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We show that the equation of motion of scalar-tensor theory acquires thermodynamic identity when
projected on a generic null surface. The relevant projection is given by Eablakb, where Eab ¼ 8πTðmÞ

ab
represents the equation of motion for a gravitational field in the presence of external matter, la is the
generator of the null surface, and ka is the corresponding auxiliary null vector. Our analysis is done
completely in a covariant way. Therefore all the thermodynamic quantities are in covariant form and hence
can be used for any specific form of metric adapted to a null surface. We show this both in Einstein and
Jordan frames and find that these two frames provide equivalent thermodynamic quantities. This is
consistent with the previous findings for a Killing horizon. Also, a concrete proof of the zeroth law in
scalar-tensor theory is provided when the null surface is defined by a Killing vector.
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I. INTRODUCTION

The present understanding of gravitation is premised
upon the seminal work of Einstein, who formulated the
theory of general relativity (GR) in 1916 which is still
hailed as supreme when it comes to describe gravity. Not
only is the theory mathematically consistent, but also it has
passed all the observational tests, at least within the solar
length scale or in the weak gravity range [1,2]. In spite of all
these successes, there are several reasons which imply that
the actual behavior of gravity might deviate significantly
from Einstein’s GR in the strong gravity region, where GR
is not experimentally well tested. However, in pursuit of
developing a more accurate theory of gravity, one has to
remember that Einstein’s theory of gravity cannot be ruled
out completely because of its sheer success against the
observational tests and also due to its infallible predictions,
such as the presence of black holes, gravitational waves
etc., the existence of which were proved later. Therefore, a
more accurate version of the theory of gravitation is more
likely to be a modified version of Einstein’s GR instead of
being a radically new theory [3,4].
The scalar-tensor (ST) theory is one of the most popular

among the modified theories of gravity for various reasons
[5–10]. Unlike Einstein’s gravity, the dynamical variable in
this theory is not only the second rank symmetric tensor
(i.e. the metric tensor), but also the scalar degrees of

freedom are accounted for in this theory in the form of
“nonminimal coupling” between the scalar field and the
curvature. This theory is described in two different frames
which raises several issues in the literature, particularly on
the equivalence of the physical results described in these
two frames [11–36]. The original frame, where the non-
minimal coupling is present, is known as the Jordan frame.
With the help of a conformal transformation, the non-
minimal coupling can be removed and the theory can be
expressed equivalently in the Einstein frame. In that case,
the curvature and scalar field are separated out and the
scalar field behaves like an external source. Now the issues
of the two frames are the following: the apparent math-
ematical equivalence between the two frames via the
conformal transformation raises the question on whether
the two frames are physically equivalent [13–17,19,26–
29,33–36] or one of the two frames is more physical than
the other one [11,12]. The behavior of energy and other
conserved charges under conformal tranformations for ST
as well as higher curvature theories of gravity have been
studied in [22]. Here, the authors show that such charges
are invariant under conformal transformations provided the
conformal factor goes over to unity at infinity. However, a
proper thermodynamic description was not developed until
the recent works from the present group [33–36]. In these
works [33–36], we have shown that the thermodynamic
first law can be obtained in the two different frames using
the existing well-defined formalisms of general relativity.
In addition, our earlier works show that the thermodynamic
parameters are exactly equivalent in two different frames.
This provides considerable improvement of the previous
work [19], in which the equivalence of the thermodynamic
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parameters are subject to a few assumptions such as the
asymptotic flatness of the spacetime.
The works stated above [33–36] (describing thermo-

dynamics laws in the two frames of the scalar-tensor
theory) are done in the context of the black hole horizon.
In Einstein’s GR, it has been known for a long time that the
thermodynamic structure of general relativity is present in
any arbitrary null surface [37–43] and is not restricted to the
black hole horizon. In fact, the thermodynamics of a null
surface is very significant in the context of a “emergent
gravity” paradigm, which was first predicted by Sakharov
[44] and later the idea was resurrected by Jacobson by
establishing the fact that Einstein’s equation can be
obtained as an equation of state from the Clausius relation
on a local Rindler horizon [45]. On the other hand,
Padmanabhan and his group established the fact that the
governing dynamical equations in GR (such as Einstein’s
equation) has a thermodynamic structure on the horizon
(see the review [37]). In particular, we are driven by the fact
that Einstein’s equation, when suitably projected on a null
surface, takes the form of a thermodynamic identity [39]
(interestingly, this has been successfully extended to any
order Lanczos-Lovelock gravity as well [40]). Therefore,
within ST theory, one needs to check the possibility for
developing the first law of thermodynamics for an arbitrary
null surface. This will provide the generality and robustness
of the earlier claim on obtaining the thermodynamic
structure in this theory. In the process of obtaining the
first law for a generic null surface in ST theory, we need to
identify certain terms as the temperature to draw the
analogy between the gravitational thermodynamics and
the conventional thermodynamics. To claim the analogical
expression of temperature as the physical thermodynamic
quantity, we need to investigate whether the expression is
consistent with other thermodynamic laws, such as the
zeroth law. Now, the idea of temperature becomes mean-
ingful only in the equilibrium thermodynamic system; in
gravity this is analogous to the Killing horizon.1 Insofar as
we know, the zeroth law has not been explored rigorously
in ST theory. Therefore, we need to check whether the
identified temperature satisfies the zeroth law for the
Killing horizon, which is a special category of null surface
and represents the equilibrium thermodynamic system. In
summary, the motivation of the present work is straightfor-
ward, i.e. obtaining the first law for a generic null surface
and proving the zeroth law for the Killing horizon.2 Thus,
the present work is motivated to fill the gaps in the literature
and to establish the thermodynamics of the scalar-tensor
gravity in a more concrete manner.

To obtain the thermodynamic laws, we adopt the
following method. A null surface is described by a null
vector la, which is the generator of the surface along with
an auxiliary null vector ka (a brief discussion about the null
surface has been provided later in the paper). It has been
found that the quantity Rabla provides several dynamical
equations when it is contracted with the normals (i.e. lb and
kb) or with projection tensor qbc. The contraction Rablalb

provides the well-known null Raychaudhuri equation
(NRE) [47–49]. The NRE has been used in various gravity
theories as crucial input to derive the relevant gravitational
field equations emerging from a constitutive relation
applied to a local causal horizon [45,50–52]. Also, the
contraction Rablaqbc provides the Damour-Navier-Stokes
equation [48,53–55] (both contractions Rablalb and
Rablaqbc have been studied extensively in the context of
ST theory in our earlier work [35]). It was recently found
that the contraction Rablakb provides the thermodynamic
identity for a generic null surface. Initially it was found that
when the expression of Rablakb is expressed in a adapted
set of coordinates describing a null hypersurface (namely
the Gaussian null coordinate (GNC) [56,57]), it manifests
in the form of the first law of thermodynamics [39,40].
Later, it was proved that Rablakb can be expressed as a
thermodynamic identity in a covariant way [43] i.e. the
choice of any particular coordinate system is not required.
The covariant quantities evaluated in GNC reproduces
earlier results [39]. We adopt this method [43] in the
context of scalar-tensor gravity and show that the same
method works well to obtain the thermodynamic first law in
the two frames. In addition, we also prove that the
thermodynamic parameters in the two frames are equiv-
alent, as it was suggested earlier for the stationary black
hole horizon (i.e. the Killing horizon) [34]. However, as we
discuss later, obtaining a thermodynamic law in the Jordan
frame is quite nontrivial as compared to the Einstein frame,
where the latter case is very much similar to that of
Einstein’s gravity. Thereafter, we prove the zeroth law
for the Killing horizon. To our knowledge, the zeroth law
has not been studied extensively for the scalar-tensor theory
of gravity. However, there exist some comments in the
literature stating that for any sensible definition of zeroth
law in ST gravity, the scalar field is required to be constant
on the horizon [14]. In our analysis, we show that
imposition of such a strong restriction is not required.
Instead, what it only requires is that the scalar field needs to
be Lie-transported along the direction of the Killing vector
i.e. the scalar field is required to be independent of only one
coordinate, which is along the direction of the generator of
the horizon surface.
Let us give an overview of the paper. In Sec. II we begin

with a very brief review of the action and field dynamics in
the Einstein and Jordan frames. Next we proceed in Sec. III
to our essential study of the covariant formulation of the
thermodynamic identity established on a generic null

1It is the horizon which behaves like a thermodynamic object
in black hole thermodynamics and the Killing horizon corre-
sponds to a stationary black hole horizon [46].

2Note that the area increase theorem (i.e. the second law of
black hole thermodynamics) has already been proved in ST
theory [34].
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hypersurface in the two frames. This we begin in Sec. III A
by very briefly describing the geometry of the null surface
in the two frames. Thereafter we proceed in Sec. III B
toward our construction of the thermodynamic identity in
both frames. This allows us then to attribute the equivalence
of thermodynamic variables in the two frames. Finally, in
order to provide a concrete interpretation of the notion of
temperature in the two frames, we establish the proof of the
zeroth law in Sec. IV. This proof has been performed in two
different ways as applied to Killing horizons in the two
frames. In the end, we added five appendixes to present
details of our calculations.
Before proceeding, we list a word on notations and

dimensions. We are working in a spacetime of dimension
d ¼ 4 and have used the metric signature ð−;þ;þ;þÞ. We
use a geometrized unit system where c, ℏ, and G are set to
be unity. The lowercase Latin indices a; b;… represent the
bulk spacetime indices and run from 0 to 3. The coordinate
indices on our null surface are designated by the Greek
symbols μ; ν;… and run from 1 to 3. The uppercase Latin
alphabet characters A; B;… are reserved for the transverse/
angular coordinates of the two-dimensional spacelike sub-
space of our null hypersurface and run from 2 to 3.

II. ACTIONS AND EQUATIONS OF MOTION IN
THE TWO FRAMES: A BRIEF REVIEW

Among the modified theories of gravity, the ST theory is
a much viable and discussed one. In the original Jordan
frame, the scalar field ϕ is nonminimally coupled to the
Ricci scalar R. The total action for the ST theory in the
Jordan frame ðM; g;ϕÞ is given by

AðSTÞ ¼
Z
V
d4x

ffiffiffiffiffiffi
−g

p 1

16π

�
ϕR −

ωðϕÞ
ϕ

gab∇aϕ∇bϕ

− VðϕÞ
�
þAðmÞ; ð2:1Þ

where ωðϕÞ is known as the Brans-Dicke parameter, which
is kept as a variable of the scalar-field ϕ. When ωðϕÞ is
considered as the constant parameter, the scalar-tensor
theory boils down to the Brans-Dicke theory. Also, VðϕÞ
corresponds to the arbitrary scalar-field potential and
AðmÞ ¼ R

V d
4x

ffiffiffiffiffiffi−gp
LðmÞ is the ordinary matter action

(ordinary in the sense that the matter fields are not coupled
to the scalar field ϕ). The resulting field equation of gab

corresponding to the action (2.1) with a suitable Gibbons-
Hawking-York (GHY) surface term is [33,34]

Eab ¼
1

16π

�
ϕGab þ

ω

2ϕ
gab∇iϕ∇iϕ −

ω

ϕ
∇aϕ∇bϕ

þ V
2
gab −∇a∇bϕþ gab∇i∇iϕ

�
¼ 1

2
TðmÞ
ab ; ð2:2Þ

where TðmÞ
ab ¼ ð−2= ffiffiffiffiffiffi−gp Þ∂ð ffiffiffiffiffiffi−gp

LðmÞÞ=∂gab represents the
matter energy momentum tensor corresponding to AðmÞ.
In the Einstein frame we can remove the nonminimal

coupling by the following set of conformal transformations
on the metric and rescaling of the scalar field respectively,

g̃ab ¼ Ω2gab; ð2:3Þ

dϕ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωðϕÞ þ 3

16π

r
dϕ
ϕ

; ð2:4Þ

where Ω2 ¼ ϕ along with the condition that ϕ > 0. The
related field equation in the Einstein frame turns out to be
[33,34]

Ẽab ¼
G̃ab

16π
−
1

2
∇̃aϕ̃∇̃bϕ̃þ 1

4
g̃ab∇̃iϕ̃∇̃iϕ̃þ 1

2
g̃abUðϕ̃Þ

¼ 1

2
T̃ðmÞ
ab ; ð2:5Þ

where Uðϕ̃Þ ¼ VðϕÞ=ð16πϕ2Þ and T̃ðmÞ
ab ¼

− 2ffiffiffiffi
−g̃

p ∂ð
ffiffiffiffiffiffiffiffiffiffi
−g̃LðmÞ

p
Þ

∂g̃ab ¼ 1
ϕT

ðmÞ
ab represents the matter energy-

momentum tensor corresponding to matter action in
the Einstein frame. The gravitational field equation in
the Einstein frame (2.5) can be expressed in the similar

form of Einstein’s equation as G̃ab ¼ 8πðT̃ðϕ̃Þ
ab þ T̃ðmÞ

ab Þ
where

T̃ðϕ̃Þ
ab ¼ ∇̃aϕ̃∇̃bϕ̃ −

1

2
g̃ab∇̃iϕ̃∇̃iϕ̃ − g̃abUðϕ̃Þ: ð2:6Þ

Throughout this paper we will follow the notation as
presented in this section, where the tilded variables are
reserved for the Einstein frame and the untilded ones are for
the Jordan frame.

III. COVARIANT THERMODYNAMIC
DESCRIPTION ON A GENERIC NULL SURFACE:

EQUIVALENCE BETWEEN JORDAN AND
EINSTEIN FRAMES

A. Spacetime foliation of a null hypersurface

Since the analysis will be done on a generic null surface,
it is necessary to introduce the geometry of this surface
here. A brief description will be given; details can be
followed from [48]. We consider the (1þ 3)-dimensional
spacetime manifold ðM; gabÞ. Therein lies a generic null
hypersurface, which is a three-dimensional submanifold,
denoted by H and described by the metric γαβ, which is
adapted to the null surface (here, the Greek indices denote
the coordinates adapted to the null hypersurface). Since the
metric of the null surface is degenerate, there exists vectors
vα such that γαβvα ¼ 0 where vα is defined on the tangent
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plane of the null surface. We denote the normal to the
surface with la, which satisfies the geodesic condition
la∇alb ¼ κlb [48] and are the generators of the null surface.
Here κ denotes the nonaffinity parameter of the null
geodesics. For a black hole horizon (which is also a null
surface), κ is identified as the surface gravity of the black
hole horizon and is proportional to the Hawking temper-
ature. Since the null surface H is self-orthogonal, we
have lala ¼ 0 and one requires another auxiliary null
vector ka to describe the geometry of the null surface.
Furthermore, it is considered that the two null vectors are
cross normalized i.e. laka ¼ laka ¼ −1. The intersection of
the null surface with a tðxaÞ ¼ constant spacelike hyper-
surface is designated St.
The induced metric onto this transverse spacelike two-

dimensional cross-section St in terms of the null vectors is
given by

qab ¼ gab þ lakb þ lbka: ð3:1Þ

With these prerequisites, we now move on to discuss the
procedure to obtain the thermodynamic law for a general
null hypersurface in the two frames of the scalar-tensor
theory.

B. Thermodynamic first law of a generic null surface
in scalar-tensor gravity

As mentioned in the Introduction, considering the Ricci
tensor Rab, various components of the vector Ra

blb provide
important dynamical equations in general relativity. The
component we are interested in, i.e. Rablakb, on the null
surface for Einstein [39,58,59] and Lanczos-Lovelock
gravity [60–62] theories yields a thermodynamic identity
which is analogically similar to the first law of conventional
thermodynamics. The original discussion was based on a
particular form of metric in the vicinity of a null surface
written in GNC. Recently, for this component, a covariant
thermodynamic description has been provided in [43].
This covariant description properly reproduces the

previous coordinate dependent results in the case of
Einstein’s gravity. In the present section, we want to check
whether this new formulation works well in ST gravity i.e.
whether we can obtain similar thermodynamic identity in
both frames from the recent approach, as prescribed in [43].
In this analysis the starting point was a geometric identity

−κθðkÞ ¼ −DaΩa − ΩaΩa þ θðlÞθðkÞ þ li∇iθðkÞ

þ 1

2
ð2ÞR − Rablakb −

1

2
R; ð3:2Þ

whereDa is the covariant derivative operator defined on the
manifold ðSt; qabÞ and ð2ÞR denotes the Ricci scalar
associated with the operator Da. The above equation
can be obtained by taking the trace of the transversal
deformation rate equation [48] (the above Eq. (3.2) is

also obtained in [43]). This identity does not take into
account any information of the dynamics of the gravita-
tional field and hence one can use it in any theory of
gravity. Below, in this identity the explicit form of field
equations for gab in ST theory will be used in order to
investigate our goal.

1. Einstein frame

We start our analysis in the Einstein frame as the
situation is simpler in this frame. The nonminimal coupling
no longer exists in this frame and, the scalar field appears
like the external field. In the Einstein frame (M; g̃ab; ϕ̃), we
assume the existence of a generic null hypersurface H̃. Let
us briefly describe the nature of such a null surface (for
details see [48]) in the Einstein frame which is designated
by the constant value of the scalar field ΦðxaÞ. The null
normal l̃a to H̃ is given by l̃a ¼ eρ̃∇̃aΦ, with ρ̃ being a
scalar function on H̃. The integrable null surface H̃ is
generated by null generators l̃ satisfying the geodesic
equation l̃a∇̃al̃

b ¼ κ̃l̃b. The integrability of the null surface
is defined by the Frobenius’s theorem, which in its dual
formulation [63] reads

∇̃al̃b − ∇̃bl̃a ¼ ð∇̃aρ̃Þl̃b − ð∇̃bρ̃Þl̃a: ð3:3Þ

The nonaffinity parameter of the null generators assumes
the value κ̃ ¼ l̃a∇̃aρ̃. The transverse two-dimensional
spacelike submanifold of this null hypersurface is desig-
nated by S̃t. In this frame, since every quantity is repre-
sented by a tilded variable, we express the identity (3.2) in
the following form:

−κ̃θ̃ðk̃Þ ¼ −D̃aΩ̃a − Ω̃aΩ̃a þ θ̃ðl̃Þθ̃ðk̃Þ þ l̃i∇̃iθ̃ðk̃Þ

þ 1

2
ð2ÞR̃ − R̃abl̃

ak̃b −
1

2
R̃: ð3:4Þ

From the above equation (3.4), one can obtain the thermo-
dynamic first law considering the virtual displacement
along the auxiliary null vector. The idea is the following.
We consider the auxiliary null vector field as being para-
metrized by λðk̃Þ, which means k̃i ¼ −dxi=dλðk̃Þ. Here, we
put a negative sign in the definition of k̃ because, in the
following, we obtain the change of thermodynamic param-
eters due to a small virtual displacement along k̃. Since k̃
corresponds to the ingoing null vector (which implies xi

decreases with the increase of λðk̃Þ), we need to put an
additional negative sign so that the change of the thermo-
dynamic parameters remain positive due to the virtual
displacement along k̃. Furthermore, we consider that a
set of two null surfaces are located at λðk̃Þ ¼ 0 and at
λðk̃Þ ¼ δλðk̃Þ. A virtual displacement δλðk̃Þ implies a shift
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from one solution of null hypersurface to the other. Then
the coordinate variation under the mentioned virtual dis-
placement is given as δxi ¼ −k̃iδλðk̃Þ. Next, we multiply

both sides of Eq. (3.4) with δλðk̃Þ (along with an overall

factor 1=8π) and integrate it over the two-surface S̃t, which
yields

−
Z
S̃t

d2x
ffiffiffĩ
q

p
δλðk̃Þ

κ̃

2π

1

4
θ̃ðk̃Þ ¼

Z
S̃t

d2x
ffiffiffĩ
q

p
δλðk̃Þ

1

8π

�
1

2
2R̃þ l̃i∇̃iθ̃ðk̃Þ þ θ̃ðl̃Þθ̃ðk̃Þ − Ω̃aΩ̃a − D̃AΩ̃A

�

−
Z
S̃t

d2x
ffiffiffĩ
q

p
δλðk̃Þ½T̃ðϕ̃Þ

ab þ T̃ðmÞ
ab �l̃ak̃b: ð3:5Þ

In the above we have used the gravitational field equation
of the Einstein frame (2.5). The above equation (3.5) can be
given the interpretation analogous to the first law of
thermodynamics as applied to the null surface via

Z
S̃t

d2xT̃δλðk̃Þs̃ ¼ δλðk̃ÞẼþ F̃δλðk̃Þ; ð3:6Þ

where the thermodynamic parameters are identified as the
following. We identify the temperature as T̃ ¼ κ̃=2π, the
entropy density s is identified as s ¼ ffiffiffĩ

q
p

=4 and, the change
of entropy density (s) due to the virtual displacement is
denoted by δλðk̃Þs̃, which is given as

δλðk̃Þs̃¼
ds̃
dλðk̃Þ

δλðk̃Þ ¼
1

4

d
ffiffiffĩ
q

p
dλðk̃Þ

δλðk̃Þ ¼−
1

4

ffiffiffĩ
q

p
θ̃ðk̃Þδλðk̃Þ: ð3:7Þ

While obtaining the last step in the above relation (3.7),
we have used (see [48,49])

θ̃ðk̃Þ ¼ −
1ffiffiffĩ
q

p d
ffiffiffĩ
q

p
dλðk̃Þ

: ð3:8Þ

The total entropy in the Einstein frame is given as

S̃ ¼
Z
S̃t

d2xs̃ ¼ 1

4

Z
S̃t

ffiffiffĩ
q

p
d2x; ð3:9Þ

which is consistent with the area law of the entropy. The
variation of energy Ẽ due to the virtual displacement
[in (3.6)] is given as

δλðk̃ÞẼ ¼ 1

8π

Z
S̃t

d2x
ffiffiffĩ
q

p
δλðk̃Þ

�
1

2
2R̃þ l̃i∇̃iθ̃ðk̃Þ

þ θ̃ðl̃Þθ̃ðk̃Þ − Ω̃aΩ̃a − D̃AΩ̃A

�
: ð3:10Þ

An indefinite integration over λðk̃Þ provides the expression
of energy associated with the two-surface St, which is
given as

Ẽ ¼ 1

8π

Z
S̃t

Z
d2x

ffiffiffĩ
q

p
dλðk̃Þ

�
1

2
2R̃þ l̃i∇̃iθ̃ðk̃Þ

þ θ̃ðl̃Þθ̃ðk̃Þ − Ω̃aΩ̃a − D̃AΩ̃A

�
: ð3:11Þ

The above expression of energy is very much similar to the
Hawking-Hayward quasilocal energy [64,65]. The above
expression has been identified as the energy term inspired
by the fact that it reduces to expressions of that for well-
known spacetimes. For example, it has been shown in [43]
that specifically for Einstein gravity the covariant expres-
sion of the energy term matches with the expression of the
energy expressed in the GNC system [39]. For example,
the covariant energy term for the Schwarzschild metric
(in Einstein gravity) reduces to the mass. Finally, we

identify the pressure (P̃) as P̃ ¼ −ðT̃ðϕ̃Þ
ab þ T̃ðmÞ

ab Þl̃ak̃b in a
similar way as it has been identified in [39,62,66]. Total
work due to the virtual displacement δλðk̃Þ is given as

W̃ ¼ F̃δλðk̃Þ ¼
Z
S̃t

d2x
ffiffiffĩ
q

p
δλðk̃ÞP̃

¼ −
Z
S̃t

d2x
ffiffiffĩ
q

p
δλðk̃ÞðT̃ðϕ̃Þ

ab þ T̃ðmÞ
ab Þl̃ak̃b: ð3:12Þ

Here F̃ is the integral of the pressure over the two-surface
St and hence can be given the interpretation of the
generalized force conjugate to the virtual displacement
δλðk̃Þ. Let us briefly describe the notion of the virtual
displacement in the Einstein frame (for details refer to
[39]). In the next subsection, related to the Jordan frame,
the same interpretation will follow as well. The virtual
displacement is considered to be a “physical process” that
virtually shifts the position of the null surface H̃ in the
Einstein frame from λðk̃Þ ¼ 0 to say λðk̃Þ ¼ δλðk̃Þ. The null
hypersurface is obviously considered to be a solution of the
field equations in ðM; g̃; ϕ̃Þ. As a result of this virtual
displacement process, an amount of energy δλðk̃ÞẼ flows
across the null hypersurface. Part of this energy contributes
in the entropy generation term

R
S̃t
d2xT̃δλðk̃Þs̃ and the other

contributes to the virtual work done F̃δλðk̃Þ. Let us note
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before proceeding next, that all the relevant quantities
(geometrical, physical, and thermodynamical) in the Jordan
frame will be denoted without the use of any tilde as
opposed to the Einstein frame.

2. Jordan frame

We now proceed to obtain the thermodynamic law in the
Jordan frame taking hints from the analysis in the Einstein
frame. Therefore the Rablakb relation in the Jordan frame is
given by (3.2). We see that the evolution equations for
R̃abl̃

ak̃b and Rablakb are form invariant under conformal
transformations, viz. Eqs. (3.4) and (3.2). This is to be
anticipated since they are evolution equations valid as
geometrical identities on any arbitrary null hypersurface.
Conformal transformations after all do not alter the causal
structure of null hypersurfaces. In fact, it can also be proven
that the geodesic equation for the null generators as well as
the NRE remains form invariant under conformal trans-
formations for a generic null hypersurface in the Einstein
and Jordan frames. Simply multiplying Eq. (3.2) by
δλðkÞ=8π and integrating over the two-surface St does
not lead to the correct expression of thermodynamic law
and identification of thermodynamic quantities. The reason
is the following. It has been found in earlier works [33–35]
for a Killing horizon that the thermodynamic quantities are
equivalent in the two frames. Therefore we expect our
present thermodynamic quantities, defined on a generic
null surface, must be equivalent in the two frames at least
when the null normal becomes the symmetry generator
of a Killing horizon. Let us now check whether this is the
case. If we multiply Eq. (3.2) by δλðkÞ=8π and integrate over
the two-surface, the term on the left-hand side then yields
− 1

8π

R
St
d2x

ffiffiffi
q

p
δλðkÞκθðkÞ which by the earlier argument can

be expressed as

−
1

8π

Z
St

d2x
ffiffiffi
q

p
δλðkÞκθðkÞ ¼

Z
St

d2x
κ

2π
δλ

� ffiffiffi
q

p
4

�
: ð3:13Þ

Now if the null surface is a Killing horizon, then κ is
constant on St (we will explicitly prove this later in
Sec. IV). In this case the above is expressed as
ðκ=2πÞδλðA=4Þ, from which one can identify temperature
and entropy as κ=2π and A=4 respectively. But this is in
conflict with the earlier result [33,34] since this is
not equivalent to its counterpart in the Einstein frame.
For the Killing horizon we know that T̃ ¼ T and
S̃ ¼ Ã=4 ¼ S ¼ ϕA=4. But this is not what we are
obtaining from the above. Hence the above simple exten-
sion of the approach will not be consistent to known cases.
The remedy can be found from the earlier work [35].

From the analysis of fluid-gravity correspondence in scalar-
tensor gravity [35], it is known that the parameters of the

Einstein frame (such as κ̃, Ω̃a, θ̃ðl̃Þ etc.) are used in the
Jordan frame as well to obtain the equivalent framework,
where the physical parameters of the Einstein frame
becomes equivalent to the same in the Jordan frame.
Here we adopt the same method. Therefore, we plan to
obtain the Rablakb in terms of the parameters of the
Einstein frame (such as κ̃, Ω̃a, θ̃ðl̃Þ, θ̃ðk̃Þ etc.) and in terms
of the covariant derivative operator and the null vectors of
the Jordan frame (i.e. ∇i, la, ka etc.). The desired relation
can be obtained either from (3.4) or from (3.2) as (3.4) and
(3.2) are equivalent under the conformal transformation
(see Appendix A). For simplicity, here we obtain it from
Eq. (3.4). In Appendix B we obtain the same equation
from Eq. (3.2).
First, we show how the different quantities in one frame

are connected to the same in the other frame. From the
conformal transformation relation (2.3), we obtain that the
null vectors change between the two frames in the follow-
ing manner [35]:

l̃a ¼ la; l̃a ¼ ϕla

k̃a ¼ 1

ϕ
ka; k̃a ¼ ka: ð3:14Þ

Let us take note of the nature of the null hypersurface in the
Jordan frame. It is important to stress that we are not
considering a different null surface H in the Jordan frame.
The hypersurface is still defined by ΦðxaÞ ¼ constant in
the Jordan spacetime as well. To establish this fact, it is
sufficient to prove that H still represents an integrable
hypersurface generated by l under the conformal trans-
formation. Taking cue from (3.14) and (3.3), its quite easy
to show that

∇̃al̃b − ∇̃bl̃a ¼ ð∇̃aρ̃Þl̃b − ð∇̃bρ̃Þl̃a
¼ ϕð∇alb −∇blaÞ þ ð∇aϕÞlb − ð∇bϕÞla:

ð3:15Þ

This implies

ð∇alb −∇blaÞ ¼ ð∂aρ̃ −∇a lnϕÞlb − ð∂bρ̃ −∇a lnϕÞla
¼ ð∂aρÞlb − ð∂bρÞla; ð3:16Þ

with the scalar function ρ on H defined by
ρ̃ ¼ ρþ lnϕþ constant. The relation (3.16) guarantees
the hypersurface orthogonality of the null surface H
generated by l defined via la ¼ eρ∇aΦ. The nonaffinity
parameter of the null generators of H are defined
via κ ¼ la∇aρ.
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From the relation (3.14), we find

θ̃ðl̃Þ ¼ θðlÞ þ li∇i lnϕ;

θ̃ðk̃Þ ¼
1

ϕ

�
θðkÞ þ ki∇i lnϕ

�
;

κ̃ ¼ κ þ li∇i lnϕ;

ω̃a ¼ ωa þ
1

2

�
laki∇i lnϕþ∇a lnϕ − kali∇i lnϕ

�
;

Ω̃a ¼ Ωa þ
1

2
qba∇b lnϕ: ð3:17Þ

Now, we start from the relation (3.4) and change the
covariant derivative operator of the Einstein frame (i.e. ∇̃i)
to the covariant derivative of the Jordan frame (i.e. ∇i).
Also, the null vectors of the Einstein frame (l̃i and k̃i) are
transformed to the null vectors of the Jordan frame using
Eq. (3.14). However, we keep other parameters (such as κ̃,
Ω̃a, θ̃ðl̃Þ, θ̃ðk̃Þ etc.) unchanged. In addition, the Ricci tensor,
the intrinsic scalar curvature of the whole manifold and the
same of the two-surface are expressed in terms of their
Jordan frame’s counterpart. With these goals in our mind,
we obtain

D̃aΩ̃a ¼ DaΩ̃a þ Ω̃i∇iðlnϕÞ: ð3:18Þ

The intrinsic scalar curvature of the two-surface transforms
as [63]

ð2ÞR̃ ¼
ð2ÞR
ϕ

−
1

ϕ
DiDiðlnϕÞ: ð3:19Þ

Also, R̃abl̃
ak̃b þ R̃=2 in Eq. (3.4) can be identified as

G̃abl̃
ak̃b, which changes under conformal transformation as

G̃abl̃
ak̃b ¼ Gablakb

ϕ
þ 3

2ϕ
lakb∇aðlnϕÞ∇bðlnϕÞ

−
lakb

ϕ2
∇a∇bϕ −

1

ϕ2
∇i∇iϕ

þ 3

4ϕ
∇iðlnϕÞ∇iðlnϕÞ: ð3:20Þ

Using the transformation relations (3.18), (3.19), and (3.20)
in (3.4) one obtains the desired Rablakb relation in the
Jordan frame, which is given as

−κ̃θ̃ðk̃Þ ¼ −DaΩ̃a − Ω̃i∇iðlnϕÞ − Ω̃aΩ̃a þ θ̃ðl̃Þθ̃ðk̃Þ þ li∇iθ̃ðk̃Þ þ
1

2ϕ
ð2ÞR −

1

2ϕ
DiDiðlnϕÞ

−
�
Rablakb

ϕ
þ R
2ϕ

þ 3

2ϕ
lakb∇aðlnϕÞ∇bðlnϕÞ −

lakb

ϕ2
∇a∇bϕ −

1

ϕ2
∇i∇iϕþ 3

4ϕ
∇iðlnϕÞ∇iðlnϕÞ

�
: ð3:21Þ

To interpret the above relation (3.21) as the thermodynamic identity, we first use the field equation in the Jordan frame [i.e.
Eq. (2.2)] in (3.21), which yields upon multiplication by the scalar field ϕ on both sides as

−ϕκ̃θ̃ðk̃Þ ¼ −ϕDaΩ̃a − Ω̃i∇iðlnϕÞ − ϕΩ̃aΩ̃a þ ϕθ̃ðl̃Þθ̃ðk̃Þ þ ϕli∇iθ̃ðk̃Þ þ
1

2
ð2ÞR −

1

2
DiDiðlnϕÞ

− lakb
��

2ωþ 3

2

��
∇aðlnϕÞ∇bðlnϕÞ −

1

2
gab∇iðlnϕÞ∇iðlnϕÞ

�
−

V
2ϕ

gab

�
−
8π

ϕ
TðmÞ
ab lakb: ð3:22Þ

The terms inside the square brackets of (3.22) can be
identified as the quantity 8πT̃ðϕ̃Þ

ab as computed in the Jordan
frame. Note that the same energy-momentum tensor for the
ϕ field was also obtained in [35] when Rablaqbc was
interpreted as a Damour-Navier-Stokes equation in Jordan
frame. Also, we know that the energy-momentum tensor of
the external matter fields are connected in the two frames as

T̃ðmÞ
ab ¼ TðmÞ

ab =ϕ. We now follow the same procedure as that
of the Einstein frame to obtain the first law of thermody-
namics. In the Einstein frame we considered the virtual
displacement of the null hypersurface from λðk̃Þ ¼ 0 to
λðk̃Þ ¼ δλðk̃Þ i.e. by an amount of δλðk̃Þ. We obviously expect
this numerical value of the displacement to remain the same

when we consider an analogous virtual displacement in the
Jordan frame. We have the relation

δxa ¼ −k̃aδλðk̃Þ ¼ −
ka

ϕ
δλðk̃Þ ¼ −kaδλk: ð3:23Þ

This above relation allows us to interpret δλðk̃Þ ¼ ϕδλk. This
can also be understood by the following way. We know
k̃a ¼ −dxa=dλðk̃Þ and ka ¼ −dxa=dλðkÞ and as k̃a ¼ ka=ϕ,
we must have δλðk̃Þ ¼ ϕδλðkÞ. Hence multiplying the
relation (3.22) with δλðk̃Þ=8π ¼ ϕδλðkÞ=8π and integrating
it over the transverse two-surface St with the integration
measure

ffiffiffi
q

p
, we have
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−
Z
St

d2xϕ
ffiffiffi
q

p κ̃

2π

1

4
θ̃ðk̃Þδλðk̃Þ ¼ −

Z
St

d2x
ffiffiffi
q

p �
T̃ðϕ̃Þ
ab þ TðmÞ

ab

ϕ

�
lakbδλðk̃Þ þ

Z
St

d2x
ffiffiffi
q

p ϕ

8π

�
1

2ϕ
ð2ÞRþ li∇iθ̃ðk̃Þ þ θ̃ðl̃Þθ̃ðk̃Þ

− Ω̃aΩ̃a − D̃AΩ̃A − Ω̃i∇iðlnϕÞ −
1

2ϕ
DiDiðlnϕÞ

�
δλðk̃Þ: ð3:24Þ

This allows us to have

−
Z
St

d2x
ffiffiffi
q

p
δλðkÞϕ2

κ̃

2π

1

4
θ̃ðk̃Þ ¼ −

Z
St

d2x
ffiffiffi
q

p
δλðkÞϕ

�
T̃ðϕ̃Þ
ab þ TðmÞ

ab

ϕ

�
lakb þ

Z
St

d2x
ffiffiffi
q

p
δλðkÞ

ϕ2

8π

�
1

2ϕ
ð2ÞRþ li∇iθ̃ðk̃Þ þ θ̃ðl̃Þθ̃ðk̃Þ

− Ω̃aΩ̃a − D̃AΩ̃A − Ω̃i∇iðlnϕÞ −
1

2ϕ
DiDiðlnϕÞ

�
: ð3:25Þ

As earlier, the above equation (3.25) can be interpreted as
the first law of the null-surface in the Jordan frame, which is
given as Z

St

d2xTδλðkÞs ¼ δλðkÞEþ FδλðkÞ: ð3:26Þ

For the moment we do not give the covariantly identified
thermodynamical quantities in the Jordan frame. This will
be given in the next discussion where we will show their
equivalence with those in the Einstein frame.

3. Thermodynamic equivalence in two frames

In the following, it will be shown that we not only obtain
the first law of thermodynamics in the two frames, but also
the fact that the thermodynamic parameters are equivalent
in the two frames. First, we identify the temperature in the
Jordan frame as T ¼ κ̃=2π. This is equivalent to the
temperature T̃ in the Einstein frame. Here, the entropy
density (s) in the Jordan frame is defined as s ¼ ffiffiffi

q
p

ϕ=4.
Therefore,

δλðkÞs ¼
ds
dλðkÞ

δλðkÞ ¼
δλðkÞ
4

�
ϕ
d

ffiffiffi
q

p
dλðkÞ

þ ffiffiffi
q

p dϕ
dλðkÞ

�
¼ −δλðkÞ

ffiffiffi
q

p
ϕ

4
ðθðkÞ þ ki∇iðlnϕÞÞ

¼ −
1

4
ϕ2 ffiffiffi

q
p

θ̃ðk̃ÞδλðkÞ ¼ −
1

4

ffiffiffĩ
q

p
θ̃ðk̃Þδλðk̃Þ ¼ δλðk̃Þs̃; ð3:27Þ

where we have used

θðkÞ ¼ −
1ffiffiffi
q

p d
ffiffiffi
q

p
dλðkÞ

: ð3:28Þ

The total entropy in the Jordan frame is defined in a similar
way as the Einstein frame, which is given as

S ¼
Z
St

sd2x ¼
Z
St

ϕ

ffiffiffi
q

p
4

d2x ¼
Z
S̃t

ffiffiffĩ
q

p
4

d2x ¼ S̃: ð3:29Þ

Here, we have used the fact that
ffiffiffĩ
q

p ¼ ϕ
ffiffiffi
q

p
. Therefore, we

obtain that the entropy density and the entropy in the two
frames are equivalent. Also, let us note that the usual area
law of entropy is not valid in the Jordan frame. But, the
obtained expression of entropy is consistent with earlier
observation [21].
The variation of the energy in the Jordan frame due to the

virtual displacement is given as

δλðkÞE ¼ 1

8π

Z
St

d2x
ffiffiffi
q

p
δλðkÞϕ2

�
1

2ϕ
ð2ÞRþ li∇iθ̃ðk̃Þ þ θ̃ðl̃Þθ̃ðk̃Þ − Ω̃aΩ̃a − D̃AΩ̃A − Ω̃i∇iðlnϕÞ −

1

2ϕ
DiDiðlnϕÞ

�
: ð3:30Þ

The expression of energy associated with the two-surface St is identified as

E ¼ 1

8π

Z
St

Z
d2x

ffiffiffi
q

p
dλðkÞϕ2

�
1

2ϕ
ð2ÞRþ li∇iθ̃ðk̃Þ þ θ̃ðl̃Þθ̃ðk̃Þ − Ω̃aΩ̃a − D̃AΩ̃A − Ω̃i∇iðlnϕÞ −

1

2ϕ
DiDiðlnϕÞ

�
: ð3:31Þ
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It is quite evident using (3.18) and (3.19) that the
expressions for the variation of the energy (3.30) and the
energy (3.31) in the Jordan frame are equivalent to the ones
established in the Einstein frame, viz. (3.10) and (3.11),
respectively. Hence we have established the fact that the
energy terms are equivalent in both frames under the
process of virtual displacement.
The work done under the virtual displacement process in

the Jordan frame is identified as

W ¼ −
Z
St

d2x
ffiffiffi
q

p
δλðkÞϕ

�
T̃ðϕ̃Þ
ab þ TðmÞ

ab

ϕ

�
lakb ¼ FδλðkÞ:

ð3:32Þ

Using the relevant transformations i.e. ka ¼ ϕk̃a,

T̃ðmÞ
ab ¼ 1

ϕT
ðmÞ
ab , δλðkÞ ¼ δλðk̃Þ=ϕ, and

ffiffiffĩ
q

p ¼ ϕ
ffiffiffi
q

p
we obtain

FδλðkÞ ¼ −
Z
St

d2x
ffiffiffi
q

p
δλðkÞϕ

�
T̃ðϕ̃Þ
ab þ TðmÞ

ab

ϕ

�
lakb

¼ −
Z
S̃t

d2x
ffiffiffĩ
q

p
δλðk̃ÞðT̃ðϕ̃Þ

ab þ T̃ðmÞ
ab Þl̃ak̃b

¼ F̃δλðk̃Þ: ð3:33Þ

Hence we see that the work done under the virtual
displacement process is equivalent in both the Jordan
and the Einstein frames. Even though the work function
turns out to be equivalent, the pressure terms in the
respective frames are not synonymous under our interpre-
tation. We identify the pressure (P) in the Jordan frame as

P ¼ −ðϕT̃ðϕ̃Þ
ab þ TðmÞ

ab Þlakb: ð3:34Þ

Obviously, the pressure functions in the two frames are not
equivalent i.e. P̃ ≠ P. Our identification of the pressure
term comes from the fact that the force conjugate to the
virtual displacement δλðkÞ in the Jordan frame is given as
the integral of the pressure term over the two-surface St,

F ¼
Z
St

d2x
ffiffiffi
q

p
P: ð3:35Þ

So far we have seen that, like Einstein gravity, the ST
theory has also a similar thermodynamic structure on a
generic null surface. We found the thermodynamic quan-
tities on both frames and constructed them in such a way
that they are equivalent. It must be mentioned that this
identification of quantities is purely an analogy. A com-
parison with the familiar thermodynamics yields such
interpretations. But it may happen that the aforesaid null
surface may not be describing an equilibrium system and
therefore defining the geometric quantities in terms of
thermodynamic entities runs into trouble. Hence the

discussion till now has been based on a formal analogy
between gravitational equations and conventional thermo-
dynamic identities. On the contrary if the manifold has a
Killing horizon present in it (which represents a stationary
solution of the gravity theory) then, in the light of
constancy of surface gravity on the horizon and area (more
generally entropy) increase theorem, the thermodynamic
interpretation is much more logical. Having said that we
mention that the entropy increase theorem for a Killing
horizon in the ST theory has been discussed in literature
[34]. But constancy of surface gravity on the equilibrium
Killing horizon in this theory, as far as we aware of, has not
been proven explicitly. Of course, there is a mention in
literature that for the zeroth law to hold, the scalar field ϕ
must be constant on the horizon, i.e. it must not only be
independent of the coordinate along the null generator, but
also of coordinates on St. In our point of view the latter
restriction is very strong. Therefore we aim to look into this
issue here. We will posit the existence of a black-hole
spacetime. The Killing vector field is only timelike in some
open region of the manifold i.e. outside a compact region.
We mean that only this open region of the spacetime is
stationary. The vanishing norm of the Killing vector field
determines the position of the Killing horizon. We will see
in the next discussion that the existence of a timelike
Killing vector field in the stationary region of the spacetime
and the scalar field ϕ being Lie transported along it are
enough to prove the constancy of surface gravity on the
horizon. Therefore to obtain the zeroth law in general, ϕ
can be a function of coordinates on St.

IV. STUDY OF THE ZEROTH LAW
IN BOTH FRAMES

Having stated our motivation, we are now going to prove
the zeroth law (in other words, constancy of surface
gravity) in this section. As far as the literature is concerned,
the proof of the zeroth law crucially depends on the
assumptions in the theory. The assumptions constrain the
generality of the proof in turn. As far as we know, the zeroth
law has been proven under three specific assumptions.

(i) Use of the gravitational field equations along with
the assumption that the nongravitational and matter
fields satisfy the null dominant energy condition
(NDEC). This approach does not assume any extra
symmetries of the spacetime other than the existence
of a Killing vector field. This has been explicitly
proven for the case of Einstein gravity [63] and
Lanczos-Lovelock gravity [67]. Our proof of the
constancy of the surface gravity in this section for
the case of ST gravity rests upon this assumption.

(ii) Assumption of the existence of bifurcate Killing
horizons without the need of any gravitational field
equations [49]. This however is restrictive since not
all Killing horizons admit a bifurcation two-surface.
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(iii) Assumptions of extra symmetries in the spacetime
without the need of any field equations. This has
been explicitly shown in the case of static and
circular (stationary axisymmetric with t-ϕ reflection
symmetry) spacetimes admitting the Killing horizon
[68–70]. We present a proof (which we hope will
add to the existing literature) of the zeroth law for
static spacetimes in Appendix C.

Our analysis will be done both in Einstein and Jordan
frames. In order to do that we start by constructing the
background requisites.
Let us posit the existence of a Killing vector χ̃ in the

Einstein frame ðM; g̃ab; ϕ̃Þ defined via

£χ̃ g̃ab ¼ðM;g̃;ϕ̃Þ
0: ð4:1Þ

Using the above fact and g̃ab ¼ ϕgab, we have

£χ̃gab ¼ðM;g;ϕÞ
−
1

ϕ
ð£χ̃ϕÞgab: ð4:2Þ

This shows that provided £χ̃ ϕ ≠
ðM;g;ϕÞ

0, the vector field χ̃
becomes the conformal Killing vector field in the Jordan
spacetime ðM; gab;ϕÞ. However, provided we impose the
constraint

£χ̃ ϕ ¼ðM;g;ϕÞ
0; ð4:3Þ

we observe that χ̃ is also the Killing vector field in the
Jordan frame as well. As a matter of field renaming (as per
our conventions) we can define the generator of this Killing
symmetry in the Jordan spacetime ðM; gab;ϕÞ to be χ and
hence χ̃ and χ coincide in ðM; gab;ϕÞ i.e.

χ̃a ¼ðM;gab;ϕÞχa: ð4:4Þ

The above relation has been followed from [20] and has
also been imposed in [19]. Obviously, we notice that the
contravariant components of the Killing vectors match in
the two frames, whereas the covariant vectors are related by
the conformal factor. Hence the constraint (4.3) translates
to the condition,

χa∇aϕ ¼ðM;gab;ϕÞ
0: ð4:5Þ

We now show what the condition (4.5) implies in the
Einstein frame. In fact taking the help of the rescaling of the
scalar field ϕ (2.4) we can show that

χ̃a∇̃aϕ̃ ¼ χ̃a∂aϕ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2ωðϕÞ þ 3Þ

16π

r
1

ϕ
χa∇aϕ: ð4:6Þ

The above relation clearly implies that setting the constraint

χa∇aϕ ¼ðM;gab;ϕÞ
0 in the Jordan frame results in an analogous

constraint in the Einstein frame, i.e.

χ̃a∇̃aϕ̃ ¼ðM;g̃ab;ϕ̃Þ
0: ð4:7Þ

Having established the connections between the constraints
(4.5) and (4.7) in the two frames, we now switch our
attention to the Killing horizons established in the two
respective spacetimes. We reiterate that the Einstein frame
ðM; g̃ab; ϕ̃Þ and the Jordan frame ðM; gab;ϕÞ admit the
Killing vector fields χ̃ and χ respectively upon which we
have assumed the existence of the constraints (4.5)
and (4.7).
A Killing horizon H̃ðKÞ in the Einstein frame ðM; g̃ab; ϕ̃Þ

admitting the Killing vector field χ̃ is by definition a null
hypersurface of codimension one such that χ̃ is normal to
H̃ðKÞ and hence coincides with the null generators of H̃ðKÞ.
Under the assumption of the constraint (4.5) and ϕ being
finite on the horizon, we necessarily see that the Killing
horizon H̃ðKÞ under the conformal transformation (2.3) and
scalar field rescaling (2.4) is mapped to a Killing horizon
HðKÞ in the Jordan frame ðM; gab;ϕÞ. The null generators
of HðKÞ coincide with the Killing field χ on HðKÞ.
Furthermore, we assume that the respective Killing hori-
zons have (transverse to the null generators) spacelike cross
sections that are closed manifolds. The null generators
satisfy the pregeodesic equation on their respective Killing
horizons,

χ̃b∇̃bχ̃
a ¼H̃ðKÞ

κ̃ χ̃a ð4:8Þ

and

χb∇bχ
a ¼HðKÞ

κχa; ð4:9Þ

where κ̃ and κ are the nonaffinity parameters and the surface
gravities associated with the null generators χ̃ and χ of H̃ðKÞ

and HðKÞ respectively. It is worth noticing from (3.17) and
under the constraint (4.3) imposed on the scalar field that κ̃
and κ are the same.
We now shift our attention towards the consideration of

the zeroth law of black hole mechanics as applied to the
Killing horizons in the two frames. Our proof toward the
constancy of the surface gravity in the Killing horizon will
demand the dynamical content of the theory, in the sense
that we will use the gravitational field equations. The
dynamical field equations come into play provided we use
some energy conditions. For our case, we will assume that
the NDEC holds. We will prove the zeroth law as applied to
the Killing horizons in both frames in two different ways.
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A. Approach I

For the first approach we basically follow [63]. We
observe that the relations (4.8) and (4.9) are applicable only
on the respective Killing horizons. Hence directly applying
the derivative operator ∇a onto such relations that are only
valid on the Killing horizon leads us to problems. In order
to prove the constancy of the surface gravity we basically
need to take its directional derivative along a vector/tensor
field that lies in the tangent plane of the Killing horizon.
The Killing horizon being a null surface makes it impos-
sible to have a well-defined projection tensor onto it using
only the metric and the null normal. However we can look
at the tensor field ϵabcdχa which is tangent to the Killing
horizon as is evident from the fact that ϵabcdχaχb ¼ 0. Here
ϵabcd is the spacetime volume form. Hence we can apply the
derivative operator ϵabcdχa∇b as applied to relations that
are valid only on the Killing horizon. Taking the completely
antisymmetric nature of the volume form, we may as well
take the derivative operator χ½a∇b� as applied to relations
valid only on the Killing horizon. For any Killing horizon
generated by χ, we have the relation [63]

χ½a∇b�κ ¼HðKÞ
− χ½aRb�fχf; ð4:10Þ

where Rab stands for the Ricci tensor.

1. Einstein frame

Let us now begin our analysis in the Einstein frame
ðM; g̃ab; ϕ̃Þ as applied to the Killing horizon H̃ðKÞ gen-
erated by χ̃. The resulting equation concerning the change
of the surface gravity κ̃ along any direction tangent to the
Killing horizon HðKÞ is given by

χ̃½a∇̃b�κ̃ ¼H̃ðKÞ
−χ̃½aR̃b�f χ̃f: ð4:11Þ

Using the field equations (2.5), we compute the right-hand
side of (4.11) which leads us to

χ̃½aR̃b�f χ̃f ¼ 16π

�
1

2
χ̃½aT̃

ðmÞf
b� χ̃f þ

1

2
χ̃½a∇̃b�ϕ̃ð∇̃fϕ̃χ̃fÞ

−
1

4
χ̃½aδb�f χ̃fð∇̃iϕ̃∇̃iϕ̃Þ

−
1

2
χ̃½aδb�f χ̃fUðϕ̃Þ þ 1

32π
χ̃½aδb�f χ̃fR̃

�
: ð4:12Þ

Using the constraint (4.7) as applied to the Einstein frame
the above relation simplifies which allows us to express
(4.11) as

χ̃½a∇̃b�κ̃ ¼H̃ðKÞ
−χ̃½aR̃b�f χ̃f ¼H̃ðKÞ

− 8πχ̃½aT̃
ðmÞf
b� χ̃f: ð4:13Þ

Next, we notice that projecting the field equations (2.5)
along the null generators of H̃ðKÞ we have

Ẽabχ̃
aχ̃b ¼ 1

16π
G̃abχ̃

aχ̃b −
1

2
ðχ̃a∇̃aϕ̃Þðχ̃b∇̃bϕ̃Þ

þ 1

4
χ̃ 2∇̃iϕ̃∇̃iϕ̃þ 1

2
χ̃ 2Uðϕ̃Þ;

¼ 1

2
T̃ðmÞ
ab χ̃aχ̃b ð4:14Þ

where χ̃ 2 stands for g̃abχ̃aχ̃b. Employing the constraint as
applied in the Einstein frame (4.7) and the fact that χ̃ is null
on the Killing horizon H̃ðKÞ, we obtain

R̃abχ̃
aχ̃b ¼H̃ðKÞ

8πT̃ðmÞ
ab χ̃aχ̃b: ð4:15Þ

As mentioned earlier, we assume that our Killing horizon
H̃ðKÞ is a null hypersurface provided with the topology
H̃ðKÞ ≃ R × J̃ , where the spacelike cross-section J̃ is a
closed two-dimensional manifold (this is similar to the St
describing the cross section of our earlier generic null
surface). The induced metric onto the cross-section J̃ is
designated as q̃ab. The null generator χ̃ satisfies (4.1),
which implies that χ̃ is a symmetry generator of H̃ðKÞ. Now
since q̃ab is the metric induced by g̃ab on J̃ and the fact that
the basis vectors on J̃ are Lie transported along the null
generators, we have the deformation rate tensor Θ̃ab of J̃
(which coincides with the second fundamental form for an
integrable null hypersurface in the absence of torsion) [48]
vanishing identically,

Θ̃ab ¼
1

2
q̃caq̃db£χ̃ q̃cd ¼H̃ðKÞ

0: ð4:16Þ

The irreducible decomposition of the deformation tensor

Θ̃ab ¼
1

2
q̃abθ̃ðχ̃ Þ þ σ̃ab; ð4:17Þ

where θ̃ðχ̃ Þ denotes the expansion scalar corresponding to
the null generator χ̃ and σ̃ab the shear tensor necessitates the
fact that

θ̃ðχ̃ Þ ¼H̃
ðKÞ
0 and σ̃ab ¼H̃ðKÞ

0: ð4:18Þ

This is precisely because the cross-section J̃ is spacelike in
nature. Now we can use the NRE as applied on H̃ðKÞ to find
the value of R̃abχ̃

aχ̃b. The NRE reads as

χ̃a∇̃aθ̃ ˜ðχ Þ − κ̃θ̃ ˜ðχ Þ þ
1

2
θ̃2 ˜ðχ Þ þ σ̃abσ̃

ab ¼H̃ðKÞ
− R̃abχ̃

aχ̃b: ð4:19Þ

As applied to the specific Killing horizon H̃ðKÞ, where we
established that the expansion scalar and the shear tensor
for χ̃ vanish, the NRE implies
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R̃abχ̃
aχ̃b ¼H̃ðKÞ

0: ð4:20Þ

This entails the fact from (4.15) that

T̃ðmÞ
ab χ̃aχ̃b ¼H̃ðKÞ

0: ð4:21Þ

From the above relation we can conclude that the vector
field T̃ðmÞa

bχ̃
b lies on the tangent plane of the Killing

horizon and hence is either null (collinear to χ̃ ) or spacelike
(in the tangent plane of J̃ ). To proceed ahead, wewill make
the assumption that the matter and the nongravitational
fields in ðM; g̃ab; ϕ̃Þ satisfy the null dominant energy
condition. The NDEC states that the vector field W̃a

defined as

W̃a ≡ −T̃ðmÞa
bχ̃

b ð4:22Þ

is future directed causal (null or timelike) for the future
directed null generator χ̃ of H̃ðKÞ. However, we have
already shown that on H̃ðKÞ, the vector field T̃ðmÞa

bχ̃
b

can either be null or spacelike. Hence the NDEC forces
T̃ðmÞa

bχ̃
b to be null on the Killing horizon and hence

collinear to the null generators,

−T̃ðmÞa
bχ̃

b ¼H̃ðKÞ
α̃ χ̃a; ð4:23Þ

where α̃ is some proportionality factor. Using the above
relation in (4.13), we finally end up with the establishment
of the zeroth law as applied on the Killing horizon in
ðM; g̃ab; ϕ̃Þ,

χ̃½a∇̃b�κ̃ ¼H̃ðKÞ
0: ð4:24Þ

This basically shows the constancy of the surface gravity
over the entire Killing horizon H̃ðKÞ established in the
Einstein frame ðM; g̃ab; ϕ̃Þ by the null generators χ̃ .

2. Jordan frame

Now, we proceed toward the establishment of the zeroth
law in the Jordan frame ðM; gab;ϕÞ. As again, we reiterate
that under the constraint (4.5), the Einstein frame
ðM; g̃ab; ϕ̃Þ with the Killing vector ðχ̃ Þ is mapped (under
the conformal transformation of the metric and the scaling
of the scalar field) to the Jordan frame ðM; gab;ϕÞwith the
Killing vector field χ . We further posit the existence of a
Killing horizon HðKÞ in the Jordan frame where its null
generators l coincide with the Killing vector χ ,

l ¼HðKÞ
χ : ð4:25Þ

The topology of the Killing horizon in the Jordan frame
should remain the same, in the sense that the spacelike
cross section of the null surface is assumed to be a closed
manifold. The same analysis toward the fact that the Killing
horizon HðKÞ is a nonexpanding horizon follows. The null
Killing vector χ is a symmetry generator of the Killing
Horizon HðKÞ,

£χgab ¼HðKÞ
0: ð4:26Þ

This again implies that the deformation rate tensor and the
second fundamental tensor corresponding toHðKÞ vanishes.
So does the expansion scalar and the shear tensor corre-
sponding to the null generator χ. Again, application of the
NRE for χ , leads us to the fact that

Rabχ
aχb ¼HðKÞ

0: ð4:27Þ

As applied to the Killing horizon HðKÞ, the analogous
relation holds regarding the directional derivative of the
surface gravity along any vector field tangent to the null
surface (4.10). Its is quite easy to verify that the right-hand
side of (4.10) upon application of the field equations in the
Jordan frame leads us to

−χ½aR̃b�fχf ¼ðM;gab;ϕÞ −
1

ϕ

�
8πχ½aT

ðmÞf
b� χf −

ω

2ϕ
χ½aδb�fχfð∇iϕ∇iϕÞ þ ω

ϕ
χ½a∇b�ϕðχf∇fϕÞ

−
1

2
χ½aδb�fχfVðϕÞ þ ðχ½a∇b�∇fϕÞχf − χ½aδb�fχfð∇i∇iϕÞ

�
−
1

2
χ½aδb�fχfR: ð4:28Þ

Using the constraint as applied in the Jordan frame (4.5)
and simplifying the above result, we have then for (4.10)

χ½a∇b�κ ¼HðKÞ
−
1

ϕ

�
8πχ½aT

ðmÞf
b� χfþχfðχ½a∇b�∇fϕÞ

�
: ð4:29Þ

Next, we have the fact that

£χ ð∇aϕÞ ¼ðM;gab;ϕÞ
0: ð4:30Þ

This is again to be expected since the scalar field ϕ is Lie
transported along χ as evident under the constraint (4.5)
and therefore the quantity ð∇aϕÞ is expected to satisfy the
symmetry of the spacetime. However we give a brief sketch
of this in Appendix D. Using (4.30), we can verify that
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χfðχ½a∇b�∇fϕÞ ¼H
ðKÞ
0: ð4:31Þ

A detailed outlined proof of this is given in Appendix D. So
finally, we obtain from (4.29) and (4.31)

χ½a∇b�κ ¼HðKÞ
−
1

ϕ
8πχ½aT

ðmÞf
b� χf: ð4:32Þ

Next, we proceed to calculateTðmÞ
ab χaχb on theKilling horizon.

Using the field equations of motion (2.2), we can show that

Eabχ
aχb ¼ðM;gab;ϕÞ 1

16π

�
ϕGabχ

aχb þ ω

2ϕ
χ 2ð∇iϕ∇iϕÞ − ω

ϕ
ðχa∇aϕÞðχb∇bϕÞ

þ 1

2
χ 2VðϕÞ − χaχb∇a∇bϕþ χ 2ð∇i∇iϕÞ

�
¼ 1

2
TðmÞ
ab χaχb: ð4:33Þ

On the Killing horizon HðKÞ, χ is null and the projection
component Rabχ

aχb vanishes (4.27). Upon using the
constraint relation (4.5), we obtain from (4.33)

−χaχb∇a∇bϕ ¼HðKÞ
8πTðmÞ

ab χaχb: ð4:34Þ

Using the relation (4.30), it can be easily shown that
χaχb∇a∇bϕ vanishes on HðKÞ,

χaχb∇a∇bϕ¼ χað£χ ð∇aϕÞ−∇bϕ∇aχ
bÞ ¼HðKÞ

−κχb∇bϕ ¼HðKÞ
0:

ð4:35Þ

Hence this allows us to finally conclude that

TðmÞ
ab χaχb ¼HðKÞ

0: ð4:36Þ

The above relation implies as usual that the vector field

TðmÞa
b χb lies on the tangent space of the Killing horizon

HðKÞ and hence is either null or spacelike. From the
invariance of the matter action under conformal trans-
formations

ÃðmÞ ¼
Z

d4x
ffiffiffiffiffiffi
−g̃

p
L̃ðmÞ ¼

Z
d4x

ffiffiffiffiffiffi
−g

p
LðmÞ ¼AðmÞ; ð4:37Þ

we necessarily have the following relation between the
matter (and nongravitational) Lagrangians between the
Einstein and the Jordan frames, under the conformal
transformation rule (2.3),

L̃ðmÞ ¼ Ω−4LðmÞ: ð4:38Þ

From the definition of the matter energy-momentum tensor,

T̃ðmÞ
ab ¼ 2ffiffiffiffiffiffi

−g̃
p δ

δg̃ab

� ffiffiffiffiffiffi
−g̃

p
L̃ðmÞ

�

¼ Ω−4 ∂gcd
∂g̃ab

2ffiffiffiffiffiffi−gp δ

δgcd

� ffiffiffiffiffiffi
−g

p
LðmÞ

�
; ð4:39Þ

we have the following relations between the matter energy-
momentum tensors in the two conformal frames,

T̃ðmÞ
ab ¼ Ω−2TðmÞ

ab ; T̃ðmÞa
b ¼ Ω−4TðmÞa

b ;

T̃ðmÞab ¼ Ω−6TðmÞab: ð4:40Þ

Now, since Ω2 ¼ ϕ is a strictly positive function of the
spacetime coordinates, we conclude via (4.40) that if the
NDEC holds in the Einstein frame, then it must also
necessarily hold in the Jordan frame. The vector field
Wa defined as

Wa ≡ −TðmÞa
bχ

b ð4:41Þ

is future directed timelike or null for any future directed
null vector field χ . But again, we have previously shown

that TðmÞa
b can either be null or spacelike. Hence the NDEC

as applied to HðKÞ forces TðmÞa
b to be null on the Killing

horizon and hence is collinear to its null generators,

−TðmÞa
bχ

b ¼HðKÞ
αχa; ð4:42Þ

where α is some proportionality factor. Finally using the
above relation in (4.32), we get to our desired goal,

χ½a∇b�κ ¼HðKÞ
0: ð4:43Þ

So we have essentially established the constancy of the
surface gravity κ over the Killing horizon HðKÞ i.e. the
zeroth law holds for the Killing horizon established in
the Jordan frame under the constraint (4.5).

B. Approach II

Now we give a different proof of the zeroth law in the
two frames considered. However, this proof also relies
upon the dynamical content of the theory in the sense that
the field equations are used under the fact that the NDEC
holds in both frames. The method we follow is adopted
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from [71]. Let us begin with very generic considerations in
the sense that suppose our spacetime ðM; gabÞ admits a
Killing vector field χ . The vector field χ then generates the
Killing horizon in the given spacetime, in the sense that χ
coincides with the null generators of the Killing horizon.
The surface gravity κ of the Killing horizonH is defined as

κ2¼H −
1

2
∇aχb∇aχb: ð4:44Þ

We can show, without using the gravitational field equa-
tions, that κ is constant along the null generators. After all,
this is to be expected since χ is the symmetry generator of
the horizon H. Taking the directional derivative of the
above equation (4.44) along the null generators χ , we have

2κðχi∇iκÞ¼H − ð∇aχbÞðχi∇i∇aχbÞ¼H − ð∇aχbÞRbaidχ
iχd¼H0:
ð4:45Þ

Since κ is nonzero on the horizon (nondegenerate), we
necessarily have

ðχi∇iκÞ¼H0: ð4:46Þ

As a result once we have established the fact that we have
respective Killing horizons in the two frames, we should be
content in proving the constancy of the surface gravity only
along the spacelike directions. This is exactly the point
where we will require the respective field equations in the
two frames. As before, we assume that the Killing horizon
H has a topology of R × J , where J is a closed spacelike
manifold transverse to the null generators. We can establish
the relation [71]

Dcκ¼H − Rabχ
aqbc; ð4:47Þ

where Dc denotes the derivative with respect to the
spacelike manifold ðJ ; qÞ and qab ¼ δab þ χakb þ kaχb
denotes the induced metric on J with ka being the auxiliary
null vector transverse to H.

1. Einstein frame

We now follow up with this in the Einstein frame
ðM; g̃ab; ϕ̃Þ where we have for the Killing horizon H̃ðKÞ

generated by χ̃ [having the spacelike cross-section ðJ̃ ; q̃Þ],

D̃cκ̃ ¼H̃ðKÞ
−R̃abχ̃

aq̃bc: ð4:48Þ

Using the field equations in the Einstein frame (2.5) its
quite easy to show that

R̃abχ̃
aq̃bc ¼ 16π

�
1

2
T̃ðmÞ
ab χ̃aq̃bc þ

1

2
ðχ̃a∇̃aϕ̃ÞD̃cϕ̃

�
: ð4:49Þ

Use of the constraint relation (4.7) allows us to have

D̃cκ̃ ¼H̃ðKÞ
−8πT̃ðmÞ

ab χ̃aq̃bc: ð4:50Þ

Invoking the validity of the NDEC as applied to the
Einstein frame, we have

−T̃ðmÞ
ab χ̃a ¼H̃ðKÞ

β̃ χ̃b; ð4:51Þ

where β̃ is some proportionality factor. This further allows
us to conclude that the right-hand side of (4.50) on the
Killing horizon H̃ðKÞ is

−8πT̃ðmÞ
ab χ̃aq̃bc ¼H̃

ðKÞ
− 8πβ̃χ̃bq̃bc ¼ 0: ð4:52Þ

The last part comes from the fact that the null generator of
H̃ðKÞ is orthogonal to the spacelike cross-section J̃ . So in
essence, we have finally showed that in the Einstein frame,
the zeroth law holds,

D̃cκ̃ ¼H̃ðKÞ
0: ð4:53Þ

2. Jordan frame

We now proceed towards the Jordan frame where we
have the relation established on the Killing horizon HðKÞ
[with the spacelike cross-section ðJ ; qÞ],

Dcκ ¼HðKÞ
− Rabχ

aqbc: ð4:54Þ

Again, using the field equations (2.2) for the Jordan frame
and the constraint (4.5) it is quite easy to show that

Rabχ
aqbc ¼

1

ϕ

�
8πTðmÞ

ab χaqbc þ χaqbc∇a∇bϕ

�
: ð4:55Þ

The quantity χaqbc∇a∇bϕ vanishes on the Killing horizon
HðKÞ,

χaqbc∇a∇bϕ ¼HðKÞ
0: ð4:56Þ

This has been shown in Appendix E. This allows us again
to have

Dcκ ¼HðKÞ
−
1

ϕ
8πTðmÞ

ab χaqbc: ð4:57Þ

Similar validity of the NDEC in the Jordan frame allows us
to establish the fact that the right-hand side of (4.57)
vanishes onHðKÞ. Hence we finally establish the zeroth law
as well in the Jordan frame,
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Dcκ ¼HðKÞ
0: ð4:58Þ

Since temperature is proportional to surface gravity, the
above analysis shows that the temperature is constant over
the horizon. This we have shown separately in both the
frames.

V. CONCLUSION

There has been much debate about the physical (in)
equivalence of the Jordan and the Einstein frame and the
question still remains as to what can be considered “more”
physical than the other. Any establishment of (in)equiv-
alences of physical and thermodynamical quantities can
only help us to address such long-standing issues. Our
present work has been focused in this particular direction
aimed at the thermodynamical aspects of the gravitational
theories in the two frames. In earlier works, it had been
shown in the context of Killing horizons present in the
spacetime that the thermodynamic parameters are equiv-
alent in the two frames. However, the presence of the
Killing horizon imposes symmetry requirements on the
spacetime. Moreover, since the Killing horizon describes a
stationary equilibrium black hole system, the equivalence
of such thermodynamic parameters is restricted only to
equilibrium processes. However, it has been established
that at least for Einstein gravity and the Lanczos-Lovelock
gravity the gravitational field equations expressed in the
neighborhood of a generic null hypersurface assumes a
thermodynamic interpretation in analogy with the first law
of thermodynamics. The presence of this generic null
surface does not ask for any symmetry requirements on
the spacetime. The resulting thermodynamical interpreta-
tion given under the context of virtual displacement of the
null hypersurface incorporates both equilibrium as well as
nonequilibrium processes. That is such an interpretation is
capable of handing internal entropy generation due to
dissipation or viscous effects under the process of virtual
displacement [43]. We have shown that such an equiv-
alence of the relevant thermodynamic parameters also
exists in the case of ST theory of gravity. For this, we
used the projection component Rablakb onto a generic null
hypersurface established in both the Einstein and the
Jordan frames. Through their respective dynamics and
the process of virtual displacements, we connected the
component Rablakb to the relevant thermodynamic iden-
tities (established on the null hypersurface) in both frames
in a completely covariant fashion. We stress again that such
an identity has been interpreted not via any coordinate
system adapted to the null hypersurface (say the GNC
system). Our analysis has been done completely in a
covariant fashion which allows us to provide covariant
expressions of the relevant thermodynamical parameters,
which can then be adapted to any coordinate system
of the person’s choice describing the spacetime in the

neighborhood of the null surface. This allowed us to
interpret from the analogical thermodynamical first law
established in both frames that the quantities like temper-
ature, entropy density, energy, and the work function are
equivalent in both frames. Finally, this nicely ties in with
another interpretation provided under the umbrella of
the projection component Rablaqbc which leads to the
Damour-Navier-Stokes equation. The equivalence of the
relevant fluid variables (of the DNS equation) in the two
frames had previously been established. Thus such fluid
variables and thermodynamic parameters operate on an
equal footing when the two frames are considered. This we
hope lends much ground to the issue about the physical
equivalences between the two frames.
Let us reiterate the fact that the above thermodynamical

interpretation (using the field equations in the two frames)
had been drawn based on analogy with conventional
thermodynamics. This however does not allow concrete
physical interpretation of the thermodynamic variables,
especially the temperature. In conventional thermodynam-
ics, the temperature is essentially an intensive variable
whose constancy defines the notion of thermal equilibrium
between two thermal systems under contact. This is
essentially the statement of the zeroth law of thermody-
namics. However, for gravitational dynamics, there is
actually no notion of two black hole systems being in
thermal equilibrium with each other. The zeroth law of
black hole mechanics says that a black hole system in
thermal equilibrium must be by definition a Killing horizon
(defining a stationary black hole system) over which its
surface gravity is constant. This constancy of the surface
gravity allows us then to give a concrete identification and
interpretation of the temperature associated with any
generic null hypersurface. So our analysis would be quite
well rounded if we could prove the zeroth law as estab-
lished in Killing horizons in the two frames.
The zeroth law for scalar-tensor theory had been estab-

lished in the literature under the constraint that the scalar
field needed to be constant over the Killing horizon.
However, we believe that this is a bit too restrictive. In
the second part of our analysis, we showed that in order for
the zeroth law to hold in both the frames, the only
requirement we demanded of the scalar field was for it
to respect the symmetry of the given spacetime. That is, we
only demanded that the scalar field is Lie transported along
the symmetry generator of the spacetime. This implies that
on the Killing horizon the scalar field is independent of the
coordinate along the null symmetry generator, but can very
well depend on the angular/transverse coordinates. We did
not put any extra symmetries on the spacetime other than to
impose that the matter and nongravitational fields in the
two frames satisfy the NDEC.
Finally, we believe that our results based on the thermo-

dynamic identity valid on any generic null hypersurface
and the proof of the zeroth law in the two frames provide
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some clarification into questions regarding their physical
equivalences (or inequivalences for that matter). It is
worthwhile to mention that at the classical level a certain
class of fðRÞ gravity can be cast in the form of ST theories
(as not possible in general; for instance see [72] and
references therein). The thermodynamic structure of such
fðRÞ theories can be discussed along the present line of
thought. We hope that our analysis will help shed more
light onto the nature of physics in both the Einstein and the
Jordan frame.
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APPENDIX A: EQUIVALENCE OF EQ. (3.4) AND
EQ. (3.2) UNDER THE CONFORMAL

TRANSFORMATION

Using Eq. (3.17), one obtains the following relations:

D̃aΩ̃a ¼ 1

ϕ
DaΩa þ 1

2ϕ

�
θðlÞki þ θðkÞli

�
∇iðlnϕÞ

þ qab

2ϕ
∇a∇bðlnϕÞ; ðA1Þ

θ̃ðl̃Þθ̃ðk̃Þ ¼
1

ϕ

�
θðlÞθðkÞ þ

�
θðlÞki þ θðkÞli

�
∇iðlnϕÞ

þ likj∇iðlnϕÞ∇jðlnϕÞ
�
; ðA2Þ

l̃i∇̃iθ̃ðk̃Þ ¼
1

ϕ
li∇iθðkÞ þ

1

ϕ

�
Ωi − κki − θðkÞli

�
∇iðlnϕÞ

−
likj

ϕ
∇iðlnϕÞ∇jðlnϕÞ þ

likj

ϕ
∇i∇jðlnϕÞ: ðA3Þ

Using (3.18), (3.19), (3.20), (A1), (A2), and (A3) in (3.4)
one obtains (3.2).

APPENDIX B: OBTAINING EQ. (3.21) STARTING
FROM EQ. (3.2)

We start from (3.2) and write each parameter of the
Jordan frame (such as θðlÞ, θðkÞ, κ, Ωa etc.), in terms of the
parameters of the Einstein frame (such as θ̃ðl̃Þ, θ̃ðk̃Þ, κ̃, Ω̃

a

etc.) using Eq. (3.17). We consider term-by-term of
Eq. (3.2) and obtain the following relations for each term:

κθðkÞ ¼ ϕκ̃θ̃ðk̃Þ − κ̃ki∇iðlnϕÞ − ϕθ̃ðk̃Þl
i∇iðlnϕÞ

þ likj∇iðlnϕÞ∇jðlnϕÞ; ðB1Þ

DaΩa ¼ ϕDaΩ̃a þ Ω̃aDaϕ −
1

2
DaDaðlnϕÞ; ðB2Þ

θðlÞθðkÞ ¼ ϕθ̃ðl̃Þθ̃ðk̃Þ − ϕθ̃ðk̃Þl
i∇iðlnϕÞ − θ̃ðl̃Þk

i∇iðlnϕÞ
þ likj∇iðlnϕÞ∇jðlnϕÞ: ðB3Þ

Now, we know that DaDaðlnϕÞ ¼ qij∇iðqjk∇kðlnϕÞÞ,
from which it can be obtained that

DaDaðlnϕÞ ¼ qij∇i∇jðlnϕÞ þ ½θðl̃Þki þ θðk̃Þl
i�∇iðlnϕÞ:

ðB4Þ

Writing θðlÞ and θðkÞ in terms of θ̃ðl̃Þ and θ̃ðk̃Þ, one further
obtains

DaDaðlnϕÞ ¼ qij∇i∇jðlnϕÞ þ ϕθ̃ðk̃Þl
i∇iðlnϕÞ

þ θ̃ðl̃Þk
i∇iðlnϕÞ − 2likj∇iðlnϕÞ∇jðlnϕÞ:

ðB5Þ

Using (B5) in (B3), one obtains

θðlÞθðkÞ ¼ ϕθ̃ðl̃Þθ̃ðk̃Þ −DaDaðlnϕÞ þ qij∇i∇jðlnϕÞ
− likj∇iðlnϕÞ∇jðlnϕÞ: ðB6Þ

Writing Ωa in terms of Ω̃a we obtain

ΩaΩa ¼ ϕΩ̃aΩ̃a − ϕΩ̃i∇iðlnϕÞ þ
1

4
qij∇iðlnϕÞ∇jðlnϕÞ:

ðB7Þ

Finally we obtain

li∇iθðkÞ ¼ ϕli∇iθ̃ðk̃Þ þ ϕθ̃ðk̃Þl
i∇iðlnϕÞ − ϕΩ̃i∇iðlnϕÞ

þ 1

2
qij∇iðlnϕÞ∇jðlnϕÞ þ ϕκ̃k̃i∇iðlnϕÞ

− likj∇iðlnϕÞ∇jðlnϕÞ − likj∇i∇jðlnϕÞ: ðB8Þ

Now, using (B1), (B2), (B6), (B7), and (B8) in Eq. (3.2),
one obtains Eq. (3.21).

APPENDIX C: PROOF OF THE ZEROTH LAW
FOR STATIC SPACETIMES

We assume the spacetime ðM; gÞ to be static i.e. both
stationary (admitting a killing vector field χ ) and the Killing
vector field χ as being hypersurface orthogonal. The
hypersurface orthogonality condition implies that over
the manifold we have

χ½c∇bχa� ¼ χc∇bχa þ χb∇aχc þ χa∇cχb ¼ 0: ðC1Þ
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The above relation is valid on the manifold and not just
only on the Killing horizon HðKÞ in the given spacetime.
Hence we can safely take the derivative of the above
relation:

∇a½χc∇bχa þ χb∇aχc þ χa∇cχb� ¼ 0: ðC2Þ

Using the Killing equation ∇aχb þ∇bχa ¼ 0, it is quite
easy to show that the above relation reduces to

χc∇a∇bχ
a þ χb□χc þ χa∇a∇cχb ¼ 0: ðC3Þ

We now define the following quantity Pa to be

Pa ¼ Rf
aχf: ðC4Þ

Simple manipulations allow us to have

Pa ¼ Rf
aχf ¼ ½∇b;∇a�χb

¼ ∇b∇aχ
b −∇a∇bχ

b ¼ ∇b∇aχ
b

¼ −∇b∇bχa ¼ −□χa: ðC5Þ

Use of Eq. (C5) in Eq. (C3) yields

χcPb − χbPc ¼ −χa∇a∇cχb: ðC6Þ

Since χ is a symmetry generator of the spacetime, any
tensor constructed out of χ and gab will also respect the
spacetime symmetry. Such a tensor field is the quantity
Tcb ¼ ∇cχb. Explicitly, this means that

£χTcb ¼ 0: ðC7Þ

This follows that

χa∇a∇cχb þ∇aχbð∇cχ
aÞ þ∇cχað∇bχ

aÞ ¼ 0

χa∇a∇cχb ¼ 0: ðC8Þ

Use of Eq. (C8) in Eq. (C6) implies

χcPb − χbPc ¼ 0: ðC9Þ

Now, as applied onto the Killing horizonHðKÞ, we have the
relation (4.10), upon which using Eq. (C9) leads to

χdχ½a∇b�κ ¼HðKÞ
− χdχfRf ½bχa�

¼HðKÞ
−
χd
2

�
χfRf

bχa − χfRf
aχb

�

¼HðKÞ
−
χd
2
ðPbχa − PaχbÞ ¼ 0: ðC10Þ

Since we assume our Killing horizon to be nondegenerate,

we essentially have χ½a∇b�κ ¼HðKÞ
0. This essentially proves

the zeroth law for static spacetimes admitting a Killing
horizon without the need of the dynamical field equations.

APPENDIX D: PROOF OF THE RELATION (4.31)

We begin by showing that the Lie derivative of ∇aϕ
along the null generator of χ vanishes over ðM; gab;ϕÞ
using the constraint (4.5),

£χ ð∇aϕÞ ¼ χf∇a∇fϕþ ð∇fϕÞð∇aχ
fÞ

¼ ∇aðχf∇fϕÞ − ð∇aχ
fÞð∇fϕÞ

þ ð∇fϕÞð∇aχ
fÞ ¼ 0: ðD1Þ

We have then

χfðχ½a∇b�∇fϕÞ ¼
1

2

�
χfχa∇b∇fϕ − χfχb∇a∇fϕ

�
: ðD2Þ

Using the first line of (D1) we have
χbχ

f∇f∇aϕ ¼ −χbð∇cϕÞð∇aχ
cÞ. Putting this in the sec-

ond term of above relation, we have

χfðχ½a∇b�∇fϕÞ ¼
1

2

�
χa∇bðχf∇fϕÞ − χað∇bχ

fÞð∇fϕÞ

þ χbð∇fϕÞð∇aχ
fÞ
�

¼ 1

2
∇fϕ

�
χa∇fχb þ χb∇aχf

�
: ðD3Þ

Let us then invoke the hypersurface orthogonality of the
integrable null hypersurface HðKÞ generated by the null
vector field χ in the absence of torsion,

χa∇fχb þ χf∇bχa þ χb∇aχf ¼HðKÞ
0: ðD4Þ

Using the relation (D4), we have

χfðχ½a∇b�∇fϕÞ ¼H
ðKÞ

−
1

2

�
χf∇fϕð∇bχaÞ

�
¼HðKÞ

0: ðD5Þ

This proves our desired relation.

APPENDIX E: PROOF OF THE RELATION (4.56)

Next we proceed to give a proof of (4.56). Using the
relation (D1), we have on the Killing horizon HðKÞ

χaqbc∇a∇bϕ ¼ −qbcð∇aϕÞð∇bχ
aÞ

¼ −ðδbc þ χbkc þ kbχcÞð∇aϕÞð∇bχ
aÞ

¼ −∇aϕð∇cχa þ κkcχa þ kbχc∇bχaÞ: ðE1Þ
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From the hypersurface orthogonality condition of the Killing horizon (D4), we have

χaqbc∇a∇bϕ ¼HðKÞ
−∇aϕ

�
∇cχa þ κkcχa − kbðχb∇aχc þ χa∇cχbÞ

�

¼HðKÞ
−∇aϕ

�
∇cχa þ κkcχa þ∇aχc − ðkb∇cχbÞχa

�
: ðE2Þ

Use of the fact that χ is a symmetry generator of HðKÞ and the constraint condition (4.5), allows us to have

χaqbc∇a∇bϕ ¼HðKÞ
0: ðE3Þ
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