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In this work, we study the weak and strong gravitational lensing in the presence of an accelerating black
hole in a universe with a positive cosmological constant Λ. First of all we derive new perturbative formulas
for the event and cosmological horizons in terms of the Schwarzschild, cosmological and acceleration
scales. In agreement with previous results in the literature, we find that null circular orbits for certain
families of orbital cones originating from a saddle point of the effective potential are allowed and they do
not exhibit any dependence on the cosmological constant. They turn out to be Jacobi unstable. We also
show that it is impossible to distinguish a C-black hole from a C-black hole with Λ if we limit our probe
only into effects associated to the Sachs optical scalars. This motivates us to analyze the weak and strong
gravitational lensing when both the observer and the light ray belong to the aforementioned family of
invariant cones. In particular, we derive analytical formulas for the deflection angle in the weak and strong
gravitational lensing regimes.
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I. INTRODUCTION

The C-metric with a positive cosmological constant Λ is
a special case of the Plebánski-Demiánski family of metrics
[1]. It can be obtained from the line element (23) in [2] by
setting the rotation parameter a ¼ 0 and further imposing
that the electric and magnetic charges vanish, that is
e ¼ g ¼ 0, and it describes two causally disconnected
black holes of mass M each accelerating in opposite
direction due to the presence of a force generated by
conical singularities located along the axes ϑ ¼ 0 and
ϑ ¼ π [2]. More precisely, in Boyer-Lindquist coordinates
and in geometric units (c ¼ GN ¼ 1) the line element is
expressed as

ds2 ¼ gμνdxμdxν

¼ Fðr; ϑÞ
�
−fΛðrÞdt2 þ

dr2

fΛðrÞ
þ r2

gðϑÞ dθ
2

þ r2gðϑÞsin2ϑdφ2

�
; ð1Þ

with

Fðr; ϑÞ ¼ ð1þ αr cosϑÞ−2;

fΛðrÞ ¼
�
1 −

2M
r

�
ð1 − α2r2Þ − Λ

3
r2;

gðϑÞ ¼ 1þ 2αM cosϑ; ð2Þ

where ϑ ∈ ð0; πÞ, φ ∈ ð−kπ; kπÞ and rH < r < rh. Note
that rH denotes the event horizon, α is the acceleration
parameter, and rc is the cosmological horizon. We present a
detailed analysis of the horizons and their spatial ordering
in terms of the relevant physical parameters in the section.
Here, it suffices to mention that while for the case of a
C-metric the Schwarzschild horizon is smaller than the
acceleration horizon whenever 0 < 2αM < 1, it is not clear
a priori if the same condition ensures that rH < rc in the
case of a C-metric with a positive cosmological constant.
Furthermore, by adapting the tetrad (7) in [2] to the present
case the only nonzero component of the Weyl tensor is

Ψ2 ¼ −M
�
1þ αr cosϑ

r

�
3

: ð3Þ

The above expression confirms that the spacetime with line
element (1) is of algebraic type D and the only curvature
singularity occurs at r ¼ 0. Hence, the horizons rH and rC
are just coordinate singularities. It is interesting to observe
that for α → 0 the metric in (1) becomes the metric of a
Schwarzschild–de Sitter black hole while in the case of
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Λ → 0 but α ≠ 0 (1) correctly reproduces the line element
associated to the C-metric as given in [3]. This fact means
that any prediction regarding the bending of light in a
manifold described by (1) should reproduce the corre-
sponding results for the Schwarzschild–de Sitter case in the
limit of α → 0 as well as the gravitational lensing results for
the C-metric obtained in [3] when we let Λ → 0with α kept
constant. According to [2], the conical singularity on ϑ ¼ 0
can be removed by making the following choice for the
parameter k entering in the range of the angular variable φ

k ¼ 1

1þ 2αM
; ð4Þ

while the conical singularity with constant deficit angle
along the half-axis ϑ ¼ π which is computed by means
of (22) in [2] as

δ ¼ 8παM
1þ 2αM

; ð5Þ

can be explained in terms of a semi-infinite cosmic string
pulling the black hole and/or of a strut pushing it. Similarly
as for the C-metric, this allows us to think of (1) as of a
Schwarzschild–de Sitter-like black hole experiencing an
acceleration along the ϑ ¼ π direction due to the presence
of a force, i.e., the tension of a cosmic string. Moreover, we
observe that the length of interval for the range of the
coordinate φ can be transformed to its standard value 2π
with the help of the rescaling φ ¼ kϕ so that ϕ ∈ ð−π; πÞ.
Moreover, [4] was able to provide an interpretation of the
string/strut in terms of null dust. In the rest of this paper, we
will work with the line element obtained after the afore-
mentioned rescaling is introduced, namely

ds2 ¼ −BΛðr; ϑÞdt2 þ AΛðr; ϑÞdr2 þ Cðr;ϑÞdθ2
þDðr; ϑÞdϕ2; ð6Þ

where

BΛðr;ϑÞ ¼ fΛðrÞFðr;ϑÞ; AΛðr;ϑÞ ¼
Fðr;ϑÞ
fΛðrÞ

;

Cðr;ϑÞ ¼ r2
Fðr;ϑÞ
gðϑÞ ; Dðr;ϑÞ ¼ k2r2gðϑÞFðr;ϑÞsin2ϑ;

ð7Þ

with F, fΛ, and g given in (2).
In the present work we study the geodesic motion of a

massive particle and the light bending in a two black hole
metric with a positive cosmological constant. For this end,
a preliminary study of the behavior of the null geodesics
turns out to be convenient in detecting some features of
strong gravity in the aforementioned spacetime. The ques-
tion of new phenomena arises if we consider a metric which

in some limiting case reduces to the Schwarzschild metric
(for examples see [5]). Here, the fate of the circular orbit,
already appearing in the Schwarzschild metric, and issues
regarding its stability deserve careful attention because
they will give us useful insights on how to construct an
appropriate impact parameter. While the C-metric has been
extensively studied during the last decades, the same cannot
be said for its counterpart with Λ. The independence of null
geodesics on the cosmological constant was first recog-
nized in a seminal and extremely comprehensive paper
on photon surfaces by [6] where a general class of static
spherically symmetric spacetimes was considered. The case
of nonspherically symmetric manifolds was addressed
by [7]. There, among several physically relevant space-
times, the case of a C-metric with cosmological constant
was studied and the authors discovered that a nonspheri-
cally symmetric photon surface continues to exist even
in that scenario. The conclusion is that, while the
Schwarzschild metric exhibits a photon sphere, the same
cannot be said for the C-metric. More precisely, [7] showed
that instead of a photon sphere there is a photon surface
displaying at least one conical singularity.
Regarding geodesic motion in a C-black hole, radial

timelike geodesics were analyzed by [8] whereas the study
of the circular motion of massive and massless particles
was undertaken by [9]. Moreover, [10,11] offered an
exhaustive treatment of timelike and null geodesics by a
mixture of analytical and numerical methods. Finally, [12]
probed into the motion of spinning particles around the
direction of acceleration of the black hole. Furthermore, [3]
determined the coordinate angle of the so-called photon
cone and performed a Jacobi stability analysis to show that
all circular null geodesic on the photon cone are radially
unstable. The shadow of a C-black hole was studied in
[13,14] while [15] derived inter alia an exact solution of the
lightlike geodesic equation by means of Jacobi elliptic
functions and determined the angular radius of the shadow.
We should also mention that the analysis of the lightlike
geodesics and the black hole shadow for a rotatingC-metric
have been addressed in [16]. Moreover, [17] probed into
photon spheres and black hole shadows for dynamically
evolving spacetimes. Finally, we refer to [18,19] for the
analysis of the quasi-normal modes and the stability
properties for a C-black hole.
Regarding a C-black hole in an anti–de Sitter (AdS)

or a de Sitter (dS) background, [20–27] studied in detail
the geometric structure and the related properties of these
spacetimes. The analysis of the circular motion of massive
and massless particles in the C-metric with a negative
cosmological constant was performed by [28] where the
author proved that the circular null geodesics are unstable
whereas [25] completed the study of [28] by considering
some special characteristics associated to the null geodesics
in the aforementioned metric. Recently, Lim in [29]
classified all possible trajectories for photons in the
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AdS/dS C-metric in terms of the particle angular momen-
tum and the energy scaled in units of the Carter constant.
Similarly as in [15], it was possible to construct exact
solutions for null geodesics by means of Jacobi elliptic
functions. However, the stability problem for such trajec-
tories has not been addressed by [29]. We complete the
results of [29] by concentrating on the interplay of different
scales in the potentially observable or physical relevant
case. To make a comparison with known results of the
Schwarzschild–de Sitter metric more accessible, we work
in Boyer-Lindquist coordinates.
Concerning gravitational lensing, detailed studies on

light bending in the weak and strong regimes were
pioneered by the George Ellis lensing group. Some of
their exciting results which have relevance to the present
work are [30–34]. A nice and thorough review article on
this subject has been written by [35]. Finally, [36] exploited
a novel geometrical approach based on the Gauss-Bonnet
theorem applied to the optical metric of the gravitational
lens in order to derive weak lensing formulas for spheri-
cally symmetric metrics generated by certain static, perfect
nonrelativistic fluids. Regarding the gravitational lensing
[15] derived a lens equation and showed that the lens results
of [37] for the rotating C-metric with Newman-Unti-
Tamburino (NUT) parameter does not contain as a special
case the C-metric (where both the acceleration and NUT
parameters are set equal to zero). Moreover, [3] studied the
strong and weak lensing for null rays on the photon cone.
To the best of our knowledge, we could not identify any
paper studying the bending of light and analyzing the (in)
stability problem of null circular orbits for the C-metric
with positive cosmological constant. We hope to fill this
gap with the present work.
The remainder of the paper is structured as follows. In

Sec. II we analyze the horizon structure of the dS C-metric
in terms of certain orderings among the Schwarzschild,
the cosmological and the acceleration scales. In order to
understand which scale orderings are physically relevant,
we consider three typical black hole representatives; ultra-
massive, massive, and light. In Sec. III we derive the
effective potential for massive and massless particles and
we show that the null orbits have the same radius and take
place on the same family of invariant cones as in the
C-metric, i.e., they do not depend on Λ. (This result is in
agreement with [7].) Moreover, we find that the circular
orbit is due to a saddle point in the effective potential,
which requires an additional effort to probe into the
associated stability problem. This is addressed in
Sec. IV where we perform the Jacobi (in)stability analysis
of the circular orbits. In Sec. V since the Sachs optical
scalars cannot be used to optically distinguish between
C- and a dS C-black holes, we study the gravitational
lensing in the weak and strong regimes. More precisely, the
corresponding deflection angles are analytically computed
when the light propagation occurs on a certain family of

invariant cones, and their dependence on the observer
position is shown. Our formulas correctly reproduce the
corresponding ones in the C-metric case in the limit of
vanishing Λ and indicate that the deflection angles may
depend on the cosmological constant if the position of the
observer is close to the cosmological horizon.

II. ANALYSIS OF THE HORIZONS

The structure of the horizons for the metric associated to
the line element (1) can be unraveled by analyzing the roots
of the equation fΛðrÞ ¼ 0 with fΛ given as in (2). To this
purpose, it is convenient to introduce the Schwarzschild,
the cosmological and the acceleration length scales defined
as rs ¼ 2M, rΛ ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

, and ra ¼ 1=α, respectively. The
appearance of several scales in the metric makes a precise
study of the horizons a worthwhile undertaking since
a priori it is not clear what structure of the horizons will
emerge. Apart from that, we recall a curious fact from the
Schwarzschild–de Sitter metric with two horizons, one
dominated by rs and the second one (the cosmological
horizon) by rΛ. The Boyer-Lindquist coordinates which one
uses to study this metric are valid within these two horizons
where we locate ourselves and the rest of the Universe.
An observer outside rΛ might even claim that we are living
inside a black hole. It is interesting to reconsider the unique
position for the case of the C-metric as more scales enter the
calculation. In terms of these scales the equation fΛðrÞ ¼ 0
gives rise to the following cubic equation,

PðrÞ ¼ r3 − ρr2 − σrþ τ ¼ 0; ð8Þ

with

ρ ¼ rsr2Λ
r2Λ þ r2a

; σ ¼ r2ar2Λ
r2Λ þ r2a

; τ ¼ rsr2ar2Λ
r2Λ þ r2a

: ð9Þ

First of all, we observe that the extrema of the cubic in (8) are
located at

r� ¼ rsr2Λ
3ðr2Λ þ r2aÞ

½1� ffiffiffiffiffiffiffiffiffiffiffiffi
1þΔ

p �; Δ¼ 3
r2a
r2s

�
1þ r2a

r2Λ

�
> 0;

ð10Þ

with r− < 0, rþ > 0 and moreover,

Pðr−Þ ¼
r2Λ

27ðr2Λ þ r2aÞ3
f2r3sr4Λ½ð1þ ΔÞ3=2 − 1�

þ 18rsr2ar4Λ þ 45rsr2Λr
4
a þ 27rsr6ag: ð11Þ

Since PðrÞ → −∞ as r → −∞, we conclude that r− is a
maximum. The fact that Pðr−Þ > 0 for any positive value of
the scales, as it can be immediately seen from (11), together
with the observation that Pð0Þ > 0, allows us to conclude
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that the cubic (8) admits always a negative root, here denoted
by r< while the other two zeros may be positive and distinct,
having algebraicmultiplicity 2 or being complex conjugate of
eachother.However, the scenariowhere the twopositive roots
coincide, i.e., the discriminant of (8) vanishes, is not physi-
cally relevant because as the discriminant tends to zero, the
regionbetween the two positive roots gets smaller and smaller
and it is impossible to define a static observer in most of the
spacetime. Furthermore, the case of two complex conjugate
roots corresponds to the presence of a naked singularity at
r ¼ 0. Since the cubic (8) depends on the three scales rs, ra,
and rΛ, it is imperative to understand which orderings among
these scales are physically relevant. To this purpose, we
consider three typical black hole representatives; ultramassive
BHs such as TON618 in Canes Venatici [38] whose
Schwarzschild radius is 32 times the distance from Pluto
to the Sun (see Table I),massiveBHs like SagittariusA� at the
galactic center of the MilkyWay [39] whose event horizon is
approximately 18 times the sun radius, and light BHs such as
GW170817 in the shell elliptical galaxy NGC 4993 [40]
with an event horizon diameter of 18 km. From Table I, we
immediately observe that we can always assume rs ≪ rΛ.
Regarding the acceleration parameter α, it is important to
observe that forC-black holeswith cosmological constant the
only constraint we need to impose on α is that α > 0. The
situation is dramatically different in the case of the C-metric
where the black hole mass and the acceleration parameter
must satisfy the condition 2Mα < 1 which is equivalent to
require that rs < ra. Let us discuss and interpret the roots
of (8) for the following cases:
(1) rs ¼ ra ≪ rΛ; in this scenario, given M the accel-

eration parameter of the black hole in SI units is

αs ¼
c2

2GNM
: ð12Þ

See Table I for typical values for αs. Note that this
case has no corresponding physical counterpart for a
C-metric because in the limit of Λ → 0 we would
have a C-BH such that the event and acceleration
horizons coincide. Setting rs ¼ ra in (8) and intro-
ducing the small parameter ϵ ¼ rs=rΛ, the discrimi-
nant of the reduced cubic is

D1 ¼
ϵ2r6sð27ϵ2 þ 32Þ
108ð1þ ϵ2Þ4 ; ð13Þ

which is clearly positive. This observation together
with the remark below Eq. (11) allows us to
conclude that there is one negative root and two
complex conjugate roots. Hence, this is the case of a
naked singularity at r ¼ 0 and the coordinate r
can be extended up to spacelike infinity. In com-
parison a naked singularity is not possible in the
Schwarzschild–de Sitter metric.

(2) rs < ra ≪ rΛ; if we rewrite (8) as

−
Λ
3
r3 þ ðr − rsÞ

�
1 −

r2

r2a

�
¼ 0; ð14Þ

we see that Λ is the small parameter and a straight-
forward application of perturbation methods for
algebraic equations shows that the event horizon
rH and the cosmological horizon rh are represented
by the following expansions,

rH ¼ rs þ
r3sr2a

3ðr2a − r2sÞ
Λþ r5sð3r2a − r2sÞ

ðr2a − r2sÞ3
Λ2 þOðΛ3Þ;

ð15Þ

rh ¼ ra−
r4a

6ðra− rsÞ
Λþ r7að3ra− 5rsÞ

72ðra − rsÞ3
Λ2þOðΛ2Þ:

ð16Þ

From the point of view of the horizon structure
this is an interesting case. Even if Λ appears in the
corrections, the horizon associated with it disappears
and in its place, we encounter ra which we could
rightly call the acceleration horizon. As a conse-
quence, we locate our position within the acceler-
ation horizon. Note that the same expansion holds
also for ra < rs ≪ rΛ.

(3) rs ≪ ra ¼ rΛ; in this regime the acceleration param-
eter is completely determined by the cosmological
constant and is given in SI units as

TABLE I. Typical values of the scales and acceleration parameter for different black hole scenarios. Here,M⊙ ¼ 1.989 × 1030 Kg and
r⊙ ¼ 6.957 × 108 m denote the solar mass and the sun radius, respectively. The value for the cosmological constant is taken to be
Λ ≈ 10−52 m−2 as in [42] while the values of the ratios M=M⊙ are as given in [38–40]. The fifth column represents the allowed ranges
for the acceleration parameter αc in the case the aforementioned black holes are modeled in terms of the C-metric for which it is
necessary to consider the constraint 2Mαc < 1. From the last column where αΛ ¼ c2

ffiffiffiffiffiffiffiffiffi
Λ=3

p
we see that the case rs ≪ ra ¼ rΛ can only

be relevant to light black holes such as GW170817.

BH name M=M⊙ rs (m) rs=rΛ αc (m=s2) αs (m=s2) 2GNMαΛ=c2

TON618 6.6 × 1010 1.9 × 1014 1.1 × 10−12 <5.1 × 10−15 5.1 × 10−15 105

Sagittarius A� 4.3 × 106 1.3 × 1010 7.3 × 10−17 <7.8 × 10−10 7.8 × 10−10 7
GW170817 2.74 8.1 × 103 4.7 × 10−23 <1.2 × 10−4 1.2 × 10−4 10−6
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αΛ ¼ c2
ffiffiffiffi
Λ
3

r
≈ 5.2 × 10−10 m=s2: ð17Þ

Since rs ≪ ra, it must be 2MαΛ ≪ 1. As we can see
from the last column in Table I, such a condition is
violated by ultramassive and massive black holes.
Hence, the present case may be relevant for light
black holes such as GW170817. By means of the
rescaling r ¼ r=rΛ and the introduction of the same
small parameter ϵ already defined in (1) we can
rewrite (8) as

ϵ

2
ð1 − r2Þ þ r

�
r2 −

1

2

�
¼ 0: ð18Þ

The discriminant of the associated reduced cubic is

D3 ¼ −
ϵ4

432
þ 71

1728
ϵ2 −

1

216
: ð19Þ

From Fig. 1 we observe that also in this case the
discriminant may become positive. More precisely,

we have three distinct real roots if 0 ≤ ϵ < ϵ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
142 − 34

ffiffiffiffiffi
17

pp
=4 while the naked singularity case

occurs when ϵ > ϵ0. Applying again perturbation
methods to find expansions for the positive roots
of (18) yields

rH ¼ rs þ
r3s
r2Λ

þ 4
r5s
r4Λ

þO
�
r7s
r6Λ

�
; ð20Þ

rh ¼
rΛffiffiffi
2

p −
rs
4
þ 7

16
ffiffiffi
2

p r2s
rΛ

−
1

2

r3s
r2Λ

−
689

512
ffiffiffi
2

p r4s
r3Λ

þO
�
r5s
r4Λ

�
: ð21Þ

This case resembles indeed the Schwarzschild-
de Sitter order of horizons.

We conclude this section by observing that in general, Eq. (8)
can be transformed into the reduced third-order polynomial
equation

Y3 þ pY þ q ¼ 0; p ¼ −
r2Λð3r2Λr2a þ r2Λr

2
s þ 3r4aÞ

ðr2Λ þ r2aÞ2
;

q ¼ rsr2Λ½2r4Λð9r2a − r2sÞ þ 45r2Λr
4
a þ 27r6a�

27ðr2Λ þ r2aÞ3
; ð22Þ

by means of the variable transformation Y ¼ rþ ρ=3.
According to [41] the associated discriminant is

D ¼
�
p
3

�
3

þ
�
q
2

�
; ð23Þ

and we have the following classification:
(1) three distinct real roots for D < 0;
(2) two real roots where one root has algebraic multi-

plicity two whenever D ¼ 0;
(3) one real and two complex conjugate roots forD > 0.

Since the first case is physically relevant, we will stick to
the condition D < 0. Then, if we introduce the additional
parameter R ¼ ffiffiffiffiffiffiffiffiffiffiffijpj=3p

and the auxiliary angle ω defined as
cosω ¼ q=ð2R3Þ, then the roots are parametrized with the
help of trigonometric functions and their inverses in the
following form,

r1 ¼ −
ρ

3
− 2R cos

�
ω

3

�
; r2 ¼ −

ρ

3
þ 2R cos

�
π

3
−
ω

3

�
;

r3 ¼ −
ρ

3
þ 2R cos

�
π

3
þ ω

3

�
: ð24Þ

We observe that in addition to the inequality D < 0, there is
the additional constraint that cosω ≤ 1. These two con-
straints are not satisfied for any value of the scales entering in
our problemas it can be seen in Fig. 2.However, it can be seen
that the condition D < 0 ensures that cosω < 1.

III. GEODESIC EQUATIONS AND
EFFECTIVE POTENTIAL

When we turn our attention to the study of the geodesic
motion, in addition to rs, rΛ, and ra, a new scale l
associated to the angular momentum of the particle enters
the scene. To probe into the interplay of these scales,
the method of the effective potential seems most adequate.
One might expect that the many new scales, as compared toFIG. 1. Plot of the discriminant (19) for 0 ≤ ϵ ≤ 1.
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the Schwarzschild–de Sitter metric, will result in a richer
structure of critical points. It will turn out that this is partly
true, but only if we pay careful attention to the emergence
of saddle points. To study the motion of a particle in the
gravitational field described by (6), we need to analyze the
geodesic equations [43],

d2xη

dλ2
þ Γη

μν
dxμ

dλ
dxν

dλ
¼ 0;

1

2
gητð∂μgτν þ ∂νgτμ − ∂τgμνÞ

ð25Þ
subject to the constraint

gμν
dxμ

dλ
dxν

dλ
¼ −ϵ; ð26Þ

with ϵ ¼ 0 and ϵ ¼ 1 for lightlike and timelike particles,
respectively. The system of coupled ordinary differential
equations (ODEs) associated to (25) can be immediately
obtained from Eqs. (8)–(11) in [3] by replacing A, B, and f
therein with the functions AΛ, BΛ, and fΛ defined in (7) and
noticing that the functions C and D remain the same.
In view of this observation, one can proceed as in [3] and
conclude that the dynamics is governed by the following
coupled system of ODEs

d2r
dλ2

¼ −
∂rAΛ

2AΛ

�
dr
dλ

�
2

−
∂ϑAΛ

AΛ

dr
dλ

dϑ
dλ

þ ∂rC
2AΛ

�
dϑ
dλ

�
2

−
E2

2

∂rBΛ

AΛB2
Λ
þ l2

2

∂rD
AΛD2

; ð27Þ

d2ϑ
dλ2

¼ −
∂ϑC
2C

�
dϑ
dλ

�
2

−
∂rC
C

dr
dλ

dϑ
dλ

þ ∂ϑAΛ

2C

�
dr
dλ

�
2

−
E2

2

∂ϑBΛ

CB2
Λ
þ l2

2

∂ϑD
CD2

; ð28Þ

where E and l are the energy per unit mass and the angular
momentum per unit mass of the particle, respectively.
Moreover, the constraint Eq. (26) can be cast into the form

F2

2

��
dr
dλ

�
2

þ r2fΛ
g

�
dϑ
dλ

�
2
�
þ Ueff ¼ E; ð29Þ

where E ¼ E2=2 and the effective potential is given by

Ueffðr; ϑÞ ¼
BΛ

2

�
ϵþ l2

D

�
: ð30Þ

At this step, it is gratifying to observe that in the limit of
vanishing α and Λ Eq. (29) reproduces correctly Eqs. (25)
and (26) in [43] for the Schwarzschild case. Moreover, the
functions AΛ, BΛ, and C are non-negative for rH ≤ r ≤ rh
and therefore, E −Ueff ≥ 0 as in classical mechanics.
Finally, the equality, E ¼ Ueff , corresponds to a circular
orbit and a critical point of the effective potential. Since in
the present work we are interested in the study of the light
bending, we recall that in the case of null geodesics ϵ ¼ 0
and hence, the effective potential simplifies as follows:

Vðr;ϑÞ ¼ l2BΛ

2D
: ð31Þ

To study the null circular orbits for the potential (31), we
need to find its critical points. Imposing that ∂rB ¼ 0 ¼
∂ϑB leads to the following equation,

α2Mr2 þ r − 3M ¼ 0; 3αMcos2ϑþ cosϑ − αM ¼ 0:

ð32Þ
At this point a comment is in order. First of all, the above
equation does not contain Λ. This is surprising because
the spacetimes described by (6) and the C-metric are not
conformally related. The same phenomenon occurs when
we study the null circular orbits for the Schwarzschild and
Schwarzschild–de Sitter black holes, i.e., in both cases the
corresponding photon spheres are characterized by a
typical radius which is Λ independent [6]. Hence, we
can conclude as in [3] that null geodesics admit circular
orbits with radius

rc ¼
6M

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α2M2

p ; ð33Þ

only for a certain family of orbital cones with half opening
angle given by

θc ¼ arccos

�
2αM

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α2M2

p
�
: ð34Þ

FIG. 2. The yellow region represents the region in the param-
eter space ðx; yÞ with x ¼ ra=rΛ and y ¼ rs=rΛ where the
constraints D < 0 and cosω ≤ 1 are simultaneously satisfied.
The solid black line is the curve along which cosω ¼ 1.
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Note that due to the fact that αM ∈ ð0; 1=2Þ and ϑc is a
monotonically decreasing function in the variable αM, it
follows that ϑc cannot take every value from 0 to π. More
precisely, it can only vary on the interval ðϑc;min; π=2Þ with
ϑc;min ¼ arccos ð1=3Þ ≈ 70.52°. To classify the critical
point of our effective potential, we compute the determi-
nant of the Hessian matrix associated with the effective
potential (31) at the critical point ðrc; θcÞ. We find that the
determinant Δ of the Hessian matrix is

Δðrc;ϑcÞ ¼ −
l4

139968M6κ4
ð1þ τÞ9

ð1þ τþ 4x2Þ3
SðxÞ þKðd; xÞ

TðxÞ ;

ð35Þ

with x ≔ αM, d ¼ rs=rΛ, τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12x2

p
. The functions S

and T are the same as those computed in [3], namely

SðxÞ ≔ ð1728τ þ 8640Þx10 þ ð1008τ − 720Þx8
− ð492τ þ 828Þx6 þ ð25 − 35τÞx4
þ ð13τ þ 19Þx2 þ 1þ τ; ð36Þ

TðxÞ ≔ 32x8 þ ð32τ þ 176Þx6 þ ð48τ þ 114Þx4
þ ð14τ þ 20Þx2 þ 1þ τ; ð37Þ

while the new contribution due to the cosmological con-
stant is encoded in the function Kðd; xÞ which is given by

Kðd; xÞ ¼ −d2
�
1944x8 þ ð1296τ þ 4860Þx6

þ
�
918τ þ 3375

2

�
x4 þ

�
297

2
τ þ 1892

�
x2

þ 27

4
ðτ þ 1Þ

�
: ð38Þ

Note that in the limit of d → 0 Eq. (35) reproduces
correctly (31) in [3]. From the analysis performed in [3]
we already know that the function T is always positive
for x ∈ ð0; 1=2Þ. This signalizes that the sign of (35) is
controlled by the term SðxÞ þ Kðd; xÞ which is positive for
x in the interval ð0; 1=2Þ and

d < fðxÞ; fðxÞ ¼ 2
ffiffiffi
3

p
ð1 − 2xÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð9τ þ 45Þx4 þ ð9τ þ 15Þx2 þ τ þ 1

24x6 þ ð16τ þ 58Þx4 þ ð10τ þ 16Þx2 þ τ þ 1

s
; ð39Þ

where f is the function representing the dotted boundary of
the yellow region in Fig. 3. Since black holes of astro-
physical interest are characterized by rs ≪ rΛ, this implies

that d ≪ 1. The yellow part in Fig. 3 represents the region
in the space of the parameters x and d, where the function
SðxÞ þ Kðd; xÞ is positive. This is clearly the case for x ∈
ð0; 1=2Þ and d ≪ 1. Hence, we conclude that the critical
point ðrc; ϑcÞ of the effective potential is a saddle point.

A. Geodesic motion for massive particles

We study the motion of test particles for the C-metric
with positive cosmological constant. Since there are three
physical scales involved, we expect that they may combine
in such a way to lead to new results. We recall that the
equation of motion for a massive particle with proper time τ
in the aforementioned metric is given by (29) with λ
replaced by τ while the effective potential is represented
by (30) with ϵ ¼ 1. In the case l ¼ 0, the effective potential
reads

Veffðr;ϑÞ ¼
1 − rs

r þ rs
r2a
r − ð 1r2a þ

1
r2Λ
Þr2

2ð1þ r
ra
cos ϑÞ2 : ð40Þ

By means of the rescaling ρ ¼ r=rs, x ¼ rs=rΛ and in the
regime rs ≪ ra ¼ rΛ we can cast (40) into the form

Veffðρ; ϑÞ ¼
1 − 1

ρ þ x2ðρ − 2ρ2Þ
2ð1þ xρ cosϑÞ2 : ð41Þ

FIG. 3. The yellow region represents those points ðx; dÞ for
which the function SðxÞ þ Kðd; xÞ appearing in the Hessian (35)
is positive.
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Concerning the behavior of the effective potential at the
cosmological horizon, we observe that at the quadratic
order in the small parameter x

Ueffðρh; ϑÞ ¼ −
7

4ðcos ϑþ ffiffiffi
2

p Þ x
2 þOðx3Þ; ð42Þ

and hence, U is always negative there for any ϑ ∈ ½0; π�.
Regarding the motion of a timelike particle, it follows
from (29) that the particle dynamics is constrained to those
regions where the reality condition

E − Veff > 0 ð43Þ

is satisfied. In the case of rs ≪ ra ¼ rΛ displayed in Fig. 4,
we see that, depending on the value of the parameter E, the
geodesics can reside in different regions. For example, if
0.1 < E < 0.49, the particle neither falls into the event
horizon nor into the cosmological horizon. More precisely,
it stays inside the yellow compact region displayed in the
first two panels of Fig. 4. Such a region becomes smaller
as E increases. When E crosses a critical value Ecrit ∈
ð0.49; 0.497Þ, the particle will fall into the event or
cosmological horizon. Regarding the critical points of
the effective potential (41), the condition ∂ϑVeff ¼ 0 is
satisfied whenever ϑ ¼ 0 or ϑ ¼ π. In the case l ¼ 0, it is
not difficult to check that the geodesic Eqs. (27) and (28)
stay finite at the axes ϑ ¼ 0 or ϑ ¼ π. This signalizes that
mathematically speaking, we can probe into geodesics
going through the poles. As it was already noticed
by [10], such geodesics are not physically possible because
the particles moving along these trajectories would undergo
a collision with the cosmic string/strut causing the black
hole to accelerate. This problem can be circumvented if we
imagine these timelike geodesics to be arbitrarily close to
the axis ϑ ¼ 0 or ϑ ¼ π, while keeping the geodesic
equations at ϑ ¼ 0 or ϑ ¼ π as an approximation. In the

following, we focus on the case rs ≪ ra ¼ rΛ which has
not been covered by [29].

1. Timelike radial geodesics along ϑ = 0

If we impose that ∂rVeff ¼ 0 along the north pole we end
up with the cubic equation

x2ðxþ 4Þρ3 þ xð2 − xÞρ2 − 3xρ − 1 ¼ 0: ð44Þ

Descartes’ rule of signs implies that there is only one
positive root, here denoted by ρcrit because the polynomial
(44) exhibits only one sign change due to the fact that
x ≪ 1 ensures that the term 2 − x is positive. On the other
hand,

d2Veffðρ; 0Þ
dρ2

����
ρ¼ρcrit

¼ −
1

ρ3crit
þ x2 þOðx3Þ ð45Þ

is negative, and therefore, the equilibrium point ρcrit is
unstable. This also signalizes that ρcrit is a maximum for the
effective potential. This implies that the associated geodesic
is unstable and under any small perturbation, the particle
will either cross the event horizon of the black hole or
approach the acceleration horizon. The same behavior
occurs in the case of a vanishing cosmological constant.
The latter scenario was studied in [10]. For typical values
of ρcrit we refer to Table II. In order to find an analytic
expression for the maximum by applying the perturbative
theory of algebraic equations, it is convenient to use a
different rescaling, namely ρ̃ ¼ ρ=rΛ. Then, ρ ¼ ρ̃=x, and
the polynomial Eq. (44) becomes

ðxþ 4Þρ̃3 þ ð2 − xÞρ̃2 − 3xρ̃ − x ¼ 0: ð46Þ

Since x is a small parameter and the associated unperturbed
polynomial has roots at ρ̃ ¼ −1=2, 0, 0 a straightforward

FIG. 4. Typical shapes of the region where the inequality E − Veff > 0 is satisfied for timelike particles with E ¼ 0.1 (left), E ¼ 0.49
(middle), and E ¼ 0.497 (right) when x ¼ 10−3. The event and cosmological horizons are approximately located at ρH ¼ 1þOðx2Þ
and ρh ¼ 1ffiffi

2
p

x
− 1

4
þ 7

16
ffiffi
2

p xþOðx2Þ ≈ 706.86.
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application of perturbation methods for algebraic equations
[44] shows that (46) has roots at

ρ̃1 ¼
ffiffiffi
x
2

r
þ x
4
−
3

ffiffiffi
2

p

32
x3=2 þOðx2Þ; ρ̃2 ¼ −

1

2
−
x
8
þOðx2Þ;

ρ̃3 ¼ −
ffiffiffi
x
2

r
þ x
4
þ 3

ffiffiffi
2

p

32
x3=2 þOðx2Þ: ð47Þ

Moreover, Descartes’ rule of signs implies that there is only
one positive root because the polynomial (46) exhibits only
one sign change due to the fact that x ≪ 1 ensures that the
term 2 − x is positive. Hence, we can conclude that ρ̃2;3 are
negative and the only positive critical point is represented
by the root ρ̃1. From case 3 in Section II the cosmological
horizon is located at ρ̃h ¼ ð1= ffiffiffi

2
p Þ − ðx=4Þ þOðx2Þ. On

the other hand, we find at quadratic order in x that ρ̃1 < ρ̃h
if x ∈ ð0; 0.5046Þ while ρ̃1 > ρ̃H for x ∈ ð0; 0.6774Þ. Since
x ≪ 1, we conclude that the critical point is given by

rcrit ¼
ffiffiffiffiffiffiffiffiffi
rsrΛ
2

r
þ rs

4
−
3

ffiffiffi
2

p

32
rs

ffiffiffiffiffi
rs
rΛ

r
þO

�
r2s
rΛ

�
; ð48Þ

and by the analysis we performed previously, it must be a
maximum for the effective potential.

2. Timelike radial geodesics along ϑ = π

In this scenario, the corresponding cubic equation is

x2ð4 − xÞρ3 − xðxþ 2Þρ2 þ 3xρ − 1 ¼ 0: ð49Þ

If we apply Descartes’ rule of signs, we conclude that there
are always two complex conjugate roots and one positive
real root, here denoted by ρ̂crit because the polynomial (49)
exhibits three sign changes due to the fact that x ≪ 1
making the term 4 − x positive. Moreover,

d2Veffðρ; πÞ
dρ2

����
ρ¼ρ̂crit

¼ −
1

ρ̂3crit
þ x2 þOðx3Þ; ð50Þ

from which we conclude that ρ̂crit is not an equilibrium
point for timelike particles moving along the south pole.
Hence, a small perturbation will cause the particle to be

either swallowed by the event horizon or to approach the
cosmological horizon. For typical values of ρ̂crit we refer to
Table II. Also in this case it possible to obtain an analytical
expression for the maximum of the effective potential.
Proceeding as before, we can rewrite (49) as

ðx − 4Þρ̃3 þ ð2 − xÞρ̃2 − 3xρ̃ − x ¼ 0; ð51Þ
which has been obtained from (49) by setting ρ̃ ¼ ρ=rΛ so
that ρ ¼ ρ̃=x. The unperturbed polynomial has roots at 1=2,
0, 0, and if we apply perturbative methods, it can be easily
verified that there are two complex conjugate roots and one
real root given by ρ̃crit ¼ ð1=2Þ − ðx=8Þ þOðx2Þ. In par-
ticular, we have ρ̃crit < ρ̃h if x < 1.6568 and ρ̃crit > ρ̃H
for x < 0.4444. Since x ≪ 1, we conclude that ρ̃H <
ρ̃crit < ρ̃h. Finally, we find that

rcrit ¼
rΛ
2
−
rs
8
þO

�
r2s
rΛ

�
: ð52Þ

3. The case l ≠ 0

For l ≠ 0, the rescaled effective potential in the case
rs ≪ ra ¼ rΛ reads

Ueffðρ; ϑÞ ¼
ð1 − 1

ρÞð1 − x2ρ2Þ − x2ρ2

2ð1þ xρ cosϑÞ2

×

�
1þ L2ð1þ x2Þð1þ xρ cosϑÞ2

ρ2ð1þ x cosϑÞsin2ϑ
�
; ð53Þ

with L ¼ l=rΛ, x ¼ rs=rΛ, and ρ ¼ r=rs. Concerning the
behavior of the effective potential at the cosmological
horizon, we observe that at the quadratic order in the small
parameter x

Ueffðρh; ϑÞ ¼ −
114688 sin2 ϑ

PðXÞ x2 þOðx3Þ; ð54Þ

with X ¼ cos ϑ and

PðXÞ ¼ −65536X4 − 131072
ffiffiffi
2

p
X3 − 65536X2

þ 131072
ffiffiffi
2

p
X þ 131072: ð55Þ

At this point a comment is in order. Since the polynomial
in (55) has roots at �1, � ffiffiffi

2
p

, the potential will diverge at
the cosmological horizon along the rays ϑ ¼ 0 and ϑ ¼ π,
i.e., along the direction of the cosmic string. On the other
hand, for ϑ ∈ ð0; πÞ, the polynomial function PðXÞ is
always positive as it can be seen from Fig. 5 and therefore,
we conclude that for each fixed value of ϑ ∈ ð0; πÞ the
effective potential takes on a negative value at the cosmo-
logical horizon. In the following, we perform a numerical
analysis of the critical points of Ueff . Imposing ∂ρUeff ¼ 0

and ∂ϑUeff ¼ 0 leads to the following coupled system of
algebraic equations

TABLE II. Typical values for the location of the maximum (ρcrit
for ϑ ¼ 0 and ρ̂crit for ϑ ¼ π) in the effective potential (41) when
l ¼ 0 and rs ≪ ra ¼ rΛ. Here, ρ ¼ r=rs and x ¼ rs=ra while ρH
and ρh are computed from (20) and (21).

x ρH ρh ρcrit ρ̂crit

10−3 1 706.857 22.606 499.875
10−4 1 7070.817 70.959 4999.875
10−5 1 70710.428 223.856 49999.875
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X5
n¼0

AnðϑÞρn ¼ 0; ð56Þ

sinϑð2x2ρ3 − x2ρ2 − ρþ 1Þ
X3
n¼0

BnðϑÞρn ¼ 0; ð57Þ

with

A5ðϑÞ ¼ −x4 cos4 ϑþ x3ðL2x4 þ L2x2 − 5Þ cos3 ϑ
þ x2ðx2 − 4Þ cos2 ϑþ 5x3 cosϑþ 4x2; ð58Þ

A4ðϑÞ ¼ −2x2 cos4 ϑþ x½2L2x2ðx2 þ 1Þ − 2� cos3 ϑ
þ 3x2½L2x2ðx2 þ 1Þ þ 1� cos2 ϑ
þ xð2 − x2Þ cosϑ − x2; ð59Þ

A3ðϑÞ ¼ 3x2 cos4 ϑ − 3x½L2x2ðx2 þ 1Þ − 1� cos3 ϑ
þ 3x2½2L2ðx2 þ 1Þ − 1� cos2 ϑ
þ 3x½L2x2ðx2 þ 1Þ − 1� cos ϑ; ð60Þ

A2ðϑÞ ¼ x cos3 ϑþ −½9L2x2ðx2 þ 1Þ − 1� cos2 ϑ
þ x½6L2ðx2 þ 1Þ − 1� cos ϑþ L2x2ðx2 þ 1Þ − 1;

ð61Þ

A1ðϑÞ¼−9L2xðx2þ1Þcosϑþ2L2ðx2þ1Þ−3L2ðx2þ1Þ;
A0ðϑÞ¼−3xL2ðxþ1Þ2; ð62Þ

B3ðϑÞ ¼ −2x3 cos6 ϑþ x2½3L2x2ðx2 þ 1Þ − 4� cos5 ϑ
þ 2x½L2x2ðx2 þ 1Þ þ 2x2 − 1� cos4 ϑ ð63Þ

− x2½L2x2ðx2 þ 1Þ − 8�cos3ϑ − 2xðx2 − 2Þcos2ϑ
− 4x2 cosϑ − 2x; B2ðϑÞ ¼ x cosϑB1ðϑÞ; ð64Þ

B1ðϑÞ ¼ 9L2x2ðx2 þ 1Þ cos3 ϑþ 6L2xðx2 þ 1Þ cos2 ϑ
− 3L2x2ðx2 þ 1Þ cos ϑ; ð65Þ

B0ðϑÞ ¼ 3L2xðx2 þ 1Þ cos2 ϑþ 2L2ðx2 þ 1Þ cosϑ
− L2xðx2 þ 1Þ: ð66Þ

First of all, we observe that even though ϑ ¼ 0; π are roots
for Eq. (57), they must be disregarded because the effective
potential is singular there. Concerning the roots of the
polynomial pðxÞ ¼ 2x2ρ3 − x2ρ2 − ρþ 1, Descartes’ rule
of signs signalizes the presence of two or zero positive
roots. However, these roots are not relevant to the present
analysis because they coincide with the event and cosmo-
logical horizons. This can be easily seen by rewriting

FIG. 5. Plot of the polynomial PðXÞ defined by (55) with
X ¼ cos ϑ.

TABLE III. Typical values for the saddle points and local
minima of the effective potential (41) when l ≠ 0, 10−5 ≤ x ≤
10−3 and 10−2 ≤ L ≤ 1.733. Here, “sp” and “lm” stand for saddle
point and local minimum, respectively.

x L ρcrit ϑcrit (rad) Type

10−3 10−2 22.591 0.055 sp
10−4 ” 70.930 0.041 sp
10−5 ” 223.803 0.031 sp
10−3 10−1 22.449 0.175 sp
10−4 ” 70.666 0.131 sp
10−5 ” 223.329 0.098 sp
10−3 1 20.764 0.593 sp
10−4 ” 67.776 0.428 sp
10−5 ” 218.340 0.315 sp
10−3 1.731 18.741 0.845 sp
10−4 ” 64.980 0.584 sp
10−5 ” 213.917 0.422 sp
10−3 1.7317 2.998 1.561 sp
” ” 3.007 1.561 lm
” ” 18.738 0.845 sp
10−4 ” 64.977 0.584 sp
10−5 ” 213.912 0.422 sp
10−3 1.733 2.892 1.562 sp
” ” 3.122 1.560 lm
” ” 18.734 0.846 sp
10−4 ” 2.90377 1.56999 sp
” ” 3.10287 1.56975 lm
” ” 64.972 0.585 sp
10−5 ” 2.90390 1.57071 sp
” ” 3.10267 1.57069 lm
” ” 213.904 0.422 sp
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pðxÞ ¼ 0 as the cubic Eq. (18) and taking into account that
ϵ ¼ x. These observations tell us that it suffices to consider
the following system

X5
n¼0

AnðϑÞρn ¼ 0;
X3
n¼0

BnðϑÞρn ¼ 0: ð67Þ

In Table III, we classified the critical points of the effective
potential (53) for x in the range 10−5 ÷ 10−3 and L between
10−2 and 1.733. We observe that for small values of L
the potential admits only saddle points. However, as L
increases, a local minimum develops even if the values of
the parameter x decreases. In Table IV, we focus on the
dynamics of the local minimum when L increases while x
remains fixed. More precisely, a local minimum exists only
if L varies between some Lmin and Lmax. In particular for
x ¼ 10−3, we find Lmin ≈ 1.7317 and Lmax ≈ 2.4380. One
can see from Table IV the prevalence of saddle points. It is
tempting to call the effective potential of the C-metric with
positive cosmological constant the potential of saddle
points. The latter is positive and becomes negative at large
ρ [see Eq. (42)]. This achieved by a saddle point as we
demonstrate in Fig. 6.

IV. JACOBI STABILITY ANALYSIS OF THE
NULL CIRCULAR ORBITS

Since we do not know a priori which effect Λ has on the
stability of the null circular orbits found in the previous
section, we need to study once again the salient features of
the associated Jacobi stability problem. To this purpose, we
need first to verify that the critical point of the effective
potential is also a critical point for the geodesic Eqs. (27)
and (28). In that regard, it is convenient to rewrite (27)
and (28) with the help of the constraint Eq. (29) and the
definition of the effective potential (31) as follows:

d2r
dλ2

þ ½∂r ln
ffiffiffiffiffiffiffiffiffi
AΛC

p
�
�
dr
dλ

�
2

þ ð∂ϑ lnAΛÞ
dr
dλ

dϑ
dλ

þ E
F2

∂r ln
BΛ

C
¼ 0; ð68Þ

d2ϑ
dλ2

þ ½∂ϑ ln
ffiffiffiffiffiffiffiffiffi
AΛC

p
�
�
dϑ
dλ

�
2

þ ð∂r lnCÞ
dr
dλ

dϑ
dλ

þ l2

2CD
∂ϑ ln

AΛ

D
¼ 0: ð69Þ

For a circular orbit with r ¼ rc and ϑ ¼ ϑc all derivatives
in the above equations vanish and we are left with the
following system of equations

∂r

�
BΛ

C

�����
ðrc;ϑcÞ

¼ 0; ∂ϑ

�
AΛ

D

�����
ðrc;ϑcÞ

¼ 0; ð70Þ

that can be simplified as follows:

d
dr

�
fΛðrÞ
r2

�����
r¼rc

¼ 0;
d
dϑ

�
1

gsin2ϑ

�����
ϑ¼ϑc

¼ 0: ð71Þ

Since

TABLE IV. Typical values for the saddle points and local
minima of the effective potential (41) when l ≠ 0, x ¼ 10−3 and
1.8 ≤ L ≤ 100. As in the previous table, sp ¼ saddle point and
lm ¼ local minimum.

L ρcrit ϑcrit (rad) Type

1.8 2.358 1.566 sp
” 4.136 1.548 lm
” 18.488 0.871 sp
2.2 1.856 0.157 sp
” 8.115 1.462 lm
” 16.499 1.042 sp
2.4 1.773 1.569 sp
” 11.059 1.356 lm
” 14.406 1.185 sp
2.438 1.761 1.569 sp
” 12.492 1.290 lm
” 13.131 1.257 sp
2.440 1.760 1.569 sp
10 1.511 1.570 lm
102 1.500 1.570 sp

FIG. 6. Typical saddle point configuration for the potential (53)
for L ¼ 2.2 and x ¼ 10−3.
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∂rV ¼ l2

2κ2gsin2ϑ
d
dr

�
fΛðrÞ
r2

�
;

∂ϑV ¼ l2fΛ
2κ2r2

d
dϑ

�
1

gsin2ϑ

�
; ð72Þ

and the derivatives above vanish when evaluated at r ¼ rc
and ϑ ¼ ϑc, we conclude that the equations in (71) are
trivially satisfied. In order to study the Jacobi (in)stability
of the null circular orbits, we will proceed as in [3], that is,
we first recognize that Eqs. (68) and (69) are a special case
of the dynamical system

d2xi

dλ2
þ giðx1; x2; y1; y2Þ ¼ 0; ð73Þ

where

g1ðx1; x2; y1; y2Þ ¼ ½∂1 ln
ffiffiffiffiffiffiffiffiffi
AΛC

p
�ðy1Þ2 þ ð∂2 lnAΛÞy1y2

þ E
F2

∂1 ln
BΛ

C
; ð74Þ

g2ðx1; x2; y1; y2Þ ¼ ½∂2 ln
ffiffiffiffiffiffiffiffiffi
AΛC

p
�ðy2Þ2 þ ð∂1 lnCÞy1y2

þ l2

2CD
∂2 ln

AΛ

D
; ð75Þ

with x1 ≔ r, x2 ≔ ϑ, and yi ¼ dxi=dλ for i ¼ 1; 2 and then,
we apply the Kosambi-Cartan-Chern (KCC) theory which
has been widely used in the last decade as a powerful tool to
probe the stability of several dynamical systems appearing
in gravitation and cosmology [45–55]. Let us assume that
g1 and g2 are smooth functions in a neighborhood of the
initial condition ðx10; x20; y10; y20;λcÞ ¼ ðrc;ϑc;0;0;λcÞ ∈R5.
The main result we will use is the following theorem: An
integral curve γ of (73) is Jacobi stable if and only if the
real parts of the eigenvalues of the second KCC invariant
Pi
j are strictly negative everywhere along γ, and Jacobi

unstable otherwise. We recall that

Pi
j ¼ −

∂gi
∂xj − grGi

rj þ yr
∂Ni

j

∂xr þ Ni
rNr

j þ
∂Ni

j

∂λ ;

Gi
rj ¼

∂Ni
r

∂yj ; Ni
j ¼

1

2

∂gi
∂yj ; ð76Þ

where Gi
rj is called the Berwald connection [56,57].

Observe that the term ∂Ni
j=∂λ in (76) does not contribute

because the system (73) is autonomous in the variable λ.
For a proof of the above result we refer to [51,58,59]. In
preparation to the application of this theorem, we introduce
the matrix associated to the second KCC invariant, namely

P̃ ≔
�
P̃1
1 P̃1

2

P̃2
1 P̃2

2

�
; ð77Þ

where a tilde means evaluation at x1 ¼ rc and x2 ¼ ϑc. The
associated characteristic equation for the eigenvalues is

det

�
P̃1
1 − λ P̃1

2

P̃2
1 P̃2

2 − λ

�
¼ 0: ð78Þ

First of all, we observe that yi with i ¼ 1; 2 vanishes along
the null circular orbit. This implies that the third term on the
right-hand side of the first equation in (76) does not give
any contribution. By the same token, Ni

j defined in (76)
depends quadratically on y1 and y2 and hence, its first order
partial derivatives with respect to yi are linear combinations
in yi, vanishing once evaluated at x1 ¼ rc and x2 ¼ ϑc.
Hence, we have

P̃i
j ¼ −

�∂gi
∂xj þ

1

2
gr

∂2gi

∂yj∂yr
�

x1¼rc; x2¼ϑc

: ð79Þ

After a lengthy but straightforward computation we find
that

P̃1
2 ¼ −E

� ∂
∂ϑ

�
C

F2BΛ

∂
∂r

�
BΛ

C

��

þ C
2F4

∂
∂r

�
BΛ

C

� ∂AΛ

∂ϑ
�
r¼rc;ϑ¼ϑc

;

¼ 3Er2c
2fΛðrcÞF3ðrc;ϑcÞ

�
d
dr

�
fΛ
r2

� ∂F
∂ϑ

�
r¼rc; ϑ¼ϑc

: ð80Þ

By means of the first equation in (71) we immediately
conclude that P̃1

2 ¼ 0. This implies that the eigenvalues of
the matrix (77) are given by

λ1 ¼ P̃1
1; λ2 ¼ P̃2

2: ð81Þ
Let us analyze the sign of λ1. We observe that by means
of (71)

λ1 ¼ −
�
E

� ∂
∂r

�
C

F2BΛ

∂
∂r

�
BΛ

C

��
þ 1

2F4

∂
∂r

�
BΛ

C

� ∂AΛC
∂r

�
þ l2

4A2
ΛC

∂
∂ϑ

�
AΛ

D

� ∂AΛ

∂ϑ
	

r¼rc; ϑ¼ϑc

¼ −
Er2c

fΛðrcÞF2ðrc; ϑcÞ
d2

dr2

�
fΛ
r2

�����
r¼rc

¼ Er3c
fΛðrcÞF2ðrc; ϑcÞ

1þ 12α2M2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12α2M2

p

1þ 12α2M2
: ð82Þ
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Since the energy E is positive, rH <rc <rh and fΛ is
positive on the interval ðrH;rhÞ, we conclude that fΛðrcÞ>0
and the eigenvalue λ1 is always strictly positive. This implies
that a photon circular orbit with radius rc on the cone ϑ ¼ ϑc
is Jacobi unstable.

V. GRAVITATIONAL LENSING

The cosmological constant seems to be an obstacle in
calculating the deflection angle of light in a curved spacetime
as it can be evinced from [60] where a comparison of the
different results in the Schwarschild–de Sitter spacetime has
been provided. It is therefore of some interest to perform the
calculation of light deflection in the C-metric with Λ. We
recall that distance measures, image distortion, and image
brightness of an astrophysical object hidden by a gravitational
lens require the analysis of the equation of geodesic deviation
and in particular the derivation of the so-called Sachs optical
scalars, allowing us to study the null geodesic congruences
[61–63]. Without further ado we observe that a construction
of a symmetric null tetrad in the spirit of [64] [see Eq. (5.119)
therein] can be performed as in [3] by replacing there the
function f by fΛ given in (2). However, this procedure leads
to a nonvanishing spin coefficient ϵ, thus signalizing that the
null geodesics are not affinely parametrized. The solution to
this problem consists in realizing that the spin coefficient κ is
zero also in the case of the metric (6) and therefore, the
construction of an affine parametrization can be achieved in
terms of a rotation of class III {see Sec. 7(g) Eq. (347) in [65]}
which preserves the direction of the tetrad basis vector l
while keeping κ ¼ 0. As a consequence of this approach, the
spin coefficient σ will provide access to the Sachs optical
scalar describing the shear effect on the light beam due to the
gravitational field. To this purpose, we consider the normal-
ized null tetrad ðl;n;m; m̄Þ

li ¼
�

1ffiffiffi
2

p ;
1ffiffiffi
2

p
fΛ

; 0; 0

�
; ni ¼

�
fΛFffiffiffi

2
p ;−

Fffiffiffi
2

p ; 0; 0

�
;

mi ¼
�
0; 0; r

ffiffiffiffiffi
F
2g

s
; iκr sinϑ

ffiffiffiffiffiffi
Fg
2

r �
; ð83Þ

andwe recall that in theNewmann-Penrose formalism the ten
independent components of the Weyl tensor are replaced by
five scalar fields Ψ0;…;Ψ4 while the ten components of the
Ricci tensor are expressed in terms of the scalar fields Φab
with a, b ¼ 0; 1; 2 and the Ricci scalarR is written bymeans
of the scalar field Λ̂ ¼ R=24. The spin coefficients for our
problem are computed to be

κ ¼ σ ¼ λ ¼ ν ¼ ϵ ¼ 0; ρ ¼ 1

r
ffiffiffiffiffiffi
2F

p ; μ ¼ fΛ
r

ffiffiffiffi
F
2

r
;

τ ¼ −π ¼ 1

2rF

ffiffiffiffiffiffi
g
2F

r ∂F
∂ϑ ; ð84Þ

γ ¼ −
1

2
ffiffiffi
2

p
F

∂ðfΛFÞ
∂r ;

β ¼ −
1

2
ffiffiffi
2

p
rF sinϑ

∂ ffiffiffiffiffiffi
Fg

p
sinϑ

∂ϑ þ τ

2
;

α ¼ 1

2
ffiffiffi
2

p
rF sinϑ

∂ ffiffiffiffiffiffi
Fg

p
sinϑ

∂ϑ þ τ

2
: ð85Þ

and the only nonvanishing scalar fields Ψi, Φab, and Λ̂ for a
two black holemetric with positive cosmological constant are

Ψ2 ¼
1

3
½lr∂rμþ nr∂rγ −mϑ∂ϑðπ þ αÞ þmϑ∂ϑβ

þ ðα − βÞðα − β þ πÞ�; ð86Þ

Φ11 ¼
1

2
½nr∂rγ þmϑ∂ϑα −mϑ∂ϑβ þ τ2 − μρ − ðα − βÞ2�;

ð87Þ

Λ̂ ¼ Ψ2 −Φ11 þmϑ∂ϑα −mϑ∂ϑβ − μρ − ðα − βÞ2: ð88Þ

At this point a remark is in order. First of all, the cosmological
constant enters only in the spin coefficients μ and γ while the
other spin coefficients are the same as those obtained for the
C-metric in [3]. Moreover, the fact that ρ is real has a twofold
implication; the congruence of null geodesics is hypersurface
orthogonal and accordingly, the optical scalar ω ¼ ℑρ must
vanish. In other words, a light beam propagating in the metric
described by (6) does not get twisted or rotated. Furthermore,
if we consider Eqs. (310a) and (310b) {see Sec. 8(d) page 46
in [65]} describing how the spin coefficients ρ and σ vary
along the geodesics

Dρ ¼ ρ2 þ jσj2 þΦ00; D ¼ la∂a ð89Þ

Dσ ¼ 2σρþΨ0; ð90Þ

we immediately observe that the second equation is of
no practical use because it is always trivially satisfied
(σ ¼ 0 ¼ Ψ0). In addition, the vanishing of the spin coef-
ficient σ is signalizing that a light beam does not experience
any shear effect, i.e., if the light beam initially has a circular
cross section such a cross section does not change its shape
after the interactionwith theblack hole took place. Finally, the
optical scalar θ which measures the contraction/expansion of
a light beam traveling through the given gravitational field, is
expressed in terms of the spin coefficient ρ as

θ ¼ −ℜρ ¼ −
1

r
ffiffiffiffiffiffi
2F

p : ð91Þ

The fact that θ is negative implies that the light beam
undergoes a compression process in the presence of a two
black hole metric with positive cosmological constant.
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However, as θ does not depend onΛ and it coincides with the
corresponding optical scalar computed for theC-metric in [3],
it is impossible to distinguish a C-black hole from the one
described by (6) if we limit us to probe only into effects in the
optical scalar θ. This observation suggests that we need to
study the weak and strong gravitational lensing in order to
detect some distinguishing features among the aforemen-
tioned black hole solutions. We start by observing that in our
situation the weak lensing problem can be tackled by a
method similar to that adopted in [3] due to the fact that the
saddle point ðrc; ϑcÞ of the effective potential (31) coincides
with the critical point of the dynamical system (27)–(28). As
in [3], we will assume that the light ray and the observer are
positioned on the cone ϑ ¼ ϑc. Then, the angular motion is
controlled by the equations

dϕ
dλ

¼ l
Dðr; ϑcÞ

; ϑ ¼ ϑc; ð92Þ

the timelike variable t is linked to the parametrization λ
according to

dt
dλ

¼ E
BΛðr; ϑcÞ

; ð93Þ

while the radialmotion is described by the following equation
obtained by combining (29) with (31), namely�

dr
dλ

�
2

¼ 1

AΛðr; ϑcÞ
�

E2

BΛðr; ϑcÞ
−

l2

Dðr; ϑcÞ
�
: ð94Þ

In order to determine the trajectory ϕ ¼ ϕðrÞ on the cone
ϑ ¼ ϑc, a trivial application of the chain rule to dϕ=dλ
combined with (94) leads to

dϕ
dr

¼ Fðr; ϑcÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðr; ϑcÞ

p �
E2

l2
Dðr;ϑcÞ − BΛðr; ϑcÞ

�−1=2
; ð95Þ

where without loss of generality we picked the plus sign
corresponding to a null ray approaching the black hole
along an anticlockwise trajectory. Moreover, like in [66],
the quantity E=l has the interpretation of an impact parameter
b defined as

1

b2
¼ E2

l2
¼ BΛðr0; ϑcÞ

Dðr0; ϑcÞ
¼ 1

κ2gðϑcÞ sin2 ϑc
fΛðr0Þ
r20

; ð96Þ

where r0 > rH is the distance of closest approach and rH
denotes the event horizon. In order to check the validity
of (96), let us choose r0 ¼ rc with rc denoting the radius
of the circular orbits and recall that the critical impact
parameter in the case of the Schwarzschild–de Sitter metric
is given by [67]

b̃c ¼
3

ffiffiffi
3

p
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 27
4
y

q ; y ¼
�
rs
rΛ

�
2

¼ 4

3
M2Λ; ð97Þ

where the gravitational lensing can only be studied for
0 < y < 4=27 because as y → 4=27 from the left the event
and cosmological horizons of the Schwarzschild–de Sitter
black hole would shrink and coalesce with the radius of the
photon sphere at rγ ¼ 3M. Then, the critical impact param-
eter bc can be obtained from (96) as

bc ¼ κ sinϑc
ffiffiffiffiffiffiffiffiffiffiffi
gðϑcÞ

p rcffiffiffiffiffiffiffiffiffiffiffiffiffi
fΛðrcÞ

p : ð98Þ

Moreover, let us remind the reader that in the case of
vanishing acceleration, i.e., α → 0, our metric goes over into
the Schwarzschild–de Sitter metric. A Taylor expansion
of (98) around x ¼ 0 with x ¼ αM leads to

bc ¼ b̃c − 2b̃cxþ
b̃c
6
ðb̃2c þ 27Þx2 þOðx3Þ: ð99Þ

It is gratifying to observe that (99) correctly reproduces the
Schwarzschild–de Sitter critical impact parameter in the
limit x → 0 while it also agrees for y → 0 with the critical
impact parameter for a C-black hole {see Eq. (93) in [3]).
Having determined the critical impact parameter for
our problem allows to distinguish among the following
scenarios:
(1) if b < bc, the photon is captured by the black hole;
(2) if b > bc, deflection takes place and two further

cases are possible, namely
(a) if b ≫ bc or equivalently r0 ≫ rc, the trajectory

is almost a straight line and we are in the regime
of weak gravitational lensing.

(b) If b≳ bc or equivalently r0 ≳ rc, strong gravi-
tational lensing occurs with the photon orbiting
several times around the black hole before it
flies off.

If we go back to (95), we observe that the functionDðr; ϑcÞ
can never be negativewhile the same can not be said for the
other square root. This means that some motion reality
condition should be introduced. This can be easily done by
rescaling the radial variable according to ρ ¼ r=rs, and
setting x̂ ¼ 2αM and d ¼ ðrs=rΛÞ2. Then,

fΛðρÞ ¼ 1 −
1

ρ
− x̂2ðρ2 − ρÞ − dρ2 ð100Þ

and by means of (96) and (7) Eq. (95) becomes

dϕ
dρ

¼ ρ0
κρ

ffiffiffiffiffiffiffiffiffiffiffi
gðϑcÞ

p
sin ϑc

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2fΛðρ0Þ − ρ20fΛðρÞ

p ; ð101Þ

¼ ρ0
ffiffiffiffiffi
ρ0

p

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρgðϑcÞ

p
sinϑc

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx̂2ρ20þρ0−1Þρ3−ρ30ðx̂2ρ2þρ−1Þ

q ;

ð102Þ

where ρ0 is the rescaled distance of closest approach. At this
point, it is interesting to observe a couple of facts. First of all,
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there is no dependence on the cosmological constant in the
expression above. This feature is already present in the
Schwarzschild–de Sitter case [67] where Λ can influence
the trajectories of massive particles while it is absent in the
coordinate orbital equation when photons are considered
[68]. However, the cosmological constant can appear in the
formula for the deflection angle in the weak regimewhen the
observer is close to the cosmological horizon. In addition to
the previous remark, Eq. (102) coincides with Eq. (98) in [3].
This implies that the analysis of the turning points performed
by [3] for theC-metricwill continue to hold also in the present
case. For this reason, wewill limit us to recall only those basic
facts that are necessary in order to proceed further with the
analysis of the weak/strong gravitational lensing. First of all,
we remind the reader that under the assumption ρs ≪ ρΛ we
have ρH > 1 and therefore, ρ0 > ρH > 1. Moreover, the
cubic equation in (102) admits three real turning points,
namelyρ0 andρ�where an analytic expression forρ� is given
by (100) in [3].When integrating (102) is extremely important
to know the spatial ordering of the points ρH, ρ0, ρ�, and ρh.
For a proof of the results summarized here below we refer to
Appendix C in [3].
(1) Weak lensing; ρ0 ≫ ρc. If ρ0 > ργ > ρc with ργ

representing the radius of the Schwarzschild photon
sphere, it follows that ρþ<ρc <ρ0 for any x̂∈ ð0;1Þ.
This implies that ρ− < 0 < ρþ < ρ0 and the cubic in
(102) is positive on the interval ðρ0; ρhÞ.

(2) Strong lensing; ρc≲ρ0<ργ for x̂∈ ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðργ−ρ0Þ

p
=

ρ0;1Þ. If x̂ is in the aforementioned range, then
ρþ < ρ0 and ρþ < ρc. This ensures that the cubic in
(102) is positive on the interval ðρ0; ρhÞ.

Let us focus on the weak gravitational lensing. By ρb we
denote the position of the observer which must be placed in
the interval ðρc; ρhÞ. At this point, by means of the angular
transformation ϕ ¼ φ=k we can integrate (101) and cast the
integral into the form

φðρ0Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffi
gðϑcÞ

p
sinϑc

Z
ρb

ρ0

dρ

ρ
ffiffiffiffiffiffiffiffiffiffiffiffi
fΛðρÞ

p ��
ρ

ρ0

�
2 fΛðρ0Þ
fΛðρÞ

− 1

�
−1=2

:

ð103Þ

We remind the reader that, unlike the Schwarzschild case, the
observer cannot be positioned in an asymptotic region
approximated by the Minkowski metric. To overcome this
problem, we assume that the deflection angle is described by
the formula [67]

Δφðρ0Þ ¼ κ1Iðρ0Þ þ κ2;

Iðρ0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

gðϑcÞ
p

sin ϑc

Z
ρ̂b

1

dρ̂

ρ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2fΛðρ0Þ − fΛðρ0ρ̂Þ

p ;

ρ̂ ¼ ρ

ρ0
; ð104Þ

with unknown constants κ1 and κ2 to be fixed so that theweak
field approximation of (104) coincides with the weak field
approximation for the Schwarzschild case in the limit of
vanishing cosmological constant and acceleration parameter.
The integral in (104) can be rewritten as

Iðρ0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

gðϑcÞ
p

sin ϑc

Z
ρ̂b

1

dρ̂Fðρ̂; ϵ; μÞ;

ϵ ¼ 1

ρ
; μ ¼ x̂2

ϵ
; ð105Þ

Fðρ̂; ϵ; μÞ ¼ 1

ρ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2 − 1þ ϵð1ρ̂ − ρ̂2Þ þ μðρ̂2 − ρ̂Þ

q ;

μ ¼ x̂2

ϵ
: ð106Þ

For the discussion onwhy it is possible to apply a perturbative
expansion in the small parameters ϵ and μ we refer to [3].
Therefore, let us expand F as follows:

Fðρ̂; ϵ; μÞ ¼ f0ðρ̂Þ þ f1ðρ̂Þϵþ f2ðρ̂Þϵ2 þ f3ðρ̂Þϵ3
þ g1ðρ̂Þμþ f4ðρ̂Þϵ4 þOðϵμÞ; ð107Þ

with

f0ðρ̂Þ ¼
1

ρ̂
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2 − 1

p ; f1ðρ̂Þ ¼
ρ̂2 þ ρ̂þ 1

2ρ̂2ðρ̂þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2 − 1

p ;

f2ðρ̂Þ ¼
3ðρ̂2 þ ρ̂þ 1Þ2

8ρ̂3ðρ̂þ 1Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2 − 1

p ; ð108Þ

f3ðρ̂Þ ¼
15ðρ̂2 þ ρ̂þ 1Þ3

48ρ̂4ðρ̂þ 1Þ3
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2 − 1

p ;

g1ðρ̂Þ ¼ −
1

2ðρ̂þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2 − 1

p ;

f4ðρ̂Þ ¼
105ðρ̂2 þ ρ̂þ 1Þ4

384ρ̂5ðρ̂þ 1Þ4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ̂2 − 1

p : ð109Þ

If we take into account that

1ffiffiffiffiffiffiffiffiffiffiffi
gðϑcÞ

p
sinϑc

¼ 1þOðϵμÞ ð110Þ

and we let the integration over the functions f0;…; f4 and g1
to be followed by an asymptotic expansion in powers of 1=ρ̂b,
the deflection angle in (104) becomes

Δφðρ0Þ ¼ κ1½F0 þF1ϵþF2ϵ
2 þF3ϵ

3 þG1μ

þF4ϵ
4 þOðϵμÞ� þ κ2 ð111Þ

where
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F0 ¼
π

2
−

1

ρ̂b
þO

�
1

ρ̂3b

�
; F1 ¼ 1 −

1

2ρ̂b
þO

�
1

ρ̂3b

�
;

F2 ¼
15

32
π −

1

2
−

3

8ρ̂b
þO

�
1

ρ̂3b

�
; ð112Þ

F3 ¼
61

24
−
15

32
π −

5

16ρ̂b
þO

�
1

ρ̂3b

�
;

G1 ¼ −
1

2
þ 1

2ρ̂b
−

1

4ρ̂2b
þO

�
1

ρ̂3b

�
; ð113Þ

F4 ¼
3465

2048
π −

65

16
−

35

128ρ̂b
þO

�
1

ρ̂3b

�
: ð114Þ

In order to fix the unknown constants κ1 and κ2 in (111),
we observe that in the limit of Λ → 0, the cosmological
horizon ρ̂h → ∞ and therefore, we can let ρ̂b → ∞ in the
above expressions. If in addition α → 0, Eq. (111) must
reproduce the weak deflection angle for a light ray in the
Schwarzschildmetric. This is the case if κ1 ¼ 2 and κ2 ¼ −π.
Hence, at the first order in 1=ρ̂b, we find that the weak
deflection angle can be written as

Δφðρ0Þ ¼ −
2

ρ̂b
þ
�
2−

1

ρ̂b

�
1

ρ0
þ
�
15

16
π − 1−

3

4ρ̂b

�
1

ρ20

þ
�
61

12
−
15

16
π −

5

8ρ̂b

�
1

ρ30
þ 4

�
−1þ 1

ρ̂b

�
α2M2ρ0

þ
�
3465

1024
π −

65

8
−

35

64ρ̂b

�
1

ρ40
þ � � � : ð115Þ

Taking into account that for a vanishing cosmological
constant, we can let ρ̂b → ∞, it is straightforward to check
that (115) correctly reproduces the weak deflection angle
formula (115) for the C-metric obtained in [3].
Regarding the strong gravitational lensing for the metric

under consideration, we first observe that it can be analyzed
by the same procedure adopted by [3] because in both cases
the metrics involved admits the same family of null circular
orbits. For this reason, we will not dive into the details
of the derivation and we will limit us to remind the reader
that one first solves the integral (104) in terms of an
incomplete elliptic function of the first kind followed by an
application of an asymptotic formula for the aforemen-
tioned elliptic function obtained by [69] when the sine of
the modular angle and the elliptic modulus both approach
one. The same strategy has been already successfully used
in [67] to derive the Schwarzschild deflection angle in the
strong regime with a higher degree of precision than
the corresponding formulas in [70,71]. Without further
delay, let us recall that it was found in [3] that the
deflection angle in the strong gravitational lensing regime
is given by

Δφðρ0Þ ¼ −π þ h1ðρb; ρcÞ − h2ðρcÞ ln
�
ρ0
ρc

− 1

�
− h3ðρcÞðρ0 − ρcÞ þOðρ0 − ρcÞ2 ð116Þ

with

h1ðρb;ρcÞ ¼ h2ðρcÞ ln
8ð3− ρcÞðρb − ρcÞ

½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρbð3− ρcÞ

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρcþ 2ρb − ρbρc

p �2 ;

ð117Þ

h2ðρcÞ ¼
3

ffiffiffi
6

p
ρc

ð3þ ρcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − ρc

p ;

h3ðρcÞ ¼
3

ffiffiffi
6

p ð2ρc − 7Þ
2ðρc þ 3Þð3 − ρcÞ3=2

: ð118Þ

Avalidity check of (116) was already run in [3] where it has
been verified that (116) correctly reproduces the corre-
sponding strong lensing formula in the Schwarzschild case
as given in [67,71] when α → 0. The main difference
between (143) in [3] and (116) revolves around ρb, i.e., the
position of the observer, which in the present case is
bounded from above by the cosmological horizon. It is
interesting to observe that, in general, the above formula
does not depend on Λ. However, a dependence on the
cosmological constant emerges only in the case the
observer is placed very close to the cosmological horizon
as it was already pointed out by [67] in the context of the
Schwarzschild–de Sitter metric.

VI. CONCLUSIONS

In this paper, we have focused on the classical con-
nection between light and gravity, more precisely, the
bending of light in a gravitational field and its lensing.
For the C-metric with positive cosmological constant, we
showed that the effective potential for a massless particle
exhibits a saddle point. If on one hand a local maximum in
the effective potential corresponds to an unstable null
circular orbit, on the other hand, the presence of a saddle
point leads to a more challenging classification problem
which needs a careful scrutiny. By means of a Jacobi
analysis we showed that the lightlike circular geodesics
associated to the aforementioned saddle point are unstable.
Furthermore, we constructed the impact parameter for the
light scattering in the dS C-metric and showed that the
Sachs scalars do not depend on the cosmological constant,
hence they cannot be used to optically discriminate among
C- and C- black holes with Λ. This obliged us to probe into
the weak and strong gravitational lensing for which we
computed the corresponding deflection angle in terms of
the distance of closest approach and the position of the
observer. Our results reveal that corrections of the cosmo-
logical constant appear only in the case the observer is
located close to the cosmological horizon.
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