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We discuss and expand a new approach to the thermodynamics of scalar-tensor gravity and its diffusion
toward general relativity (seen as an equilibrium state) proposed in a previous paper [Phys. Rev. D 103,
L121501 (2021), upon which we build. We describe scalar-tensor gravity as an effective dissipative
fluid and apply Eckart’s first order thermodynamics to it, obtaining explicitly effective quantities
such as heat flux, “temperature of gravity,” viscosities, entropy density, plus an equation describing
the “diffusion” to Einstein gravity. These quantities, still missing in the usual thermodynamics of
spacetime, are obtained with minimal assumptions. Furthermore, we examine certain exact solutions of
scalar-tensor gravity to test the proposed formalism and gain some physical insight on the “approach to
equilibrium” for this class of theories.
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I. INTRODUCTION

There seems to be a deep connection between thermo-
dynamics and gravity, first observed in black hole thermo-
dynamics, which produced an unexpected relation between
the entropy and horizon area for stationary black holes and
the temperatures of black hole and Rindler horizons. This
connection took on a newmeaning with Jacobson’s seminal
work [1] obtaining the Einstein field equation of general
relativity (GR) as an equation of state, based only on
thermodynamical considerations. This derivation of the
Einstein equation and the ensuing “thermodynamics of
spacetime” picture carry deep implications for gravity.
Their main consequence would be that classical gravity
is an emergent phenomenon instead of having a funda-
mental nature. If confirmed, this property would have
radical consequences for quantum gravity as well. In the
thermodynamics of spacetime picture, quantizing the
Einstein equation would not be more meaningful than
quantizing the macroscopic ideal gas equation of state,
which cannot produce fundamental quantum results such as
the energy spectrum and eigenfunctions of the hydrogen
atom. In quantum gravity, entities such as the “atoms of
spacetime”may not even exist or, if they do, they may have
to be found using approaches radically different from the
quantization of the Einstein equation.

A second idea,which is probably equally important, was
proposed in Ref. [2], in which the authors derived the field
equation of fourth order metric fðRÞ gravity using only
thermodynamics. This modification of GR, which contains
an extra scalar degree of freedom f0ðRÞ (see [3–5] for
reviews) would correspond to dissipative nonequilibrium
“thermodynamics of gravitational theories” in which a
“bulk viscosity of spacetime” was introduced to explain
dissipation [2]. By contrast, GR would correspond to a state
of thermodynamic equilibrium [2].
The works [1,2] have generated a huge literature. In view

of our new approach to this paradigm, it is useful to note
that Ref. [6] has stressed the essential role of shear
viscosity, while removing altogether bulk viscosity from
the thermodynamical picture of fðRÞ gravity. In spite of the
large literature, the equation(s) ruling the approach of
modified gravity to the GR equilibrium state remain a
mystery. Furthermore, the order parameter (presumably, the
temperature) regulating this dissipative phenomenon has
not yet been identified. Here we discuss in detail and
expand a new approach proposed in Refs. [7,8] to the last
two problems in the spirit of the thermodynamics of
spacetime, but in a very different context. We consider
the larger class of scalar-tensor theories of gravity [9–12]
which contains fðRÞ gravity as a subclass [3–5]. Scalar-
tensor gravity is a minimal modification of GR obtained by
adding a massive scalar degree of freedom ϕ to the usual
two massless spin two modes of GR contained in the metric
tensor gab. The contribution of ϕ to the field equations can
be described as an effective relativistic dissipative fluid
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[13,14]. Using this description, we apply Eckart’s first
order thermodynamics [15] to this effective fluid and
extract explicit expressions for the relevant effective
thermodynamic quantities, including the heat current den-
sity, the “temperature of modified gravity,” the viscosity
coefficients, and the entropy density.
To anticipate our findings: the product between the

effective temperature T and the thermal conductivity K
is positive-definite and the GR equilibrium state corre-
sponds to KT ¼ 0; the bulk viscosity vanishes, and the
shear viscosity η is negative. This unexpected sign could
allow the entropy density s to decrease, which is consistent
with the fact that the ϕ-fluid, seen as a thermodynamic
system, is neither an isolated fluid—it exchanges energy
with its “surroundings”—nor a real fluid. To proceed, we
describe explicitly the approach of scalar-tensor gravity to
the GR equilibrium state. In a sense, it is remarkable that, in
spite of the well-known limitations of Eckart’s first order
thermodynamics, these explicit expressions and effective
diffusion equation emerge from the formal identification of
an effective fluid with a thermodynamic system, which
would seem very unlikely a priori. The simplicity and
minimality of assumptions of this new approach point again
to some deeper connection between thermodynamics and
gravity. Furthermore, in order to properly illustrate the
physical implications of the proposed approach, we study
the thermodynamical behavior of certain exact solutions of
scalar-tensor gravity.
Let us review the basics of scalar-tensor gravity. The

scalar-tensor action in the Jordan frame is1

SST¼
1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
ϕR−

ωðϕÞ
ϕ

∇cϕ∇cϕ−VðϕÞ
�
þSðmÞ;

ð1:1Þ

whereR is the Ricci scalar, the Brans-Dicke scalar ϕ > 0 is
approximately the inverse of the effective gravitational
coupling, ωðϕÞ is the “Brans-Dicke coupling”, VðϕÞ is a
potential for the scalar field, and SðmÞ ¼ R

d4x
ffiffiffiffiffiffi−gp

LðmÞ is
the matter action.
By varying the action (1.1) with respect to the inverse

metric gab and to ϕ, one obtains the (Jordan frame) field
equations [9–12]

Gab ≡Rab −
1

2
gabR

¼ 8π

ϕ
TðmÞ
ab þ ω

ϕ2

�
∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ

�

þ 1

ϕ
ð∇a∇bϕ − gab□ϕÞ − V

2ϕ
gab; ð1:2Þ

□ϕ ¼ 1

2ωþ 3

�
8πTðmÞ

ϕ
þ ϕ

dV
dϕ

− 2V −
dω
dϕ

∇cϕ∇cϕ

�
;

ð1:3Þ

where Rab is the Ricci tensor and TðmÞ ≡ gabTðmÞ
ab is the

trace of the matter stress-energy tensor TðmÞ
ab .

II. EFFECTIVE SCALAR FIELD FLUID

Here we summarize the formulas for the effective field
fluid derived in [13,14] that are needed in the calculations
of this paper.

A. Kinematic quantities

Let us begin with the kinematic quantities of the effective
ϕ-fluid [17] (here we provide extra expressions for the
kinematic quantities and for the effective fluid quantities
which were not given in [7], but are handy for calculations).
The ϕ-fluid description is natural when the gradient ∇aϕ is
timelike and can be used to construct the effective fluid
four-velocity

ua ¼ ∇aϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇eϕ∇eϕ

p ð2:1Þ

normalized to ucuc ¼ −1. The 3þ 1 splitting of spacetime
into the time direction uc and the 3-dimensional space of
the comoving observers of this effective fluid (with four-
tangent uc) follows. Their 3-space is endowed with the
Riemannian metric

hab ≡ gab þ uaub ð2:2Þ

and hab is the projection operator on this 3-space, then

habua ¼ habub ¼ 0; ð2:3Þ

habhbc ¼ hac; haa ¼ 3: ð2:4Þ

The effective fluid four-acceleration is _ua ≡ ub∇bua and is
orthogonal to the four-velocity, _ucuc ¼ 0 (exceptions to
this rule, which include Friedmann-Lemaître-Robertson-
Walker spaces, particles with variable mass, etc. [18] will
not be considered in this work).
The projection of the velocity gradient onto the 3-space

of the comoving observers is the purely spatial tensor

Vab ≡ hachbd∇duc: ð2:5Þ

It splits into symmetric and antisymmetric parts, with the
symmetric part further decomposed into tracefree part and
pure trace as

1We follow the notation of Ref. [16] and we use units in which
Newton’s constant G and the speed of light c are unity.
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Vab ¼ θab þ ωab ¼ σab þ
θ

3
hab þ ωab; ð2:6Þ

with θab ¼ VðabÞ the expansion tensor (symmetric part of
Vab) with trace θ≡ θcc ¼ ∇cuc; the vorticity tensor ωab ¼
V ½ab� is its antisymmetric part, while the tracefree shear
tensor is

σab ≡ θab −
θ

3
hab: ð2:7Þ

Vab, θab, σab, and ωab are purely spatial tensors,

θabua ¼ θabub ¼ ωabua ¼ ωabub ¼ σabua ¼ σabub ¼ 0;

ð2:8Þ
while σaa ¼ ωa

a ¼ 0. The shear scalar σ and vorticity2

scalar ω are

σ2 ≡ 1

2
σabσ

ab ≥ 0; ð2:9Þ

ω2 ≡ 1

2
ωabω

ab ≥ 0: ð2:10Þ

The velocity gradient decomposes as [17]

∇bua ¼ σab þ
θ

3
hab þ ωab − _uaub ¼ Vab − _uaub: ð2:11Þ

Projecting Eq. (2.11) onto uc produces _ua, while projecting
it onto the 3-space orthogonal to ua yields Vab.
When these general definitions [16,17] are specialized to

our effective ϕ-fluid, one obtains [14]

hab ¼ gab −
∇aϕ∇bϕ

∇eϕ∇eϕ
; ð2:12Þ

∇bua ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−∇eϕ∇eϕ
p �

∇a∇bϕ −
∇aϕ∇cϕ∇b∇cϕ

∇eϕ∇eϕ

�
:

ð2:13Þ
The 4-acceleration then reads3

_ua ¼ uc∇cua

¼ ð−∇eϕ∇eϕÞ−2∇bϕ½ð−∇eϕ∇eϕÞ∇a∇bϕ

þ∇cϕ∇b∇cϕ∇aϕ�: ð2:14Þ
The (timelike) worldlines of the ϕ-fluid are geodesics

(equivalently, this fluid is a dust) if and only if

∇eϕ∇½eϕ∇a�∇bϕ∇bϕ ¼ 0; ð2:15Þ

from which it follows that

∇b∇cϕ∇b∇cϕ ¼ −
∇aϕ∇bϕ∇a∇bϕ

∇eϕ∇eϕ
ð2:16Þ

for a geodesic flow. In this case, Vab reduces to

Vab ¼
∇a∇bϕ

ð−∇eϕ∇eϕÞ1=2
þ ð∇aϕ∇b∇cϕþ∇bϕ∇a∇cϕÞ∇cϕ

ð−∇eϕ∇eϕÞ3=2

þ∇d∇cϕ∇cϕ∇dϕ

ð−∇eϕ∇eϕÞ5=2
∇aϕ∇bϕ: ð2:17Þ

Since the ϕ-fluid four-velocity uc is derived from a scalar
field gradient, this fluid is irrotational, ωab ¼ ω2 ¼ 0,
leaving

Vab ¼ θab; ∇bua ¼ θab − _uaub: ð2:18Þ

Moreover, the vector field ua is hypersurface-orthogonal
and the line element becomes diagonal in adapted coor-
dinates. In other words, the existence of a foliation of
3-dimensional hypersurfaces Σwith Riemannian metric hab
orthogonal to ua is guaranteed [16,17].
Since ua _ua ¼ 0, the expansion scalar (2.11) reduces to

θ ¼ ∇aua ¼
□ϕ

ð−∇eϕ∇eϕÞ1=2
þ∇a∇bϕ∇aϕ∇bϕ

ð−∇eϕ∇eϕÞ3=2
; ð2:19Þ

while

σab ¼ ð−∇eϕ∇eϕÞ−3=2
�
−ð∇eϕ∇eϕÞ∇a∇bϕ

−
1

3
ð∇aϕ∇bϕ − gab∇cϕ∇cϕÞ□ϕ

−
1

3

�
gab þ

2∇aϕ∇bϕ

∇eϕ∇eϕ

�
∇c∇dϕ∇dϕ∇cϕ

þ ð∇aϕ∇c∇bϕþ∇bϕ∇c∇aϕÞ∇cϕ

�
; ð2:20Þ

σ≡
�
1

2
σabσab

�
1=2

¼ ð−∇eϕ∇eϕÞ−3=2
�
1

2
ð∇eϕ∇eϕÞ2

×

�
∇a∇bϕ∇a∇bϕ−

1

3
ð□ϕÞ2

�
þ 1

3
ð∇a∇bϕ∇aϕ∇bϕÞ2

− ð∇eϕ∇eϕÞ
�
∇a∇bϕ∇b∇cϕ

−
1

3
□ϕ∇a∇cϕ

�
∇aϕ∇cϕ

�
1=2

: ð2:21Þ

2Here there is no risk of confusing the vorticity scalar with the
Brans-Dicke coupling because the former is always zero as the
effective ϕ-fluid is irrotational.

3It is straightforward to check that _ucuc ¼ 0 using Eqs. (2.14)
and (2.1).
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B. Effective stress-energy tensor of the ϕ-fluid

The effective stress-energy tensor of the Brans-Dicke-like
field that one reads off the right-hand side of Eq. (1.2) is

8πTðϕÞ
ab ¼ ω

ϕ2

�
∇aϕ∇bϕ −

1

2
gab∇cϕ∇cϕ

�

þ 1

ϕ
ð∇a∇bϕ − gab□ϕÞ − V

2ϕ
gab: ð2:22Þ

TðϕÞ
ab takes the form of an imperfect fluid energy-momentum

tensor [13,14]

Tab ¼ ρuaub þ qaub þ qbua þ Πab; ð2:23Þ
where the effective energy density, heat flux density, stress
tensor, isotropic pressure, and anisotropic stresses (the
tracefree part πab of the stress tensor Πab) in the comoving
frame are

ρ ¼ Tabuaub; ð2:24Þ

qa ¼ −Tcduchad; ð2:25Þ

Πab ¼ Phab þ πab ¼ Tcdhachbd; ð2:26Þ

P ¼ 1

3
gabΠab ¼

1

3
habTab; ð2:27Þ

πab ¼ Πab − Phab; ð2:28Þ

respectively. Here we have set the bulk viscous pressure to
zero in the most economical interpretation of the effective
ϕ-fluid (we refer the reader to [7,14] for details). The heat
flux density is purely spatial,

qcuc ¼ 0 ð2:29Þ

and

Πabub ¼ πabub ¼ Πabua ¼ πabua ¼ 0; πaa ¼ 0:

ð2:30Þ

The explicit expressions of the effective stress-energy
quantities are [13,14]

8πρðϕÞ ¼ −
ω

2ϕ2
∇eϕ∇eϕþ V

2ϕ
þ 1

ϕ

�
□ϕ −

∇aϕ∇bϕ∇a∇bϕ

∇eϕ∇eϕ

�
; ð2:31Þ

8πqðϕÞa ¼ ∇cϕ∇dϕ

ϕð−∇eϕ∇eϕÞ3=2
ð∇dϕ∇c∇aϕ −∇aϕ∇c∇dϕÞ

¼ −
∇cϕ∇a∇cϕ

ϕð−∇eϕ∇eϕÞ1=2
−
∇cϕ∇dϕ∇c∇dϕ

ϕð−∇eϕ∇eϕÞ3=2
∇aϕ; ð2:32Þ

8πΠðϕÞ
ab ¼ ð−∇eϕ∇eϕÞ−1

��
−

ω

2ϕ2
∇eϕ∇eϕ −

□ϕ

ϕ
−

V
2ϕ

�
ð∇aϕ∇bϕ − gab∇eϕ∇eϕÞ

−
∇dϕ

ϕ

�
∇dϕ∇a∇bϕ −∇bϕ∇a∇dϕ −∇aϕ∇d∇bϕþ∇aϕ∇bϕ∇cϕ∇c∇dϕ

∇eϕ∇eϕ

��

¼
�
−

ω

2ϕ2
∇cϕ∇cϕ −

□ϕ

ϕ
−

V
2ϕ

�
hab þ

1

ϕ
hachbd∇c∇dϕ; ð2:33Þ

8πPðϕÞ ¼ −
ω

2ϕ2
∇eϕ∇eϕ −

V
2ϕ

−
1

3ϕ

�
2□ϕþ∇aϕ∇bϕ∇b∇aϕ

∇eϕ∇eϕ

�
; ð2:34Þ

8ππðϕÞab ¼ 1

ϕ∇eϕ∇eϕ

�
1

3
ð∇aϕ∇bϕ − gab∇cϕ∇cϕÞ

�
□ϕ −

∇cϕ∇dϕ∇d∇cϕ

∇eϕ∇eϕ

�

þ∇dϕ

�
∇dϕ∇a∇bϕ −∇bϕ∇a∇dϕ −∇aϕ∇d∇bϕþ∇aϕ∇bϕ∇cϕ∇c∇dϕ

∇eϕ∇eϕ

��
; ð2:35Þ

and

8πTðϕÞ ≡ 8πgabTðϕÞ
ab ¼ −

ω

ϕ2
∇cϕ∇cϕ −

3□ϕ

ϕ
−
2V
ϕ

: ð2:36Þ
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Alternative expressions for ρðϕÞ and PðϕÞ are obtained by replacing □ϕ with the help of Eq. (1.3):

8πρðϕÞ ¼ −
ω

2ϕ2
∇eϕ∇eϕþ V

2ϕ

�
2ω − 1

2ωþ 3

�

þ 1

ϕ

�
1

2ωþ 3

�
ϕ
dV
dϕ

−∇eϕ∇eϕ
dω
dϕ

�
−
∇aϕ∇bϕ∇a∇bϕ

∇eϕ∇eϕ

�
; ð2:37Þ

8πPðϕÞ ¼ −
ω

2ϕ2
∇eϕ∇eϕ −

V
6ϕ

ð6ωþ 1Þ
ð2ωþ 3Þ

−
1

3ϕ

�
2

2ωþ 3

�
ϕ
dV
dϕ

−∇eϕ∇eϕ
dω
dϕ

�
þ∇aϕ∇bϕ∇b∇aϕ

∇eϕ∇eϕ

�
: ð2:38Þ

In general, the effective fluid stress-energy tensor TðϕÞ
ab does not satisfy any energy condition because it contains second

derivatives of ϕ (which can have either sign) together with the more standard squares of first derivatives (which are instead
positive-definite), preventing conclusions. For reference, we list the energy conditions, although they will be violated in
general by the ϕ-fluid4 [14,21,22]. The weak energy condition (Tabtatb ≥ 0 for all timelike vectors ta [16]) becomes

TðϕÞ
ab u

aub ¼ −
ω

2ϕ
∇eϕ∇eϕþ V

2
þ□ϕ −

∇aϕ∇bϕ∇a∇bϕ

∇eϕ∇eϕ
≥ 0; ð2:39Þ

while the strong energy condition (ðTab − Tgab=2Þtatb ≥ 0 for all timelike vectors ta [16]) is

�
TðϕÞ
ab −

1

2
TðϕÞgab

�
uaub ¼ 1

2
ðρðϕÞ þ 3PðϕÞÞ ¼ −

ω

ϕ2
∇eϕ∇eϕ −

V
2ϕ

þ 1

ϕ

�
−
1

2
□ϕ −

∇aϕ∇bϕ∇a∇bϕ

∇eϕ∇eϕ

�
≥ 0: ð2:40Þ

III. ECKART’S THERMODYNAMICS FOR
SCALAR-TENSOR GRAVITY

In Eckart’s thermodynamics [15] (see also Refs. [23,24]
for a pedagogical exposition and [25] for relativistic fluids
in general), the dissipative quantities (i.e., viscous pressure
Pvis, heat current density qc, and anisotropic stresses πab)
are related to the expansion θ, temperature T , and shear
tensor σab by the constitutive equations [15]

Pvis ¼ −ζθ; ð3:1Þ

qa ¼ −Kðhab∇bT þ T _uaÞ; ð3:2Þ

πab ¼ −2ησab; ð3:3Þ

where ζ is the bulk viscosity, K is the thermal conductivity,
and η is the shear viscosity.
The comparison of Eqs. (2.32) and (2.14) yields

qðϕÞa ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cϕ∇cϕ

p
8πϕ

_ua: ð3:4Þ

Not only is this vector purely spatial, which we already
know, but it is proportional to the 4-acceleration of the
effective fluid “elements.”

A. The temperature of scalar-tensor gravity

Equation (3.4), already obtained in Ref. [14], is inter-
preted in the context of Eckart’s first order (noncausal)
thermodynamics [15], in which the constitutive relation for
the heat flux density (generalized Fourier law) is given
by Eq. (3.2). Then, Eq. (3.4) allows us to make the
identifications

KT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cϕ∇cϕ

p
8πϕ

; ð3:5Þ

and

hab∇bT ¼ 0; ð3:6Þ

i.e., the spatial temperature gradient vanishes identically
and the heat flow arises solely from the inertia of energy
(a possible contribution to the heat flux first discovered by
Eckart [15]).
Equation (3.5) can then be used to identify the Eckart

temperature of the ϕ-fluid [14], which we dub “temperature
of scalar-tensor gravity.” It is reassuring that KT is positive

4See Refs. [19,20] for a discussion of the energy conditions for
an imperfect fluid with respect to arbitrary (timelike) observers.
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definite, which could not have been taken for granted in a
formal identification of quantities which, a priori, could
generate either sign. Furthermore, KT formally vanishes
when ϕ ¼ const:, which corresponds to GR and to the
disappearance of the ϕ-fluid.

B. The effective viscosity of scalar-tensor gravity

The structure of the effective imperfect fluid of the
Brans-Dicke-like scalar field ϕ was chosen so that it does
not contain a bulk viscosity term. Therefore, the bulk
viscosity ζ ¼ 0, but there is shear viscosity. This choice of
splitting between the isotropic pressure term and the
viscous one does not affect the generalized Fourier law
and the definition of temperature of the ϕ-fluid.
In order to calculate the shear viscosity η, it is sufficient

to compare the anisotropic stress tensor (2.35) with the
shear tensor (2.20). Rather surprisingly, these two expres-
sions match term to term and are proportional to each other.
Eckart’s constitutive relation πab ¼ −2ησab is satisfied if

η ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cϕ∇cϕ

p
16πϕ

ð3:7Þ

or, using the expression (3.5),

η ¼ −
KT
2

: ð3:8Þ

The effective shear viscosity of scalar-tensor gravity is
negative and vanishes at KT ¼ 0, the GR case correspond-
ing to equilibrium, to ϕ ¼ const:, and to the disappearance
of the effective ϕ-fluid. Negative viscosities are common in
fluid mechanics, including jet streams, ocean currents,
liquid crystals, and many other phenomena. They are
turbulent (as opposed to molecular) viscosities and appear
in systems into which energy is fed from the outside
(see, e.g., [26–29]). In our case, there is no obvious
turbulent interpretation (indeed, the ϕ-fluid is irrotational)
but, as a thermodynamical system, the ϕ-fluid is not
isolated. In the action (1.1), ϕ couples explicitly to gravity
through the term ϕR mixing scalar and tensor degrees of
freedom and exchanges energy with its thermodynamical
“surroundings.”
In the different context of spacetime thermodynamics,

Ref. [6] identified shear viscosity as the source of dis-
sipation and pointed to the absence of bulk viscosity in
fðRÞ gravity, contrary to the previous proposal of Ref. [2].
The results of [6] are echoed in our different approach, in
the wider class of scalar-tensor theories.

C. Entropy generation and the second law

In Eckart’s thermodynamics, the entropy due to the heat
flux is Ra ¼ qa=T which, in the comoving frame, has
components [15,23,25]

Rμ ¼
qμ
T

¼
�
0;

q⃗
T

�
: ð3:9Þ

The entropy current density in a fluid with particle density
n and entropy density s is

sa ¼ snua þ Ra ¼ snua þ qa

T
; ð3:10Þ

where Ra describes entropy generation due to dissipative
processes. While, for an isolated system, entropy is con-
served in a nondissipative fluid (∇csc ¼ 0), in a dissipative
one it is ∇csc > 0 due to the entropy generation described
by the vector Ra.
The entropy density is obtained from the first law

T dS ¼ dU þ PdV; ð3:11Þ
which yields

s≡ dS
dV

¼ ρþ P
T

ð3:12Þ

assuming a closed (yet, not isolated) system.
The expressions (2.31), (2.34), and (3.5) of the effective

density, pressure, and temperature of the ϕ-fluid then give

s ¼ Kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇eϕ∇eϕ

p
×

�
−
ω

ϕ
∇eϕ∇eϕþ□ϕ

3
−
4

3

∇aϕ∇bϕ∇a∇bϕ

∇eϕ∇eϕ

�
: ð3:13Þ

In a fluid in which the particle number is conserved,
∇ana ¼ 0 (where na ¼ nua is the particle current density),
one has [15,23,25]

∇csc ¼
P2
vis

ζT
þ qcqc

KT 2
þ πabπ

ab

2ηT
; ð3:14Þ

where the bulk viscosity term (the first term on the right-
hand side) is absent for the effective ϕ-fluid. Using the fact
that qa ¼ −KT _ua, Eckart’s entropy generation term is

Ra ¼ −K _ua: ð3:15Þ

Equations (3.4) and (2.35) are then used to compute ∇csc,
obtaining

qcqc

KT 2
¼ K _uc _uc ¼

K
ð−∇eϕ∇eϕÞ3

½−∇eϕ∇eϕ∇bϕ∇dϕ∇b∇aϕ∇d∇aϕþ ð∇aϕ∇bϕ∇a∇bϕÞ2�; ð3:16Þ
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πabπ
ab ¼ 8η2σ2 ¼ 2K2T 2σ2

¼ ð−∇eϕ∇eϕÞ−2
32π2ϕ2

�
1

2
ð−∇eϕ∇eϕÞ2

�
∇a∇bϕ∇a∇bϕ −

ð□ϕÞ2
3

�
þ 1

3
ð∇aϕ∇bϕ∇a∇bϕÞ2

−ð∇eϕ∇eϕÞ
�
∇a∇bϕ∇b∇cϕ −

□ϕ

3
∇a∇cϕ

�
∇aϕ∇cϕ

�
; ð3:17Þ

and finally

∇csc ¼ K
�
_ua _ua þ

KT σ2

η

�
¼ Kð _ua _ua − σabσ

abÞ: ð3:18Þ

Since the second term in Eq. (3.18) is negative, one cannot
conclude that the entropy increases. Indeed, if energy is
injected into the scalar field fluid coupled to gravity,
the entropy s may actually decrease, as it happens in
nonisolated systems.
A special situation (if it is possible) is the one in which

the ϕ-fluid is geodesic, _ua ¼ 0, which always corresponds
to qa ¼ 0, Ja ¼ T ua, and decreasing entropy density,
consistent with the fact that the entropy generation vector
(3.15) vanishes and shear contributes to decreasing s
because of the negative η, as described by Eq. (3.18).
In modern constitutive theories, all constitutive relations

are supposed to obey two universal principles (see, e.g.,
[30]): (i) the objectivity principle, i.e., independence of the
observer; (ii) the entropy principle, according to which any
solution of a system of constitutive equations satisfies an
additional entropy balance law with a non-negative entropy
production. Therefore, the result in Eq. (3.18) suggests
potential violations of the latter and a consequent problem
in fitting this analogy with the ϕ-fluid into the standard
framework of constitutive theory. However, it is important
to point out that the ϕ-fluid is hardly a real fluid—indeed,
its energy density ρðϕÞ can be negative—and the corre-
spondence with Eckart’s theory comes as a mere compari-
son of kinetic and kinematic quantities characterizing the
ϕ-fluid. Furthermore, as already stressed, this exotic fluid is
not isolated since ϕ couples directly to the gravity sector,
which necessarily affects the entropy balance. Hence, the
analogy between properties of the ϕ-fluid and Eckart’s
thermodynamics holds provided that one keeps these
caveats in mind.

D. Possible physical interpretations

Since the thermodynamic interpretation of this analogy
depends heavily on the specific choice of the solution of the
system (3.5) and (3.6), one can propose different formu-
lations of the proposed approach without altering the
physical scenario at hand. Here we discuss two simple
possibilities.

Isolating the temperature in Eq. (3.5) and then inserting
the corresponding expression into Eq. (3.6) reduces the
latter to

hab∇b ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cϕ∇cϕ

p
K

�
¼ 0: ð3:19Þ

One of the simplest solutions of this equation is

K ¼ C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cϕ∇cϕ

p
; ð3:20Þ

with C a positive constant. Setting, for instance, C ¼ 1=8π
yields

T ¼ 1

ϕ
¼ Geff ð3:21Þ

and

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇cϕ∇cϕ

p
8π

: ð3:22Þ

This simple solution of Eq. (3.19) sets the stage for a
curious interpretation of the thermodynamic properties of
the ϕ-fluid. Specifically, the temperature measures the
effective strength of the gravitational interaction while
the thermal conductivity keeps track of the norm of
∇aϕ, and therefore of the variability of ϕ. Now, if one
looks at the GR limit of the theory ϕ ¼ const:, T should
reduce to Newton’s constant whereas K vanishes. In other
words, the GR limit of scalar-tensor gravity corresponds to
the “perfect insulator” limit for the ϕ-fluid.
Alternatively, if one considers a more involved solution

of Eq. (3.19) such that K ≠ 0, one finds an alternative
description for the GR limit of scalar-tensor gravity: this
limit corresponds to T → 0, i.e., GR corresponds to
the absolute zero (minimum possible temperature) of the
ϕ-fluid. However, finding an explicit general expression for
K ¼ Kðϕ;∇ϕÞ becomes much more involved.

IV. THE APPROACH TO THE GR
EQUILIBRIUM STATE

A posteriori, the expression of KT can be differentiated
to obtain an evolution equation for this quantity. Although
this may seem redundant since we already know the
solution of this equation, the latter plays the role of an
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effective heat equation for the ϕ-fluid and is useful to
understand better when, and how, the GR equilibrium state
is approached.
The differentiation of Eq. (3.5) yields

dðKT Þ
dτ

≡ uc∇cðKT Þ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇eϕ∇eϕ

p
8πϕ

1

ϕ

∇cϕ∇cϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇eϕ∇eϕ

p
−

uc

8πϕ

∇eϕ∇c∇eϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇eϕ∇eϕ

p
¼ KT

ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇eϕ∇eϕ

p
−KT

�
θ −

□ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇eϕ∇eϕ

p �
:

ð4:1Þ
Using again Eq. (3.5), one has

dðKT Þ
dτ

¼ 8πðKT Þ2 − θKT þ □ϕ

8πϕ
: ð4:2Þ

It is not easy to interpret this equation in general since □ϕ
does not have definite sign and the expansion θ depends in
a rather complicated way from ϕ and its derivatives,
however we can restrict to simple situations in order to
gain insight into the approach to equilibrium. Consider the
case of electrovacuum, ω ¼ const:, and VðϕÞ≡ 0; then
Eq. (1.3) yields □ϕ ¼ 0. If θ < 0, then dðKT Þ=dτ >
8πðKT Þ2 and KT grows superexponentially, exploding
in a finite time τ and diverging away from the GR
equilibrium state. Therefore, one expects that near space-
time singularities, where worldlines of the ϕ field converge
and θ < 0, the deviations of scalar-tensor gravity from GR
will be extreme (this idea is tested in Sec. V).
When θ > 0, it is possible that the negative term −θKT

in the right-hand side of Eq. (4.2) dominates over the
positive term 8πðKT Þ2, and that the solution KT asymp-
totes to zero, approaching the GR equilibrium state.
However, if KT is large, the positive term will dominate
the right hand side and lead the solution away from GR, the
term linear in T becoming negligible. Therefore, the
approach to the GR equilibrium state is not granted and
should not be expected all the time. In the next section, we
report analytical solutions of scalar-tensor gravity where
this diffusion occurs and others where it does not.

V. EXAMPLES: ANALYTICAL SOLUTIONS OF
SCALAR-TENSOR GRAVITY

Here we examine certain exact solutions of scalar-tensor
gravity to test the thermodynamical formalism of the
effective ϕ-fluid presented in the previous sections.

A. The special case of FLRW universes

In FLRW universes, the purely spatial heat flux density
qc and the anisotropic stresses πab vanish identically as a
consequence of spatial homogeneity and isotropy, and
the ϕ-fluid reduces to a perfect fluid. This result is true

also in Lovelock and fðR;GÞ theories, where G≡R2 −
4RabRab þRabcdRabcd is the Gauss-Bonnet integrand, in
arbitrary dimension [31], and presumably in other theories
as well. Due to the absence of a spatial heat flux, we
provisionally assign zero temperature T to FLRW spaces.
This may not be the end of the story though: one can
consider the possibility that, in FLRW universes, the heat
flux becomes a timelike vector aligned with the four-
velocity uc of comoving observers. This situation preserves
the spatial homogeneity and isotropy of FLRW space.
Then, Eckart’s equation (3.4) could only hold if the four-
acceleration of the fluid is timelike. Indeed, this is precisely
what happens in FLRW spaces sourced by a perfect fluid.
The acceleration vanishes for a pressurefree dust while, for
any other perfect fluid, there is a pressure gradient ∇aP
which is timelike, to preserve spatial isotropy, and points
along the tangent ua to the fluid trajectory. The latter is not
geodesic because of the pressure gradient ∇aP, but it is
quasigeodesic [18]: the curve, as a set of points, coincides
with the geodesic but the proper time is not an affine
parameter along it. A quasigeodesic coincides with a
nonaffinely parametrized geodesic when the proper time
of the fluid (which is, in general, the cosmic comoving time
but differs from the proper time of a freely falling observer),
is used as a parameter [18]. This is one of the few situations
(others are listed in Ref. [18]) in which the four-
acceleration _ua of a particle is not orthogonal, indeed, it
is parallel, to its four-velocity ua. Dealing with a timelike
heat current density requires an extension of the formalism
of [13,14] that explicitly requires the gradient ∇cϕ to be
timelike. While this extension may be possible, it goes
beyond the purpose of the current manuscript and the
peculiar situation of FLRW spaces with respect to Eckart’s
thermodynamics of scalar-tensor gravity will be discussed
in detail in a separate publication.

B. A Brans-Dicke solution with a central singularity

We now search for an example of a solution of the scalar-
tensor field equations with a spacetime singularity, to test
whether T → þ∞ there and whether the deviation from
the corresponding GR solution is significant. The general
vacuum, static, spherically symmetric and asymptotically
flat solution of the Brans-Dicke field equations with
VðϕÞ ¼ 0 that is not a black hole is known and has a
central singularity (for appropriate parameter values)
[32,33], but the corresponding scalar field gradient ∇aϕ
is spacelike. We look instead for dynamical solutions with
timelike ∇cϕ, and we disregard FLRW universes in which
the imperfect ϕ-fluid quantities vanish identically. These
criteria exclude most known analytical solutions of scalar-
tensor gravity [34], but the following one, reported in
Ref. [35] satisfies them. This Brans-Dicke solution is
conformal to a GR solution found in [36], which general-
izes an old geometry found by Wyman [37] by including a
positive cosmological constant Λ. The scalar field potential
in the Jordan frame is
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VðϕÞ ¼ m2ϕ2

2
ð5:1Þ

where m2 ¼ 2Λ=κ > 0 and κ ¼ 8πG. The line element and
Brans-Dicke scalar read

ds2 ¼ −κr2dτ2 þ
�
1 −

τ

τ�

�
2
�

2dr2

1 − 2Λr2
3

þ r2dΩ2
ð2Þ

�
; ð5:2Þ

ϕðτÞ ¼ ϕ�
ð1 − τ

τ�
Þ2 ; ð5:3Þ

where dΩ2
ð2Þ ≡ dϑ2 þ sin2 ϑdφ2 is the line element on the

unit 2-sphere, ω and Λ are parameters of the theory, while
ϕ� arises from an initial condition. The Ricci scalar is

R ¼ ω

ϕ2
∇cϕ∇cϕþ 3□ϕ

ϕ
þ 2V

ϕ

¼ 1

κð1 − τ
τ�
Þ2
�
2Λϕ� −

4ω

τ2�r2

�
: ð5:4Þ

For any value of ω,R diverges as τ → τ−� , corresponding to
a big crunch singularity, where also ϕ diverges.
If ω ≠ 0, R diverges also when r → 0þ (see below for

the case ω ¼ 0). The areal radius

Rðτ; rÞ ¼
�
1 −

τ

τ�

�
r; ð5:5Þ

vanishes as r → 0 and there is a central singularity if ω ≠ 0.
The slices of constant time are finite with 0 ≤ r ≤ r�,

where

r� ¼
ffiffiffiffiffiffi
3

2Λ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

8πϕ̃0
2

j2ωþ 3jκ

s
¼

ffiffiffiffiffiffi
3

2Λ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

κτ2�

s
ð5:6Þ

(cf. Ref. [38]). We have, therefore, a naked central
singularity embedded in a finite inhomogeneous universe
created by Λ and ϕ, which ends at the finite future τ�.
The case ω ¼ 0 was studied in Ref. [35]. The curvature

invariant

RabRab ¼ 1

ϕ2

�
∇a∇bϕ∇a∇bϕþ Λ2

κ2

�

¼ 1

τ4�κr4ð1 − τ
τ�
Þ4
�

9

κτ2�
− 4þ 8Λr2

3

�

þ Λ2

κ2ϕ2�

�
1 −

τ

τ�

�
4

ð5:7Þ

diverges as r → 0þ (or as the areal radius R → 0þ),
therefore the naked central singularity persists for ω ¼ 0.

This Brans-Dicke solution is also a solution of purely
quadratic fðRÞ gravity [35]

fðRÞ ¼ κR2

4Λ
: ð5:8Þ

This theory exhibits a restricted scale-invariance and does
not admit a Newtonian limit [39], however it approximates
the Starobinski model fðRÞ ¼ Rþ αR2 of inflation [40],
which fairs very well in the light of current cosmological
observations [41,42]. For this solution, the gradient ∇cϕ is
timelike and Eq. (3.5) reduces to

KT ¼ 2

ð8πÞ3=2rðτ� − τÞ : ð5:9Þ

Thus, KT diverges as r → 0 at the central singularity, and
also at the Big Crunch singularity τ → τ�−. The corre-
sponding GR solution with a positive Λ and ϕ ¼ const: is
de Sitter space, which has no spacetime singularities. This
example illustrates the previous assertion that, where KT
diverges, the deviation of scalar-tensor gravity from GR
becomes extreme.

C. Scalar-tensor black holes

Vacuum, asymptotically flat, stationary black holes
coincide with those of GR, according to a host of no-hair
theorems originating from an early theorem by Hawking
[43]. This result was extended to more general scalar-tensor
theories with varying Brans-Dicke coupling ωðϕÞ and a
potential VðϕÞ [44,45], provided that the latter has a
minimum in which the scalar ϕ can lodge in stable
equilibrium. The known exceptions to these no-hair the-
orems are maverick solutions in which the scalar ϕ diverges
on the horizon, e.g., in the Bronnikov-Bocharova-
Melnikov-Bekenstein extremal black hole for a confor-
mally coupled scalar [46,47]. The proof of Hawking’s
theorem consists of showing that ϕ must be constant
outside the horizon, and then gravity reduces to Einstein
gravity in that region. Adopting the second interpretation of
the thermodynamic analogy discussed in Sec. III D, one has
that this occurrence corresponds to zero “theory temper-
ature” T of the ϕ-fluid. The physical interpretation is that,
when they form, scalar-tensor black holes freeze the extra
dynamical degree of freedom ϕ outside their horizons.
However, the singularity inside the horizon becomes “hot”
and deviates from GR, an idea that we intend to explore in
the future. Then the no-hair theorems state that, outside the
horizon, GR black holes are the states of “lowest temper-
ature” in the space of scalar-tensor black holes.

D. Thermodynamics of stealth solutions

We now examine the thermodynamics of stealth solutions
of scalar-tensor gravity, i.e., of solutions in which the
geometry is the same as in GR with the same matter source
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while the scalar field is not constant, but does not gravitate.
In other words, the defining features are that the effective

stress-energy tensor TðϕÞ
ab vanishes in that geometry [48–57],

while the scalar field still retains a nontrivial dynamics.
Example 1: ω ¼ 0, VðϕÞ ¼ 0, and ϕ linear in time.
Consider the action in Eq. (1.1) with ω ¼ 0 and

VðϕÞ ¼ 0. The corresponding effective stress-energy ten-
sor reads

TðϕÞ
ab ¼ 1

ϕ
ð∇a∇bϕ − gab□ϕÞ: ð5:10Þ

It is then easy to see that this tensor vanishes if one
considers the ansatz ϕðtÞ ¼ αtþ β, with t denoting the
coordinate time of the solution of the effective Einstein
field equations, and α, β are two positive constants. The
linearity in time of the Brans-Dicke scalar field is actually a
familiar feature in stealth solutions in Horndeski [58] and
beyond Horndeski theories [58–64] (see also [34]).
Furthermore, this ansatz for the scalar field forces a
restriction onto the energy-momentum tensor of (ordinary)
matter in the theory. Indeed, from Eq. (1.3) one finds that

TðmÞ ¼ gabTðmÞ
ab ¼ 0 throughout the spacetime manifold.

Focusing on the expressions of the general imperfect

fluid representation of TðϕÞ
ab , one finds that ρ

ðϕÞ, PðϕÞ, qðϕÞa ,

and πðϕÞab all vanish if the ansatz ϕðtÞ ¼ αtþ β is assumed.
The same is true for the kinetic quantities associated with
the ϕ-fluid, i.e., σab, θ, and ωab. This means that Eckart’s
constitutive relations are identically satisfied by the ϕ-fluid
and one can still regard Eqs. (3.5) and (3.8) as viable
definitions of temperature, thermal conductivity, and shear
viscosity. Furthermore, it turns out that, for this ansatz for
the Brans-Dicke scalar,

KT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇eϕ∇eϕ

p
8πϕ

¼
ffiffiffiffiffiffiffiffiffiffi−g00

p
α

8πðαtþ βÞ : ð5:11Þ

These stealth solutions correspond to non-equilibrium
states of gravity since the scalar degree of freedom is
excited and propagates, even though it does not gravitate.
This situation can be made sense of by considering the case
of static stealth solutions. In this case one has that g00 is
negative and corresponds to the norm of a timelike Killing
vector field. Thus, the effective gravitational coupling is
Geff ≃ 1=ϕ and it evolves even though for these solutions
the geometry does not, going to zero as t → þ∞.
Correspondingly, the scalar-tensor thermodynamic system
approaches the GR state of equilibrium, or KT → 0, at late
times because gravity is switched off asymptotically.
Example 2: Static stealth solution in vacuum Brans-

Dicke gravity with ω ¼ −1 and VðϕÞ ¼ V0ϕ.
The conditions ω ¼ 0 and VðϕÞ ¼ 0 are not necessary to

achieve a stealth solution. As an example with ω ≠ 0,
V ≠ 0, consider the following solution of vacuum

Brans-Dicke theory found in [65] (see also [34]), which
satisfies the field equations for ω ¼ −1 and linear potential
VðϕÞ ¼ V0ϕ (with V0 a positive constant).
The static, spherically symmetric geometry is [65,66]

ds2 ¼ −dt2 þ AðrÞ−
ffiffi
2

p
dr2 þ AðrÞ1−

ffiffi
2

p
r2dΩ2

ð2Þ; ð5:12Þ

while the Brans-Dicke scalar field is

ϕðt; rÞ ¼ ϕ0e2atAðrÞ1=
ffiffi
2

p
ð5:13Þ

and AðrÞ ¼ 1–2m=r. Here m and a ≠ 0 are parameters,
while the constant ϕ0 > 0 is related to the initial conditions.
This geometry is a special case of the Campanelli-Lousto
static geometry [67], which is the form of the most general
solution of the vacuum Brans-Dicke field equation that is
static, spherically symmetric and asymptotically flat
[32,33], but is expressed in a coordinate system of limited
validity [33]. In general, this solution contains only naked
singularities or wormhole throats, but not black holes
[33,34,68]. This is not a stealth solution (it is straightfor-
ward to verify that, for example, the energy density of
the effective ϕ-fluid cannot vanish if m ≠ 0). However, the
limit m → 0 produces a stealth solution. For m ¼ 0, the
geometry reduces to the Minkowski one while ϕðtÞ ¼
ϕ0e2at remains dynamical and does not gravitate. We have

∇cϕ ¼ 2aϕδ0c; ∇eϕ∇eϕ ¼ −4a2ϕ2;

∇c∇dϕ ¼ 4a2ϕδ0cδ0d; ð5:14Þ

from which one can easily infer that ∇cud ¼ 0, qðϕÞc ¼ 0,

and πðϕÞcd ¼ 0. The energy density and isotropic pressure of
the ϕ-fluid are

ρðϕÞ ¼ −2a2 þ V0

2
¼ −PðϕÞ; ð5:15Þ

so that TðϕÞ
ab vanishes identically only if

V0 ¼ 4a2: ð5:16Þ

The effective gravitational coupling strength reads
Geff ¼ ϕ−1

0 e−2at, while

KT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−∇eϕ∇eϕ

p
8πϕ

¼ jaj
4π

ð5:17Þ

remains constant in time. The stealth scalar-tensor non-
equilibrium state never approaches the GR equilibrium
state ϕ ¼ const: > 0.
Note that ∇cϕ is parallel to the timelike Killing field

tc ¼ ð∂=∂tÞc. In order to have these two vector fields
pointing in the same direction, it must be a < 0, which
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implies thatGeff ∼ e2jajt diverges exponentially at late times
while KT ¼ jaj=4π remains constant.

VI. CONCLUSIONS AND OUTLOOKS

We have expanded and built upon the new approach to
the thermodynamics of scalar-tensor gravity presented
briefly in the previous paper [7], providing details. Our
approach is very different from Jacobson’s thermodynam-
ics of spacetime [1,2]: there, the temperature of spacetime
is the Unruh temperature of local uniformly accelerated
observers whose worldlines thread the fabric of spacetime,
while here the temperature T arises from Eckart’s first
order thermodynamics for dissipative fluids, which we are
led to examine following the reformulation of scalar-tensor
gravity in terms of an effective ϕ-fluid in [13,14]. In [2], it
was proposed that, while GR is an equilibrium state of
gravity, fðRÞ (which is a subclass of scalar-tensor) gravity
theories and, by extension, presumably also other modified
gravity theories, constitute excited non-equilibrium states.
Therefore, there should be a spontaneous approach of these
excited states to the GR equilibrium state. However the
equations ruling this approach to equilibrium, and the
order parameter(s) ruling it, have never been identified.
If alternative gravity really “decays” spontaneously to GR,
it should be possible to track and model this process in
more than one way. Indeed, modified gravity contains extra
dynamical degrees of freedom in addition to the two
massless spin two modes of GR contained in the metric
tensor. Therefore, a theory in which these extra degrees of
freedom are excited and propagate can rightly be called an
“excitation” of GR. In scalar-tensor (including metric
fðRÞ) gravity, there is only one (scalar, massive) extra
degree of freedom.
In contrast with spacetime thermodynamics, our pro-

posal is minimalist, using less assumptions and less
fundamental ones. The new approach consists of the
effective fluid formulation of scalar-tensor gravity plus
the application of the constitutive relations of Eckart’s first
order thermodynamics [15] to it. Eckart’s noncausal
thermodynamics is unable to describe a full relaxation
process and to provide a relaxation time, however it gives
us the effective temperature, the order parameter quantify-
ing how far away a modified gravity is from GR. It provides
also the information that bulk viscosity is zero, the explicit
expression of the shear viscosity, a simple expression for
the heat current density, as well the effective entropy
density. One puzzling aspect is that the shear viscosity η
is negative, but this is not too disconcerting when one
realizes that the thermodynamical system (the ϕ-fluid) is
not isolated but exchanges energy with its “surroundings.”
The most important consequence is that the entropy density
is not necessarily forced to decrease, which corresponds to
the fact that scalar-tensor gravity does not always approach
the GR state. This fact opens the possibility that there could
be other equilibrium states, i.e., other special theories of

gravity, at positive values of KT . The first possibility that
comes to mind is Palatini fðRÞ gravity, in which the
effective scalar degree of freedom is nondynamical [3–5].
However, this is not a truly new state since, in electrovacuo,
it reduces to GR with a cosmological constant [3–5]. The
same situation occurs in cuscuton theory [69,70] and in
minimally modified gravity [71], which could also provide
nontrivial equilibrium states.
In spite of the limitations of Eckart’s first order thermo-

dynamics, the effective fluid formalism is not an analogy,
but a new approach to the problem of describing how
gravity diffuses (or not) to the GR state of equilibrium.
A seemingly self-consistent thermodynamic theory
emerges in this approach: KT is positive-definite and
vanishes in the GR equilibrium state; spherical, asymp-
totically flat, vacuum black holes of scalar-tensor gravity
(except for mavericks) correspond to the KT ¼ 0 black
holes of GR, according to the no-hair theorems; spacetime
singularities correspond to formally infinite KT and to
large deviations from GR.
Several aspects of this new thermodynamics of gravity

will be analyzed in future work, including: the special role
of FLRW spaces; the idea that black holes have zero
temperature far away from the horizon, while being “hot”
and deviating from GR near the singularity; and attempts to
generalize the formalism to situations in which the gradient
∇cϕ is null or spacelike. A natural generalization of the
approach proposed here has been carried out in [8] for
Horndeski gravity. However, because of the much larger
freedom in the choice of coupling functions and parameters
in general Horndeski gravity, the interpretation of the
results there is much more complicated and physical
intuition relies on the results presented here.
In an alternative approach, one would trade temperature

with chemical potential and assign zero temperature and
entropy, but nonzero chemical potential, to the effective
ϕ-fluid of modified gravity. This approach was used in
Refs. [72–74] for braided kinetic gravity (note the sim-
ilarity between our Eq. (3.4) and Eq. (3.35) of Ref. [72]).
We will report in the future on this alternative approach for
scalar-tensor gravity, as well as on both approaches for
other theories of gravity alternative to GR. Eventually, the
generalization from Eckart’s first order, non-causal thermo-
dynamics to realistic, causal extended thermodynamics for
dissipative fluids [24,75–81] will also have to be addressed.
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