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The excitation factors of black hole quasinormal modes quantify the ease of excitation of the
quasinormal modes and are independent of the source of perturbation. We compute the excitation factors
of Kerr black holes up to the 20th overtone and find that the fourth, fifth, and sixth overtones have the first
three highest excitation factors for intermediate and high spin parameters. This provides an independent
confirmation of the importance of overtones that has been confirmed by the fitting data analysis of
numerical relativity waveforms beginning around the strain peak amplitude.
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I. INTRODUCTION

A distorted single black hole relaxes to a stationary black
hole, and in the mean time it emits gravitational wave (GW)
radiation that is a superposition of the quasinormal (QN)
modes of the black hole

hþþih×¼
1

r

X
lmn

ClmnSlmnðθÞeimϕ exp½−iωlmnðt−r�Þ�; ð1Þ

where hþ and h× are strain amplitudes for the two polar-
izations, ωlmn is the QN frequency, and Clmn is the
excitation coefficient.1 The indices l and m are the angular
and azimuthal numbers, respectively, defined for the spin-
weighted spheroidal harmonic (SWSH) function, Slmðω; θÞ
[3–5]. The amplitude of each QN mode is also determined
by the SWSH factor SlmnðθÞ≡ Slmðωlmn; θÞ. QNmodes are
numbered by non-negative integers, n, in ascending order
of the damping rates. The least damped mode (n ¼ 0) is
called the fundamental mode and the others (n ≥ 1) are
referred as the overtones. The complex values of QN
frequencies are the location of the poles of the black hole
Green’s function [6–13] in the complex frequency plane,
and there is an infinite number of QN modes for each l
mode in the Kerr spacetime [14]. By virtue of the no-hair
theorem of a black hole [15–17], the complex QN frequen-
cies are universal and depend only on the black hole’s mass,
M, and angular momentum, Ma. On the other hand, the
excitation coefficient, Clmn, depends on the source of the
perturbation, and therefore it is challenging to predict
which QN mode is most highly excited for general cases.
However, it is possible to understand the tendency of which

QN modes are easy to excite regardless of the source of
ringdown [6–10,18,19]. The excitation coefficient is rep-
resented by the product of the following two factors: the
quasinormal excitation factor (QNEF) Elmn and source
factor Tlmn

Clmn ¼ ElmnTlmn: ð2Þ

The two factors will be defined and explained later in more
detail, and here let us briefly explain the role of each factor
qualitatively. The QNEF, Elmn, is independent of the source
of ringdown, and is therefore a universal quantity that
quantifies the ease of excitation of QN modes. The source
factor is determined by the initial data of a distorted black
hole, and is hence challenging to estimate, especially when
the nonlinear distortion of the black hole is involved, e.g.,
binary black hole (BBH) mergers. Although the complete
prediction of Clmn are still challenging, the detailed inves-
tigation of the QNEFs for up to higher overtones is useful to
predict which QN modes are easy to excite. Also, one can
estimate the source factor as Tlmn ¼ Clmn=Elmn once
obtaining Elmn and extracting the values of Clmn from a
ringdown waveform.
The detections of GW signals [20–27] emitted from

BBHmergers by LIGO [28] and Virgo [29] have stimulated
an interest in the determination of QN frequencies from the
observations. The accurate extraction of the QN frequen-
cies of remnant black holes from detected ringdown signals
is important to test the black hole no-hair theorem and
general relativity. The linear perturbation theory works at
late times in the ringdown phase where the fundamental
mode, the least damped QN mode, dominates the wave-
form. On the other hand, other overtones are exponentially
suppressed with higher damping rates. Therefore, it had
been thought that higher overtones would be less important,
at least, in the purpose of testing the no-hair theorem or
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general relativity. However, the overtones exponentially
grow as going back in time towards the early phase of
ringdown and can overwhelm the fundamental mode,
provided that the perturbation theory is still relevant at
the early ringdown. Indeed, it was found that [30] the
GW150914-like numerical relativity waveform (SXS:
BBH:0305) [31] before the strain peak can be accurately
modeled by a superposition of the fundamental QN mode
and the first seven overtones. That indicates that the
spacetime can be described by a linearly perturbed Kerr
black hole as early as the strain peak. This surprising result
was followed by other extensive studies [32–50]. Also, it
was recently confirmed that the hierarchy of the mode
amplitudes and the significance of the fourth and fifth
overtones are insensitive to the initial condition of super-
kick configuration of BBHs [51]. In spite of the supporting
evidence indicating the importance of overtones, it is still
an open question why the overtones are highly excited at
the early ringdown. Especially, most of the previous studies
investigating the GW ringdown signals sourced by BBH
mergers have reported that including the first seven over-
tones are enough to model the early and late ringdown
phase2 [30,34,41,44], but the clear reason for this has not
been understood from the theoretical side.
In this paper, we compute the QNEFs of l ¼ m ¼ 2 up to

the 20th overtone to quantify the ease of excitation of QN
modes and provide novel evidence showing the importance
of overtones. In the former part of Sec. II, we briefly review
the QN modes and QNEFs and explain how we compute
them up to the 20th overtone. Also, we slightly modify the
original definition of QNEF [19] so that it quantifies the
ease of excitation in strain that is independent of the choice
of perturbation variables. In Sec. II D, we show that the
fourth, fifth, and sixth overtones have the three highest
QNEFs for 0.3 ≤ j≲ 0.9 (j≡ a=M), which is well con-
sistent with the truncation at n ¼ 7 in the fitting of QN
modes to GW ringdown waveforms as have been applied in
the literature [30,34,41,44]. We also find an interesting
relation between the anomalous behavior of the fifth QN
frequency (see, e.g., [52]) and the spin dependence of the
fifth QNEF for j≳ 0.9. We show that in the near-extremal
situation, the value of the fifth QNEF is suppressed and the
fifth QN mode becomes hard to excite. In Sec. III, we
perform the numerical computation of a GW signal induced
by a particle plunging into a black hole by solving the
Sasaki-Nakamura equation [53] and extract the excitation
coefficients C22n up to higher overtones. Then we check
how much each overtone is excited from the extracted C22n
and confirm that the fourth, fifth, and sixth overtones are

highly excited for medium and high spin parameters. Also,
we find that the fifth overtone is highly suppressed for the
near-extremal case. This analysis is independent of the
computation of the QNEFs, but nevertheless it is well
consistent with the behavior of the QNEFs computed in
Sec. II D. In Sec. IV, we introduce a new physical quantity,
tlmn, that is useful to predict the time when the nth overtone
mode tends to be less dominant compared to the funda-
mental mode. The quantity tlmn, referred as the decay time,
is determined only by the QN frequency and QNEF, and so
it is independent of the source of ringdown. We show that
the estimated decay time is consistent with the result of the
fitting data analysis of SXS:BBH:0305 performed by
Giesler et al. [30]. Also, we estimate the source factor,
T22n, of SXS:BBH:0305 and confirm that the estimated T22n
has the small dependence on the overtone number, contrary
to E22n. This means that at least for SXS:BBH:0305, the
significance of overtones found in Ref. [30] is determined
mostly by the QNEFs. In Sec. V, we summarize and discuss
our result that theoretically predicts the importance of the
overtones and raises some intriguing issues to be studied.We
set the Newton’s constant to unity G ¼ 1 and our compu-
tations are performed in the normalization of 2M ¼ 1
throughout the paper.

II. EXCITATION FACTORS OF A SPINNING
BLACK HOLE

A. Black hole perturbations and quasinormal modes

The relaxation process of a perturbed black hole leads to
ringdown radiation, which is the superposition of QN
modes. We here introduce the perturbation variable of a
spinning black hole and review the definition of the QN
modes. The line element of the Kerr metric in the Boyer-
Lindquist coordinates is

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 þ Σ

Δ
dr2 þ Σdθ2

þ sin2 θ

�
r2 þ a2 þ 2Mra2

Σ

�
dφ2

−
4Mra sin2 θ

Σ
dtdφ; ð3Þ

where

Σ≡ r2 þ a2 sin2 θ; ð4Þ

Δ≡ r2 − 2Mrþ a2 ¼ ðr − rþÞðr − r−Þ; ð5Þ

rþ ≡M þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
; r− ≡M −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
: ð6Þ

The perturbations of the Kerr spacetime is expressed by the
Newman-Penrose quantity [54], ψ4, which can be separated
with the radial and angular components as

2Reference [47] found that including overtones up to n ¼ 6 is
sufficient on average for numerical relativity waveforms in the
SXS catalog, and Ref. [42] found that including tones up to n ¼
ðlþ 2Þ is sufficient for the perturbation of a Schwarzschild black
hole resulting from the head-on collision of two nonspinning
black holes.
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ψ4 ¼ ðr − ia cos θÞ−4
Z

dωe−iωt
X
l;m

eimφ Slmðω; θÞffiffiffiffiffiffi
2π

p

× Rlmðω; rÞ; ð7Þ

where Rlmðω; rÞ is the Teukolsky variable. The SWSH
function Slmðω; θÞ is normalized byZ

π

0

dθjSlmðω; θÞj2 sin θ ¼ 1: ð8Þ

The Teukolsky variable, Rlmðω; rÞ, obeys the Teukolsky
equation:

Δ2
d
dr

�
1

Δ
dRlmðω; rÞ

dr

�
− Vlmðω; rÞRlmðω; rÞ

¼ T̃lmðω; rÞ; ð9Þ

where T̃lmðω; rÞ is the source term and the angular
momentum barrier Vlm has the form

Vlmðω; rÞ≡ −
K2 þ 4iðr −MÞK

Δ
þ 8iωrþ λlm; ð10Þ

where K ≡ ðr2 þ a2Þω −ma and λlm is the separation
constant. The angular equation defining the SWSH func-
tion for gravitational field is [4]

d
du

�
ð1 − u2Þ dSlm

du

�
þ
�
2aωðmþ 2uÞ − ðaωÞ2ð1 − u2Þ

þ 2þ λlm −
ðmþ aωuÞ2

1 − u2

�
Slm ¼ 0; ð11Þ

where u≡ cos θ and λlm → lðlþ 1Þ − 6 for aω → 0. The
QN mode of a spinning black hole, ω ¼ ωlmn, is obtained
by imposing the following boundary conditions to the
homogeneous radial and angular equations:

Rlmðω; rÞ ∼
�
Δ2e−ikr

�
for r� → −∞

r3eiωr
�

for r� → þ∞
; ð12Þ

Slmðω; θÞ ∼
� ð1þ uÞk− for u → −1
ð1 − uÞkþ for u → þ1

; ð13Þ

where dr�=dr≡ ðr2 þ a2Þ=Δ, k≡ ω −ma=ð2MrþÞ, and
k� ≡ jm ∓ 2j=2. The eigenvalues, λlm ¼ λlmðaωÞ, are
determined so that the boundary condition (13) is satisfied
for a fixed ω. On the other hand, the QN modes are the zero
points of the Wronskian WlmðωÞ defined in the complex
frequency plane:

WlmðωÞ≡ Δ−1
�
RðHÞ
lm

d
dr

Rð∞Þ
lm − Rð∞Þ

lm
d
dr

RðHÞ
lm

�
; ð14Þ

where RðHÞ and Rð∞Þ are the homogeneous solutions of the
Teukolsky equation:

RðHÞ
lm ðω; rÞ ¼

8<
:AðtransÞ

lm ðωÞΔ2e−ikr
�

for r� → −∞

r−1AðinÞ
lm ðωÞe−iωr� þ r3AðoutÞ

lm ðωÞeiωr� for r� → þ∞
; ð15Þ

Rð∞Þ
lm ðω; rÞ ¼

8<
:BðinÞ

lm ðωÞΔ2e−ikr
� þ BðoutÞ

lm ðωÞeþikr� for r� → −∞

r3BðtransÞ
lm ðωÞeiωr� for r� → þ∞

: ð16Þ

The Wronskian reduces to

WlmðωÞ ¼ 2iωAðinÞ
lm ðωÞ; ð17Þ

which vanishes at ω ¼ ωlmn

lim
ω→ωlmn

WlmðωÞ ¼ lim
ω→ωlmn

2iωðdAðinÞ
lm =dωÞðω − ωlmnÞ

¼ 0: ð18Þ

B. Definition

A spinning black hole has the infinite number of
discretized QN modes, and a ringdown signal can be
represented by the superposition of QN modes. Of course,
not all of them are significantly excited in a perturbed black
hole, and it may be natural to ask how we can quantify the
ease of excitation for each QN mode. This is crucial, for
example, to model the waveform of ringdown signal
emitted by a spinning black hole. It is known that the
QNEF, Elmn, is the very quantity that quantifies the ease of
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excitation of QN modes and is independent of the source of
perturbation [6–10,18,19]. Here we review the definition of
QNEF and slightly modify its original definition [19], in
which the QNEF depends on the perturbation variables.
The standard perturbation variables are the Teukolsky [4],
Sasaki-Nakamura [53], and Chandrasekhar-Detweiler [55]
variables for the Kerr spacetime. To quantify the impor-
tance of overtones measured in strain, we here introduce the
QNEF slightly modified based on the strain amplitude h ¼
hþ þ ih× that has the form of

h ¼ lim
r�→∞

hþ þ ih×

¼ −
2

r
eimϕffiffiffiffiffiffi
2π

p
Z

∞

−∞
dω

X
lm

eiωðr�−tþtsÞ

ω2
Slmðω; θÞ

AðoutÞ
lm

2iωAðinÞ
lm

×
Z

∞

rþ
dr0

T̃lmðω; r0ÞRðHÞ
lm ðω; r0Þ

AðoutÞ
lm Δ2ðr0Þ

; ð19Þ

where ts is the start time of ringdown. The integration with
respect to ω in Eq. (19) can be replaced by the summation
of the residues at the QN frequencies, ω ¼ ωlmn, since

AðinÞ
lm ðωÞ ∼ ðω − ωlmnÞ for ω ∼ ωlmn. Therefore, the metric

perturbations hðt; rÞ can be written as

hðt; rÞ ¼ −
2

r
eimϕffiffiffiffiffiffi
2π

p ð2πiÞ
X
lmn

ElmnTlmnSlmnðθÞeiωlmnðr�−tþtsÞ;

ð20Þ

where

Elmn ≡ AðoutÞ
lm ðωlmnÞ
2iω3

lmn

�
dAðinÞ

lm

dω

�−1

ω¼ωlmn

; ð21Þ

Tlmn ≡
Z

∞

rþ
dr0

T̃lmðωlmn; r0ÞRðHÞ
lm ðωlmn; r0Þ

AðoutÞ
lm ðωlmnÞΔ2ðr0Þ

; ð22Þ

Slmn ≡ Slmðωlmn; θÞ: ð23Þ

Our definition of the excitation factor Eq. (21) is suited to
quantify the ease of excitation in strain. Note that the QNEF
Elmn is independent of the source of perturbation and is
determined only by the mass and spin of a black hole. On
the other hand, the factor Tlmn is determined by the source
term T̃lmðω; rÞ in Eq. (9), which means that Tlmn includes
the information of the source of perturbation. The SWSH
factor Slmn is also the quantity independent of the source of
perturbation and determines the amplitude of each QN
mode. However, its dependence on the overtone number, n,
is weaker than the n dependence of QNEF as is shown in
Appendix A. Therefore, we conclude that the n dependence
of the ease of excitation of QN modes is mostly determined
by Elmn rather than Slmn. Also, in Sec. IV, we will show the

n dependence of T22n for SXS:BBH:0305, which is also
weaker than that of E22n.

C. Overview of our methodology to compute the
excitation factors

In this section, we briefly overview how we compute the
QN frequencies and QNEFs, and all other details are
provided in Appendices B and C. The main procedures
of our computation for the nth QNEF can be summarized as
follows:

Step 1: compute the nth QN frequency, ωlmnðΛÞ, of a
Kerr–de Sitter (KdS) black hole by using the general
Heun function [56]. The Mathematica function,
HEUNG, is available after the version 12.1 (cf. [57]).

Step 2: repeat the first procedure in the range of Λ ¼
0.002–0.02 (M ¼ 1=2) with a step size of N ¼ 41
iterations.

Step 3: compute the corresponding values of the nth
QNEF, ElmnðΛÞ, with the same range and step size of
Λ as in step 2.

Step 4: extrapolate the values of the nth QNEF to the
value of Λ ¼ 0 and obtain the nth QNEF of the Kerr
black hole.

The Teukolsky equation for the KdS black hole reduces to
the Heun equation [56], and hence, it has an analytic
solution represented by the general Heun function. This
allows us to compute the QN frequencies for Λ > 0 with
high precision by usingMathematica 12.1 or later versions.
The computation of QN frequencies ωlmn for a Kerr black
hole by extrapolating the QN frequencies of the KdS
spacetime to those of Λ ¼ 0 by using Mathematica was
originally suggested in [57]. We here extend it to the
computation of QNEFs and QN frequencies including
overtones. The obtained QN frequencies are in agreement
with the catalog provided in [58,59]. In the Appendix D,
our result of the QN frequencies, ω22n, up to n ¼ 20 are
shown for the various spin parameters. The nth QNEF,

Elmn, is obtained by computing the derivative of AðinÞ
lm with

respect to ω near the QN frequencies3 [see (21)] and by
performing proper normalization (step 3). For the details of
the normalization to compute the QNEF, see Appendix C.
Extrapolating ElmnðΛÞ to the value of Λ ¼ 0, one can
obtain the QNEFs for the Kerr spacetime (step 4). We set a
fitting function as

ElmnðΛÞ ≃
XN−1

k¼0

ck

�
1

l

�
k
; ð24Þ

3We numerically compute dAðinÞ
lm =dω by the finite difference

method as ðAðinÞ
lm ðωþ δωÞ − AðinÞ

lm ðωÞÞ=δω, and we take δω ¼
10−9 for which the value of QNEF converges. We also repeat the
computation with δω ¼ i10−9 and confirm that the values are in
agreement with each other.
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where l≡ ffiffiffiffiffiffiffiffiffi
3=Λ

p
. The precision of step 4 can be improved

by increasing the iteration number, N, in step 2. The
numerical convergence of the value of ElmnðΛÞ and
comparison with the result in Ref. [19] is shown in
Appendix E.
Although our procedure makes the computation of

QNEFs up to higher overtones possible with high accuracy,
we find that for lower spins (j≲ 0.2), the fitting function
(24) does not work because ωlmnðΛÞ and ElmnðΛÞ has a
modulation with respect to Λ for slow rotations. In this
paper, the main motivation is to quantify the importance of
overtones for ringing remnant black holes resulting from
BBHmergers, whose remnant spin parameters are typically
in 0.6≲ j≲ 0.9, and hence, we can take the advantage of
this procedure.

D. Excitation factors for Kerr black holes

The obtained values of QNEFs, E22n, for 0.3 ≤ j ≤ 0.9
and n ¼ 0; 1; 2;…; 20 are shown in Fig. 1 and the data of
their absolute values and arguments are shown in Table I.
We find that the peak of the QNEF is at n ¼ 5 for 0.5≲

j≲ 0.9 which covers the typical spin parameters of
remnant black holes resulting from BBH mergers. For
lower spin parameters (j≲ 0.4), on the other hand, the peak
comes at n ¼ 6. Based on the values of QNEFs obtained
from our computation, we find that the fourth, fifth, and
sixth QN modes are the top three important overtones. This
result is consistent with the previous work [30] in which the
excitation of overtones was investigated from the fitting
data analysis of waveforms in the SXS collaboration
catalog [60].
One can see that the QN mode which has the maximum

value of E22n is at the corner of the QN-frequency curve
(see Fig. 2). The correspondence of the peak in QNEF and
the corner in the QN-frequency curve is interesting and this

implies that there may be a nontrivial correlation between
the behaviors of ωlmn and Elmn.
The closer to the extremal limit the black hole is, the

sharper the QN-frequency curve at the fifth QN mode is. In
the extremal limit, the fifth QN mode is isolated from the
other QN modes (Fig. 3), and this anomalous behavior of
ω225 was originally found by Onozawa [52]. The fifth QN
frequency has a loop trajectory around j ¼ 0.9 [see
Fig. 3(c)], where the fifth QNEF has the maximum absolute
value as is shown in Fig. 4. The anomalous behavior near
the extremal limit can be seen in the QNEF as well. The
closer to the extremal limit the black hole is, the more
suppressed the fifth QNEF is (see Figs. 4 and 5). Although
the anomalous behavior of the fifth QN mode for the near-
extremal situation is interesting, as far as I know, it is still an
open question why the fifth QN mode is so special.

III. EXCITATION OF OVERTONES BY A
PARTICLE PLUNGING INTO A BLACK HOLE

In this section, we compute the GW waveform sourced
by a particle plunging into a spinning black hole to see how
important the overtones are in an independent way from the
computation of the QNEF. Especially, for intermediate and
high spin parameters, the excitation factors of the fourth,
fifth, and sixth overtones are the three highest modes. For
the near-extremal case (j ∼ 0.99), on the other hand, the
fifth QNEF is suppressed, and the higher overtones 6 ≤
n ≤ 9 have relatively larger absolute values of QNEFs. We
here check how such behavior of the QNEFs are reflected
in GW emission induced by a particle plunging into a
spinning black hole. To this end, we compute the GW
waveform and extract the amplitude of each QN mode,
C̃22n, from the waveform.
As the first step, we will solve the Sasaki-Nakamura

equation with the source term of a plunging particle whose

FIG. 1. The QNEFs for j ¼ 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 with l ¼ m ¼ 2. The maximum value of QNEF is indicated by red
points.
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trajectory is on the equatorial plane ðθ ¼ π=2Þ [61,62].
Also, we assume that an observer detecting the emitted GW
signal is on the equatorial plane and at a distant region
r� ≫ 1. Then we fit the QN modes of l ¼ m ¼ 2 and n ¼
0; 1; 2;…; 7 to the obtained GW waveform and extract the
amplitude of each QN mode, which is given by the product

of E22n, T22n, and S22n. In this work, we set the fit start time,
tfit, to the moment when the plunging particle starts to
follow the null geodesics near the black hole horizon (see
Appendix G). After the moment, the particle is absorbed by
the black hole and the system relaxes to an axial-symmetric
Kerr black hole.

TABLE I. The absolute values and arguments of the QNEFs with n ¼ 0; 1; 2;…; 20 and l ¼ m ¼ 2 for a Kerr black hole. The spin
parameter is set to j ¼ 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99.

j ¼ 0.7 j ¼ 0.8 j ¼ 0.9 j ¼ 0.99

Overtone number n jE22nj argðE22nÞ jE22nj argðE22nÞ jE22nj argðE22nÞ jE22nj argðE22nÞ
0 0.136 0.879 0.164 1.17 0.194 1.62 0.148 2.71
1 0.557 −1.31 0.725 −0.917 0.927 −0.292 0.716 1.15
2 1.29 2.64 1.80 −3.10 2.39 −2.22 1.81 −0.285
3 2.28 0.155 3.50 0.885 4.63 2.12 3.25 −1.62
4 3.26 −2.56 6.01 −1.68 8.40 0.250 4.68 −2.88
5 3.44 0.825 6.75 1.70 21.6 2.60 0.505 0.747
6 2.77 −2.04 4.72 −1.13 20.8 −0.605 5.76 2.22
7 2.02 1.49 2.93 2.62 6.31 −2.01 6.30 1.10
8 1.48 −1.20 1.92 0.170 3.36 2.34 6.28 0.0509
9 1.09 2.40 1.28 −2.26 1.96 0.362 5.80 −0.94
10 0.802 −0.278 0.860 1.58 1.17 −1.63 5.03 −1.87
11 0.591 −2.96 0.576 −0.852 0.701 2.66 4.11 −2.76
12 0.435 0.640 0.384 2.99 0.419 0.657 3.18 2.68
13 0.318 −2.04 0.254 0.550 0.249 −1.34 2.33 1.87
14 0.231 1.54 0.167 −1.89 0.147 2.94 1.62 1.06
15 0.168 −1.14 0.109 1.94 0.0869 0.936 1.09 0.268
16 0.121 2.44 0.0714 −0.500 0.0508 −1.06 0.710 −0.534
17 0.0873 −0.249 0.0461 −2.95 0.0295 −3.07 0.453 −1.34
18 0.0624 −2.94 0.0296 0.883 0.0171 1.21 0.285 −2.16
19 0.0443 0.635 0.0189 −1.57 0.00983 −0.792 0.178 −2.98
20 0.0313 −2.07 0.0120 2.24 0.00563 −2.80 0.110 2.48

j ¼ 0.3 j ¼ 0.4 j ¼ 0.5 j ¼ 0.6

Overtone number n jE22nj argðE22nÞ jE22nj argðE22nÞ jE22nj argðE22nÞ jE22nj argðE22nÞ
0 0.0743 0.210 0.0850 0.340 0.0983 0.488 0.115 0.662
1 0.230 −2.14 0.280 −1.99 0.346 −1.81 0.435 −1.59
2 0.417 1.61 0.537 1.78 0.703 2.00 0.942 2.27
3 0.585 −1.08 0.788 −0.885 1.08 −0.635 1.54 −0.307
4 0.725 2.32 0.996 2.54 1.40 2.82 2.05 −3.09
5 0.832 −0.696 1.12 −0.462 1.53 −0.152 2.20 0.258
6 0.881 2.46 1.12 2.73 1.45 3.10 1.94 −2.69
7 0.854 −0.702 1.02 −0.360 1.25 0.0932 1.55 0.689
8 0.781 2.43 0.898 2.85 1.04 −2.87 1.23 −2.16
9 0.700 −0.678 0.783 −0.179 0.877 0.454 0.973 1.28
10 0.628 2.51 0.686 3.07 0.737 −2.49 0.774 −1.55
11 0.569 −0.567 0.605 0.0565 0.623 0.847 0.616 1.89
12 0.519 2.64 0.537 −2.96 0.528 −2.10 0.491 −0.950
13 0.477 −0.429 0.478 0.297 0.448 1.23 0.390 2.49
14 0.440 2.78 0.427 −2.72 0.381 −1.71 0.310 −0.356
15 0.408 −0.292 0.382 0.533 0.323 1.61 0.245 3.07
16 0.377 2.91 0.342 −2.49 0.274 −1.34 0.193 0.228
17 0.350 −0.159 0.307 0.763 0.233 1.98 0.152 −2.62
18 0.327 3.04 0.273 −2.26 0.195 −0.970 0.119 0.805
19 0.307 −0.0196 0.245 0.989 0.167 2.34 0.0934 −2.04
20 0.284 −3.11 0.219 −2.04 0.140 −0.593 0.0726 1.37
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FIG. 3. (a) Plot of the QN frequencies, ω22n, for n ¼ 0; 1; 2;…; 10 and 0.85 ≤ j ≤ 0.95. The gray arrows indicate the direction for
which the spin parameter increases. The fifth QN mode has anomalous behavior and it has the peak value of Reðω22nÞ around j ¼ 0.9
[(b) and (c)].

FIG. 4. Plot of the QNEF, E22nðjÞ, for n ¼ 0; 1; 2;…; 10. The fifth QNEF has its peak at j ≃ 0.9 and suppressed in the near-extremal
situation.

FIG. 2. The real part of QN frequencies for j ¼ 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 with l ¼ m ¼ 2. The red points indicate the overtone
which has the maximum value of QNEF.
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A. GW emission induced by a particle
plunging into a black hole

The trajectory of a particle plunging into a black hole on
the equatorial plane (θ ¼ π=2) is governed by the following
equations [61,62]

r2
dt
dτ

¼ −aða − LÞ þ r2 þ a2

ΔðrÞ PðrÞ; ð25Þ

r2
dr
dτ

¼ −
ffiffiffiffiffiffiffiffiffiffi
QðrÞ

p
; ð26Þ

r2
dφ
dτ

¼ −ða − LÞ þ a
ΔðrÞPðrÞ; ð27Þ

where τ is the proper time, L is the orbital angular
momentum of the particle, and

QðrÞ≡ 2Mr3 − L2r2 þ 2Mrða − LÞ2; ð28Þ

PðrÞ≡ r2 þ a2 − aL: ð29Þ

The source term of the plunging particle in the Sasaki-
Nakamura equation is [61,62]

T̃ðSNÞ
lm ¼ γΔμW̃

ðr2 þ a2Þ3=2r2 e
−ikr� ; ð30Þ

where γ ≡ λðλþ 2Þ − 12iMω − 12aωðaω −mÞ and the
explicit form of W̃ is given in the Appendix F. The strain
amplitude in the far region (r� → ∞) is

hþ þ ih× ¼ −
2

r
1ffiffiffiffiffiffi
2π

p
Z

∞

−∞
dω

X
lm

eiωðr�−tÞ

ω2
RðoutÞ
lm ðωÞ

× Slmðω; θÞeimϕ; ð31Þ

RðoutÞ
lm ¼ −

4ω2XlmðωÞ
λðλþ 2Þ − 12iMω − 12a2ω2

r3e{ωr
�
; ð32Þ

Xlm ≃
Z

dr0
T̃ðSNÞ
lm ðr0;ωÞXðinÞ

lm ðr0;ωÞ
2iωBðωÞ for r → ∞; ð33Þ

where XðinÞ
lm is the homogeneous solution of the Sasaki-

Nakamura equation that is purely ingoing at the black hole
horizon

XðinÞ
lm ðr;ωÞ¼

�
AðωÞeiωr� þBðωÞe−iωr� ðr→∞Þ
e−ikr

� ðr�→−∞Þ: ð34Þ

We numerically solve the Sasaki-Nakamura equation and
compute the strain amplitude with the source term (30). The
obtained waveforms are shown in Fig. 6 along with the
trajectories of the point particle. In the next subsection, we
will perform the fitting analysis of the QN frequencies of
n ¼ 0; 1; 2;…; 7 to extract the amplitudes, C̃22n, and to
show which overtones are highly excited.

B. Excitation of overtones

We here fit the QN modes4 to the obtained waveforms
shown in Fig. 6, and the fitting function is

h22 ≃
1

r

Xnmax

n¼0

C̃22neImðω22nÞðt−r�−t0Þ

× exp ½Reðω22nÞðt − r� − t0Þ þ iδn�; ð35Þ

where C̃22n and δn are fitting parameters, and t0 is a
reference time. We take nmax ¼ 7 for j ¼ 0.7 and 0.9 and
nmax ¼ 11 for j ¼ 0.99. We use a Mathematica function
FINDFIT with MAXITERATIONS → 100000 to fit the wave-
forms, and the fit start time is set to the moment when the
particle starts to follow the null geodesics, which may be
regarded as the absorption of the particle by the black hole
horizon (see Appendix G). The mismatch between the
numerically obtained waveform and the fitting function in
(35) is presented in Appendix G. In Fig. 7, the fitted values
of C̃22n are shown and one can see that the fourth and fifth
QN modes are highly excited for j ¼ 0.7. For j ¼ 0.9, the
fifth and sixth QN modes are highly excited. In the near-
extremal case j ¼ 0.99, on the other hand, the fifth over-
tone is suppressed (see Fig. 5) and the seventh and eighth

FIG. 5. QNEFs (left) and the real part of the QN frequencies (right) for the near-extremal limit j ¼ 0.99 with l ¼ m ¼ 2.

4We also subtract the ringdown tail at late time as necessary.

NARITAKA OSHITA PHYS. REV. D 104, 124032 (2021)

124032-8



overtones are highly excited. Also, we find that the
excitation or suppression of the overtones is insensitive
to the initial condition of the plunging particle, e.g.,
corotating and counterrotating particles. What we extracted

from the waveforms is not E22n but C̃22n ¼ E22nT22nS22n,
and this fitting analysis is totally independent of the
computation of E22n. Nevertheless, the extracted ampli-
tudes are consistent with our result of the direct

FIG. 6. Strain amplitudes, rhðt − r�Þ, and the trajectories of a particle on the equatorial plane (θ ¼ π=2). The mass of the particle is set
to μ ¼ 1, and the spin parameter is set to j ¼ 0.7, 0.9, and 0.99 with a corotating (L ¼ 1) and counterrotating cases (L ¼ −1). The red
lines indicate the fit start time, tfit, and the extracted amplitudes are shown in Fig. 7.

FIG. 7. Amplitudes for each QN modes (n ¼ 0; 1; 2;…; 7) obtained by fitting the QN modes to the waveforms shown in Fig. 6.
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computation of QNEF shown in Sec. II D. In general, the n
dependence of C̃lmn matches with that of Elmn when

jTlmnj=jTlm0j ∼Oð1Þ and jSlmnj=jSlm0j ∼Oð1Þ: ð36Þ

Indeed, in our case, those conditions are satisfied as is
shown in Table II. In the latter part of the next section, we
will revisit the result of the fitting data analysis of the
GW150914-like numerical relativity waveform SXS:
BBH:0305 done in Ref. [30] to see the consistency between
our result of E22n and the ringdown signal of the BBH
merger. Also, we will check (36) in the situation.

IV. DECAY TIME OF OVERTONES AND
RINGDOWN OF BBH MERGERS

Although the QNEF and source factor are important to
determine the amplitude of each QN mode, those factors
may have the ambiguity of the ringdown start time, leading
to an uncertainty of the factor e−iωlmnts. As such, we
introduce a new quantity that is determined only by
Elmn and ωlmn and is independent of the ringdown start
time. Since we know the absolute values of the QNEFs

quantifying the typical amplitude of QN modes, one can
estimate the time when the nth overtone starts to be less
dominant than the fundamental mode. That is independent
of the ringdown start time and is important to properly
determine the fit start time in the fitting data analysis. Let us
introduce the following quantity, referred as decay time, for
the nth overtone

tlmn≡ ln jElmn=Elm0j
ImðωlmnÞ− Imðωlm0Þ

−
lnjElm1=Elm0j

Imðωlm1Þ− Imðωlm0Þ
: ð37Þ

For tlmn < t, the nth overtone of ðl; mÞ mode tends to be
less important than the fundamental mode, and for
t > tlm1 ¼ 0, the fundamental mode dominates the signal
(Fig. 8). The decay time is defined only by the QN
frequencies and QNEFs, and therefore, tlmn is also inde-
pendent of the source of perturbation. In Fig. 9, the decay
time, t22n, with n ¼ 0; 1; 2;…; 7 is shown for the various
spin parameters. It is found that the decay time is
insensitive to the spin parameters for 0.6≲ j≲ 0.8 that
is the typical spin parameter range of remnant black holes
of BBH mergers. In Ref. [30], the authors have performed
the fit of QN modes to the numerical relativity waveform
SXS:BBH:0305 [60], whose remnant black hole has

TABLE II. The n dependence of the QNEF, source factor, and SWSH factor for the signal of h× induced by the
plunging particle (L ¼ 1) into the black hole of j ¼ 0.7 (left) and 0.9 (right).

n 0 1 2 3 4 5 6 7

jE22nj=jE220j 1 4.09 9.47 16.7 23.9 25.3 20.3 14.8
jT22nj=jT220j 1 0.563 0.962 2.06 3.22 2.97 1.30 0.188
jS22nj=jS220j 1 1.01 1.02 1.03 1.05 1.06 1.07 1.08

n 0 1 2 3 4 5 6 7

jE22nj=jE220j 1 4.77 12.3 23.8 43.2 112 107 32.4
jT22nj=jT220j 1 0.548 1.95 3.35 3.36 1.57 1.56 0.296
jS22nj=jS220j 1 1.01 1.02 1.04 1.07 1.09 1.11 1.13

FIG. 8. A schematic description of the definition of the decay
time tlmn defined in (37).

FIG. 9. The decay time, t22n, for j ¼ 0.6, 0.7, 0.8, and 0.9. The
star markers are the decay time estimated from the excitation
coefficients extracted from the numerical relativity waveform
SXS:BBH:0305 in Ref. [30].
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j ¼ 0.6921. They extracted the excitation coefficients C22n
up to n ¼ 7 by the fitting data analysis. We estimate the
values of decay time, t̃22n, by replacing E22n in (37) with
C22n obtained in [30]. Such a replacement is a good
approximation when jT22nj=jT220j ∼Oð1Þ that will be
shown later in Table IV. Then we confirm that t̃22n that
is shown in Fig. 9 with star markers is consistent with the
decay time in (37) as in Table III.5

The approximated decay time, t̃lmn, computed by replac-
ing the QNEF in (37) with the excitation coefficient, has the
log dependence of Tlmn, and therefore, such an approxi-
mation works only when

jTlmnj=jTlm0j ∼Oð1Þ: ð38Þ

At least from our computation of E22nðj ¼ 0.6921Þ and
from the fitting data analysis of SXS:BBH:0305 in [30],
one can check that the condition (38) is satisfied while the n
dependence of E22n is significant as is shown in Table IV,
where jT22nj is computed as jT22nj ¼ jC22nj=jE22nj. In the
future work, we will study the issue of to what extent the
condition of (38) holds for the ringdown signals sourced by
BBH mergers. In Ref. [51], it was found that the hierarchy
and absolute values of the excitation coefficients of ring-
down signals of the superkick configuration of BBH
mergers (those with equal mass and antiparallel spins)
are insensitive to initial conditions. Their result is also well
consistent with the behavior of QNEFs and with that the
source factors are insensitive to the overtone number
(Table IV). Note that the decay time defined by Elmn in
(37) is only an estimate of the true decay time that is

determined by Clmn rather than Elmn. In other words, the
decay time introduced in (37) works only when the source
factor is less sensitive to the overtone number.

V. CONCLUSION AND DISCUSSION

For the first time, we have computed the QNEFs that
quantify the ease of excitation of QN modes of a Kerr black
hole up to the 20th overtone for 0.3 ≤ j ≤ 0.99. Then we
have found that the first three highest QNEFs are n ¼ 4, 5,
and 6 for the typical spin parameters of remnant black holes
resulting from BBH mergers. At j ¼ 0.7 which is close to
the spin parameter of the remnant black hole of
GW150914, we found that the first two highest values
of jE22nj are at n ¼ 4 and 5, which is consistent with the
data analysis of GW150914-like numerical relativity wave-
form SXS:BBH:0305 in Ref. [30] and the recent fitting
analysis that has investigated the universality of the
importance of overtones [51]. Utilizing the result in
Ref. [30], we have found that the n dependence of T22n
in SXS:BBH:0305 is smaller than that of E22n. Therefore,
we conclude that the n dependence of C22n is determined
mostly by E22n at least in the waveform. Also, we have
shown that the overtone number for which the QNEF has
the highest absolute value matches the overtone number at
which the path of QN frequencies has a corner for l ¼
m ¼ 2 (see Fig. 2). We will investigate if this holds even for
higher angular modes elsewhere. Indeed, the investigation
of Elmn for higher angular modes are important to theo-
retically understand the significance of l ¼ m ¼ 3
(cf. [45]). In the latter part of Sec. II D, we have shown
that the fifth QNEF E225 is strongly suppressed than the
other factors in the near-extremal situation as shown in
Figs. 4 and 5. This anomalous behavior may correspond to
the isolation of the fifth QN frequency in the near-extremal
situation that has been found by Onozawa [52]. As far as I
know, the physical reason of the mysterious behavior of the

TABLE III. The decay time, t22n, for j ¼ 0.6921 and the decay time, t̃22n, approximately evaluated by the
excitation coefficients, C22n, extracted from the numerical relativity waveform SXS:BBH:0305 (j ¼ 0.6921) in
Ref. [30].

n 1 2 3 4 5

t22n (j ¼ 0.6921) 0 −0.908 −1.50 −1.94 −2.37
t̃22n (SXS:BBH:0305) 0 −0.792 −1.35 −1.88 −2.47

TABLE IV. The absolute values of QNEFs for j ¼ 0.6921 and source factors estimated from the data of the
excitation coefficients obtained in Ref. [30] as T22n ¼ C22n=E22n.

n 0 1 2 3 4 5 6 7

jE22nj 0.135 0.546 1.26 2.21 3.13 3.31 2.69 1.98
jT22nj 7.21 7.72 8.96 10.4 10.5 8.76 5.21 1.47
jE22nj=jE220j 1 4.06 9.37 16.4 23.3 24.6 20.0 14.7
jT22nj=jT220j 1 1.07 1.24 1.44 1.46 1.21 0.72 0.203

5In Table III and Fig. 9, t̃226 and t̃227 are not shown because the
convergence of the excitation coefficients for n ¼ 6 and 7
presented in Table I in Ref. [30] is not enough to guarantee
their accuracy.
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fifth QN mode is still an open question. In Sec. III, we have
performed the numerical computation of the strain ampli-
tude of GW signal induced by a particle plunging into a
spinning black hole with corotating or counter rotating
trajectories. Then we fit QN modes up to the seventh
overtone to the waveforms, and we have found that the
qualitative behavior of the excitation coefficients, C22n,
agrees with that of the QNEFs. For example, we have
confirmed that the first two highest values of the excitation
coefficients are at n ¼ 4 and 5 for j ¼ 0.7, and are at n ¼ 5
and 6 for j ¼ 0.9. Also, we have confirmed that the
excitation coefficient of the fifth overtone is strongly
suppressed for the near-extremal case (j ¼ 0.99). All these
results obtained by the extraction of the excitation coef-
ficients from the GW signals are consistent with the direct
computation of the QNEFs. Note that the extraction of the
excitation coefficients in Sec. III have been performed in a
manner totally independent of the computation of E22n in
Sec. II D. Our results justify the truncation at n ¼ 7
commonly applied to the fit of QN modes to GW wave-
forms in the previous studies [30,34,41,44]. Also, it should
be emphasized that depending on the initial data of BBH
mergers, other overtones or fundamental mode could be
more dominant than the fourth, fifth, and sixth overtones at
the early ringdown although the source factor seems to be
insensitive to most of the initial conditions.
In Sec. IV, we have introduced the decay time of QN

mode that is determined only by the QN frequencies and
QNEFs. It is useful to predict the time when the nth QN
mode tends to be suppressed compared to the fundamental
QN mode and to determine the fit start time of the fitting
data analysis. Our computation is based on the fact that the
solution of the Teukolsky equation for the KdS spacetime is
represented by the general Heun function, that was dis-
covered by Suzuki, Takasugi, and Umetsu [56]. The Heun
function is available in Mathematica 12.1 or later version,
and it makes possible to compute QN frequencies of the
KdS spacetime with high accuracy. In the limit of zero
cosmological constant, one can obtain the QN frequencies
of the Kerr spacetime as was performed in [57]. We have
extended this technique to the computation of QNEFs and
overtones as described in Sec. II C.
The excitation of overtones should be quantified by

the excitation coefficients Clmn since ClmnSlmn gives the
amplitude of each QN mode. However, it should be
emphasized that each QN mode can be characterized by
its ease of excitation, and it is determined only by the
intrinsic nature of the black hole. In other words, each QN
mode is characterized not only by its unique frequency
ReðωlmnÞ and damping rate ImðωlmnÞ but also by the QNEF
Elmn independent of the source of perturbation. What has
been done in this paper is quantifying the ease of excitation
of QN modes of Kerr black holes up to higher overtones
n ≤ 20. On the other hand, a direct computation of the
source factors would be significantly challenging

especially for nonlinearly distorted black holes.
Nevertheless, combining our result of E22n and the exci-
tation coefficient extracted by the fitting data analysis, one
can obtain the source factors even from GW signals of BBH
mergers as we performed in Sec. IV. This procedure to
extract the source factors may contribute to the progress in
the modeling of GW waveforms for linearly perturbed
black holes. However, we should note that the excitation of
QN modes at or before the strain peak is still controversial
especially for comparable mass-ratio BBH mergers since it
may involve the highly nonlinear regime at the merger
phase. As an independent check if a remnant black hole
settle to perturbative state as early as the strain peak, one
can see the time evolution of the precession of the remnant
as was performed in [63]. If the remnant can be described
by a perturbed Kerr black hole at or before the strain peak,
then its dynamical precession would be suppressed at the
moment.
Recently, the importance of the mirror overtones [41,48]

and the excitation of l ¼ m ¼ 3 harmonics [45] have been
investigated. As an interesting extension of our work, one
can discuss the importance of mirror and higher angular
modes by computing QNEFs up to higher overtones
(QNEFs up to the third overtone are available in
[58,59]). We leave the analysis of the mirror modes or
higher angular modes based on the QNEF for future
studies.
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APPENDIX A: SWSH FACTOR Slmn AND ITS
DEPENDENCE ON THE OVERTONE NUMBER n

The amplitude of each QN mode is given by the product
of the QNEF, Elmn, source factor, Tlmn, and the SWSH
factor Slmn. The two factors, Elmn and Slmn, are independent
of the source of perturbation. Nevertheless, the n depend-
ence of the amplitude of QN mode is determined mostly by
Elmn because the n dependence of the SWSH factor is
smaller than that of the QNEF as is shown below. In
Fig. 10, the SWSH factor for the fundamental QN mode,
S220, is shown for the various spin parameters. One can see
that the spin dependence of S220 is small. Also, the SWSH
factor has the maximum value at θ ¼ 0 and is suppressed at
θ ¼ π. On the other hand, Fig. 11 shows the absolute values
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of the ratio S22nðθÞ=S220ðθÞ from which one can read that it
is of the order of unity in the whole range of θ and for
n ¼ 0; 1; 2;…; 10while the ratio of the QNEFs, E22n=E220,
is at most of the order of 102 (see Fig. 4). Therefore, we
conclude that the dependence of the ease of excitation of
QN mode on the overtone number, n, is determined mostly
by the QNEF. Of course, taking into account the SWSH
factor is necessary to estimate the amplitude of QN modes.
Here we utilized the Mathematica notebook available in
[58,59] to compute the SWSH factor although the values of
QN frequencies are obtained by the independent method-
ology using the general Heun function.

APPENDIX B: COMPUTATION OF QN
FREQUENCIES

It is known that the solution of the Teukolsky equation in
the KdS spacetime can be represented by the Heun function
[56]. This allows us to precisely compute the QN modes of
Kerr spacetime by extrapolating the QN modes of KdS
spacetime toH ¼ 0 [57], whereH is the Hubble parameter.
Here we review the methodology to compute the QN
modes in the KdS spacetime. Then in the next section, we

FIG. 11. The absolute values of the ratio of the nth SWSH factor to the zeroth one, jS22nðθÞ=S220ðθÞj, is shown for the same spin
parameters in Fig. 10.

FIG. 10. The SWSH factor for the fundamental QN mode,
S220ðθÞ, is shown for j ¼ 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99.
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will present the details of how to compute the QNEF of the
Kerr spacetime. The angular and radial Teukolsky equa-
tions for a spin-s field are

�
d
du

Δu
d
du

−
1

Δu

�
V þ s

2
Δ0

u

�
2

þ 2sV 0 − Xs

�
sSωlmðuÞ ¼ 0;

ðB1Þ
�
Δ−s

r
d
dr

Δsþ1
r

d
dr

þ 1

Δr
ðW2−isWΔ0

rÞþ2isW0−Ys

�
sRωlmðrÞ¼0; ðB2Þ

and

VðuÞ≡ Ξ½aωð1 − u2Þ −m�; ðB3Þ

WðrÞ≡ Ξ½ωðr2 þ a2Þ − am�; ðB4Þ

XsðuÞ≡ 2ð2s2 þ 1Þα2u2 − λ; ðB5Þ

YsðrÞ≡ 2H2ðsþ 1Þð2sþ 1Þr2 þ λ − sð1 − α2Þ; ðB6Þ

Δr ≡ ðr2 þ a2Þð1 −H2r2Þ − 2Mr; ðB7Þ

Δu ≡ ð1 − u2Þð1þ α2u2Þ; ðB8Þ

u≡ cos θ; ðB9Þ

α≡ a2H2; ðB10Þ

where λ ¼ λðω; αÞ is the separation constant. Let us
consider the following transformations of sSωlm and sRωlm

sSωlmðuÞ ¼ fA1ðf − 1ÞA2ðf − faÞA3ðf − f∞ÞyaðfÞ; ðB11Þ

f ¼ fðuÞ≡ ð1− i=
ffiffiffi
α

p Þðuþ 1Þ
2ðu− i=

ffiffiffi
α

p Þ ; fa ≡−
ð1− i=

ffiffiffi
α

p Þ2
4i=

ffiffiffi
α

p ;

f∞ ≡ 1− i=
ffiffiffi
α

p
2

; ðB12Þ

sRωlmðrÞ ¼ gB1ðg − 1ÞB2ðg − grÞB3ðg − g∞Þ2sþ1

× yrðgÞ; ðB13Þ

g¼gðrÞ≡ðrcþ−r−Þðr−rþÞ
ðrcþ−rþÞðr−r−Þ

; gr≡ðrcþ−r−Þðrc−−rþÞ
ðrcþ−rþÞðrc−−r−Þ

;

g∞≡rcþ−r−
rcþ−rþ

; ðB14Þ

where rc� and r� are the roots of ΔðrÞ ¼ 0 with rc− <
r− < rþ < rcþ and

A1 ≡m − s
2

; A2 ≡mþ s
2

;

A3 ≡ i
2

�
1þ αffiffiffi

α
p c −m

ffiffiffi
α

p
− is

�
; c≡ aω ðB15Þ

B1 ≡ ið1þ αÞKðrþÞ
Δ0ðrþÞ

; B2 ≡ ið1þ αÞKðrcþÞ
Δ0ðrcþÞ

;

B3 ≡ ið1þ αÞKðrc−Þ
Δ0ðrc−Þ

: ðB16Þ

The black hole horizon and cosmological horizon are at
r ¼ rþ (g ¼ 0) and at r ¼ rcþ (g ¼ 1), respectively.
Performing the transformations, the angular and radial
equations (B1) and (B2) reduce to

d2yaðfÞ
df2

þ
�
2A1 þ 1

f
þ 2A2 þ 1

f − 1
þ 2A3 þ 1

f − fa

�
dyaðfÞ
df

þ ρaþρa−f −Ua

fðf − 1Þðf − faÞ
yaðfÞ ¼ 0; ðB17Þ

d2yrðgÞ
dg2

þ
�
2B1 þ sþ 1

g
þ 2B2 þ sþ 1

g − 1
þ 2B3 þ sþ 1

g − ga

�

×
dyrðgÞ
dg

þ ρrþρr−g −Ur

gðg − 1Þðg − gaÞ
yrðgÞ ¼ 0; ðB18Þ

where

ρaþ≡1; ρa−≡1− s− im
ffiffiffi
α

p þ ic

� ffiffiffi
α

p þ 1ffiffiffi
α

p
�
; ðB19Þ

Ua ≡ iλ
4

ffiffiffi
α

p þ 1

2
þ A1 þ

�
mþ 1

2

�
ðA3 − A�

3Þ; ðB20Þ

ρrþ ≡ 2sþ 1; ρr− ≡ sþ 1−
2ið1þ αÞKðr−Þ

Δ0ðr−Þ
; ðB21Þ

Ur ≡ −
ð1þ sÞð1þ 2sÞrc−

r− − rc−

−
λ − 2sð1 − αÞ þH2ð1þ sÞð1þ 2sÞrþðrþ þ rcþÞ

H2ðr− − rc−Þðrþ − rcþÞ

þ 2ið1þ 2sÞð1þ αÞðrþr−ωþ a2ω − amÞ
H2ðr− − rc−Þðr− − rþÞðrþ − rcþÞ

: ðB22Þ

Both the Eqs. (B17) and (B18), are the Heun’s differential
equation:

y00ðxÞ þ
�
ζ1
x
þ ζ2
x − 1

þ ζ3
x − xa

�
y0ðxÞ

þ ρþρ−x −U
xðx − 1Þðx − xaÞ

yðxÞ ¼ 0; ðB23Þ
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with ζ1 þ ζ2 þ ζ3 ¼ ρþ þ ρ− þ 1: ðB24Þ

Here we are interested in the SWSH function, sSωlmðθÞ, and
the Teukolsky variable, sRωlmðrÞ, which satisfy the proper
boundary conditions at θ ¼ π, θ ¼ 0 (f ¼ 0, f ¼ 1) and at
r ¼ rþ, r ¼ rcþ (g ¼ 0, g ¼ 1), respectively. In the follow-
ing, as such, let us consider the solution of the Heun’s
differential equation (B23) which is convergent near x ¼ 0
or x ¼ 1. For each point, it has the form of

yðxÞ ¼
�
c01y01ðxÞ þ c02y02ðxÞ for x ∼ 0

c11y11ðxÞ þ c12y12ðxÞ for x ∼ 1
; ðB25Þ

with

y01ðxÞ≡Hlðxa; U; ρþ; ρ−; ζ1; ζ2; xÞ; ðB26Þ

y02ðxÞ≡ x1−ζ1Hlðxa; ðxaζ2 þ ζ3Þð1 − ζ1Þ þU;

ρþ þ 1 − ζ1; ρ− þ 1 − ζ1; 2 − ζ1; ζ2; xÞ; ðB27Þ

y11ðxÞ≡Hlð1−xa;ρþρ−−U;ρþ;ρ−;ζ2;ζ1;1−xÞ; ðB28Þ

y12ðxÞ≡ ð1−xÞ1−ζ2
×Hlð1−xa; ½ð1−xaÞζ1þ ζ3�ð1−ζ2Þþρþρ− −U;

ρþþ1−ζ2;ρ−þ1−ζ2;2−ζ2;ζ1;1−xÞ; ðB29Þ

whereHl is the symbol of the general Heun’s function, and
c01, c02, c11, and c12 are constants. The solution of (B17)
near f ¼ 0 or f ¼ 1 is obtained by the following identi-
fication in (B26)–(B29):

x → f; ðB30Þ

ζi → 2Ai þ 1 with i ¼ 1; 2; 3; ðB31Þ

ρ� → ρa�; U → Ua; xa → fa: ðB32Þ

Then the boundary condition of the SWSH function at
f ¼ 0 (u ¼ −1) is

sSωlm ∝

(
fA1ðf − 1ÞA2ðf − faÞA3ðf − f∞Þy01ðfÞ ∼ ð1þ uÞðm−sÞ=2; form − s ≥ 0

fA1ðf − 1ÞA2ðf − faÞA3ðf − f∞Þy02ðfÞ ∼ ð1þ uÞ−ðm−sÞ=2; for m − s ≤ 0
; ðB33Þ

and at f ¼ 1 (u ¼ 1)

sSωlm ∝

(
fA1ðf − 1ÞA2ðf − faÞA3ðf − f∞Þy11ðfÞ ∼ ð1 − uÞ−ðmþsÞ=2; for mþ s ≤ 0

fA1ðf − 1ÞA2ðf − faÞA3ðf − f∞Þy12ðfÞ ∼ ð1 − uÞðmþsÞ=2; for mþ s ≥ 0
: ðB34Þ

The eigenvalue sλlm is obtained by requiring the regularity
of the SWSH function, sSlm, at f ¼ 0 and f ¼ 1. For
example, for the angular mode l ¼ m ¼ 2 of gravitational
field s ¼ −2, the eigenvalue, λ ¼ −2λ22, is obtained by
solving

W½y01ðfÞ; y11ðfÞ� ¼ y01
dy11
df

−
dy01
df

y11 ¼ 0; ðB35Þ

with respect to λ. Note that the eigenvalue sλlm reduces to
lðlþ 1Þ − sðs − 1Þ for c → 0 and α → 0. The solution of
radial Teukolsky equation, sRωlm, is also given by the linear
combination of (B26) and (B27) at g ¼ 0 and given by that
of (B28) and (B29) at g ¼ 1 with the identification of

x → g; ðB36Þ

ζi → 2Bi þ sþ 1 with i ¼ 1; 2; 3; ðB37Þ

ρ� → ρr�; U → Ur; xa → ga; ðB38Þ

in (B26)–(B29). Then the ingoing and outgoing modes near
the black hole horizon (g ¼ 0) are

RðBHÞ
in ðgÞ¼gB1ðg−1ÞB2ðg−grÞB3ðg−g∞Þy02ðgÞ

∝ðr−rþÞ−sexp½−ið1þαÞðω−mΩHÞr��; ðB39Þ

RðBHÞ
out ðgÞ ¼ gB1ðg − 1ÞB2ðg − grÞB3ðg − g∞Þy01ðgÞ

∝ exp ½þið1þ αÞðω −mΩHÞr��: ðB40Þ

and the ingoing and outgoing ones near the cosmological
horizon (g ¼ 1) are

RðCÞ
in ðgÞ¼ gB1ðg−1ÞB2ðg−grÞB3ðg−g∞Þy12ðgÞ

∝ ðrcþ− rÞ−s exp ½−ið1þαÞðω−mΩCÞr��; ðB41Þ

RðCÞ
out ðgÞ ¼ gB1ðg − 1ÞB2ðg − grÞB3ðg − g∞Þy11ðgÞ

∝ exp ½þið1þ αÞðω −mΩCÞr��; ðB42Þ

where dr�=dr≡ ðr2 þ a2Þ=Δr, ΩH ≡ a=ðr2þ þ a2Þ, and
ΩC ≡ a=ðr2cþ þ a2Þ. The ingoing modes near g ¼ 0,

RðBHÞ
in , is given by the linear combination of RðCÞ

in and

RðCÞ
out near g ¼ 1
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y02ðgÞ ¼ coutðωÞy11ðgÞ þ cinðωÞy12ðgÞ: ðB43Þ

Requiring cinðωÞ ¼ 0 for a specific value of complex
frequency while imposing the regularity of the SWSH
function, one obtains QN frequencies of the KdS space-
time. Figure 12 shows the contour plot of cinðωÞ in the
complex frequency plane and the zero points (indicated by
red points in Fig. 12) corresponds to QN modes.

APPENDIX C: COMPUTATION OF QNEFs

Let us consider a purely ingoing radial solution at the
black hole horizon, RðBHÞ

in ðgÞ, which is the superposition of
ingoing and outgoing modes near the cosmological horizon

RðBHÞ
in ðgÞ ¼ gB1ðg − 1ÞB2ðg − grÞB3ðg − g∞Þ2sþ1ðcouty11ðgÞ

þ ciny12ðgÞÞ: ðC1Þ

Its asymptotic behavior at the cosmological horizon
(g → 1) is

lim
g→1

RðBHÞ
in ðgÞ¼coutð−1ÞB2ð1−grÞB3ð1−g∞Þ2sþ1ð1−gÞB2

þcinð−1ÞB2ð1−grÞB3ð1−g∞Þ2sþ1ð1−gÞ−B2−s;

¼coutQout

�
rcþ−r
rcþ−rc−

�
B2

þcinQin

�
rcþ−r
rcþ−rc−

�
−s−B2

; ðC2Þ

with Qout ≡ ð−1ÞB2ð1 − grÞB3ð1 − g∞Þ2sþ1

×

�ðrþ − r−Þðrcþ − rc−Þ
ðrcþ − r−Þðrcþ − r−Þ

�
B2

; ðC3Þ

Qin ≡ ð−1ÞB2ð1 − grÞB3ð1 − g∞Þ2sþ1

×

�ðrþ − r−Þðrcþ − rc−Þ
ðrcþ − r−Þðrcþ − r−Þ

�
−s−B2

: ðC4Þ

This is the asymptotic behavior at the cosmological
horizon, but we are interested in the asymptotic form in
the intermediate region rþ ≪ r ≪ rcþ with the flat limit of
rcþ → ∞. As such, we have to relate the asymptotic form at
r → rcþ and that in rþ ≪ r ≪ rcþ. To this end, let us
consider perturbations on a pure de Sitter spacetime with a
cosmological constant, 3H2, to read the relation between
ingoing/outgoing modes at r ≃ 1=H and the modes in
r ≪ 1=H. The radial perturbation, Rds, is governed by the
following equation [64]:

z2ð1 − z2Þ2 d
2Rds

dz2

− ½2ð−sþ 1Þz3 − 2ðsþ 1Þð1 − z2Þz�ð1 − z2Þ dRds

dz

− fð1 − z2Þ½ðl − sÞðlþ sþ 1Þ þ 2z2� − ðzω=HÞ2
− 2iszω=HgRds ¼ 0; ðC5Þ

where z≡Hr. Implementing the following transformation,

z → ξ≡ 1 − z
1þ z

; ðC6Þ

Rds → fds ≡ ξpþiω=ð2HÞð1 − ξÞs−lð1þ ξÞ−2s−1Rds; ðC7Þ

the wave equation (C5) reduces to the hypergeometric
equation

ξð1 − ξÞ d
2fds
dξ2

þ ½1þ s − iω=H

− ð2lþ 3þ s − iω=HÞξ� dfds
dξ

− ðlþ sþ 1Þðlþ 1 − iω=HÞfds ¼ 0; ðC8Þ

and we have

Rds ¼
8<
:RðoutÞ

ds ≡ ξ−s−iω=ð2HÞð1 − ξÞl−sð1þ ξÞ2sþ1
2F1½1þ lþ s; 1þ l − iω=H; 1þ s − iω=H; ξ� ðoutgoingÞ

RðinÞ
ds ≡ ξiω=ð2HÞð1 − ξÞl−sð1þ ξÞ2sþ1

2F1½1þ l − s; 1þ lþ iω=H; 1 − sþ iω=H; ξ� ðingoingÞ
: ðC9Þ

FIG. 12. Contour plot showing the values of log10 jcinðωÞj in
the complex frequency plane for M ¼ 0.5, j ¼ 0.25, l ¼ m ¼ 2,
and 3H2 ¼ 0.02. The first three QN frequencies for which cin ¼
0 are indicated by the red points.
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In the limit of HM → 0, the typical frequencies of black
hole, ω ∼ 1=M, are much higher than H. Therefore, we can
take the limit of ω=H → ∞ in (C9) and obtain the
following behavior of Rds

RðoutÞ
ds ≃

�ð2H−1Þsþiω=ð2HÞðH−1− rÞ−s−iω=ð2HÞ ðr→H−1Þ
H−2s−1

r2sþ1 eiωr ðr≪H−1Þ ;

ðC10Þ

RðinÞ
ds ≃

� ð2H−1Þ−iω=ð2HÞðH−1 − rÞiω=ð2HÞ ðr → H−1Þ
22sH−1

r e−iωr ðr ≪ H−1Þ ;

ðC11Þ

where we use 2F1½1þ lþ s;−iω=H;−iω=H; ξ� ¼
ð1 − ξÞ−1−l−s and 2F1½1þ l − s; iω=H; iω=H; ξ� ¼
ð1 − ξÞ−1−lþs. Finally, taking the limit of HM → 0 in
(C2), we have

lim
MH→0

RðBHÞ
in ðgÞ ¼ cinQinR

ðinÞ
ds þ coutQoutR

ðoutÞ
ds ; ðC12Þ

and at the intermediate region rþ ≪ r ≪ rcþ,

lim
MH→0

RðBHÞ
in ðgÞ ¼ AðinÞ

lm

r
e−iωr þ AðoutÞ

lm

r2sþ1
eiωr; ðC13Þ

with

AðinÞ
lm ¼ cinQin2

2sH−1;

AðoutÞ
lm ¼ coutQoutH−2s−1: ðC14Þ

One can compute the QNEFs of the Kerr spacetime by
substituting the coefficients (C14) into (21).

APPENDIX D: QN FREUQNECIES OF THE KERR
SPACETIME UP TO THE 20TH OVERTONES

In Table V, we show the QN frequencies of the Kerr
spacetime computed by the methodology described in
Sec. II C. Our result is in agreement with the catalog of
QN modes provided in [58,59], where the data of QN
frequencies for n ¼ 0, 1, 2, and 3 are available.

APPENDIX E: CONSISTENCY CHECK OF OUR
RESULT FOR E22n

In this Appendix, we show the numerical convergence of
the QNEFs E22n in the limit of Λ → 0. Also, we check the
consistency with the previous study where QNEFs were
computed up to the third overtone by Zhang, Berti, and
Cardoso [19]. To see the convergence of E22nðΛÞ extrapo-
lated to the value of Λ ¼ 0, let us introduce the following
fitting function

ElmnðΛÞ ¼
Xkmax

k¼0

ck

�
1

l

�
k
; ðE1Þ

TABLE V. QN frequencies ω22n for n ¼ 0; 1; 2;…; 20 and j ¼ 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99.

j ¼ 0.7 j ¼ 0.8 j ¼ 0.9 j ¼ 0.99

n Reðω22nÞ Imðω22nÞ Reðω22nÞ Imðω22nÞ Reðω22nÞ Imðω22nÞ Reðω22nÞ Imðω22nÞ
0 1.065200487 −0.1615857463 1.172033950 −0.1512591047 1.343228544 −0.1297384718 1.741785317 −0.05878084844
1 1.042321531 −0.4884766316 1.155844794 −0.4562978801 1.335315102 −0.3905041341 1.741290328 −0.1763507666
2 0.9998125157 −0.8245230723 1.124479630 −0.7677904212 1.319653364 −0.6550367507 1.740335349 −0.2939311351
3 0.9426725977 −1.168601432 1.077911959 −1.085776247 1.295738067 −0.9257284931 1.739029926 −0.4115377810
4 0.8807699813 −1.507599307 1.012525971 −1.395924771 1.259672117 −1.206590109 1.737532974 −0.5292613212
5 0.8469007434 −1.835899064 0.9725668689 −1.661605321 1.073833442 −1.497446926 1.012863751 −1.422766126
6 0.8477071310 −2.190815052 0.9983298183 −1.966167230 1.204454964 −1.540673954 1.735986660 −0.6472760312
7 0.8510746470 −2.574238877 1.013303241 −2.313415121 1.237597676 −1.866356633 1.734473025 −0.7657964462
8 0.8505188425 −2.970291020 1.017962117 −2.671328320 1.250689150 −2.163941149 1.733018798 −0.8850187394
9 0.8477216126 −3.372527324 1.018408101 −3.034004217 1.256539957 −2.460017072 1.731635959 −1.005079631
10 0.8439056065 −3.778516304 1.016956808 −3.399745589 1.259128247 −2.756833614 1.730365773 −1.126038608
11 0.8396771422 −4.187119221 1.014596352 −3.767742860 1.259980000 −3.054746466 1.729298064 −1.247868625
12 0.8353376606 −4.597709004 1.011810702 −4.137513162 1.259831459 −3.353733666 1.728551020 −1.370447702
13 0.8310514738 −5.009905414 1.008872099 −4.508739782 1.259091775 −3.653688856 1.728216414 −1.493568487
14 0.8269266230 −5.423466081 1.005962050 −4.881204944 1.258014458 −3.954497139 1.728305804 −1.616987060
15 0.8230573992 −5.838234064 1.003230118 −5.254752607 1.256773390 −4.256054607 1.728743185 −1.740493714
16 0.8195528629 −6.254108284 1.000829413 −5.629260719 1.255501216 −4.558270079 1.729406439 −1.863957491
17 0.8165654448 −6.671020907 0.9989443119 −6.004609649 1.254310731 −4.861059864 1.730176500 −1.987324354
18 0.8143317446 −7.088905249 0.9978117866 −6.380628225 1.253306995 −5.164338100 1.730963611 −2.110590172
19 0.8132354271 −7.507614324 0.9977049784 −6.756988420 1.252591524 −5.468002437 1.731710905 −2.233774063
20 0.8138433523 −7.926671808 0.9987567634 −7.133067005 1.252254212 −5.771915425 1.732387532 −2.356901669

(Table continued)

EASE OF EXCITATION OF BLACK HOLE RINGING: … PHYS. REV. D 104, 124032 (2021)

124032-17



where kmax is an integer and 1 ≤ kmax ≤ N − 1. Figure 13
shows the values of real and imaginary parts of a QNEF
obtained by the extrapolation from (E1). One can see that
the QNEF converges to a finite value as kmax increases. The
values of QNEFs obtained in such a way are consistent with
the result of the previous research [19] within the error of
≲0.01% (see Table VI). Note that our definition of the
QNEF differs from that in Ref. [19]

EðZBCÞ
lmn ¼ ie−iωlmntsω2

lmnElmn; ðE2Þ

where EðZBCÞ
lmn is the QNEF defined in [19]. In Table VI, we

show the comparison of EðZBCÞ
22n in Refs. [58,59] and EðZBCÞ

22n
we computed. The error of our result, Δerror, is estimated by

Δerror ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

abs þ Δ2
arg

q
where

Δabs ≡ δjEðZBCÞ
lmn j

jEðZBCÞ
lmn j

; Δarg ≡ δArgðEðZBCÞ
lmn Þ

2π
: ðE3Þ

Based on the analysis presented in Appendix C, our result
and theirs should be matched with each other without
the uncertainty of the ringdown start time. Nevertheless, the
extra factor of e−iωlmnts in (E2) is needed to see the
numerical consistency. Although we carefully checked
our computation, we do not see what causes this discrep-
ancy, which can be however absorbed into the uncertainty
of the start time of ringdown as

Tlmnðe−iωlmnts × ElmnÞe−iωlmnt

¼ TlmnElmne−iωlmnðtþtsÞ: ðE4Þ
In summary, we find that our result and theirs in Ref. [19]
are consistent up to the uncertainty of the start time e−iωlmnts .

j ¼ 0.3 j ¼ 0.4 j ¼ 0.5 j ¼ 0.6

n Reðω22nÞ Imðω22nÞ Reðω22nÞ Imðω22nÞ Reðω22nÞ Imðω22nÞ Reðω22nÞ Imðω22nÞ
0 0.8390533635 −0.1754585438 0.8796838435 −0.1737639241 0.9282460520 −0.1712776700 0.9880895636 −0.1675304043
1 0.7967806521 −0.5360971407 0.8416933545 −0.5294668980 0.8948140749 −0.5204491073 0.9596133305 −0.5076937291
2 0.7238544670 −0.9225193799 0.7755585095 −0.9065189981 0.8358500895 −0.8865737153 0.9083581784 −0.8606304030
3 0.6397722208 −1.338485868 0.6977117292 −1.307616228 0.7646178009 −1.271072973 0.8439532125 −1.226307140
4 0.5601130226 −1.773528714 0.6230921623 −1.723476067 0.6954825080 −1.665189510 0.7798043997 −1.595053108
5 0.4929144333 −2.213829956 0.5633820095 −2.143050811 0.6443134678 −2.061346046 0.7377914476 −1.962530296
6 0.44516925 −2.653234973 0.5271416128 −2.566946686 0.6191370019 −2.467990016 0.7242662304 −2.347528328
7 0.41950589 −3.09783754 0.5100960501 −3.003806949 0.6087077654 −2.893133945 0.7201686625 −2.755612054
8 0.40782737 −3.55434517 0.5011226136 −3.454206260 0.6020366776 −3.331983570 0.7161323243 −3.177059693
9 0.40119368 −4.02125475 0.4943511668 −3.913403485 0.5959004059 −3.778600520 0.7112795370 −3.605502978
10 0.39581575 −4.49463425 0.4881585782 −4.377734465 0.5898571164 −4.229729924 0.7060184617 −4.038079776
11 0.39070631 −4.97180038 0.4822358228 −4.845193461 0.5839508719 −4.683743460 0.7006677102 −4.473419270
12 0.38570115 −5.45127817 0.4765546912 −5.314713889 0.5782475636 −5.139777062 0.6953965247 −4.910785820
13 0.3808149 −5.9322651 0.4711244342 −5.785700178 0.5727794939 −5.597335053 0.6902888849 −5.349747472
14 0.3760820 −6.4143054 0.4659468383 −6.257798707 0.5675547305 −6.056113625 0.6853895644 −5.790035380
15 0.3715247 −6.8971262 0.461013599 −6.730787346 0.5625701103 −6.515917488 0.6807305831 −6.231477904
16 0.367152 −7.380556 0.456310557 −7.204519905 0.5578201109 −6.976617813 0.6763473947 −6.673967229
17 0.362965 −7.864483 0.451821586 −7.678896713 0.5533024809 −7.438129856 0.6722917794 −7.117441612
18 0.358955 −8.348830 0.447531216 −8.153848286 0.5490223226 −7.900400741 0.6686471446 −7.561875483
19 0.355114 −8.833542 0.443426261 −8.629325904 0.5449961014 −8.363403003 0.6655537541 −8.007272028
20 0.351431 −9.318581 0.439496884 −9.105296052 0.5412571050 −8.827131870 0.6632589339 −8.453648174

TABLE V. (Continued)

FIG. 13. Extrapolated values of Elmn with ðl; m; nÞ ¼ ð2; 2; 0Þ for j ¼ 0.8. As kmax increases and approaches to N − 1, the
extrapolated value of the QNEF converges to a finite value (indicated by red lines).
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APPENDIX F: SOURCE TERM OF A PARTICLE PLUNGING INTO A BLACK HOLE

In Sec. III B, we compute GW signals induced by a particle plunging into a spinning black hole. The source term in terms
of the Sasaki-Nakamura formalism is given by [61,62]

T̃ðSNÞ
lm ¼ γΔμW̃

ðr2 þ a2Þ3=2r2 exp ð−ikr
�Þ; ðF1Þ

with

W̃ ≡Wnn þWnm̄ þWm̄m̄; ðF2Þ

Wnn ≡ f0eiχ þ
Z

∞

r
dr0f1eiχ þ

Z
∞

r
dr0

Z
∞

r0
dr00f2eiχ ; ðF3Þ

Wnm̄ ≡ g0eiχ þ
Z

∞

r
dr0g1eiχ ; ðF4Þ

Wm̄m̄ ≡ h0eiχ þ
Z

∞

r
dr0h1eiχ þ

Z
∞

r
dr0

Z
∞

r0
dr00h2eiχ ; ðF5Þ

TABLE VI. Comparison with the excitation factors computed by Zhang, Berti, and Cardoso in Ref. [19].

Our work Z. Zhang et al. [19,58,59] Error Start time

Spin and overtone number ða; nÞ jEðZBCÞ
lmn j argðEðZBCÞ

lmn Þ jEðZBCÞ
lmn j argðEðZBCÞ

lmn Þ Δerror½%� ts

j ¼ 0.3, n ¼ 0 0.056048 −0.07956 0.056045 −0.07940 0.007 0.146100
j ¼ 0.3, n ¼ 1 0.22975 3.070 0.22972 3.070 0.01 0.146100
j ¼ 0.3, n ¼ 2 0.65693 −0.09014 0.65689 −0.09003 0.006 0.146100
j ¼ 0.3, n ¼ 3 1.5678 3.043 1.5679 3.043 0.005 0.146100

j ¼ 0.4, n ¼ 0 0.071607 0.1813 0.071600 0.1812 0.01 0.262800
j ¼ 0.4, n ¼ 1 0.31881 −2.895 0.31877 −2.895 0.01 0.262800
j ¼ 0.4, n ¼ 2 0.97028 0.2671 0.97019 0.2671 0.01 0.262800
j ¼ 0.4, n ¼ 3 2.4422 −2.864 2.4421 −2.864 0.005 0.262800

j ¼ 0.5, n ¼ 0 0.094264 0.5181 0.094260 0.5181 0.004 0.424605
j ¼ 0.5, n ¼ 1 0.46338 −2.487 0.46336 −2.487 0.004 0.424605
j ¼ 0.5, n ¼ 2 1.5233 0.7295 1.5232 0.7296 0.003 0.424605
j ¼ 0.5, n ¼ 3 4.0992 −2.369 4.0992 −2.369 0.0005 0.424605

j ¼ 0.6, n ¼ 0 0.128880 0.9684 0.128875 0.9684 0.004 0.649046
j ¼ 0.6, n ¼ 1 0.71357 −1.945 0.71354 −1.945 0.004 0.649046
j ¼ 0.6, n ¼ 2 2.5803 1.350 2.5802 1.350 0.003 0.649046
j ¼ 0.6, n ¼ 3 7.5714 −1.6954 7.5714 −1.6953 0.001 0.649046

j ¼ 0.7, n ¼ 0 0.18508 1.604 0.18507 1.603 0.01 0.962042
j ¼ 0.7, n ¼ 1 1.1820 −1.185 1.1819 −1.185 0.005 0.962042
j ¼ 0.7, n ¼ 2 4.8059 2.228 4.8058 2.228 0.003 0.962042
j ¼ 0.7, n ¼ 3 15.859 −0.7214 15.859 −0.7213 0.001 0.962042

j ¼ 0.8, n ¼ 0 0.28378 2.584 0.28376 2.584 0.007 1.424616
j ¼ 0.8, n ¼ 1 2.1453 −0.02295 2.1452 −0.02289 0.006 1.424616
j ¼ 0.8, n ¼ 2 9.9927 −2.696 9.9924 −2.696 0.004 1.424616
j ¼ 0.8, n ¼ 3 38.437 0.8425 38.437 0.8427 0.002 1.424616

j ¼ 0.9, n ¼ 0 0.47310 −1.856 0.47307 −1.856 0.008 2.227500
j ¼ 0.9, n ¼ 1 4.2845 2.113 4.2842 2.113 0.006 2.227500
j ¼ 0.9, n ¼ 2 22.362 −0.2090 22.362 −0.2088 0.004 2.227500
j ¼ 0.9, n ¼ 3 92.437 −2.5103 92.437 −2.5101 0.003 2.227500

j ¼ 0.99, n ¼ 0 0.59492 −1.596 0.59483 −1.595 0.02 4.778240
j ¼ 0.99, n ¼ 1 5.0958 2.992 5.0947 2.992 0.02 4.778240
j ¼ 0.99, n ¼ 2 23.029 1.412 23.028 1.413 0.01 4.778240
j ¼ 0.99, n ¼ 3 74.329 −0.06519 74.329 −0.06449 0.01 4.778240
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where χ ≡ ωt −mφþ kr� and

f0 ≡ −
1

ω

r2
ffiffiffiffiffi
R

p

ðr2 þ a2Þ2 S2; ðF6Þ

f1 ≡ f0
Sc

�
ðS1 þ ðaω −mÞS0Þ

ia
r2

þ S2

�
2ða2 − r2Þ
rðr2 þ a2Þ þ

R0

2R
þ iη

��
; ðF7Þ

f2 ≡ i
ω

r2
ffiffiffiffiffi
R

p

ðr2 þ a2ÞΔ
�
1 −

Pffiffiffiffiffi
R

p
��

fS1 þ ðaω −mÞS0g
ia
r2

þ S2

�
2a2

rðr2 þ a2Þ þ
2r

r2 þ ðL − aÞ2 −
ðPþ ffiffiffiffi

R
p Þ0

Pþ ffiffiffiffi
R

p þ iη

��
; ðF8Þ

η≡ ðaω −mÞða − LÞffiffiffiffiffi
R

p −
am
Δ

�
1 −

Pffiffiffiffiffi
R

p
�
; ðF9Þ

g0 ≡ −
a − L
ω

fS1 þ ðaω −mÞS0g
r2

r2 þ a2
; ðF10Þ

g1 ≡ g0

�
2a2

rðr2 þ a2Þ þ iη

�
; ðF11Þ

h0 ≡ −
r2h2
2

; ðF12Þ

h1 ≡ −rh2; ðF13Þ

h2 ≡ S0ða − LÞ2ffiffiffiffiffi
R

p ; ðF14Þ

S0 ≡ −2Slmðπ=2Þ; ðF15Þ

S1 ≡ d
dθ −2SlmðθÞ

			
θ¼π=2

; ðF16Þ

S2 ≡
�
aω −m −

ia
r

�
½S1 þ ðaω −mÞS0� −

λ

2
S0: ðF17Þ

APPENDIX G: DETAILS OF THE FITTING
ANALYSIS IN SEC. III B

In Sec. III B, we fit the QN modes up to the 7th or 11th
overtone to the numerical GW waveform induced by a
particle plunging into a spinning black hole. We set the fit

start time to the moment when the particle approaches to
the horizon and starts to follow the null geodesics. In this
case, the trajectory of the particle is almost null in the
tortoise coordinate (Fig. 14), which may be regarded as the
absorption of the particle by the black hole.

FIG. 14. Trajectory of the particle plunging into a black hole (r�ðτÞ; tðτÞ). Red points indicate the moment when the particle
approaches to the horizon and starts to follow the null geodesics.
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To see the significance of the inclusion of overtones,
we compute the mismatch, M, between the numerical
GW waveforms, h, and the waveforms modeled by the

superposition of QN modes, hQ, while changing the
number of overtones included in hQ denoted by nmax

(Fig. 15), where M is defined as

M≡
				1 − hhjhQiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhjhihhQjhQi

p 				; ðG1Þ

with

hAjBi≡
Z

dtAðtÞB�ðtÞ: ðG2Þ

Taking many overtones into account is necessary to reduce
the mismatch,M, for higher spin parameters (see Fig. 7), it
may cause a hierarchy of Mðj ¼ 0.7Þ < Mðj ¼ 0.9Þ <
Mðj ¼ 0.99Þ for a fixed nmax as shown in Fig. 15.
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