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False vacuum decay in rotating BTZ spacetimes

Daiki Saito®  and Chul-Moon Yoo'

Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University,
Nagoya 464-8602, Japan

™ (Received 21 September 2021; accepted 12 November 2021; published 13 December 2021)

We analyze vacuum decay in rotating BTZ black hole spacetimes with the thin wall approximation.
Possible parameter regions for the vacuum decay are clarified. We find that the nucleation rate is dominated
by the bounce solution with the static shell configuration. The nucleation rate of the static shell decreases
with the mass of the initial black hole. For a larger/smaller value of the initial black hole, the nucleation rate
can be smaller/larger than that of the Coleman De Luccia vacuum decay in the pure anti—de Sitter
spacetime. Through the vacuum decay, the black hole gains its mass and loses the horizon area. We also
find that the nucleation rate increases with increasing the angular momentum of the spacetime.
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I. INTRODUCTION

Vacuum decay is a transition from a classically stable state
(false vacuum) to a lower energy state (true vacuum), which
may be described by a quantum tunneling process. By
considering this transition in the spacetime occupied by a
false vacuum state, a true vacuum region surrounded by a
bubble wall can be realized due to the quantum tunneling.
The nucleated bubble typically expands, and eventually, the
spacetime will be filled with the true vacuum. This phe-
nomenon was considered for the first time by Coleman over
40 years ago [1,2]. Since gravity universally couples with
other fields, it would be important to take into account the
effect of gravity in vacuum decay. Pioneering work has been
done by Coleman and De Luccia (CDL) in Ref. [3], where
the decay in a maximally symmetric spacetime was dis-
cussed. Vacuum decay in a black hole (BH) spacetime was
first considered in Ref. [4], which stated that the four-
dimensional Schwarzschild BH acts as a nucleation site
for the decay, and more sophisticated researches have been
performed in Refs. [5,6]. In particular, the authors in
Refs. [5,6] considered the cases in which the BH mass
changes through the transition associated with the bubble
nucleation and reported that the mass and the horizon area of
the BH may decrease in some cases.

As far as we know, the physical meaning of the vacuum
decay in BH spacetimes has not yet been sufficiently clear.
One plausible interpretation of the effect of a BH on the
vacuum decay would be a thermal environmental system
[7]. In Ref. [7]; it is stated that the vacuum decay in the
Schwarzschild (de Sitter) spacetime can be regarded as the
activated tunneling in the flat background with the finite
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temperature equal to the Hawking temperature of the BH.
That is, the thermal radiation from the black hole supports
the vacuum phase transition. On the basis of this inter-
pretation, the effect of the black hole on the vacuum decay
may involve the quantum nature of gravity. The decreasing
horizon area reported in Ref. [5,6] means the violation of
the black hole area theorem in the classical theory and
might also indicate the quantum gravity effect. Therefore, it
might be expected that the vacuum decay in BH spacetimes
is a clue to understanding the quantum nature of gravity.

Vacuum decay in BH spacetimes is also attractive from
the aspect of several applications. The Higgs particle has
been discovered in the LHC experiment in 2012 [8,9], and
our Universe might be in a false vacuum of Higgs potential
[10-16]. The estimated lifetime of the false vacuum in the
flat background spacetime is longer than the age of the
Universe [17,18]. However, the lifetime can be decreased
by the existence of BHs in the Universe as is reported in
Refs. [19-22]. Based on this result, by considering the
effects of primordial black holes (PBHs) on the vacuum
decay, Ref. [23] set constraints on the number and mass
of PBHs.

From the aspect of the application, we should note that
seed BHs are restricted to static and spherically symmetric
ones in most researches. However, in general, BHs have
nonzero values of the angular momentum, and the analyses
with static and spherically symmetric solutions would not be
sufficient for the application in our Universe. In order to get a
deeper insight into the fundamental understanding and
general property of the vacuum decay in BH spacetimes,
it would be helpful to collect more variety of vacuum decay
phenomena in BH spacetimes. In particular, in this paper, we
focus on the effects of the angular momentum. In four-
dimensional spacetimes, however, the analyses of vacuum
decay without spherical symmetry become significantly
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difficult because the bubble dynamics cannot be reduced to
one-dimensional particle mechanics as in Ref. [5]. No formal
procedure is known for treating the bubble nucleation in a
nonspherical BH spacetime, and there can be found only one
attempt in Ref. [24] with some assumptions. In this paper, in
order to see effects of the angular momentum without the
difficulty, we consider the vacuum decay in rotating BTZ BH
spacetimes, which are three-dimensional asymptotically
anti—de Sitter (AdS) spacetimes. In the three-dimensional
asymptotically AdS spacetime, the BH spin does not violate
the spherical symmetry, and we can proceed in the same way
as Ref. [5].

This paper is organized as follows. In Sec. II, we see the
Euclidean metric of the BTZ spacetime and consider the
matching conditions for two BTZ spacetimes separated by a
thin spherical shell. The shell equations of motion are derived
in Sec. IIC, and we show that the shell dynamics is reduced to
a one-dimensional potential problem of particle dynamics. In
Sec. III, we clarify the possible parameter regions for the
bubble nucleation. In Sec. IV, we derive the explicit expres-
sion of the vacuum decay rate and show the results in
Section VI is devoted to a summary and conclusion.

Throughout this paper, we use the geometrized units in
which both the speed of light and the Newton’s gravita-
tional constant are unity, G = ¢ = 1.!

II. GEOMETRY OF THE SHELL AND EQUATIONS
OF MOTION

A. Lorentzian and Euclidean Metric

The line element in the BTZ spacetime is given as
follows in the Boyer-Lindquist coordinates [25,26]:

ds* = —f(r)dr* + it (dp-Lar 2 (2.1)
() e
with
rr 16J7
f(r)==8M+ 5 +—. (2.2)

Here, M and J are the mass and the angular momentum of
the BH, respectively, and [ is the AdS length, which is given
by 72 = —A with A being the cosmological constant.

In order to evaluate the decay rate, we need to calculate
geometric quantities in the Euclidean spacetime. We can
get the Euclidean metric through the transformations ¢ =
—itp and J = —iJp,

1
fEe(r)

4y )2
ds* = fp(r)dtx + drr +r? <d¢+—2Eth> , (2.3)
r

'Note that many papers treat BTZ spacetime with BTZ unit,
8G=c=1.

where

r? 16J2
Fr(r) = =8M + 2 - —F

(2.4)

This paper focuses on vacuum decay in the BTZ
spacetime with the thin wall approximation. We assume
that the spacetime is spherically symmetric, and therefore,
the spacetime after the bubble nucleation is also described
by a BTZ spacetime. Since the shape of the bubble is also
spherical, we can express the bubble wall trajectory as
r = R(t). Then, for convenience, we define a frame that is
corotating with the spacetime on the bubble wall; that is, the
nondiagonal component of the metric vanishes on the
bubble wall. Following Ref. [27], we transform the azimu-
thal coordinate ¢ to ¢ defined by

d = (d(p 4 I d:)

»p

r=R(t)

47
= dp ————d1,

R2(1)

and rewrite the metric as follows:

1 1\2 1
R0 7) }””2 Gk

1
- ﬁ) dtd¢

(2.5)

ds? = {—f(r) + 16r2J2<

+ r¥d¢? + 81r2( (2.6)

R*(1)

1 1)\2 1
— {fE(r) + 16r2J% (—RQ(IE) - ﬁ) }dtzE + 7o) dr?

1 1
+ r2d¢2 - SJEr2 ( - —> thd¢

R* () r?

(2.7)

B. Bubble wall as a hypersurface
The bubble wall is given as a hypersurface W:r —

R(tg) = 0 whose unit normal vector n, is given by

n, = Cp(=0,R. 1,0), (2.8)

with

-1/2

Cp = (0,,R)* + f(R) (2.9)

1
Fe(R)
in the coordinate bases associated with (7, r, ¢). We use
¢ and the proper time 7z of the radial observer on the
bubble wall as the intrinsic coordinates of the wall. The
four velocity of the radial observer can be written as

" = (5. R, 0), (2.10)
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where the dot denotes the derivative with respect to .
From the normalization condition of the four velocity
IEuw V1" |,—g(y = 1, we obtain

fe(R) = R%. (2.11)

fe(R)ig =
From Eq. (2.11), we obtain C = t; and can rewrite the
normal vector as
n, = (=R.1,0). (2.12)
The components of the projection tensor onto VV are
given by

e = v* = (15, R,0), (2.13)

¢ = (0.0.1). (2.14)

C. Junction conditions

In this subsection, we derive equations of the shell
motion from the Israel’s junction condition [28]. We label
physical quantities on the spacetime before/after the nucle-
ation with the subscript +/ —. The junction condition
consists of the first junction condition

[hap) s = O, (2.15)
and the second junction condition
(Kaplw = —87(Sup — hap$), (2.16)
where, for convenience, we used the expression
Al :=A, —A_, (2.17)

and S, is the energy-momentum tensor on the shell. £,
and K, are the induced metric and the extrinsic curvature
on the shell, respectively. In the Euclidean spacetime, they
are defined as

hgap = €aelGpu, (2.18)

Kpap = eaeyV,n,. (2.19)

In this paper, we assume that the energy momentum on the
shell is given as follows:

SEab = _ahEabv (220)

where o is the value of the tension. In the current situation,
the induced metric is

h (1 0 ) (2.21)

E+ab — 0 R2 ’ .
and Eq. (2.15) is automatically satisfied. From Eq. (2.20),
we can rewrite Eq. (2.16) as

(K £ab) s = —870h . (2.22)
Let us calculate the components of the symmetric tensor
K g,;,- From the (z,¢) component of Eq. (2.19), we get

r . 4JE1 .
Kpy = —4fpJp— 1% ————R°,
Exdh fE Epa'E o r

where we used the following expressions of each compo-
nent of the Christoffel symbol

(2.23)

r
r,=4 fEJEF, (2.24)
4J,1
e = ——£- 2.25
r$ fE r ( )

Evaluating Eq. (2.23) on the shell with Eq. (2.11), we get

4J
Because /g, = 0, the (z,¢) component of Eq. (2.22) is
equivalent to

Mg M
R R 7
=T (2.27)

Obviously, this is the consequence of the conservation of
the angular momentum. The (¢, ¢) component of the
extrinsic curvature is

KE¢¢ = fEri‘E, (228)

where we used

Ty = —fsr. (2.29)

By using Eq. (2.11), the (¢, ¢) component of Eq. (2.22) can
be written as

\/ fes — R - \/ fe- —R*=—-8z6R.  (2.30)
Solving this for R?, we get

1., 1 1-
- — R =:—_2R2——
5 V(R) 50 2fE+

(Afgp)?
3262R%’

(2.31)
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where we defined 6 := 476 and

F.oAetA

5 (2.32)

Therefore, the shell dynamics reduces to the one-dimensional
potential problem. The potential form can be rewritten
as follows:

2 (g) VR) = A (§)4 +B (g) Lo 2

where
1/1 1 /1 2
A= —— 5 +1)|+—|5-1), 2.34
st ) () e
_ AM (1
B:=8M——2<—2—1>, (2.35)
57 \L%
4(AM)?
C:=—-16(M L a.)*+ ( 2) . (2.36)

N

Here, we wrote V(R) as a function of R/I_ with the five
dimensionless parameters: M., M_, a,:=J/(Ml,),
L, :=1,/1_, and s := 6/_. The functional form of V(R) is
depicted in Fig. 1 for M,  =0.1, M_=0.33, a, =0,
L, =2.0, and s = 0.2. The Euclidean shell can oscillate
between the two roots of V(R) = 0, at which the velocity R of
the shell vanishes. The bubble emerges with the radius
determined by the condition R=0 or equivalently
V(R) = 0. When we have two roots of V(R) = 0, there are
two possible radii of the bubble at the moment of the
nucleation. They share the bounce solution and have the same
value of the nucleation rate. After the nucleation, the shell
motion obeys the junction condition in the Lorentz spacetime
and is described by the one-dimensional motion under the
potential —V(R). The shell is allowed to move in the region
—V(R) < 0. The shell which emerges at the larger root of

V(R)
0.06 -

0.04

0.02-

| L L L R/
-0.02+

-0.04 -

-0.06-

FIG. 1. The potential form for M, = 0.1, M_=0.33,a, =0,
L, =20,and s =0.2.

V(R) = 0 expands, and the true vacuum region also expands.
We call it an expanding solution. On the other hand, the shell
emerges as the smaller root shrinks, and the false vacuum
region covers the whole region again. We call it a shrinking
solution. It is worthy to note that, in the shrinking solution,
through the shell accretion, the horizon area must increase due
to the horizon area law, and the mass of the BH must be
identical to M, due to the energy conservation. This fact
indicates that the horizon area must decrease through the
bubble nucleation. We see this is actually realized in the current
situation, and the decreasing horizon area indicates the
quantum nature of the bubble nucleation (see Appendix C
for details).

III. CONDITIONS FOR THE EXISTENCE OF THE
BOUNCE SOLUTION

In order for the bubble nucleation process to exist and
describe a physically reasonable process, several conditions
must be satisfied. We list all the conditions and summarize
the allowed region of the parameters in this section (see
Refs. [29,30] for the coexistence of two BTZ spacetimes
connected by thin branes).

A. Conditions for the Eeistence of roots of V(R)=0

For the shell to oscillate, we need a finite V(R) <0
region in R > 0. From Eq. (2.33), we can regard R*>V(R)
as a quadratic function for R%. For the functional form of
V(R) to be convex downward, the condition A > 0 is
required. In addition, we need two real positive roots of
R?V(R) = 0 for R*> (see Appendix D for other possibil-
ities). This condition requires C > 0, —B/2A > 0, and
B? —4AC > 0. To summarize, we need A - - - D satisfying
the following four conditions:

A >0, (3.1)
B <0, (3.2)
C >0, (3.3)
D :=B?>—4AC > 0. (3.4)
From Eq. (3.1), we get
s2—%<é+1>+ﬁ<L—1&—1>2>0, (3.5)

or equivalently,

1 1 1 1 1
52 < —s —

1
- S<2 (36
M2 2L, & tp<s. (9

32 2L, a4

Equation (3.2) requires (AA)(AM) < 0. In vacuum decay,
we assume A, > A_ and obtain M, < M_ as a necessary
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condition. In other words, the mass must decrease to form a
bounce solution. Moreover, Eq. (3.2) imposes the lower
bound for M_,

Equation (3.3) can be written as follows:

—16(M_ L.a.)* +

> 0. (3.8)

This gives the condition for M _ under fixed values of L , s,
a,,and M,
M_>Mc:==M_(1+2sL a,). (3.9)

Another condition for the mass also stems from Eq. (3.4),

M,
M_>Mp = {1+L2(1—4s +\/1—a+ {1+ L4 (1 —45%)? —2L2+(1+4s2)}],

2
M,
M_SM/D= T

{1 +L3(1-45%) /(1

When D = 0, the shell can exist only at the radius of the
degenerate root of V(R) = 0, that is, the shell has a constant
radius with time. We call it a static shell.

B. Constraints from time parametrization

In addition to the conditions for the potential form, there

—at){1+ L4 (1 —4s*)2 = 2L% (1 + 4s2)}} .

(3.10)

|

From the discussion in the previous subsection, we nec-
essarily have AM < 0. Hence, for the inequality (3.13) to
be satisfied, the coefficient of R must be positive. From this,
we obtain the constraint for s,

are other conditions for the motion of the shell to be 2 < 11 (3.14)
physical. Specifically, the shell motion must be “future 4 4% '
directed” in both sides of the shell; that is, 7z, > 0. We can
rewrite these requirements as
Af The inequality (3.13) is saturated when
fer(R)igy = fE+(R)_ ——0R—4—1§>0 (3.11)
. _ Af R R 2AM
Fo-(R)ip- =/ fp-(R) = R* =6R-=2>0.  (3.12) =t (3.15)
46R ) I_ S(S LY 1)
4s
where we used Eq. (2.11).
The inequality (3.11) is equivalent to
and the shell must oscillate between two radii larger than R, .
-2 : : * *
<£> {_s L3P - 1] N 1 2AM 50, (3.13) This requires (R*)*V(R%) > 0 and % [RZV(R)]|R:Ri <0.
I 4s R/l s These conditions are equivalent to
|
@AMAL(-1+L2(1—45))? +4M_ =M )(M_+ L2 M (-1 +4s?)) .0, (3.16)

(M_ =M )1+ L% (=1 +45%))

8(M_—M,)
1+ L3 (—1+4s?)

4M, + <0. (3.17)

We may consider the condition (3.12) in a similar way to
that for the condition (3.11). First, we rewrite the inequality
(3.12) as

R L7 -1 1 2AM
) s - >0. (3.1
(l_) [s 4s ]+R/l_ ;=20 (318)

We find that the coefficient of R is positive for any s > 0.
The inequality (3.18) is saturated when
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2AM
= T2 (3.19)

L1
s(s == e )

R R®
.1

and the region of the motion must be larger than R* . Hence,
we require (R*)*V(R%) >0 and % [R*V(R)]|g_z: <O.

R .
However, we see that > % from

R*\2 R*\? 4AM
) (Z=2) = - —>0. (3.20)
I I (s +5 —1)(S_L+ —1)
4, 4s
Therefore, it is sufficient to require only (R*)?V(R%) > 0

and & [R*V(R)]|g_g. <0. By solving Egs. (3.16) and
(3.17), we obtain

M_ < My :=—= [1 + L2 (1 - 4s?)

FJ=@) {1+ L (-1 42|, (B2

M
M_ > M, :=T+[1 + L2 (1 —4s5%))]. (3.22)

C. Constraints from horizon condition

In addition to the above conditions, we impose the
condition that the shell oscillates outside the event horizon.
The outer horizon radius is given by the roots of fz(r) = 0,
which can be written as”

L,=2.0, s=0.2, a,=0.0

O M_>MD
M [1M_>Mg
- 1 M_>M¢
1 M_>Mg
0 M_>M'r
0.00 ‘ 0.05 0.16 ‘ 0.15‘ 6.20 O.‘25
My
FIG. 2. The lower bound of M_.
Ty, = \/4Mil§E —i—étli\/MzilﬁE —J2. (3.23)

Since ry_ < ry, from other conditions (see Appendix C),
it is sufficient to require that the shell oscillates between
two radii larger than 4, . That is, we impose the following
conditions: V(ry, ) >0 and (ry,)* < —B/2A. While the
former puts no constraint on the parameters, from the latter,
we obtain the inequality for M_,

at)L4 (1 —4s?)

-2y/1-a3L%(1

+ 45?)

Iy -1+y/1-at +(1+
+

M_>MR:=—

D. Allowed region in the parameter space

In this subsection, we summarize the above conditions

and show some examples of the allowed region for the

parameters. First, we consider the conditions (3.6) and (3.14)

for L, and s and fix them. Next, we fix &, and show the

allowed region for M, and M_ by considering Eqgs. (3.7),
(3.9), (3.10), and (3.21).

On the two conditions of (3.6), only the second one,

2 ! i + %, can be compatible with the condition

§7 < T
(3.14). With L, > 1, we see that
> > 0.
(3.25)

( 1+1> <1 1+1>_1<1 1
ar> "4) \ar2 2L, "4) 2\L, 12

2Subscript + /- indicates the horizon radius before/after the
nucleation, not the outer/inner horizon. From this expression, we
can see that the condition for the extremal BH is J/I = M

3.24
2+L2+( 2+8s2) (3.24)

By using this Eq. (3.25) and s > 0, we eventually find
(3.26)

for a given value of L,. From this condition, we can
simplify the expression M7 as

MT:

7* [1 + L2 (1 —4s?)

@t {1+ L2 (-1 +4s*)}]. (3.27)
Setting L, =2.0, s =0.2, and a, = 0.0, we obtain the
allowed regions indicated by the conditions (3.7), (3.9),
(3.10), and (3.21) as the shaded regions in Figs. 2 and 3.
From Figs. 2 and 3, we see that the allowed region cannot
exist in the region M_ < M’,, and we have to take the
branch M_ > M.
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L,=2.0, s=0.2, a,=0.0

0.4

0.3

M_ [0 M_<M'p
M_<MT

0.2

0.0
I

- I I L I MR- .
0.00 0.05 0.10 0.15 0.20 0.25
"M

+

FIG. 3. The upper bound of M_.

By combining them, we eventually obtain Fig. 4 as the
allowed region for the masses. With a nonzero angular
momentum, for example, a, = 0.2, 0.5, we get Fig. 5.
Regardless of the value of the angular momentum, the
lower bound of M_ is given by that of the static shell.

IV. EUCLIDEAN ACTION AND THE DECAY RATE

According to Ref. [1], the decay rate per unit of time and
volume I' is given by
I o e B/h (4.1)

where the value of 3 is given by the difference between the
values of the Euclidean action of the bounce solution Sg

Ly=2/0,58=0.2, 4,=0.0
05}

0.4

0.3

02

0.1

0.0 H
0.00 0.05 0.10 0.15 0.20 0.25
M+

FIG. 4. The allowed region (a, = 0.0).

and the false vacuum Sgq as 5 := Sg — Sg. Since the main
contribution to the decay rate comes from the exponential
part, ignoring the factor of the dependence, we focus on the
value of B. Then, we can estimate the decay rate by
calculating the Euclidean actions. In this section, we derive
an analytic form of B in the BTZ case.

Sg can be divided into the contributions from the horizon
S, bubble wall Sy, and bulk S, as follows:

Sg =38+ Sm, +Sm_ + Sw. (4.2)

Sy can be evaluated by considering the action in the
vicinity of the horizon (see the appendixes in Refs. [5,24]).
In the current setting, the value of Sy is given as

A
Sy = -,

4 (4.3)

where Ay, is the area of the horizon. S,y can be written as

R+0
SW:—/ dzx\/hE/ ' arl,,
w R-0
R+0
:/ aax\/hE/ ' drod(r — R(tg))
w R-0

:/ d2x //lEG. (44)
w
Sp, can be written as
3 L3 | o)
Sv, =— | &xygez|—— RE + Ly
* M, 167
1 -
+— dz.X'\/ hEKE:ta (45)
87 OM

where the second term is the boundary term. With the
Arnowitt, Deser, Misner decomposition, we obtain

1 -
Sm, = _Fj{df&/ dzx\/gE:t(zR(E) - K%
4 2‘51
= - 1 -
+ ResaReh +162L0) + / N
w

1
+3. /W d?x/hgie, @4V, it (4.6)

where @', is the unit normal vector of the constant time slice
%, ., fiy, is the ingoing unit normal vector of W, and

Kg, = K, is the Euclidean extrinsic curvature associ-
ated with 7i,. The first line vanishes from the Hamiltonian

constraint “R\E) — K2, + Kp. ., K, + 162L\) =0, and
we obtain

124037-7



DAIKI SAITO and CHUL-MOON YOO PHYS. REV. D 104, 124037 (2021)

L,=2.0,s=02,35,=02 L,=2.0,s=0.2,53,=0.5
05 05
0.4 0.4
0.3 03
M— M_
0.2 0.2
0.1 0.1
0.0 0.0
000 005 010 015 020 025 000 005 010 015 020 025
My My

FIG. 5. The allowed region (a, # 0.0).

1
S/\/l+ +Su = 8ﬂ/wdzx hg(K, —K_) where we used
gz f PV R0, U = ~2L0.f @)
871' w T T tptp — 2 rJ E- .
—n_, i~V it ). (4.7)

By using the trace of the second junction condition (2.16),
In the BTZ case, the unit normals are given by

e K], = —1670, (4.12)
i = ( gt 0, ﬁ) (4.8)
o e we get
niﬂ = (:FR, Zl:tE, 0) (49)
1 .
Then, on W, i = 0, and we obtain Sm, +Sm_ = —Z/WdZXRJ - E/WdZXR(arfE+tE+
. , — 0. fpip). 413
N, il Vi), = (~R=V, @' + ipa'eV,, i), fe-tz-) (4.13)
_ rf E+ tEj:l (4.10) Summing up all contributions, we rewrite the Euclidean
action as
|
A
SE:—i—Z/ JZxRa——/ d*xR(0,fpitpy — Orfp_te_ )+/ d’xRo
Ay 1 . .
=- T “T6z dx[(RO,frr = 2fps)tpy — (RO fp- = 2f )]
Ay . .
=74 73 j{ dt[(RO,fey = 2fe )tey — (RO fp- — 2fp )tp ]

A 472 \. 472
— _%— 2]{(11{(M+ + R’§+>tE+ - (M + E‘)z,;_}, (4.14)

where we used the relation

1

Ro = ——[fuic].. (4.15)

given by the (¢, ¢) component of Eq. (2.22). By using Sz = —A%, we obtain
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V(R)
0.15
010} — M.=033
— M.=0.32
005} — M.=0.31

/ — M_=0.304741(static)
. . . R
-0.05L

FIG. 6. The potential form for @, =0,M, =0.1,L, = 2.0,
s =0.2.

477\ .
(-] 19
The horizon area is
2
AHi = / dqeri = 27TrHi. (417)
0

L,=2.0,s=0.2, 4,=0.0, M,=0.1

BcpL
280

275+
270+
265+

260

2551

1 1 1 1 1 1 M_
0.305 0.310 0.315 0.320 0.325 0.330 0.335

(a)
L,=2.0,s=0.2, 8,=0.0, M,=0.05

_B_

BcpL
2.00-
1,951
1.90}
1.85}

I I I M_
0.155 0.160 0.165
(c)

Then, we can rewrite B as

T 4J%\ .
B: E(rH+ — VH_) —2%d7|:<M+ —F>1E+

(o]

V. RESULTS

(4.18)

In this section, we show the parameter dependence of the
nucleation rate for the cases which satisfy the conditions
listed in Sec. III. First, we evaluate the nucleation rate for
a, =0 and clarify the case which gives the dominant
contribution to the tunneling. Next, we introduce the angular
momentum and see how the nucleation rate of the dominant
case changes depending on the value of a, .

A. a, =0 case

First, we set a, = 0. Setting M, = 0.1, L, = 2.0, and
s = 0.2, we plot the potential form for each value of M_ in

L,=2.0,s=0.2, 4,=0.0, M,=0.2

BcpL
4.00

3.95F
3.90F
3.85F
3.80F
3.75F
3.70F

3.65F

1 1 1 1 1 1 M_
0.61 0.62 0.63 0.64 0.65 0.66 0.67

(b)
L,=1.7,s=0.2, 4,=0.0, M,=0.1

0.5+

0.20 0.21 0.22 0.23 0.24

(d)

FIG. 7. The M_ dependence of B (a, = 0).
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s=0.2, a,=0.0, static

B s=0.15, a,=0.0, static

0.0 0.1 02 03 04 o5 M- 50 0.1 02 03 04 o5 M-
L,=167 — L,=17 — L,=2.0 L,=1.43 L=15 — L,=17 — L,=20
(a) (b)
FIG. 8. The M, dependence of B of the static shells.
Fig. 6. The available region for the shell motion gets in Figs. 7(a), 7(b), and 7(c), respectively (see

smaller for a smaller value of M_.
Setting a, =0, L, =2.0, and s = 0.2, we show the
M_ dependence of B/Bcp; for M, = 0.1, 0.2, and 0.05

20 2 ///Iﬂ — 8,200
N/

A\

— a,=0.5
-0.05 — &,=0.9

— &,=1.0
-0.10

FIG. 9. The potential form for M, =0.1, M_=0.32,
L, =20,and s =0.2.

L,=2.0,s=0.2, 4,=0.5 M,=0.1

BepL
270

2.65
2.60 -
2.55¢

2.50

0.295 0.300 0.305 0.310 0.315

= M-
0.320

Appendix A for the definition of Bp;). For all the
cases, the left boundary of the plot region is set to the
value of M_ for the static shell. We can see that, with a
fixed value of M, the static shell case has the largest
nucleation probability, and the rate is larger for a smaller
value of M, . This result does not change even if we
change the value of the AdS length L, as is explicitly
shown for the cases M, = 0.1, L, = 1.7, and s = 0.2 in
Fig. 7(d). The L, = 1.7 case has a smaller value of
B/Bcpy than the L, = 2.0 case. We note that the value
of B/Bcp; is larger than unity in all cases shown in
Figs. 7(a)-7(d).

The M, dependence of B in the case of the static
shell for each value of L is shown in Figs. 8(a) and 8(b)
with s = 0.2 and s = 0.15, respectively. Here, we note
that the parameter sets of (s,L,) = (0.2,1.67) and
(0.15,1.43) almost saturate the inequality (3.26).

L.=2.0,s=0.2, 4,=0.5, M,=0.2

0.59 0.60 0.61 0.62 0.63 0.64

FIG. 10. The M_ dependence of B (a, # 0).
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M, L,=2.0,s=0.2
07¢
06F
0.55‘\ w02
0.4 — M,=0.1
0af — M,=0.05
02f
01f

0.0 02 04 06 038 70 o+

FIG. 11. The a, dependence of M_ of static shells.

We can see that, with fixed s and L, B in the static shell
case increases monotonically with M, . When the mass
of the seed BH is small enough (M, <0.02), we find
B < Bepr- This tendency is similar to the results in
Refs. [5,19]. We can see that when we take the same
values of L, and M, a smaller value of s gives a larger
value of B/B¢p.. It should be noted that, in our case,
differently from Refs. [5,19], the mass necessary
increase through the nucleation, and the static shell
case always exists.

B. a, # 0 cases

Next, we consider @, # 0 cases. The potential form with
M, =01,M_=032,L, =2.0,and s = 0.2 is shown for
each value of a, in Fig. 9. We can see that increasing a
deepens the potential depth. The numerical result for B is
shown in Fig. 10. The behavior is similar to the a, =0
cases, and the formation of the static shell dominates the
nucleation probability.

Motivated by the results that static shells dominate
even for a, # 0, we consider the @, dependence of the
decay rate of the static shell. Let us define M as the value
of M _ for the static shell case. Then M, decreases with a

B L,=2.0, $=0.2

0.0 02 0.4 06 0.8 70 9+

(Fig. 11), as expected from Fig. 9. The a, dependence of
B for the static shell case is shown in Fig. 12, and we see
that increasing & raises the decay rate.

VI. SUMMARY AND DISCUSSION

In this paper, we have analyzed vacuum decay in rotating
BTZ BH spacetimes. In the computation, we have used the
thin shell approximation and the Israel’s junction condition
to see the motion of the bubble wall.

As a result, we found that the decay rate can be
lower than that of the Coleman De Luccia instanton.
We found that the decay rate is a decreasing function of
M _ and takes the maximum value at the lowest possible
value of M_, which is the case of the static shell. This
result is partially consistent with results in Refs. [5,6]. In
these previous works, however, in relatively small M,
cases, bubble nucleation with no BH remnant dominates
the probability. This difference stems from the difference
in the change of the BH mass through the bubble
nucleation. In the previous works, the BH mass can
either increase or decrease with the nucleation, depending
on the value of M. In particular, the black hole mass
decreases for the small M, region, and there is no static
shell configuration for a sufficiently small M, in the
cases treated in Refs. [5,6]. In our cases, on the other
hand, the BH mass must increase through bubble nucle-
ation, and we can always have a static shell configuration
(see Appendix D for the nonexistence of the transition to
a spacetime without a BH remnant).

We also found that the decay rate is a monotonic
increasing function of a_ . That is, the angular momentum
of the BTZ BH promotes the vacuum decay. On the other
hand, the previous work on the Kerr spacetime [24] stated
that the angular momentum suppresses the vacuum decay
rate. Our results cannot be directly compared with those in
Ref. [24] because of the totally different background

B L,=1.7,s=0.2
BceoL
20
51 — M,=02
— M,=0.1
1.0 M,.=0.05

0.5¢

0.0 02 0.4 06 0.8

FIG. 12. The a, dependence of B of static shells.
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settings and the assumptions.” The analyses in the back-
ground Kerr spacetime are much harder than the analyses
given here because of the lack of symmetry. Obviously,
more investigations about the nonspherical bubble nucle-
ation process would be needed to understand the effects of
the angular momentum.

In this work, focusing on vacuum decay in the BTZ
spacetime, we have found several nontrivial results which
cannot be expected from the previous works. However, we
do not have a clear understanding about the physical
interpretation of these results, and a more multidirectional
study would be needed.
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APPENDIX A: THREE-DIMENSIONAL
COLEMAN DE LUCCIA INSTANTON

In this appendix, we discuss vacuum decay in the pure
AdS spacetime. The line element in the three-dimensional
AdS spacetime is given by

1
ds* = —h(r)dt* +Wdr2 + rd¢?, (A1)
where
r2
h(r) =1+ 7 (A2)

As in the BTZ case, we set the shell W:r—R(tz) =0
and consider the junction conditions. From the (¢, )
component of the second condition, we get

1, 1 1. (Ah)?
——R>:=U(R) ==6*R*—~h+——, (A
PR = UR) =30 R~ ht e (A3)
and by using the form of A(r), we rewrite U(R) as
v < elfos LAV L
20" e\ e A

*The authors in Ref. [24] focus on the cases M, = M_,
a, =a_, ai / > < 1, where the first junction conditions are
automatically satisfied without angular dependence. Then, they
introduce anisotropic tension to the stress energy tensor of the shell
so that the second junction condition can be satisfied. The form of
the energy momentum tensor is clearly different from the isotropic
tension adopted in our setting. We also note that the use of the
Kerr-AdS geometry could be a nontrivial assumption because of
the lack of the Birkhoff’s theorem without spherical symmetry.

U(R)
01f

ya

2.0

-0.1

-0.2

-0.3

-0.4

-0.5

FIG. 13. Example of the potential of CDL instanton
(Ly =2.0,5s=0.2).

This is the potential that governs the motion of the
Euclidean shell.

We estimate the decay rate using the Euclidean action.
The functional form of U(R) is depicted in Fig. 13 for
L, =2.0, and s = 0.2. Similarly to the BTZ case, we
obtain the unit normal vectors @', and 7, as follows:

.~ (\/i#0.0), (43)
ﬁiﬂ = (:FR, :I:iE, 0) (A6)
Then, we get
fia, iV, ity = (FRUV, ' £ iV, i),
. R
=Flpsr| 5 > (A7)
) w
where we used
R
l
Then, we get the bulk action as follows:
) 1
Sm, +Sm.=-2 | d°xRo— d*xR
W 87 Jw
R. R.
X (KZE+_EZE_>. (Ag)

Because there is no horizon, S;; = 0, and we have the same
Syy as the BTZ case. Finally, we obtain the following
expression of the exponential factor:
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BCDL:SE
1 R . R.
- dQR——/dZR—t ——lp_
/W ST <13” 1%E>
1 . .
= 174 dr(ip, —1p-)

1 4L
=5 <L+ sinh~! +

VIHLA(1-45%)2 =207 (1 +4s?)

412
—sinh~! +3 )
V1+LA(1-45%)? =212 (1 +4L %)
(A10)
where we used

R ! hig)] (A11)

0=—c— ,

871' El+

that is derived from the (¢, ¢p) component of Eq. (2.22).

APPENDIX B: STATIC SHELL

Here, we consider the static shell as a special case of the
bounces. We can get this special solution by requiring
R =0= 0, R. In this case, we have

1

n, = (0,,0). (B1)
fe(r)
From the normalization, we have fl_( ) = tg, and

n, = (0, iE,O), (B2)

1
nt = <O,.—,O>. (B3)

g

Using this unit normal vector, the (¢, ¢) component of the
extrinsic curvature is calculated as

Kyp = V fEe(r),

and from Eq. (2.22), we have the following equation:

(B4)

VFer(r) = /Fe(N)l,_p = —26R.

This equation is equivalent to V(R)=0. The (z,7)
component of Eq. (2.22) is

arfE-‘r(r) _ arfE—(r) :|
2V fe+(r) 24/ fe-(r)
which is equivalent to R derivative of Eq. (B5), V/(R) = 0.

Next, we compute B for the static case. The unit normal
vectors are written as

(BS)

= =20,
r=R

(B6)

1
~U 1t 9E+
Uy = < i+ 0, ) (B7)
vV [
ﬁ:tﬂ - (0, :l:tE, 0), (B8)
so that &, i1,, = 0. Hence, we get
1 2 ~ ~pu ~ ~
— | d*x\/hg(ny, @4V, iy —n_,a"V, i)
87 w
1
= /W d?x/hg (@ @4 V,n,, — @7 V,n_,)
1
- __/ dQX\/ hE(K+TT - K—TT)‘ (B9)
8 w
Here, from Eq. (2.22),
KE+‘[‘[ - KE—TT = —8no (BIO)
is satisfied, and we can write the bulk action as
1
Sm. +Su_ = —/ d*x+\/hg(=1670)
* 8 w
1
——/ d*x+\/ hg(—870)
8 w
= —/ d*x\/hgo. (B11)
w

This is the same as Sy in Eq. (4.4) with the opposite sign,
and they cancel out. Eventually, the only nonzero contri-
bution to S is from Sy, .

The contribution from the false vacuum can be written as

Ay,

Sgo = — , B12
n=-"1 (B12)
so that we can write BB as
1
Bzz(Am—AH,)’ (B13)

which indicates that the decay rate depends only on the BH
horizon areas. We note that this simple result comes from
the relation ﬁ’;ﬁiﬂ = 0, originated from the staticness of
the shell.

APPENDIX C: HORIZON AREA

In this appendix, we show that the horizon area decreases
through the nucleation under the conditions in Sec. III.
Since the spatial section of the horizon is a one-dimensional
object, its change is proportional to the difference of the
radius, that is,
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1 1
TArH = T(FH+ —7ry)

= \/ AM L% +4M_ L3\/1 — a2

- \/4M_ +4\/M* —MAL%a%.

From Eq. (C1), for Ary, to be positive, M_ must satisfy the
condition

M
M_<Mr::7+{Li—kl—k(Li—l)\/l—&i]. (C2)

By comparing M, with M, which gives the upper bound of
M _ from the condition g, > 0, we find

(C1)

M,—Mp=2ML3s*[1 +/1-a%] > 0. (C3)

Therefore, as long as we focus on the nucleation with
M_ < My, the horizon area decrease. Meanwhile, for a
shrinking solution after the nucleation, the horizon area
increases through the classical process of the shell accretion.

APPENDIX D: POSSIBILITY OF OTHER
BOUNCE SOLUTIONS

Let us consider the possibility of other bounce solutions.
First, we consider the case A < 0, C > 0, and 75, > 0. The
potential form is given like Fig. 14. In this case, although
we may consider Euclidean shell motion in the region
V(R) <0, after the nucleation, the Lorentzian shell
shrinks. Thus, we do not consider this case.

Next, we consider the case A > 0, C < 0. and 7z, > 0.
In this case, the potential form is given like Fig. 15. About
the motion of the Euclidean bounce, one might expect that a

V(R)

L Ry
5

2L

FIG. 14. The potential form for L, =2.0, s =0.3, a, =0,
M, =0.1, and M_ = 0.336.

FIG. 15. The potential form for L, =2.0, s =0.2, a, =0,
M, =0.1, and M_ = 0.13).

shell emerges from the one point R = 0 and expands until
the turn around point at V(R) = 0, similarly to the CDL
case. In the BH case, however, the point R = 0 corresponds
to the singularity, and the bounce solution is also singular at
R = 0. Therefore, we do not consider this case.

Finally, let us consider the transition between a BTZ and
the pure AdS spacetime, which is given by M = —% and
J = 0. There are two possibilities for this sort of nucleation:
the transition between the BTZ spacetime and the pure AdS
spacetime which corresponds to true/false vacuum.

First, we consider the former case, namely, M_ = —é
and M, > 0. By using Eq. (3.26), we obtain the lower
bound for B,

L7 -1

B>4M, +M_)- (M, —M_)

L
S(M,L, —M_
_ (ML, ) (D1)
L. -1
With M_ = —¢, we see
SM_ L 1
p> Ml 1y (D2)

L, —1

and B cannot be negative and we cannot make a bounce
solution. Next, we consider the case M, = —% and
M_ > 0. By comparing M, and M, we obtain

M
MD—MT:TM/l -a% [1 + L2 (—1+4s?)

/1L (1-4s22 —2L2 (1 +45%) |, (D3)

and we see 1+ L% (=1 +4s%) <0 from Eq. (3.26). By
noting that
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[1+ L2 (=1 4+ 4s2)2 = [1 + L4 (1 — 45%)? = 2L% (1 + 45%)] = 16L2.5* > 0,

I L3 (=14 457) = /1 4+ L4 (1 —45)? — 212 (1 +45) <0, (D4)

we obtain 1 4+ L2 (=1 +4s?) + /1 + L% (1 —4s?)> = 2L% (1 + 4s?) < 0. From that, we see M < M, when M, < 0, so
there is no parameter region of M_ such that M, < M_ < M. Instead of M p, let us adopt M, as the bound for M _. In this
case,

M
Me— M)y = T+ [1 +4a,Los+ L3(—-1+4s%) + \/(1 —at){1+ L4 (1 —45%)> = 2L% (1 + 45%)} (D5)
and 1 +4a,L,s+ L% (=1 + 4s?) < 0 follows from Eq. (3.26). By noting that
(1 +4a, L s+ L2 (=1+4s2)> = [(1 = a2 ){1 + L4 (1 —4s>)2 = 2L% (1 + 4s5?)}]
=la, +4L,s+a, L%(—1+4s?)]* >0,
L4, Lys + L2 (=1 +452) = /(1= @) {1+ L4 (1 - 4522 = 2L2 (1 + 4s2)} <0, (D6)

we obtain M}, < M for M, <0. Then, there is no
parameter region of M _ such that M < M_ < M',. There-
fore, there is not the case in which the potential form is
given like Fig. 1.

From the above results, we conclude that the cases we
considered in the main part of this paper are the only
possible physical bounces in BTZ spacetimes.
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