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In this work we explore the dynamics of the generalized hybrid metric-Palatini theory of gravity in the
weak-field, slow-motion regime. We start by introducing the equivalent scalar-tensor representation of
the theory, which contains two scalar degrees of freedom, and perform a conformal transformation to the
Einstein frame. Linear perturbations of the metric in a Minkowskian background are then studied for the
metric and both scalar fields. The effective Newton constant and the PPN parameter γ of the theory are
extracted after transforming back to the (original) Jordan frame. Two particular cases where the general
method ceases to be applicable are approached separately. A comparison of these results with observational
constraints is then used to impose bounds on the masses and coupling constants of the scalar fields.
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I. INTRODUCTION

Modified theories of gravity [1–5] have recently received
much attention, as an alternative to dark energy models
[6–8], in order to explain the late-time cosmic acceleration
[9,10]. In fact, a popular theory extensively analyzed in the
literature is fðRÞ gravity, which generalizes the Hilbert-
Einstein Lagrangian to an arbitrary function of the Ricci
curvature scalar R. The only restriction imposed on the
function f is that it needs to be analytic, namely, it possesses
a Taylor expansion about any point. Indeed, earlier interest
in fðRÞ gravity wasmotivated by inflationary scenarios [11]
and it has been extremely successful in accounting for the
accelerated expansion of the universe [12,13], where the
conditions to have viable cosmological models have also
been derived (see [1–3] for details). It has also been shown
that fðRÞ gravity is strongly constrained by local observa-
tions [14–16], at the laboratory and Solar System scales,
unless screening mechanisms are invoked [17–19].
One may approach fðRÞ gravity through several formal-

isms at a fundamental level [1–3], namely, one may consider
that the metric represents the fundamental field of the theory,
and consequently obtain the gravitational field equations by
varying the action with respect to the metric. However, one
may also consider the so-called Palatini (metric-affine)
formalism [20], where the theory possesses two fundamental

fields, namely, the metric and the connection, and the action
is varied with respect to both. Note that in general relativity,
both metric and Palatini formalisms are equivalent, contrary
tofðRÞgravity. This is transparent if one considers the scalar-
tensor representation of fðRÞ gravity, where the metric
formalism corresponds to a Brans-Dicke type with a param-
eter ωBD ¼ 0, while the Palatini formalism is equivalent to
a Brans-Dicke theory with ωBD ¼ −3=2, so that both
approaches yield different dynamics. However, a third
approach exists, denoted hybrid metric-Palatini gravity
[21], that essentially consists of a hybrid combination of
both metric and Palatini formalisms, which cures several of
the problematic issues that arise in these approaches [1–3].
The linear version of hybrid metric-Palatini gravity

consists of adding to the Hilbert-Einstein Lagrangian R
an fðRÞ term constructed a la Palatini, and it was shown
that the theory can pass the Solar System observational
constraints even if the scalar field is very light [21–25].
This implies the existence of a long-range scalar field,
which is able to modify the cosmological [26,27] and
galactic dynamics [28,29], but leaves the Solar System
unaffected [30]. A plethora of applications exist in the
literature, such as in cosmology [31–36] and extra-dimen-
sions [37,38], stringlike configurations [39,40], black holes
and wormholes [41–45], stellar configurations [46], tests of
binary pulsars [47], observational constraints [48], among
other applications (we refer the reader to [23,24] for more
details). However, one may consider further generalizations
of the linear hybrid metric-Palatini theory, by taking into
account an fðR;RÞ extension [49,50]. Further applications
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have been considered to cosmological models [51–54], and
compact objects [55–57].
In fact, one can show that the generalized hybrid metric-

Palatini theory of gravity admits a scalar-tensor represen-
tation in terms of two interacting scalar fields. In this
context, it was shown that upon an appropriate choice of the
interaction potential, one of the scalar fields behaves like
dark energy, inducing a late-time accelerated expansion of
the universe, while the other scalar field behaves like
pressureless dark matter that, together with ordinary bar-
yonic matter, dominates the intermediate phases of cosmic
evolution. It has been argued that this unified description of
dark energy and dark matter gives rise to viable cosmo-
logical solutions, which reproduces the main features of the
evolution of the universe [58–60]. It is also interesting to
note that recently a class of scalar-tensor theories has been
proposed that includes nonmetricity, so that it unifies the
metric, Palatini and hybrid metric-Palatini gravitational
actions with a nonminimal interaction [61].
It is important to further investigate the nature of the

additional scalar degrees of freedom contained in the
generalized hybrid metric-Palatini gravity in the weak-field
limit. In [62], it was shown that performing an analysis at the
lowest order of the parametrized post-Newtonian structure of
the model, one scalar field can have long range interactions,
mimicking in that way dark matter effects. In the context of
gravitational waves propagation, it was shown that it is
possible to have well-defined physical degrees of freedom,
provided by suitable constraints on model parameters.
In this work, we build on the latter work and pursue the

analysis of the post-Newtonian corrections in the scalar-
tensor representation of the generalized hybrid metric-
Palatini gravity in the Einstein frame. Using an adequate
redefinition of the scalar fields, we show that one of scalar
degrees of freedom of the theory contributes to the enhance-
ment of the gravitational attraction, while the other mediates
a repulsive force. These results are consistent and weakly
constrained by observations, although a model for which the
scalar fields are short-ranged seems to be preferable.
The work is outlined in the following manner: In Sec. II,

we present the action and field equations, and the scalar-
tensor representation in the Jordan andEinstein frames, of the
generalized hybrid metric-Palatini gravity. In Sec. III, we
consider in detail the weak field regime and analyze the
perturbative field equations aroundaMinkowski background
in the Jordan and Einstein frames, including a few particular
cases of interest that must be considered separately. Finally,
in Sec. IV, we discuss our results and conclude.

II. GENERALIZED HYBRID
METRIC-PALATINI GRAVITY

A. Action and equations of motion

Consider the action S of the generalized hybrid metric-
Palatini gravity given by

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p
fðR;RÞd4xþ

Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x; ð1Þ

where κ2 ¼ 8πG, G is the gravitational constant, we use
units in which the speed of light is c ¼ 1, Ω is the
spacetime volume, g is the determinant of the spacetime
metric gab, where latin indexes a, b run from 0 to 3, R is
the metric Ricci scalar, R ¼ gabRab is the Palatini
Ricci scalar, where the Palatini Ricci tensor is written
in terms of an independent connection Γ̂c

ab as Rab ¼
∂cΓ̂c

ab − ∂bΓ̂c
ac þ Γ̂c

cdΓ̂d
ab − Γ̂c

adΓ̂d
cb, ∂a denotes a partial

derivative with respect to the coordinate xa, fðR;RÞ is a
well-behaved function of R and R, and Lm is the matter
Lagrangian minimally coupled to the metric gab.
Avariation of Eq. (1) with respect to the metric gab yields

the modified field equations

∂f
∂RRab þ

∂f
∂RRab −

1

2
gabfðR;RÞ

− ð∇a∇b − gab□Þ ∂f∂R ¼ κ2Tab; ð2Þ

where ∇a denotes a covariant derivative and □ ¼ ∇a∇a is
the d’Alembert operator, both written in terms of the metric
gab, and Tab is the stress-energy tensor defined in the usual
manner as

Tab ¼ −
2ffiffiffiffiffiffi−gp δð ffiffiffiffiffiffi−gp

LmÞ
δðgabÞ : ð3Þ

On the other hand, varying Eq. (1) with respect to the
independent connection Γ̂c

ab, the relevant part of the
connection equation can be written as

∇̂c

� ffiffiffiffiffiffi
−g

p ∂f
∂R gab

�
¼ 0; ð4Þ

where ∇̂a is the covariant derivative written in terms of Γ̂c
ab.

For a detailed account of the role of torsion in the derivation
of the above equation, see [63]. From that result one finds
that for bosonic fields, which is the case we are interested
in here, torsion can be trivialized via a projective trans-
formation. Standard algebraic manipulations then lead us to
conclude that there exists a metric ĝab conformally related
to gab defined as

ĝab ¼
∂f
∂R gab; ð5Þ

for which the connection Γ̂c
ab is the Levi-Civita connection,

i.e., we can write

Γ̂a
bc ¼

1

2
ĝadð∂bĝdc þ ∂cĝbd − ∂dĝbcÞ: ð6Þ
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B. Scalar-tensor representation

In a wide variety of cases of interest, it is useful to
express the action given in Eq. (1) in a dynamically
equivalent scalar-tensor representation. This can be
achieved via the addition of two auxiliary fields α and β
in the following form

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p �
fðα; βÞ þ ∂f

∂α ðR − αÞ þ ∂f
∂β ðR − βÞ

�
d4x

þ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x: ð7Þ

At this point one verifies that setting α ¼ R and β ¼ R
recovers the original action (1). Let us define two scalar
fields φ and ψ by the following

φ ¼ ∂f
∂α ; ψ ¼ ∂f

∂β : ð8Þ

With these definitions, the auxiliary action (7) takes the
form

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p ½φRþ ψR − Vðφ;ψÞ�d4x

þ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x; ð9Þ

where the function Vðφ;ψÞ assumes the role of the scalar
fields interaction potential and is defined as

Vðφ;ψÞ ¼ −fðα; βÞ þ φαþ ψβ; ð10Þ

and the auxiliary fields α and β should be regarded as
functions of φ and ψ . Given the conformal relation between
ĝab and gab provided in Eq. (5), which becomes ĝab ¼
þψgab according to the definitions above, one can show
that the R and R are related via the expression

R ¼ Rþ 3

ψ2
∂aψ∂aψ −

3

ψ
□ψ : ð11Þ

This allows us to eliminate the dependence in R of the
action given in Eq. (9), thus yielding

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p �
ðφþ ψÞRþ 3

2ψ
∂aψ∂aψ − Vðφ;ψÞ

�
d4x

þ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x: ð12Þ

The action in Eq. (12) has proven to be useful in
numerous analyses. However, in this case we will perform
an additional redefinition of the scalar fields for conven-
ience. Consider the scalar fields ϕ and λ defined as

ϕ ¼ φþ ψ ; sλ2 ¼ ψ ; ð13Þ

where s ¼ �1 represents the sign of ψ (note that only the
case s ¼ −1 was studied in [62]). With these definitions,
Eq. (12) becomes

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g

p ½ϕRþ 6s∂aλ∂aλ − V̄ðϕ; λÞ�d4x

þ
Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x; ð14Þ

where V̄ is a new potential written in terms of the scalar
fields ϕ and λ. The action in Eq. (14) describes the scalar-
tensor representation of the theory in the Jordan frame. The
weak-field phenomenology of the theory in this frame has
already been explored in [62]. We shall now perform a
change of frame to the Einstein frame to carry out the
analysis in those variables.

C. Equations in the Einstein frame

To switch from the Jordan frame to the Einstein frame,
we perform a conformal transformation in the metric of the
form g̃ab ¼ ϕgab. Consequently, the action in Eq. (14) takes
the form

S ¼ 1

2κ2

Z
Ω

ffiffiffiffiffiffi
−g̃

p �
R̃þ 6s

ϕ
∇̃aλ∇̃aλ −

3

2ϕ2
∇̃aϕ∇̃aϕ

−
V̄ðϕ; λÞ
ϕ2

�
d4xþ

Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x: ð15Þ

To finalize, we perform one further redefinition of the
scalar fields as

ϕ̃ ¼
ffiffiffi
3

2

r
logϕ
κ

; λ̃ ¼
ffiffiffi
6

p

κ
λ: ð16Þ

These redefinitions allow us to write the action in the final
form

S ¼
Z
Ω

ffiffiffiffiffiffi
−g̃

p �
R̃
2κ2

þ s
2
e−

ffiffi
2
3

p
κϕ̃∇̃aλ̃∇̃aλ̃ −

1

2
∇̃aϕ̃∇̃aϕ̃

− W̃ðϕ̃; λ̃Þ
�
d4xþ

Z
Ω

ffiffiffiffiffiffi
−g

p
Lmd4x; ð17Þ

with the new potential W̃ðϕ̃; λ̃Þ defined as

W̃ðϕ̃; λ̃Þ ¼ V̄ðϕ; λÞ
2κ2

e−2
ffiffi
2
3

p
κϕ̃; ð18Þ

where ϕ and λ can be written in terms of ϕ̃ and λ̃ via the
definitions in Eq. (16). From this point onward, all
variables defined in the Einstein frame will be labeled
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with a tilde. For consistency, we will also denote Ṽðϕ̃; λ̃Þ≡
V̄ðϕðϕ̃Þ; λðλ̃ÞÞ.
The action in Eq. (17) depends on three independent

variables, namely the metric gab, and the scalar fields ϕ and
λ. Performing a variation of Eq. (17) with respect to these
variables yields, respectively

G̃ab þ
1

2
g̃ab½e−2

ffiffi
2
3

p
κϕ̃Ṽðϕ̃; λ̃Þ

þ κ2ð∂cϕ̃∂cϕ̃ − e−
ffiffi
2
3

p
κϕ̃s∂cλ̃∂cλ̃Þ� − κ2∂aϕ̃∂bϕ̃

þ κ2se−
ffiffi
2
3

p
κϕ̃∂aλ̃∂bλ̃ ¼ κ2e−

ffiffi
2
3

p
κϕ̃Tab; ð19Þ

□ϕ̃ −
1

2κ2
e−2

ffiffi
2
3

p
κϕ̃

�
Ṽϕ̃ − 2

ffiffiffi
2

3

r
κϕ̃ Ṽ ðϕ̃; λ̃Þ

�

−
1ffiffiffi
6

p e−
ffiffi
2
3

p
κϕ̃sκ∂aλ̃∂aλ̃ ¼

ffiffiffi
2

3

r
κT; ð20Þ

□λ̃ −
ffiffiffi
2

3

r
κ∂aϕ̃∂aλ̃þ s

2κ2
e−

ffiffi
2
3

p
κϕ̃Ṽ λ̃ ¼ 0; ð21Þ

where the subscripts ϕ̃ and λ̃ denote partial derivatives with
respect to these scalar fields, and T ¼ g̃abTab is the trace of
the stress-energy tensor.
From the above equations, it is worth noting that the

scalar field ϕ̃ is sourced by both λ̃ and the matter stress-
energy density T, whereas λ̃ only couples to itself and to ϕ̃.
According to this, λ̃ can be regarded as a kind of dark matter
fluid, which gravitates but does not directly feel the
presence of matter, in interaction with the dark energy
field ϕ̃. This structure of the field equations suggests
potential applications of this type of models to scenarios
with interacting dark sectors.

III. THE WEAK FIELD REGIME

A. Perturbative equations

Let us now analyze the effects of the scalar fields ϕ̃ and λ̃
in a slightly curved space. To do so, we shall consider a
system of local coordinates in which the metric can be
written in terms of a Minkowskian spacetime η̃ab plus a
small perturbation h̃ab

g̃ab ≈ η̃ab þ h̃ab; ð22Þ

with jh̃abj ≪ 1. In the same way, the scalar fields will be
written as

ϕ̃ ¼ ϕ̃0 þ δϕ̃; λ̃ ¼ λ̃0 þ δλ̃; ð23Þ

where ϕ̃0 and λ̃0 represent the (approximately constant)
background values and δϕ̃ and δλ̃ are local fluctuations of
order Oðh̃abÞ. Note that these fluctuations should vanish

outside the region where the metric is described by
Eq. (22). More relevant, perhaps, is the fact that we have
freedom to set ϕ̃0 to zero without loss of generality. This is
so because we can choose the constant κ2 in Eq. (14) such
that ϕ0 ¼ 1 at our cosmic reference time t0, thus implying
that ϕ̃0 ¼ 0 according to Eq. (16). For generality, however,
we will keep this quantity arbitrary until it becomes
convenient to fix its reference value.
In the weak-field regime, derivatives of the background

fields are negligible, as the evolution of the scalar fields is
very slow due to the large difference between cosmological
and solar system scales. Consequently, curvature terms and
first order derivatives of the background metric can be
discarded. Time derivatives shall also be neglected because
the motion of the sources is expected to be nonrelativistic,
and thus the D’Alembert operator □ effectively becomes
the Laplacian operator ∇2. Furthermore, we shall assume
that matter perturbations are described by a pressureless
perfect fluid, i.e., we write the perturbed stress-energy
tensor δTab as

δTab ¼ ρuaub; ð24Þ

where ρ is the energy density and ua is the 4-velocity of the
fluid elements. This implies that the only nonvanishing
component of δTab is δT00 ¼ ρ, with the space components
δTij ¼ 0 vanishing, where the indexes i, j run from 1 to 3.
Also, the trace becomes δT ¼ −ρ. Fixing the gauge as

∂b

�
h̃ba −

1

2
δbah̃

�
¼ 0; ð25Þ

the resultant equations of motion for the perturbed metric
h̃ab and the scalar field fluctuations δϕ̃ and δλ̃ become,

−
∇2h̃ab
2

¼ κ2e−
ffiffi
2
3

p
κϕ̃0

�
δTab − η̃ab

δT
2

�

−
1

2
Ṽe−2

ffiffi
2
3

p
κϕ̃0

�
h̃ab − η̃ab

h̃
2

�
þ e−2

ffiffi
2
3

p
κϕ̃0

6
η̃ab

× ½ð3Ṽϕ̃ − 2
ffiffiffi
6

p
κṼÞδϕ̃þ 3Ṽ λ̃δλ̃�; ð26Þ

ð∇2 −m2
ϕÞδϕ̃ ¼ aϕδλ̃ −

ffiffiffi
2

3

r
κρ; ð27Þ

ð∇2 −m2
λÞδλ̃ ¼ aλδϕ̃; ð28Þ

where Mþ and M− are the masses of the scalar fields δϕ̃
and δλ̃, respectively, and aϕ and aλ are the coupling
constants between ϕ̃ and λ̃. These quantities can be written
in terms of the potential W̃ and its derivatives as
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M2þ ¼ 1

2κ2
ðe−2

ffiffi
2
3

p
κϕ̃ṼÞϕ̃ ϕ̃; M2

− ¼ 1

2κ2
Ṽ λ̃ λ̃; ð29Þ

aϕ ¼ 1

2κ2
ðe−2

ffiffi
2
3

p
κϕ̃ṼÞϕ̃ λ̃ ð30Þ

aλ ¼ −
s
2κ2

ðe−
ffiffi
2
3

p
κϕ̃ṼÞλ̃ ϕ̃; ð31Þ

respectively.

B. Analysis of the general case

1. Perturbation equations for the scalar fields

Equations (27) and (28) constitute a system of two
coupled differential equations for δϕ̃ and δλ̃. To simplify
the analysis, it is useful to perform a new change of
variables in order to decouple this system, as was done in
[62]. To do so, we write the system of Eqs. (27) and (28) in
the following matrix form

ðI2×2∇2 − AÞΦ ¼ T ; ð32Þ
where I2×2 is the identity matrix in two dimensions and we
define the matrix A by

A ¼
�m2

λ aλ
aϕ m2

ϕ

�
; ð33Þ

and the vectors Φ and T as

Φ ¼
�
δλ̃

δϕ̃

�
; T ¼ −

ffiffiffi
2

3

r
κ

�
0

ρ

�
; ð34Þ

respectively.
A decoupled system of equations can be obtained via the

diagonalization of Eq. (32). Let P be the matrix of the
eigenvectors of A and P−1 its inverse. These two matrices
take the forms

P ¼
�
p11 p12

p21 p22

�
¼

�
−M2

þ−m
2
λ

aϕ

M2
þ−m

2
ϕ

aϕ

1 1

�
; ð35Þ

P−1 ¼
�
p̄11 p̄12

p̄21 p̄22

�
¼

0
B@− aϕ

M2
0

M2
þ−m

2
ϕ

M2
0

aϕ
M2

0

M2
þ−m

2
λ

M2
0

1
CA; ð36Þ

where we have defined the auxiliary constants M2
� and M0

(with units of mass) as the combinations

M2
� ¼ 1

2
½m2

λ þm2
ϕ �M2

0�; ð37Þ

M2
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4aλaϕ þ ðm2

λ −m2
ϕÞ2

q
: ð38Þ

With the forms of P and P−1 defined above, the matrix
AD ¼ P−1AP is diagonal. Let us also define the new scalar
field vector as ΦD ¼ P−1Φ and the new matter vector as
T D ¼ P−1T . As a result, Eq. (32) becomes

ðI2×2∇2 − ADÞΦD ¼ T D: ð39Þ

The decoupled version of the system of Eqs. (27) and (28)
becomes then

ð∇2 −M2þÞδϕD ¼ −p̄22

ffiffiffi
2

3

r
κρ; ð40Þ

ð∇2 −M2
−ÞδλD ¼ −p̄12

ffiffiffi
2

3

r
κρ; ð41Þ

where δϕD and δλD are the decoupled scalar fields, andMþ
and M− are their respective masses. The new scalar fields
and masses can be written in terms of the old scalar fields
δϕ and δλ, as well as their masses Mþ and M−, and their
coupling constants aϕ and aλ, as well as the previously
defined constants M2

� and M2
0 as

δϕD ¼ 1

M2
0

½ðM2þ −m2
λÞδϕ̃þ aϕδλ̃�; ð42Þ

δλD ¼ 1

M2
0

½ðM2þ −m2
ϕÞδϕ̃ − aϕδλ̃�; ð43Þ

We are now able to solve Eqs. (40) and (41) with the
usual Laplace transform methods, i.e., we write both δλD
and δϕD in terms of their Laplace transforms δλ̃D and δϕ̃D,
respectively, insert these forms into Eqs. (40) and (41),
manipulate the results in the momentum space, and invert
the Laplace transforms using a convolution. In the end, we
arrive at the following solutions for δλD and δϕD:

δλDðxÞ ¼
κ

4π
p̄12

ffiffiffi
2

3

r Z
ρðx0Þ
jx − x0j e

−M−jx−x0jd3x0; ð44Þ

δϕDðxÞ ¼
κ

4π
p̄22

ffiffiffi
2

3

r Z
ρðx0Þ
jx − x0j e

−Mþjx−x0jd3x0: ð45Þ

2. Perturbation equations for the metric

Let us now turn to the metric equations given in Eq. (26).
The second term on the right-hand side (rhs) is proportional
to the potential W̃, which is assumed to be of the order of
the cosmological constant. In the weak-field, slow-motion
regime used for solar system tests, the contributions of the
potential are thus negligible when compared to the local
sources given by the stress-energy tensor of the fluid
contribution. Thus, we shall neglect this term. Finally,
the last term on the rhs depends on products between
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potential terms and perturbations in the scalar fields. In the
Einstein frame, these terms are of the order of magnitude of
those coming from scalar fields in the matter sector, which
are also negligible when compared to the dominant fluid
terms. Therefore, these terms shall also be discarded (which
justifies the absence of any dependence on the sign s on
the right-hand side of the metric perturbation equations).
Consequently, the two independent equations for the metric
take the forms

∇2h̃00 ¼ −κ2e−
ffiffi
2
3

p
κϕ̃0ρ; ð46Þ

∇2h̃ij ¼ −δijκ2e−
ffiffi
2
3

p
κϕ̃0ρ; ð47Þ

where δij is the Kronecker delta. The above equations can
be integrated directly to yield the following solutions for
h̃00 and h̃ij

h̃00 ¼
κ2

4π
e−

ffiffi
2
3

p
κϕ̃0

Z
ρðx0Þ
jx − x0j d

3x0; ð48Þ

h̃ij ¼ δij
κ2

4π
e−

ffiffi
2
3

p
κϕ̃0

Z
ρðx0Þ
jx − x0j d

3x0: ð49Þ

From Eqs. (48) and (49) one can extract the PPN
parameters of the theory in the Einstein frame. To do so,
recall that we have considered a system of units where
κ2 ¼ 8πG and that the integral in these equations represents
the Newtonian potential. This way, we can write

h̃00 ¼ 2G̃EFUNðxÞ; ð50Þ

h̃ij ¼ 2δijG̃EFγ̃UNðxÞ; ð51Þ

where G̃EF is the effective gravitational constant in the
Einstein frame, γ̃ is a PPN parameter, UNðxÞ is the
Newtonian potential written in terms of the distance to
the source x. Thus, we verify that

γ̃ ¼ 1; G̃EF ¼ Ge−
ffiffi
2
3

p
κϕ̃0 ¼ G=ϕ0: ð52Þ

Consequently, we observe that in the Einstein frame, the
parameter γ̃ is the same as in GR and that the effective
gravitational constant G̃EF is a simple rescaling of the
Newtonian constant G depending on the background
field ϕ0.

3. Recovering the results in the Jordan frame

Let us now perform the inverse conformal transformation
back to the Jordan frame in such a way that we can compare
our results to the ones previously obtained in [62]. To do so,
let us start by solving the integrals in Eqs. (44), (45), (48)
and (49) far from a spherically symmetric source. The
solutions take the forms

δλDðrÞ ¼
κ

4π
p̄12

ffiffiffi
2

3

r
M⊙

r
e−M−r; ð53Þ

δϕDðrÞ ¼
κ

4π
p̄22

ffiffiffi
2

3

r
M⊙

r
e−Mþr; ð54Þ

h̃00ðrÞ ¼
2G̃EFM⊙

r
; ð55Þ

h̃ijðrÞ ¼ δij
2G̃EFM⊙

r
; ð56Þ

where M⊙ is the mass of the source and r is the radial
distance from the source. Note that to perform the inverse
conformal transformation, we only care about the scalar
field ϕ̃, as the scalar field λ̃ was not involved in the
transformation. Thus, let us use Φ ¼ PΦD to recover δϕ̃ in
terms of δλD and δϕD as δϕ̃ ¼ p21δλD þ p22δϕD, or more
explicitly

δϕ̃ðrÞ ¼
ffiffiffi
2

3

r
κM⊙

4πr
ðp21p̄12e−M−r þ p22p̄21e−MþrÞ: ð57Þ

To recover the solutions in the Jordan frame, we need to
find the scalar field ϕ used for the conformal transforma-
tion. This field is related to the field ϕ̃ as written in Eq. (16).
Inserting the relations ϕ̃ ¼ ϕ̃0 þ δϕ̃ and ϕ ¼ ϕ0 þ δϕ and
keeping only the terms up to first order, we verify that

δϕ̃ ¼
ffiffiffi
3

2

r
δϕ

ϕ0κ
; ð58Þ

which allows us to write δϕ in the form

δϕðrÞ ¼ 4GM⊙

3r
ðp̄12e−M−r þ p̄22e−MþrÞ; ð59Þ

where we have used that p21 ¼ p22 ¼ 1. We are now in
conditions to perform the inverse conformal transformation.
At this point one should recall that, by a convenient choice of
units, we had freedom to set ϕ0 ¼ 1 at the reference cosmic
time t0, in such a way that the perturbation of g̃ab ¼ ϕgab
yields a consistent zeroth order Minkowskian limit in the
coordinates chosen. Accordingly, using the expansions
g̃ab ¼ η̃ab þ h̃ab and gab ¼ ηab þ hab for the metrics,
ϕ ¼ 1þ δϕ for the scalar field, and keeping only the first
order terms, we obtain

h̃ab ¼ hab þ ηabδϕ: ð60Þ

This result allows us to write the solutions for the perturba-
tions h00 and hij in the forms
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h00ðrÞ ¼
2GM⊙

r

�
1þ 2

3
ðp̄12e−M−r þ p̄22e−MþrÞ

�
; ð61Þ

hijðrÞ ¼ δij
2GM⊙

r

�
1−

2

3
ðp̄12e−M−rþ p̄22e−MþrÞ

�
; ð62Þ

wherewe have usedEqs. (52) and (58) towrite G̃eff ¼ G=ϕ0,
fromwhichwecan extract the effective gravitational constant
in the Jordan frame Geff and the γ PPN parameter given by

Geff ¼ G

�
1þ 2

3
ðp̄12e−M−r þ p̄22e−MþrÞ

�
; ð63Þ

γ ¼ 3 − 2ðp̄12e−M−r þ p̄22e−MþrÞ
3þ 2ðp̄12e−M−r þ p̄22e−MþrÞ ; ð64Þ

respectively. At this stage, we confirm that the exponential
dependences of h00, hij and δϕ presented here are consistent
with those found in [62] [see their Eqs. (49–51) and (54–55)].
In fact, comparing notations, it follows that our definition of
Mþ coincideswith theirMϕ, and ourM− corresponds to their
Mξ. In addition, without the need to assume that the potential
has a minimum, we also find that our aλ equals their
−ξ0W0;ϕξ, ours aϕ equals their ϕ0W0;ϕξ, and our m2

ϕ and
m2

λ coincide with their 3m2
ϕ and 3m2

ξ , respectively. These
correspondences also translate into the equivalence between
our p̄22 and their product p11p̄11, and our p̄12 and
their p12p̄21.
Expressing the above result for Geff in terms of physical

parameters, we find

Geff ¼ G

�
1þ 2M2þ

3M2
0

ðe−M−r þ e−MþrÞ

−
2

3M2
0

ðm2
ϕe

−M−r þm2
λe

−MþrÞ
�
; ð65Þ

From this one readily sees that the scalar degrees of
freedom contribute in a mixed manner to Geff , with a
piece that enhances the gravitational attraction (propor-
tional to M2þ) and another that mediates a repulsive force
(proportional to m2

ϕe
−M−r þm2

λe
−Mþr). It is tempting to

argue that the existence of this repulsive force could have
been guessed already from the action in Eq. (12), where the
kinetic term associated to ψ appears with a positive sign.
Indeed, the transition to the representation in terms of λ
took care of this fact by specifying the possibility of
splitting the domain of ψ in two sectors with different
signs, in such a way that for s ¼ þ1 the action in Eq. (14)
can be seen as representing a ghost scalar λ while for
s ¼ −1 it contributes with a positive kinetic energy. In this
latter case, one should make sure that the combination
ϕ ¼ φþ ψ (with ψ < 0) does not change sign in non-
perturbative scenarios in order to avoid breakdowns in the

evolution of initial data. However, it should also be noted
that the sign s enters in the expressions for Geff and γ in a
nonlinear manner, via the definitions of M2þ and M2

−. The
repulsive character of the e−M−r term, therefore, cannot be
directly related to the sign of s but rather to some nontrivial
combination of the two dynamical scalar degrees of free-
dom present in the theory. In addition, the negative
contribution of m2

λe
−Mþr comes as a complete surprise,

though it could be justified in terms of the mixing of the
scalars in the diagonalization process.
Compatibility with observations requires that the

radial dependence of Geff be negligible within the scales
accessible to observations. This can be achieved in
different ways. One of them is by making the ratios
M2þ=M2

0; m
2
ϕ=M

2
0, and m2

λ=M
2
0 sufficiently small. Another

possibility would be to have very massive scalar modes,
such that Mþr and M−r become much bigger than unity,
leading to negligible exponentials. Both possibilities would
automatically recover the predictions of GR. A third
possibility is to have very light fields, with Mþr and
M−r approaching zero in the scales of interest. Assuming
that these products are small and expanding the exponen-
tials as e−Mr ≈ 1 −MrþOðM2r2Þ, we find that

γ ≈
1

5
þ 12

25
ðMþðM2þ −m2

λÞ þM−ðM2þ −m2
ϕÞÞL; ð66Þ

with L being a scale of the order of a few astronomical
units. Given that current data set jγ − 1j < 10−5, and here γ
is dominated by the 1=5 factor, it clearly follows that this
case is incompatible with observations.
The limit in which M2þ becomes degenerate with M2

−
deserves some attention because it coincides withM2

0 → 0.
Taking the limitM2

0 → 0 in (65) and (64), one finds that the
result is smooth and compatible with (66), leading to

Geff ≈G

�
5

3
−
1

3

ð3m2
ϕ þm2

λÞ
m2

ϕ þm2
λ

r

�
: ð67Þ

γ ¼ 1

5
þ 6

5

ð3m2
ϕ þm2

λÞ
m2

ϕ þm2
λ

r: ð68Þ

As we can see, in this limit the repulsive component in the
effective Newton’s constant is the dominant correction, and
compatibility with experiments is spoiled because γ ≈ 1

5
.

It should be noted that the validity of the above formulas
is not guaranteed when the matrix A in Eq. (33) becomes
degenerate, which forces a reconsideration of the method
used to solve the equations. This particular case will be
studied next.

C. Nondiagonalizable matrix A

The approach presented in the previous section can only
be applied in the general case where the matrix A, given by
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Eq. (33), is diagonalizable. In fact, if one considers the
particular case for which the determinant of the matrix A
vanishes, it follows that P in Eq. (35) becomes a matrix of
rank 1 and ceases to be invertible. As a consequence, A will
only have one eigenvalue with algebraic degeneracy of 2
and only one eigenvector, which confirms that in this case it
is not diagonalizable anymore and a different method is
necessary to solve the system of equations. The condition
that the determinant of the matrix A vanishes is equivalent
to the relation M2þM2

− − aϕaλ ¼ 0 and forces a separate
analysis of that particular case.
Performing a Fourier transform of Eqs. (27) and (28) we

find the following relation

δ ˆ̃ϕ ¼ κ

ffiffiffi
2

3

r
ðk2 þM2

−Þ
k2ðk2 þM2Þ ρ̂; ð69Þ

where we used M2 ≡M2þ þM2
− ¼ m2

ϕ þm2
λ , and a hat

denotes a Fourier transform. Considering that ρðx⃗Þ repre-
sents a deltalike distribution, ρðx⃗0Þ ¼ M⊙δ

ð3Þðx⃗0Þ, to sim-
plify the integrations, we find that

δϕ̃ðrÞ ¼ κ

ffiffiffi
2

3

r
M⊙

4πM2r
ðM2

− þM2þe−MrÞ: ð70Þ

On the other hand, the expression for δ ˆ̃λ becomes,

δ ˆ̃λ ¼ −
aλδ

ˆ̃ϕ

ðk2 þM2
−Þ

; ð71Þ

which after some algebraic manipulations yields

δλ̃ðrÞ ¼ −aλ

ffiffiffi
2

3

r
κM⊙

4πM2r
ð1 − e−MrÞ: ð72Þ

Consequently, inverting the conformal transformation and
using Eq. (60), the metric perturbations can be found to be

h00 ¼
2GM⊙

r

�
1þ 2

3M2
ðM2

− þM2þe−MrÞ
�
; ð73Þ

hij ¼
2GM⊙

r

�
1 −

2

3M2
ðM2

− þM2þe−MrÞ
�
δij: ð74Þ

Using the definitions in Eqs. (50) and (51), one can again
extract both the effective gravitational constant Geff and the
γ PPN parameter, which in this case are given by

Geff ¼ G

�
1þ 2

3M2
ðM2

− þM2þe−MrÞ
�
; ð75Þ

γeff ¼
3M2 − 2ðM2

− þM2þe−MrÞ
3M2 þ 2ðM2

− þM2þe−MrÞ ; ð76Þ

respectively. The expression for Geff indicates that the
repulsive degree of freedom mediated by a combination of
the two scalar fields in the general case is no longer present
when the determinant of A vanishes. The net effect on
Geff is a constant shift of its bare value plus a standard
(attractive) Yukawa-type correction. In a sense, we could
say that one of the resulting scalar degrees of freedom has
infinite range (vanishing mass) while the other has a range
1=M. This is consistent with the fact that for this choice of
parameters M2

0 becomes M2
0 ¼ M2 and leads to M2þ ¼ M2

and M2
− ¼ 0. Interestingly, the amplitude of these correc-

tions no longer depends on aϕ but is entirely determined by
the diagonal elements of the matrix A.
There are several cases of interest in the resulting

expression for γeff. For short range fields, Mr ≫ 1 in
laboratory and solar system scales, the exponential term
rapidly vanishes and we get

γeff ≈
3M2 − 2M2

−

3M2 þ 2M2
−
¼ 1 −

4M2
−

5M2
− þ 3M2þ

: ð77Þ

In order to have compatibility with current observations, we
must have jγ− 1j< 10−5, which implies thatM2þ ≥ 105M2

−.
In the opposite extreme, we have the case of long range
fields, 0 < Mr ≪ 1 over astrophysical scales, and leads to

γeff ≈
1

5
; ð78Þ

which is in clear conflict with observations. The case
M2

− ¼ M2þ leads to important simplifications,

γeff ¼
2 − e−

ffiffi
2

p
Mþr

5þ e−
ffiffi
2

p
Mþr

; ð79Þ

but does not improve in any way the viability of the theory,
which is in clear conflict with observations.

D. Particular case aϕ = 0

The particular case discussed above led to a partial
decoupling between the scalar degrees of freedom of the
general case, in the sense that the effective Newton constant
and PPN parameter γ did not depend on the parameters aϕ
and aλ, which are responsible for the direct coupling
between δϕ̃ and δλ̃ in Eqs. (27) and (28). A more obvious
way to partially decouple these two degrees of freedom is
by considering a situation with aϕ ¼ 0, in such a way that
the weak field dynamics of δϕ̃ becomes independent of δλ̃.
This choice of aϕ constraints the effective potential to take
the form

Ṽðϕ̃; λ̃Þ ¼ Aðϕ̃Þ þ Bðλ̃Þe2
ffiffi
2
3

p
κϕ̃ ð80Þ

Here we discuss this particular case in some detail.
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Proceeding similarly as above, in this case Eq. (27)
decouples from Eq. (28) and leads to the Fourier relation

δ ˆ̃ϕ ¼
ffiffiffi
2

3

r
κρ̂

ðk2 þM2þÞ
; ð81Þ

which can be inverted to obtain

δϕ̃ðrÞ ¼
ffiffiffi
2

3

r
κM⊙

4πr
e−Mþr; ð82Þ

where again we assumed ρ̂ðx⃗0Þ ¼ M⊙δ
ð3Þðx⃗0Þ. The Fourier

modes corresponding to δλ̃ take the form

δ ˆ̃λ ¼ −
aλδ

ˆ̃ϕ

ðk2 þM2
−Þ

; ð83Þ

and after some algebraic manipulations we find its position
space representation as

δλ̃ðrÞ ¼ −aλ

ffiffiffi
2

3

r
κM⊙

8π
e−Mþr; ð84Þ

which has no 1=r behavior and, therefore, is finite at r → 0
and decays at a much slower pace as r → ∞.
Finally, proceeding as in previous sections, the metric

perturbations become

h00 ¼
2GM⊙

r

�
1þ 2

3
e−Mþr

�
; ð85Þ

hij ¼
2GM⊙

r

�
1 −

2

3
e−Mþr

�
δij; ð86Þ

from which we extract

Geff ¼ G

�
1þ 2

3
e−Mþr

�
; ð87Þ

γeff ¼
3 − 2e−Mþr

3þ 2e−Mþr
: ð88Þ

We readily see that, as expected, there is no trace of the
scalar δλ̃ in these expressions, which has completely
decoupled from the weak field limit. This case is also free
from the repulsive Yukawa correction of the general case
and also lacks of any constant shift associated to a zero
mass mode. Obviously, only when Mþr ≫ 1 will the
theory pass the weak field observational tests. The situation
is thus similar to what we found above in Sec. III C but
without any possibility to set bounds on the parameter M2

−
that characterizes the second scalar field at this perturbation
level.

IV. CONCLUSIONS

We have studied the weak field, slow motion limit of
hybrid metric-Palatini fðR;RÞ gravity working in the
Einstein frame of the corresponding scalar-tensor repre-
sentation of this family of gravity theories. We have seen
that the resulting dynamics is described by a metric and two
dynamical scalar degrees of freedom, with the scalars
mixing in different ways to yield a variety of scenarios.
The results found here are fully consistent with those
obtained by other means in [62], though we identify various
particular cases of interest not explicitly addressed in
that work.
We have shown that, in the general case, the effective

Newton constant is affected by both an attractive and a
repulsive contribution, though the origin of the repulsive
mode cannot be easily traced back to the negative sign with
which one of the kinetic terms contributes to the total
action. This is so because the only term that has a
dependence on that sign, the constant aλ, appears non-
linearly in the effective parameters [via the quantity M2

0

defined in Eq. (38)] and contributes in the same way to the
amplitude of the Yukawa terms. The case of short range
scalars is compatible with observations, while a scenario
with long range fields is clearly ruled out. We mention that
we restricted our analysis of the general case to those cases
in which the parameter M2

0 is positive or zero. A negative
value for this quantity would lead to oscillatory terms in
the effective metric instead of the standard Yukawa-type
corrections. Since there is no evidence supporting that kind
of behavior, we omitted their discussion for the sake of
clarity.
Furthermore, we pointed out the existence of two

singular cases in the general discussion, namely, when
aϕ ¼ 0 and when M2þM2

− − aϕaλ ¼ 0, and analyzed them
separately. In the latter case, we observed a partial
decoupling of the scalar field δλ̃ from the weak field limit,
whereas in the former this scalar is completely decoupled.
We managed to establish some viability criteria for the
M2þM2

− − aϕaλ ¼ 0 case, finding that one of the scalars
must be much heavier than the other (M2þ > 105M2

−), being
short ranged. A similar requirement is needed in the aϕ ¼ 0

configuration, though in this case there are no constraints
on the mass M2

−. Note also that the decay of δλ̃ with the
distance to the source is much slower than that of δϕ̃.
Whether this may lead to relevant cosmological effects will
be explored in more detail elsewhere.
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