qij ¼

∂Ka
a

∂ _qij ¼ qaiδja
2N

¼ 1

2N
qij: ðB2bÞ

Thus,

∂fð1Þ
∂ _qrs ¼ −

δriδ
s
j

2N2
Lmsij − 2sij

�
δriqls

2N
Klj þ Ki

l δ
r
lδ

s
j

2N

�

¼ −
1

N

�
1

2N
Lmsrs þ srjKs

j þ sisKr
i

�
: ðB3Þ

To obtain the Hamilton density Hð1Þ, we perform a
Legendre transformation. Note that the presence of the
integral measure d3x

ffiffiffi
q

p
allows us to carry out partial

integrations of the spatial covariant derivative Di. By doing
so, we arrive at

Hð1Þ ¼ πð1Þij _qij − Lð1Þ

¼ −
ffiffiffi
q

p
2κ

�
1

2N
Lmsij þ silKj

l þ sjlKi
l

�
ð2NKij þDiNj þDjNiÞ

þ
ffiffiffi
q

p
2κ

½KijLmsij þ sijðDiDjN − NRij þ 2NKl
iKljÞ�

¼
ffiffiffi
q

p
2κ

�
−
�
1

2N
Lmsij þ silKj

l þ sjlKi
l

�
ðDiNj þDjNiÞ þ sijðDiDjN − NRij − 2NKl

iKljÞ
�

¼
ffiffiffi
q

p
2κ

�
−
�
1

N
Lmsij þ 2ðsilKj

l þ sjlKi
lÞ
�
DiNj þ sijðDiDjN − NRij − 2NKl

iKljÞ
�

¼p:i:
ffiffiffi
q

p
2κ

�
Di

�
1

N
Lmsij þ 2ðsilKj

l þ sjlKi
lÞ
�
Nj þ ½DiDjsij − sijðRij þ 2Kl

iKljÞ�N
�
; ðB4Þ

where “p.i.” stands for partial integration. The latter result implies Eq. (39).

2. Mixed sector

We derive the canonical momentum density from Lð2Þ stated in Eq. (51):

πð2Þrs ¼ ∂Lð2Þ

∂ _qrs
¼

ffiffiffi
q

p
κ

N

�
qirδjs

2N
Disjn −

qrs

2N
Disin þ ai

�
qirδjs

2N
sjn −

qrs

2N
sin

��

¼
ffiffiffi
q

p
2κ

½ðar þDrÞssn − qrsðai þDiÞsin�

¼sym
ffiffiffi
q

p
4κ

½ðar þDrÞssn þ ðas þDsÞsrn − 2qrsðai þDiÞsin�; ðB5Þ

where the latter has been symmetrized in the last step. A Legendre transformation provides the corresponding Hamilton
density:
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Hð2Þ ¼ πð2Þrs _qrs − Lð2Þ

¼
ffiffiffi
q

p
4κ

½ðar þDrÞssn þ ðas þDsÞsrn − 2qrsðai þDiÞsin�ð2NKrs þDrNs þDsNrÞ

−
ffiffiffi
q

p
κ

N½Ki
jðai þDiÞsjn − Kðai þDiÞsin�

¼
ffiffiffi
q

p
2κ

½ðar þDrÞssn þ ðas þDsÞsrn − 2qrsðai þDiÞsin�DrNs

¼p:i:
ffiffiffi
q

p
2κ

½2ðDsai þDsDiÞsin − ðDrar þDrDrÞssn − ðDras þDrDsÞsrn�Ns: ðB6Þ

This finding leads to the result quoted in Eq. (52).

3. Purely timelike sector

We compute the canonical momentum of Lð3Þ by using Eqs. (58) and (59a):

πð3Þrs ¼ N
ffiffiffi
q

p
2κ

∂fð3Þ
∂ _qrs ; ðB7aÞ

where

∂fð3Þ
∂ _qrs ¼ ∂K

∂ _qrs n
μ∇μsnn þ snn

∂
∂ _qrs ðK

2 − KijKijÞ

¼ 1

N

�
qrs

2N
Lmsnn þ snnðqrsK − KrsÞ

�
: ðB7bÞ

A suitable Legendre transformation results in

Hð3Þ ¼ πð3Þij _qij −Lð3Þ

¼
ffiffiffi
q

p
2κ

�
1

2N
qijLmsnn þ snnðqijK −KijÞ

�
ð2NKij þDiNj þDjNiÞ −

ffiffiffi
q

p
2κ

½KLmsnn þ snnðDiDiN −NKijKij þNK2Þ�

¼
ffiffiffi
q

p
2κ

��
1

N
Lmsnn þ 2snnK

�
DiNi þ 2snnðNK2 −NKijKij −KijDiNjÞ−snnðDiDiN −NKijKij þNK2Þ

�

¼p:i:
ffiffiffi
q

p
2κ

�
−Di

�
1

N
Lmsnn þ 2snnK

�
Niþ2DiðsnnKijÞNj −N½DiDisnn þ snnðKijKij −K2Þ�

�
: ðB8Þ

The Hamiltonian of Eq. (60) is a direct implication of the latter result.

4. Scalar sector

Finally, the canonical momentum density associated with the Lagrange density of Eq. (65) reads

πð4Þij ¼ ∂Lð4Þ

∂ _qij ¼
ffiffiffi
q

p
2κ

�
qij

N
Lmuþ ðqijK − KijÞu

�
; ðB9Þ

whereupon we can compute the Hamilton density:
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Hð4Þ ¼ πð4Þkl _qkl − LðuÞ

¼
ffiffiffi
q

p
2κ

�
1

N
qklLmuþ ðqklK − KklÞu

�
ð2NKkl þDkNl þDlNkÞ −

ffiffiffi
q

p
2κ

½2ðKLmuþ uDiDiNÞ − NðR − K2 þ KijKijÞu�

¼
ffiffiffi
q

p
2κ

�
ðRþ K2 − KijKijÞuN − 2uDiDiN þ 2

�
1

N
Lmuþ uK

�
DlNl − 2KkluDkNl

�
: ðB10Þ

Carrying out suitable partial integrations implies Eq. (66).

APPENDIX C: MODIFIED ADM
DECOMPOSITION

To understand the mixed sector based on Eq. (30c) better,
we perform an ADM decomposition with an effective shift
vector

Ñi ≡ Ni − Nsin; ðC1Þ

i.e., the diffeomorphism-violating degrees of freedom of
this sector are put into the shift vector. In analogy to
Eq. (20), the corresponding effective extrinsic-curvature
tensor is now defined as

K̃ij ≡ 1

2N
ð _qij −DiÑj −DjÑiÞ: ðC2Þ

Besides, we define a Lagrange density that has a form
analogous to that of the ADM-decomposed EH Lagrange
density (19):

L̃ð0Þ ≡ N
ffiffiffi
q

p
2κ

ðR − K̃2 þ K̃ijK̃ijÞ; ðC3Þ

where the conventional shift vector is replaced by the
effective one in Eq. (C1). Boundary terms are disregarded.
We then evaluate

K̃ijK̃ij ¼ 1

4N2
f _qij _qij − 2_qij½DiðNj − NsjnÞ þDjðNi − NsinÞ�

þ ½DiðNj − NsjnÞ þDjðNi − NsinÞ�½DiðNj − NsjnÞ þDjðNi − NsinÞ�g

≃
1

4N2
f _qij _qij − 2_qij½DiðNj − NsjnÞ þDjðNi − NsinÞ� − 2ðDiNj þDjNiÞ½DiðNsjnÞ þDjðNsinÞ�; ðC4Þ

where we dropped terms beyond linear order in the
controlling coefficients. Thereupon,

K̃ijK̃ij ¼ KijKij þ 1

2N2
ð _qij −DiNj −DjNiÞ

× ½DiðNsjnÞ þDjðNsinÞ�

¼ KijKij þ 1

N
Kij½DiðNsjnÞ þDjðNsinÞ�

¼ KijKij þ 2

N
KijDiðNsjnÞ: ðC5Þ

In an analogous manner we get

K̃2 ¼ K2 þ 2

N
KDiðNsinÞ: ðC6Þ

Hence, it is possible to write

NðK̃2 − K̃ijK̃ijÞ ≃ NðK2 − KijKijÞ
þ 2½KDiðNsinÞ − KijDiðNsjnÞ�

¼p:i: NðK2 − KijKijÞ
− 2NsinðDiK −DjKj

iÞ�; ðC7Þ

after suitable partial integrations where the surface
terms are discarded again. Therefore, at first order in
diffeomorphism violation, the following correspondence
holds:

L̃ð0Þ ¼ Lð0Þ − Lð2Þ; ðC8Þ

with Lð0Þ of Eq. (19) and the diffeomorphism-violating
piece Lð2Þ of Eq. (30c). Hence, we have shown that at first
order in diffeomorphism violation, the coefficients of the
mixed sector can be absorbed into a redefined shift
vector. This demonstration is another argument for sin

being gauge degrees of freedom (see the discussion in
Sec. IV B 3).

HAMILTONIAN FORMULATION OF AN EFFECTIVE MODIFIED … PHYS. REV. D 104, 124042 (2021)

124042-31



APPENDIX D: BOUNDARY TERMS
IN THE ACTION

In this sectionwe present detailed computations on how to
obtain the (modified) GHY boundary terms that play a
crucial role when moving time derivatives from the extrinsic
curvature to the background fields in the Lagrange densities
of Eqs. (30b), (30d), and (30e). The corresponding results are
presented and interpreted in Sec. IV C.

1. General relativity: Gibbons-Hawking-York
boundary term

We would like to compute the variation of the second
term on the right-hand side of Eq. (73a). In local-frame
coordinates we have that gμν ¼ ημν, ∂ϱgμν ¼ 0, and
Γμ

νϱ ¼ 0, but ∂ϱ∂σgμν ≠ 0 and ∂σΓμ
νϱ ≠ 0. Therefore, in

these coordinates we can express the variation of the second
term as

δ

Z
M

d4x
∂ð ffiffiffiffiffiffi−ηp

wλÞ
∂xλ

¼
Z
M

d4x
∂
∂xλ ½

ffiffiffiffiffiffi
−η

p ðηαβδΓλ
αβ − ηλαδΓν

ανÞ�: ðD1Þ

Note that the Minkowski metric is a nondynamical object.
The contributions that transform Γμ

νϱ nonlinearly under
general coordinate transformations cancel when the varia-
tion of the Christoffel symbols is considered, whereupon
δΓμ

νϱ transforms as a tensor. Then the above integrand is a
Lorentz scalar in a local frame, which means that it is a
Lorentz scalar in an arbitrary frame. Hence, we can
generalize this expression to arbitrary coordinates and
obtain

δ

Z
M

d4x
∂ð ffiffiffiffiffiffi−gp

wλÞ
∂xλ ¼

Z
M

d4x
ffiffiffiffiffiffi
−g

p ∇λVλ; ðD2aÞ

Vλ ¼ gαβδΓλ
αβ − gλαδΓν

αν: ðD2bÞ

Inserting the variation of the Christoffel symbols expressed
in terms of covariant derivatives leads to

Vλ ¼ gαβgλϱð∇αδgϱβ −∇ϱδgαβÞ: ðD3Þ

To apply Gauss’s theorem to the right-hand side of
Eq. (D2a), the integrand must be contracted with the
normal vector nμ associated with the boundary. Therefore,

Z
M

d4x
ffiffiffiffiffiffi
−g

p ∇λVλ ¼
I
∂M

d3y
ffiffiffi
q

p
εnλVλ; ðD4Þ

where ε ¼ −1 for timelike nμ (spacelike boundary) and
ε ¼ 1 for spacelike nμ (timelike boundary). Coordinates
denoted as y are used on the boundary. We now decompose
the four-metric on the boundary into the induced metric and

a combination of normal vectors according to Eq. (10).
Then,

nλVλ ¼ gαβnϱð∇αδgϱβ −∇ϱδgαβÞ
¼ ðqαβnϱ ∓ nαnβnϱÞð∇αδgϱβ −∇ϱδgαβÞ
¼ qαβnϱð∇αδgϱβ −∇ϱδgαβÞ
¼ −qαβnϱ∇ϱδgαβ: ðD5Þ

The contribution involving three normal vectors is elimi-
nated, as it is contracted with an antisymmetric term. In the
last step we took into account that the induced metric is
fixed on the boundary as is gμν: δqμνj∂M ¼ 0. Therefore,
directional derivatives of the variation within the boundary
can safely be set to zero, which eliminates the first term.
However, taking assumptions on the derivative of the
variation along directions perpendicular to the boundary
is beyond Hamilton’s principle applied to field theory.
Thus, the remaining term provides a nonvanishing con-
tribution on the boundary that reads

−ε
I
∂M

d3y
ffiffiffi
q

p
qαβnϱ∇ϱδgαβ: ðD6Þ

In fact, this term is canceled by the Gibbons-Hawking-York
(GHY) boundary term added to the action. We employ the
extrinsic curvature defined in Eq. (20) to obtain

δK ¼ −qαβδΓλ
αβnλ

¼ −qαβ
1

2
gλϱð∇αδgϱβ þ∇βδgϱα −∇ϱδgαβÞnλ

¼ −qαβ
1

2
nϱð∇αδgϱβ þ∇βδgϱα −∇ϱδgαβÞ

¼ 1

2
qαβnϱ∇ϱδgαβ; ðD7Þ

where we again used that derivatives of variations along the
boundary vanish. So we identify nλVλ ¼ −δK=2 based on
Eq. (D5). Therefore, to cancel Eq. (D6), we must add the
GHY boundary term of Eq. (74) to the EH action.

2. Gravitational SME: Modified boundary terms

Now we would like to evaluate the variation of the
second term on the right-hand side of Eq. (76a). As before,
we employ local coordinates:

δ

Z
M

d4x
∂ð ffiffiffiffiffiffi−ηp

wðsÞλÞ
∂xλ

¼
Z
M

d4x
∂
∂xλ ½

ffiffiffiffiffiffi
−η

p ðsαβδΓλ
αβ − sλαδΓν

ανÞ�; ðD8Þ

which is a scalar with respect to general coordinate trans-
formations. Thus, in general coordinates it can be written as
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δ

Z
M

d4x
∂ð ffiffiffiffiffiffi−gp

wðsÞλÞ
∂xλ ¼

Z
M

d4x
ffiffiffiffiffiffi
−g

p ∇λQλ; ðD9aÞ

Qλ ¼ sαβδΓλ
αβ − sλαδΓν

αν: ðD9bÞ

Inserting the variations of the Christoffel symbols results in

Qλ ¼ sαβgλϱ∇αδgϱβ

−
1

2
ðsαβgλϱ∇ϱδgαβ þ sαλgνγ∇αδgγνÞ; ðD10Þ

and a subsequent contraction with nμ implies

nλQλ ¼ sαβnϱ∇αδgϱβ

−
1

2
ðsαβnϱ∇ϱδgαβ þ nλsαλgνγ∇αδgγνÞ: ðD11Þ

We can now benefit again from the decomposition of sμν

stated in Eq. (27). For each of the three terms this
decomposition gives rise to

sαβnϱ∇αδgϱβ ¼ ½qαμqβνsμν − ðqανnβ þ qβνnαÞsνn
þ nαnβsnn�nϱ∇αδgϱβ

¼ ðnαnβsnn − qβνnαsνnÞnϱ∇αδgϱβ; ðD12aÞ

sαβnϱ∇ϱδgαβ ¼ ½qαμqβνsμν − 2qανnβsνn

þ nαnβsnn�nϱ∇ϱδgαβ; ðD12bÞ

nλsαλgνγ∇αδgγν ¼ nλ½qαμqλνsμν − ðqανnλ þ qλνnαÞsνn
þ nαnλsnn�gνγ∇αδgγν

¼ −nαðqνγ − nνnγÞsnn∇αδgγν

¼ ðnνnγ − qνγÞnαsnn∇αδgγν: ðD12cÞ

Computing the linear combination of these terms that forms
nλQλ, many contributions cancel each other. In particular,
cancelations occur for all terms involving the mixed
coefficients sνn and for the purely timelike ones snn

multiplied by nαnβ∇ϱδgαβ. What remains is

nλQλ ¼ 1

2
ðqνγsnnnα∇αδgγν − qαμqβνsμνnϱ∇ϱδgαβÞ: ðD13Þ

So there is a nonvanishing contribution on the boundary
given by

Z
M

d4x
ffiffiffiffiffiffi
−g

p ∇λQλ ¼
I
∂M

d3y
ffiffiffi
q

p
εnλQλ: ðD14Þ

As in the case of GR, we try to reproduce this contribution
via variations of suitable coordinate scalars on the boun-
dary that are formed from the controlling coefficients and
the extrinsic-curvature tensor. There are not too many

possibilities, but we can consider sijKij and the trace K.
The variation of the first contraction gives

δðsijKijÞ ¼ sijδKij ¼ sijqαiqβjδð∇ðαnβÞÞ
¼ sijqαiqβjð−δΓλ

αβnλÞ

¼ −
1

2
sijqαiqβjðqλδ − nλnδÞ

× ð∇αδgβδ þ∇βδgαδ −∇δδgαβÞnλ
¼ 1

2
qαiqβjsijnδ∇δδgαβ: ðD15Þ

Therefore, by employing the previous result of Eq. (D7),
we deduce that

nλQλ ¼ snnδK − δðsμνKμνÞ; ðD16Þ

which implies the boundary terms stated in Eq. (77). Note
that the boundary contribution associated with the u term
simply follows from scaling the GHY boundary contribu-
tion by the factor of (1 − u).

APPENDIX E: DERIVATION OF MODIFIED
EINSTEIN EQUATIONS

For clarification, we will provide a brief derivation of the
modified field equations stated in Eqs. (83) and (96). All
quantities are defined in the spacetime manifoldM and, for
brevity, the superscript “(4)” is omitted throughout this
section. In what follows, we will benefit from the variation
of the metric determinant:

δ
ffiffiffiffiffiffi
−g

p ¼ −
1

2

ffiffiffiffiffiffi
−g

p
gαβδgαβ: ðE1Þ

Furthermore, we need the variation of the Ricci tensor
given by the Palatini identity:

δRαβ ¼ ∇λδΓλ
αβ −∇βδΓλ

αλ; ðE2aÞ

δΓλ
μν ¼

1

2
gλρð∇μδgρν þ∇νδgρμ −∇ρδgμνÞ: ðE2bÞ

Last but not least, the contracted Palatini identity

gαβδRαβ ¼ ð∇α∇β − gαβ∇2Þδgαβ; ðE3Þ

as well as the variations involving the inverse metric,

δgαβ ¼ −gαμδgμνgνβ; ðE4aÞ

gαβδgαβ ¼ −gαβδgαβ; ðE4bÞ

will also turn out to be valuable. Now, a variation of the EH
action implies

HAMILTONIAN FORMULATION OF AN EFFECTIVE MODIFIED … PHYS. REV. D 104, 124042 (2021)

124042-33



δSð0Þ ¼ 1

2κ

Z
M
d4x

��
1

2

ffiffiffiffiffiffi
−g

p
gαβδgαβ

�
R

þ ffiffiffiffiffiffi
−g

p ð∇α∇β−gαβ∇2Þδgαβ−
ffiffiffiffiffiffi
−g

p
Rαβδgαβ

�
: ðE5Þ

The second term is a total derivative. However, its treatment
is subtle, as it involves second-order derivatives of the
metric variation. In accordance with Hamilton’s principle,
this contribution can only be discarded when taking into
account a boundary term as described in Sec. IV C. Then,

δSð0Þ ¼
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

ð−GαβÞδgαβ; ðE6aÞ

Gαβ ¼ Rαβ −
1

2
gαβR; ðE6bÞ

with the Einstein tensor Gμν. The latter finding implies the
Einstein equations without matter

Gαβ ¼ 0: ðE7Þ

Varying the diffeomorphism-violating contribution of the
action given by Eqs. (16b) and (95) leads to

δSðuÞ ¼
Z
M
d4x

ffiffiffiffiffiffi−gp
2κ

½−uð∇α∇β−gαβ∇2ÞδgαβþuGαβδgαβ�;

ðE8Þ

where fluctuations δu of the nondynamical background do
not occur. A double partial integration with suitable
boundary terms taken into account implies

δSðuÞ ¼
Z
M
d4x

ffiffiffiffiffiffi−gp
2κ

ðuGαβ−∇α∇βuþgαβ∇2uÞδgαβ: ðE9Þ

Hence, we arrive at Eq. (96b). Finally, the variation of the
action given by Eqs. (16c) and (82) is considered:

δSðsÞ ¼ 1

2κ

Z
M

d4x½ðδ ffiffiffiffiffiffi
−g

p ÞsμνRμν þ
ffiffiffiffiffiffi
−g

p
sμνðδRμνÞ

þ ffiffiffiffiffiffi
−g

p ðδsμνÞRμν�: ðE10Þ

The last term vanishes in the setting of explicit diffeo-
morphism violation, because the background field does not
exhibit fluctuations in this case: δsμν ¼ 0. We then employ
Eq. (E4b) to obtain

δSðsÞ ¼
X3
i¼1

δSðsÞi ; ðE11aÞ

δSðsÞ1 ¼
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

�
1

2
gαβsμνRμν

�
δgαβ; ðE11bÞ

δSðsÞ2 ¼
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

sμνð∇λδΓλ
μνÞ; ðE11cÞ

δSðsÞ3 ¼ −
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

sμνð∇νδΓλ
μλÞ: ðE11dÞ

To treat Eq. (E11c), we perform integrations by parts, use
Eq. (E2b), and rename some indices to arrive at

δSðsÞ2 ¼
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

1

2
ð∇μ∇αsμβ þ∇ν∇αsβν −∇2sαβÞδgαβ:

ðE12Þ

We now apply the same procedure to δSðsÞ3 :

δSðsÞ3 ¼
Z
M

d4x
ffiffiffiffiffiffi−gp
2κ

1

2
ð−∇μ∇νsμνgαβÞδgαβ: ðE13Þ

Summing all the contributions and performing a symmet-
rization leads to Eq. (83b).

APPENDIX F: PROJECTIONS OF MODIFIED
EINSTEIN EQUATIONS

In the current section we are going to present detailed
computations showing how to arrive at the results presented
in Sec. V B. For brevity, we will introduce the following
observer two-tensors:

ðTRs
1 Þαβ ¼ gαβsμνð4ÞRμν; ðF1aÞ

ðTRs
2 Þαβ ¼ sαμð4ÞRβ

μ; ðF1bÞ

ðTRs
3 Þαβ ¼ sβμð4ÞRα

μ; ðF1cÞ

ðTRs
4 Þαβ ¼ ∇μ∇αsμβ; ðTRs

5 Þαβ ¼ ∇μ∇βsμα; ðF1dÞ

ðTRs
6 Þαβ ¼ ∇μ∇μsαβ; ðTRs

7 Þαβ ¼ gαβ∇μ∇νsμν: ðF1eÞ

Now, the tensor ðTRsÞαβ given in Eq. (83b) is expressed in
terms of these quantities as follows:

ðTRsÞαβ ¼ 1

2
½ðTRs

4 Þαβ þ ðTRs
5 Þαβ − ðTRs

6 Þαβ − ðTRs
7 Þαβ�

þ 1

2
ðTRs

1 Þαβ: ðF2Þ

For completeness, note that the analogous tensor occurring
in the modified Einstein equations in [32] reads
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ðT̃RsÞαβ ¼ 1

2
ðTRs

1 Þαβ − ðTRs
2 Þαβ − ðTRs

3 Þαβ

þ 1

2
½ðTRs

4 Þαβ þ ðTRs
5 Þαβ

− ðTRs
6 Þαβ − ðTRs

7 Þαβ�: ðF3Þ

Obviously, there are two additional terms involving the
tensors ðTRs

2;3Þαβ showing that the theory based on the lower-
index background field sμν in the setting of explicit
diffeomorphism violation is different from the theory
described by (16c) that this paper rests on. Hence, we will
be working with Eq. (F2) instead of Eq. (F3).

1. Purely spacelike sector

For this sector, it is paramount to employ the key
equation:

qμαqνβ∇μ∇νsαβ ¼ DiDjsij − Kl
iKjlsij þ KKijsij

−
1

N
KijLmsij; ðF4aÞ

Lmsij ¼ mα∂αsij þ sil∂lNj þ sjl∂lNi; ðF4bÞ

which is to be derived as follows. We start by expressing
the covariant derivatives in Σt in terms of projected
covariant derivatives of the four-dimensional spacetime
manifold:

DαðDβsαβÞ ¼ qλαqμβqανqβσ∇λðDμsνσÞ
¼ qλνqμσ∇λðqαμqνβqσγ∇αsβγÞ: ðF5Þ

Now we apply the outer covariant derivative providing four
terms:

∇λðqαμqνβqσγ∇αsβγÞ ¼ ð∇λqαμÞqνβqσγ∇αsβγ

þ qαμð∇λqνβÞqσγ∇αsβγ

þ qαμqνβð∇λqσγÞ∇αsβγ

þ qαμqνβqσγ∇λ∇αsβγ: ðF6Þ

Each of these four contributions must be evaluated:

r1 ¼ qλνqμσ½ð∇λqαμÞqνβqσγ∇αsβγ�
¼ qλβqμγ∇λðnαnμÞ∇αsβγ

¼ qλβqμγnαð∇λnμÞ∇αsβγ

¼ qλβqμγnαKλμ∇αsβγ ¼ Kβγnα∇αsβγ; ðF7aÞ

r2 ¼ qλνqμσ½qαμð∇λqνβÞqσγ∇αsβγ�
¼ qλνqαγ∇λðnνnβÞ∇αsβγ

¼ qλνqαγð∇λnνÞnβ∇αsβγ

¼ qλνqαγKλ
νnβ∇αsβγ ¼ Kν

νqαγnβ∇αsβγ

¼ Kqαγnβ∇αsβγ; ðF7bÞ

r3 ¼ qλνqμσ½qαμqνβð∇λqσγÞ∇αsβγ�
¼ qλβqασ∇λðnσnγÞ∇αsβγ

¼ qλβqααð∇λnσÞnγ∇αsβγ

¼ qλβqασKλ
σnγ∇αsβγ ¼ Kβ

αnγ∇αsβγ; ðF7cÞ

r4 ¼ qλνqμσ½qαμqνβqσγ∇λ∇αsβγ�
¼ qλβqαγ∇λ∇αsβγ: ðF7dÞ

Now, considering a purely spacelike sμν, we employ

0 ¼ ∇αðKqαγnβsβγÞ
¼ Kqαγð∇αnβÞsβγ þ Kqαγnβ∇αsβγ; ðF8aÞ

0 ¼ ∇αðKβ
αnγsβγÞ

¼ Kβ
αð∇αnγÞsβγ þ Kβ

αnγ∇αsβγ; ðF8bÞ

to reformulate the second and third term:

r2 ¼ −Kqαγð∇αnβÞsβγ ¼ −KqαγKαβsβγ

¼ −KKγβsβγ; ðF9aÞ

r3 ¼ −Kβ
αð∇αnγÞsβγ ¼ −Kβ

αKαγsβγ: ðF9bÞ

Finally, by organizing all contributions, we have

qλβqαγ∇λ∇αsβγ ¼ DαDβsαβ þ Kα
βKαγsβγ

þ KKβγsβγ − Kβγnα∇αsβγ: ðF10Þ

Introducing the Lie derivative on sij and considering only
spacelike indices on the right-hand side of the latter relation
implies Eq. (F4).

a. Orthogonal projection

First of all, based on Eqs. (35) and (A13), we obtain the
following contraction of the background tensor with the
projected Ricci tensor into Σt:

sλσqμλqνσð4ÞRμν ¼ −
1

N
KijLmsij þ∇μðnμKijsijÞ

− sij
1

N
DiDjN þ sijRij

− 2sijKilKl
j: ðF11Þ
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We also employ

1

N
KμνLmsμν ¼ Kμνnα∇αsμν − 2KμνKν

λsμλ: ðF12Þ

Then,

nαnβðTRs
1 Þαβ ¼ nαnβgαβqμλqνσsλσð4ÞRμν

¼ −
�
∇μðnμKαβsαβÞ − Kμνnα∇αsμν − sij

1

N
DiDjN þ sijRij

�
; ðF13aÞ

nαnβðTRs
4 Þαβ ¼ nαnβ∇ν∇αðqνλqβσsλσÞ

¼ −aλaσsλσ þ KναsνσKα
σ − sνσ∇νaσ − aσ∇λsλσ − nαKλσ∇αsλσ

¼ nαnβðTRs
5 Þαβ; ðF13bÞ

nαnβðTRs
6 Þαβ ¼ nαnβ∇2ðqαμqβνsμνÞ ¼ 2ðKμ

λKμσsλσ − aλaσsλσÞ; ðF13cÞ

nαnβðTRs
7 Þαβ ¼ nαnβgαβ∇μ∇νðqμκqνλsκλÞ

¼ −½∇μðnμKαβsαβÞ þ ð∇μaβÞsμβ þ aβ∇μsμβ − KKαβsαβ

þ aα∇βsαβ − aαaβsαβ − Kν
αKβνsαβ þ nνKαβ∇νsαβ þ qμαqνβ∇μ∇νsαβ�: ðF13dÞ

Summing all these contributions implies

2nαnβðTRsÞαβ ¼ nαnβ½ðTRs
1 Þαβ þ 2ðTRs

4 Þαβ − ðTRs
6 Þαβ − ðTRs

7 Þαβ�

¼ −aαaβsαβ − Kμ
λKμσsλσ − KKαβsαβ − sλσ∇λaσ þ sij

1

N
DiDjN − sijRij þ qμαqνβ∇μ∇νsαβ: ðF14Þ

We now use that

sλσDλaσ ¼ sλσqαλqβσ∇αaβ ¼ sαβ∇αaβ; ðF15Þ

in combination with Eq. (A17b) to obtain

sαβ∇αaβ ¼ sλσ
1

N
DλDσN − sλσaλaσ: ðF16Þ

Finally, by employing Eq. (F4), we deduce

2nαnβðTRsÞαβ ¼ 1

2

�
−2Kj

iKjksik − sijRij þDiDjsij −
1

N
KijLmsij

�
: ðF17Þ

The latter corresponds to Eq. (88).

b. Mixed projection

Here it is reasonable to employ the following form of the Lie derivative of the background:

1

N
Lmsλσ ¼ nα∇αsλσ − ðaμnλ þ Kλ

μÞsμσ − ðaμnσ þ Kσ
μÞsλμ: ðF18Þ

For any tensor Tλσ with spacelike lower indices we have

Tλσnα∇αsλσ ¼ TλσðKλ
μsμσ þ Kσ

μsλμÞ þ Tλσ
1

N
Lmsλσ: ðF19Þ
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In the forthcoming analysis we only consider those terms that are nonzero when contracted with qkαnβ. We also take sλσ as
purely spacelike, which tells us that nλsλσ ¼ 0. Then,

qkαnβðTRs
4 Þαβ ¼ qkαnβ∇ν∇αðqνλqβσsλσÞ

¼ qkαnβ∇ν½ð∇αqνλÞqβσsλσ þ qνλð∇αqβσÞsλσ þ qνλqβσð∇αsλσÞ�
¼ qkαnβ½ð∇αqνλÞð∇νqβσÞsλσ þ ð∇νqνλÞð∇αqβσÞsλσ
þ qνλð∇ν∇αqβσÞsλσ þ qνλð∇αqβσÞð∇νsλσÞþqνλð∇νqβσÞð∇αsλσÞ�

¼ qkαnβ½Kα
λnβaσsλσ þ aλnβKα

σsλσ þ qνλnβð∇νKα
σ − Kα

νaσÞsλσ þ qνλnβKα
σ∇νsλσ þ qνλnβKνσ∇αsλσ�

¼ −Kk
λaσsλσ −DλðKk

σsλσÞ − KλσDksλσ: ðF20Þ

In an analogous manner, we obtain

qkαnβðTRs
5 Þαβ ¼ qkβnα∇ν∇αðqνλqβσsλσÞ

¼ Kaλsλk − aαKα
λsλk þ nν∇νaλsλk þ nνqkβaλ∇νsλβ þ Kk

νaσsνσ

þ nαqkσðKnλ þ aλÞ∇αsλσ þ nαKk
λnσ∇αsλσ þ nαqνλqkσ∇ν∇αsλσ; ðF21Þ

as well as

qkαnβðTRs
6 Þαβ ¼ qkαnβ∇2ðqαλqβσsλσÞ

¼ −qkλ½∇μKμ
σ −∇μðnμaσÞ�sλσ − 2qkλðKμ

σ − nμaσÞ∇μsλσ; ðF22Þ

whereby

qkαnβðTRs
1 Þαβ ¼ qkαnβðTRs

7 Þαβ ¼ 0: ðF23Þ

Performing the sum of Eqs. (F20)–(F23), leads to Eq. (89). To simplify this result, it is important to find

nαqνλqkσ∇ν∇αsλσ ¼ ∇νðnαqνλqkσ∇αsλσÞ −∇νðnαqνλqkσÞð∇αsλσÞ: ðF24Þ

We need to consider the two pieces:

nαqνλqkσ∇αsλσ ¼ qνλqkσ

�
1

N
Lmsλσ þ Kλ

μsμσ þ Kσ
μsλμ

�
; ðF25aÞ

∇νðnαqνλqkσÞð∇αsλσÞ ¼ ½Kλαqkσ þ Knαnλqkσ þ nαaλqkσþnαKk
λnσ þ nαnkKλσ�∇αsλσ: ðF25bÞ

Finally, some algebra gives rise to

nαqνλqkσ∇ν∇αsλσ ¼ ∇νðKν
μsμk þ Kk

μsνμÞ − Kλαqkσ∇αsλσ þ Kaμsμk − aλKλ
μsμk − nkðKλσKλ

μsμσ þ KλσKσ
μsλμÞ

þDi

�
1

N
Lmsik

�
: ðF26Þ

2. Purely timelike sector

Here we must compute the projections of ðTRsÞαβ þ snnRαβ with ðTRsÞαβ given by Eq. (F2).

a. Orthogonal projection

We start by deriving the complete projection along the direction orthogonal to Σt [see also Eq. (92)]. The individual
contributions amount to
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nαnβðTRs
1 Þαβ ¼ snnnαnβRαβ ¼ snnðKijKij þ nμ∇μK −∇μaμÞ; ðF27aÞ

nαnβðTRs
4 Þαβ ¼ nαnβ½ð∇ν∇αsnnÞnνnβ þ ð∇αsnnÞð∇νnνÞnβ þ ð∇νsnnÞð∇αnνÞnβ þ snnð∇ν∇αnνÞnβ þ snnnν∇ν∇αnβ�

¼ nαnβ½ð∇ν∇αsnnÞnνnβ þ ð∇αsnnÞKnβ þ∇νsnnðKαν − nαaνÞnβ
þ snnð∇νKαν − nα∇νaνÞnβ þ snnnνð∇νKαβ − nα∇νaβÞ�

¼ −ðnαnν∇ν∇αsnn þ nα∇αsnnK þ aν∇νsnn − snnKανKαν þ snn∇νaν þ snnaβaβÞ; ðF27bÞ

nαnβðTRs
6 Þαβ ¼ nαnβ½ð∇μ∇μnαÞnβsnn þ nαð∇μ∇μnβÞsnn þ nαnβ∇μ∇μsnn�

¼ nαnβ½ð∇μKμαÞnβsnn − nμð∇μaαÞnβsnn þ nαð∇μKμβÞsnn − nαð∇μaβÞnμsnn þ nαnβ∇μ∇μsnn�
¼ −nαð∇μKμαÞsnn þ nμnαð∇μaαÞsnn − nβð∇μKμβÞsnn þ nβnμð∇μaβÞsnn þ∇μ∇μsnn

¼ 2snnðKμαKμα − aαaαÞ þ∇μ∇μsnn; ðF27cÞ

nαnβðTRs
7 Þαβ ¼ −∇μ½ðaμ þ nμKÞsnn þ nμnν∇νsnn�

¼ −½ð∇μaμÞsnn þ aμ∇μsnn þ ð∇μnμÞKsnn þ nμð∇μKÞsnn þ nμK∇μsnn

þ ð∇μnμÞnν∇νsnn þ nμð∇μnνÞ∇νsnn þ nμnν∇μ∇νsnn�
¼ −½snn∇νaν þ 2aμ∇μsnn þ snn∇μðnμKÞ þ 2Knν∇νsnn þ nμnν∇μ∇νsnn�: ðF27dÞ

Here we used that

0 ¼ ∇νðnαnβsnnnνKαβÞ ¼ nαnβsnnnν∇νKαβ; ðF28aÞ

0 ¼ ∇νðnαsnnKανÞ ¼ ð∇νnαÞsnnKαν þ nαsnn∇νKαν ¼ snnKανKαν þ nαsnn∇νKαν; ðF28bÞ

0 ¼ ∇νðsnnnνnβaβÞ ¼ snnnνð∇νnβÞaβ þ snnnνnβ∇νaβ ¼ snnaβaβ þ snnnνnβ∇νaβ: ðF28cÞ

Summing the individual terms implies

2nαnβ½ðTRsÞαβ þ snnRαβ� ¼ snnðK2 − KijKijÞ − qνα∇ν∇αsnn: ðF29Þ

By employing

qλσ∇λ∇σsnn ¼ qλσqσα∇λ∇σsnn ¼ DαDαsnn −
1

N
KLmsnn; ðF30Þ

we get

2nαnβ½ðTRsÞαβ þ snnRαβ� ¼ snnðK2 − KijKijÞ −DiDisnn þ 1

N
KLmsnn; ðF31Þ

which corresponds to Eq. (93). We still have to prove Eq. (F30). It is reasonable to proceed as for Eq. (F4), although it turns
out that the current computations are much less involved:

DαDαsnn ¼ qβα∇βðDαsnnÞ ¼ qβα∇βðqαγ∇γsnnÞ ¼ qβαð∇βqαγÞ∇γsnn þ qβαqαγ∇β∇γsnn: ðF32Þ

The second term just corresponds to the left-hand side of Eq. (F30). The first contribution can be reformulated as

qβαð∇βqαγÞ∇γsnn ¼ qβαð∇βnαnγÞ∇γsnn ¼ qβαð∇βnαÞnγ∇γsnn

¼ qβαðKα
β − aαnβÞnγ∇γsnn ¼ Knγ∇γsnn ¼ 1

N
KLmsnn; ðF33Þ

which directly implies Eq. (F30).
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b. Mixed projection

The mixed projections are given as follows:

nαqkβðTRs
1 Þαβ ¼ nαqkβðTRs

7 Þαβ ¼ 0; ðF34aÞ

nαqkβðTRs
4 Þαβ ¼ nαqkβ∇ν½ð∇αnνÞnβsnn þ nνð∇αnβÞsnn þ nνnβð∇αsnnÞ�

¼ nαqkβ½ð∇αnνÞð∇νnβÞsnn þ ð∇νnνÞð∇αnβÞsnn þ nνð∇ν∇αnβÞsnn þ nνð∇αnβÞ∇νsnn þ nνð∇νnβÞ∇αsnn�
¼ nαqkβ½−nαaνKν

βsnn − Knαaβsnn þ nνð∇νKαβÞsnn − nαnνð∇νaβÞsnn − nαnνaβ∇νsnn þ aβ∇αsnn�
¼ akðsnnK þ 2nν∇νsnnÞ þ snnnν∇νak; ðF34bÞ

nαqkβðTRs
5 Þαβ ¼ nαqkβ∇ν½ð∇βnνÞnαsnn þ nνð∇βnαÞsnn þ nνnαð∇βsnnÞ�

¼ nαqkβ½ð∇ν∇βnνÞnαnnn þ ð∇βnνÞnα∇νsnn þ nνð∇ν∇βnαÞsnn þ ð∇νnνÞnα∇βsnn þ nνnα∇ν∇βsnn�
¼ nαqkβ½ð∇νKβν − Kν

βaνÞnαsnn þ Kβνnα∇νsnn þ nν∇νKβαsnn þ Knα∇βsnn þ nνnα∇ν∇βsnn�
¼ −snnqkβ∇νKβν þ snnaνKν

k − Kkν∇νsnn þ snnnαqkβnν∇νKαβ − Kqkβ∇βsnn − nνqkβ∇ν∇βsnn

¼ −snn∇νKkν þ snnaiKik − KkiDisnn þ snnnαnν∇νKαk − KDksnn − nνqkβ∇ν∇βsnn; ðF34cÞ

nαqkβðTRs
6 Þαβ ¼ nαqkβ∇μ½ð∇μnαÞnβsnn þ nαð∇μnβÞsnn þ nαnβ∇μsnn�

¼ nαqkβ½nαð∇μ∇μnβÞsnn þ 2nαð∇μnβÞ∇μsnn�
¼ nαqkβ½nαð∇μKμβ − Kaβ − nμ∇μaβÞsnn þ 2nαðKμβ − nμaβÞ∇μsnn�
¼ snnð−qkβ∇μKμβ þ Kak þ qkβnμ∇μaβÞ þ 2ðaknμ − KμkÞ∇μsnn: ðF34dÞ

By summing all the terms, we obtain

2nαqkβðTRsÞαβ ¼ snnaiKik þ KkiDisnn þ snnnαnν∇νKαk − KDksnn − nνqkβ∇ν∇βsnn: ðF35Þ

To evaluate the contraction of the extra contribution given by Eq. (92), we employ the contracted Codazzi-Mainardi relation
stated in Eq. (A20b):

nαqkβðsnnRαβÞ ¼ snnðDiKik −DkKÞ: ðF36Þ

Furthermore, we use

0 ¼ snnnν∇νðnαKαkÞ ¼ snnaiKαi þ snnnαnν∇νKαk; ðF37Þ

as well as

nνqkβ∇ν∇βsnn ¼ Dk

�
1

N
Lmsnn

�
− KkiDisnn; ðF38Þ

to cast the mixed projection into its final form:

2nαqkβ½ðTRsÞαβ þ snnRαβ� ¼ −Dk

�
1

N
Lmsnn

�
þ 2snnðDiKik −DkKÞ þ 2KkiDisnn − KDksnn

¼ −Dk

�
1

N
Lmsnn þ 2snnK

�
þ 2DjðsnnKi

kÞ þ KDksnn: ðF39Þ

The latter result corresponds to Eq. (94). The validity of Eq. (F38) remains to be shown. We start by considering the
covariant derivative of the Lie derivative:
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Dk

�
1

N
Lmsnn

�
¼ Dkðnμ∇μsnnÞ ¼ qkν∇νðnμ∇μsnnÞ

¼ qkνð∇νnμÞ∇μsnn þ qkνnμ∇ν∇μsnn

¼ qkνðKμν − aμnνÞ∇μsnn þ qkνnμ∇ν∇μsnn

¼ KkiDisnn þ qkνnμ∇μ∇νsnn; ðF40Þ

as the indices of the double covariant derivative in the last term can be switched:

∇ν∇μsnn ¼ ∇ν∂μsnn ¼ ∂ν∂μsnn − Γλ
νμ∂λsnn ¼ ∂μ∂νsnn − Γλ

μν∂λsnn ¼ ∇μ∇νsnn: ðF41Þ

Thus, Eq. (F38) is confirmed.

3. Scalar sector

The scalar sector rests on the modification ðTRuÞαβ of the Einstein equations given by Eq. (96b). Its purely orthogonal
projection follows from

nαnβðTRuÞαβ ¼ −nαnβ∇α∇βu − gαβ∇α∇βuþ u

�
Rnn þ

1

2
ð4ÞR

�
¼ −qαβ∇α∇βuþ u

�
Rnn þ

1

2
ð4ÞR

�
: ðF42Þ

Here we can use Eqs. (A15), (A16), and (F30) to derive

2nαnβðTRuÞαβ ¼ −2DiDiuþ 2

N
KLmuþ 2u

�
−
1

N
LmKþ 1

N
DiDiN −KijKij þ

1

N
LmK −

1

N
DiDiNþ 1

2
ðRþK2 þKijKijÞ

�

¼ ðRþK2 −KijKijÞu− 2DiDiuþ 2

N
KLmu; ðF43Þ

which results in Eq. (97a). Furthermore, we compute the mixed projection of the modification in benefiting from Eq. (F38)
as well as the contracted Codazzi-Mainardi relation of Eq. (A20b). Then,

2nαqkβðTRuÞαβ ¼ −2nαqkβð∇α∇βuþ∇β∇αuÞ þ 2unαqkβRαβ

¼ 2KkiDiu − 2Dk

�
1

N
Lmu

�
þ 2uðDiKik −DkKÞ

¼ 2

�
−Dk

�
1

N
Lmu

�
þDiðuKikÞ − uDkK

�
: ðF44Þ

The latter corresponds to Eq. (97b).

APPENDIX G: FUNCTIONAL DERIVATIVES
OF ADM ACTION

In the current section we intend to present some details
on the computation of functional derivatives of ADM-
decomposed actions with respect to the lapse function and
the shift vector. The corresponding results serve as a base
for Sec. V E.

1. General relativity

To compute functional derivatives of the ADM action for
the lapse function, we benefit from the result that K and Kij
scale with 1=N. Therefore,

δðNKijKijÞ
δN

¼ −KijKij;
δðNK2Þ
δN

¼ −K2: ðG1Þ

Hence, Eq. (98a) immediately follows. The derivatives of
the shift vector are a bit more involved. To evaluate them,
implicit partial integrations with respect to the measure
d3x

ffiffiffi
q

p
are performed where surface terms are discarded.

A partial integration having been carried out is indicated by
a covariant derivative acting to the left. Then we obtain the
following general result:
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Nf
δ

δNk K
ij ¼ f

2
ðδkjD⃖i þ δk

iD⃖jÞ ¼ 1

2
ðδkjDif þ δk

iDjfÞ;
ðG2Þ

with a generic spacetime coordinate-dependent tensor f
(with its indices omitted for brevity). Then,

δðNKijKijÞ
δNk ¼ 2DiKik;

δðNK2Þ
δNk ¼ 2DkK: ðG3Þ

A combination of the latter findings implies Eq. (98b).

2. Standard-Model extension: sμν term

We perform the analogous computations for the ADM-
decomposed actions based on the three Lagrange densities
of Eqs. (30b)–(30d).

a. Purely spacelike sector

We employ the following results:

−
δ

δN
ðKijLmsijÞ ¼

1

N
ðKijLmsijÞ; ðG4aÞ

δ

δN
ð−sijDiDjNÞ ¼ −DjDisij; ðG4bÞ

δ

δN
ðNsijRijÞ ¼ sijRij; ðG4cÞ

δ

δN
ð−2NsijKilKl

jÞ ¼ 2sijKilKl
j; ðG4dÞ

leading to Eq. (100a). For the derivatives with respect to the
shift vector we use

δ

δNkðKijLmsijÞ¼
δðKijÞ
δNk LmsijþKij

δ

δNkðLmsijÞ; ðG5aÞ

δ

δNk ð2NsijKilKl
jÞ ¼ ð2NsijÞ δ

δNk ðKilKl
jÞ: ðG5bÞ

From Eq. (G2) we deduce that

δðKijÞ
δNk Lmsij ¼ N

�
1

N
Lmsij

�
δ

δNk Kij

¼ 1

2
ðqjkDi þ qikDjÞ

�
1

N
Lmsij

�

¼ qjkDi

�
1

N
Lmsij

�
: ðG6Þ

We now evaluate the functional derivative of the Lie
derivative:

Kij
δ

δNk ðLmsijÞ ¼ −Kij
δ

δNk ðLNsijÞ

¼ −Kij
δ

δNk ½NmDmsij − ðDpNiÞspj − ðDpNjÞsip�

¼ −KijðDksij þ δk
ispjD⃖p þ δk

jsipD⃖pÞ
¼ −ðKijDksij þ KkjspjD⃖p þ KiksipD⃖pÞ
¼ −½KijDksij þ 2DpðKkjspjÞ�: ðG7Þ

Finally, applying Eq. (G2) again results in

ð2NsijÞ δ

δNk ðKilKl
jÞ ¼ 2Nsij

�
Kl

j
δ

δNk Kil þ Kil
δ

δNk K
l
j

�

¼ ðqklDi þ qikDlÞðsijKl
jÞ þ ðqkjDl þ δk

lDjÞðsijKilÞ
¼ 2½DiðsijKjkÞ þ qikDlðsijKl

jÞ�: ðG8Þ
Using these findings provides Eq. (100b).

3. Mixed sector

Based on Eq. (G1), we perform implicit partial integrations to obtain

Nsin
δ

δN
ðDiK −DjKj

iÞ ¼ −DiðNsinÞ δ

δN
K þDjðNsinÞ δ

δN
Kj

i

¼ 1

N
DiðNsinÞK −

1

N
DjðNsinÞKj

i

¼ 1

N
Di½NðsinK − sjnKi

jÞ�: ðG9Þ
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Adding the other contribution with the lapse function eliminated leads to

δSð2Þ

δN
¼ 2

�
sinDiK − sjnDiKi

j þ
1

N
DiðNsinÞK −

1

N
DiðNsjnÞKi

j

�

¼ 2

N
Di½NðsinK − sjnKi

jÞ�; ðG10Þ

which implies Eq. (100c). Furthermore, we employ Eq. (G2) again to derive

2Nsin
δ

δNk DiK ¼ −2N
�
1

N
DiðNsinÞ

�
δ

δNk K
j
j

¼ −
�
qkjDj

�
1

N
DiðNsinÞ

�
þ δk

jDj

�
1

N
DiðNsinÞ

��

¼ −2Dk

�
1

N
DiðNsinÞ

�
¼ −2Dkðaisin þDisinÞ; ðG11aÞ

as well as

2Nsin
δ

δNk ðDjKi
jÞ ¼ −2N

�
1

N
DjðNsinÞ

�
δ

δNk Ki
j

¼ −
�
δk

jDi

�
1

N
DjðNsinÞ

�
þ qkiDj

�
1

N
DjðNsinÞ

��

¼ −
�
Di

�
1

N
DkðNsinÞ

�
þ qkiDj

�
1

N
DjðNsinÞ

��

¼ −½Diðaksin þDksinÞ þ qkiDjðajsin þDjsinÞ�: ðG11bÞ

These findings result in Eq. (100d).

4. Purely timelike sector

Here we use that

δ

δN
ðKLmsnnÞ ¼ −

K
N
Lmsnn; ðG12Þ

which is a consequence of Eq. (G1). In addition,

δ

δN
ðsnnDiDiNÞ ¼ DiDisnn: ðG13Þ

These results immediately provide Eq. (100e). To compute
the derivatives for the shift vector, we need

δ

δNk ðLmsnnÞ ¼ −∇ksnn; ðG14Þ

as well as

Lmsnn
δ

δNkK ¼ N

�
1

N
Lmsnn

�
δ

δNkK
i
i

¼ 1

2

�
qkiDi

�
1

N
Lmsnn

�
þ δk

iDi

�
1

N
Lmsnn

��

¼Dk

�
1

N
Lmsnn

�
; ðG15Þ

and

Nsnn
δ

δNk ðK2 − KijKijÞ ¼ 2DkðKsnnÞ
− 2DiðsnnKikÞ; ðG16Þ

which follow from Eq. (G2). Thus, we arrive at Eq. (100f).

APPENDIX H: COUNTING SCHEME

To check the consistency of expressions in the context of
the ADM formalism, it turned out to be valuable to
associate a set of “units” to the various quantities that play
a role in this paper. These units count how often the induced
metric qij (or the four-dimensional spacetime metric gμν)
occurs in a certain expression. Hence, we start with
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½qij� ¼ 1; ½qij� ¼ ½qij� ¼ 0; ½qij� ¼ −1; ðH1aÞ

½ ffiffiffi
q

p � ¼ 3

2
; ðH1bÞ

½gμν� ¼ 1; ½gμν� ¼ −1; ½ ffiffiffiffiffiffi
−g

p � ¼ 2: ðH1cÞ

Then, from Eqs. (5) and (8) we immediately deduce that

½Ni� ¼ 1; ½Ni� ¼ 0; ½N� ¼ 1

2
; ðH2aÞ

½nμ� ¼
1

2
; ½nμ� ¼ −

1

2
: ðH2bÞ

We define both partial derivatives and covariant derivatives
with lower indices as “dimensionless,” which is why

½ _qij� ¼ 1; ½ _N� ¼ 1

2
; ðH3aÞ

½DiNj� ¼ 1; ½ _Ni� ¼ 0; ½ _Ni� ¼ 1; ðH3bÞ

½aμ� ¼ 0; ½aμ� ¼ −1: ðH3cÞ

The latter follow from Eq. (A1). From the definition of the
Christoffel symbol, the Riemann tensor and its contractions
as well as from Eqs. (H1a), we quickly obtain

½Γi
jk� ¼ 0; ½Ri

jkl� ¼ 0; ½Rijkl� ¼ 1; ðH4aÞ

½Rij� ¼ 0; ½R� ¼ −1; ½Rij� ¼ −2: ðH4bÞ

The form of the EH Lagrange density (14) and the
Hamilton density (23) implies immediately

½L� ¼ ½H� ¼ 1: ðH5Þ

Based on Eq. (A9), we choose

½Kij� ¼
1

2
; ½K� ¼ −

1

2
; ½Kij� ¼ −

3

2
; ðH6Þ

which is consistent with Eq. (H5). From the definitions of
the canonical momenta we get

½πij� ¼ 0; ½π� ¼ 1; ½πij� ¼ 2; ðH7aÞ

½πi� ¼ 1; ½πi� ¼ 0; ½πN � ¼
1

2
: ðH7bÞ

Finally, it is possible to assign the same units to the
diffeomorphism-violating background fields.
Equation (16) provides

½sμν� ¼ 1; ½sμν� ¼ ½sμν� ¼ 0; ðH8aÞ

½sμν� ¼ −1; ½u� ¼ 0; ½tμνϱσ� ¼ −2: ðH8bÞ

The reason for these results is that sμν plays an analogous
role as the metric, i.e., it is contracted with Rμν. Also,

snn ¼ 0; sni ¼ −
1

2
; ðH9Þ

which follows from their definitions under Eq. (28) as well
as Eq. (H2b). A generic rule is that each lower Lorentz
index leads to a dimension of 1=2, whereas each upper one
implies a dimension of −1=2. For consistency, each term in
a sum of contributions must have the same dimension.
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