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The close limit approximation of a binary black hole is a powerful method to study gravitational-wave
emission from highly nonlinear geometries. In this work, we use it as a tool to model black hole spacetimes
in theories of gravity with a new fundamental scalar degree of freedom. As an example, we consider
Einstein-scalar-Gauss-Bonnet gravity, which admits as a solution the Schwarzschild geometry as well as
black holes with scalar hair. Accordingly, we find scalar perturbations growing unbounded around binary
systems. This “dynamical scalarization” process is easier to trigger (i.e., occurs at lower values of the
coupling constant of the theory) than the corresponding process for isolated black holes. Our results and
framework highlight the fundamental role of the interaction during the collision of compact objects. They
also emphasize the importance of having waveforms for black hole binaries in alternative theories, in order
to consistently perform tests beyond general relativity.
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I. INTRODUCTION

The LIGO/Virgo detections of gravitational waves
(GWs) produced by coalescing black holes (BHs) and
stars provided the first insights on regimes where dynami-
cal gravitational interactions dominate over the other
known fundamental forces (also known as the strong
gravity regime) [1–5]. These events provided important
constraints on the general relativistic theory of gravitation
(GR) and on some modified gravity models [6–16]. Despite
the very good agreement between GR predictions and the
observed signals, there are still fundamental phenomena
that GR is not able to explain thoroughly. For instance, the
lack of a profound understanding of the nature of singu-
larities [16–20] or the origin of dark energy or dark matter
[21,22] shows that there is still room for possible exten-
sions or modifications of Einstein’s theory.
The advent of third generation detectors [23–25] and the

space-based LISA mission [26] will increase the number
and accuracy of GWobservations, paving the way to a new,
precision gravitational wave astronomy era. Data from
massive and distant compact objects will provide a stat-
istical and systematic vision of the objects populating our
universe. Precision studies will help in assessing founda-
tional questions about the ultimate nature of the gravita-
tional theory itself. In fact, tests of GR and its alternatives
are based on the capability to constrain the parameters of
each theory with the highest precision.
Tests of gravity compose also smoking guns for new

physics. These unique predictions of an alternative theory
may therefore allow one to discriminate between GR and its

competitors. In view of this, it is crucial to search for such
peculiar mechanisms in the GW signals produced by
compact bodies [27–31]. A representative example of such
phenomena occurs in the framework of scalar-tensor theo-
ries, for example, where a new fundamental scalar degree of
freedom couples to matter with some strength β. For certain
coupling strengths β one finds static solutions in scalar
tensor theory with a trivial scalar, equivalent to those of GR,
and which are stable solutions. However, there are couplings
for which a GR solution is unstable and triggers a
“tachyonic” instability, leading to stars or BHs with a
nontrivial charge [32]. These bodies are said to be scalarized
[33–48]. The possibility to “awake” a new fundamental field
is a valuable smoking gun for these alternative theories, as it
leads to dipolar emission of radiation for example. Due to its
nonperturbative nature, spontaneous scalarization of neutron
stars avoids the strong constraints set by solar system
experiments, established in the regime where the gravita-
tional forces are relatively close to the Newtonian ones
[49,50]. Additionally, scalarization phenomena may occur
also for vector, tensor, and spinor fields [51–58].
Recent work on the scalarization of multibody systems

showed how signatures of this nonperturbative mechanism
can emerge dynamically [59–63]. The main objective of
this work is to study this dynamical scalarization process in
binary BH (BBH) spacetimes, in theories allowing for
spontaneous scalarization of isolated BHs. In other words,
working with nontrivial couplings between the scalar and
the spacetime curvature, we wish to highlight the effects
of scalar field dynamics in a two-body spacetime. In
the following we consider Einstein-scalar-Gauss-Bonnet
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gravity (EsGB) as a specific example of scalar-tensor
theory of the above class. EsGB emerges naturally in
the low-energy limit of string theories [64–66] and is the
only alternative theory that includes an extra scalar degree
of freedom, coupled to a quadratic curvature term con-
structed from the spacetime metric, which equations of
motion are second (differential) order. In order to model
BBH configurations, we use results from the close limit
approximation (CLAP) of binary BHs [67–70]. This
perturbative method was used to find the ringdown wave-
forms produced by the head-on collision of BH binaries in
GR, and it was recently generalized to less standard
scenarios [71].
Units are such that G ¼ c ¼ ℏ ¼ 1.

II. EINSTEIN-SCALAR-GAUSS-BONNET
GRAVITY

To study GW generation in modified gravity, a thorough
study of the properties of the theory is needed: namely,
carrying out a spacetime decomposition (e.g., 3þ 1)
[72–76], understanding if the theory is well-posed, con-
structing physically motivated initial data, and performing
their time evolution. This program has been carried out for
only a few theories [61,77–81]. For the above-mentioned
EsGB theory, a 3þ 1 decomposition of the field equations
has been recently performed [82,83].
The action of EsGB is given by

S ¼ 1

16π

Z
d4x

ffiffiffiffiffiffi
−g

p �
R −

1

2
ð∇ΦÞ2 þ η

4
fðΦÞRGB

�
; ð1Þ

where η is the dimensionful coupling constant of the theory
and fðΦÞ is a generic coupling function between the scalar
field and the Gauss-Bonnet invariant RGB, that is

RGB ¼ R2 − 4RijRij þ RijklRijkl; ð2Þ

with RðRijÞ being the Ricci scalar (tensor) and Rijkl the
Riemann tensor. The equations of motion corresponding to
the action (1) are given by

Gμν ¼
1

2
Tμν −

1

8
ηGμν; ð3Þ

□Φ ¼ −
η

4

∂fðΦÞ
∂Φ RGB; ð4Þ

where Gμν is the usual Einstein tensor and

Gμν ¼ 16Rα
ðμCνÞβ þ 8CαβðRμανβ − gμνRαβÞ− 8CGμν − 4RCμν;

ð5Þ

with

Cμν ¼ ∇μ∇νfðΦÞ ¼ f0∇μ∇νΦþ f00∇μΦ∇νΦ; ð6Þ

and the scalar field stress-energy tensor is defined as

Tμν ¼ ∂μΦ∂νΦ −
1

2
gμν∂αΦ∂αΦ: ð7Þ

In order to study the evolution of any physical configu-
ration in EsGB, one needs to find consistent initial data.
This consists in solving the EsGB constraint equations
coming directly from Eqs. (3) and (4). A solution to these
equations, in general, includes complicated functions of the
scalar Φ and the scalar momentum density KΦ.

1 However,
in this work we are only interested in understanding if, and
how, BBHs in a vacuum might be unstable in EsGB.
In order to assume a trivial scalar field profile Φ ¼ 0 and
momentum density KΦ ¼ 0 on the initial hypersurface, we
restrict to theories obeying df=dΦjΦ¼0 ¼ 0. With this
assumption, we rule out theories allowing only for BH
solutions with scalar hair, as the ones due to an exponential
coupling function (see Ref. [65]). Further considering BHs
initially at rest, the momentum constraint equations are
identically satisfied (and therefore not shown here), while
the Hamiltonian reads as in vacuum GR

3R ¼ 0; ð8Þ

where 3R is the Ricci scalar evaluated on the initial three-
spacelike hypersurface of foliation.

III. BINARY BLACK HOLE SPACETIME

In order to model a BBH spacetime, one needs to
account for their interaction energy. The CLAP formalism
of BBHs in GR succeeded to consistently describe such
configurations [67–71], and we will use this approximation
in what follows. This approach is based on having initial
data describing BBHs that are solutions of the Hamiltonian
constraint equation (8). Such a solution is not unique:
different initial data [84–86] may be used within the CLAP.
The ones that we employ in this work are given by the Brill-
Lindquist (BL) initial data [85]. These are conformally flat,
time symmetric initial data representing two BHs initially
at rest.
Let us focus on equal-mass binaries, of total Arnowitt-

Deser-MisnermassM. In isotropicCartesian coordinates,we
place the BHs on theZ axis [R1=2 ¼ ð0; 0;�Z0Þ, whereRi is
the position of each BH in this reference], and therefore the
origin of the reference frame is in the center of mass of the
system. As shown in detail in Refs. [69–71,87], using the
CLAP of BBHs, we can recast the 4D initial spacetime as a
perturbation of theSchwarzschildmetric. Thus, including for

1KΦ is defined as the Lie derivative of the scalar field with
respect to the normal vector to the initial hypersurface of
foliation.
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the sake of simplicity only the leading-order quadrupolar
contribution [67], the spacetime can be written as

gμν ¼ gð0Þμν þ hμν; ð9Þ

where

gð0Þμν ¼ diagð−f; f−1; r2; r2 sin2 θÞ; ð10Þ

and, using the Legendre polynomial P2ðcos θÞ, hμν is
given by

hrr ¼ f−1gP2ðcos θÞ
Z2
0

2M2
;

hθθ ¼ r2gP2ðcos θÞ
Z2
0

2M2
; ð11Þ

with

g ¼ 4ð1þM=ð2RÞÞ−1M3=R3; ð12Þ

and the isotropic coordinate R is defined in terms of the
Schwarzschild radial coordinate r as

R ¼ 1

4
ð ffiffiffi

r
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r − 2M

p
Þ2: ð13Þ

The parameter Z0 in Eq. (11) represents the initial
separation between the BHs in the isotropic frame. For
Z0 ¼ 0 there is just a single BH of mass M in the initial
slice. When 0 < Z0 ≲ 0.4, one single common horizon
appears [68–70]. In this regime, the spacetime can be
thought to represent two BHs close to one another, envel-
oped by a common distorted horizon [67]. Moreover,
it is worthwhile to note that Z0 itself is only a parameter
and not a physical quantity. However, it is possible to
establish a relation between Z0 and the physical distance
between the apparent horizons of the initial colliding BHs
(L) [70,71,87–90]: an explicit computation gives L ¼ 3M
for Z0 ≃ 0.5M, L ¼ 3.5M for Z0 ≃ 0.7M, and L ¼ 4M
for Z0 ≃ 0.85M.
The metric in Eq. (9) shows how the colliding BH

spacetime can be seen as a time-dependent perturbation of a
Schwarzchild background. Hence, in the CLAP, the time
evolution of these small (even) gravitational perturbations
can be achieved by gauge-invariant perturbation techniques
[91–93]. Notably, as shown in Ref. [67], the gravitational
perturbation equations can be cast in a single Zerilli
equation for one unknown function (the Zerilli function)
[94]. Solutions of such an equation provide GW signals
remarkably similar to the results obtained using full
numerical simulations [95].
Instead, in the following, we use the metric in Eq. (9)

only as the background spacetime in which evolves the
scalar field, thus neglecting the motion of the BHs in the

timescale of the oscillation. This is a severe approximation.
First, because astrophysical BHs in binaries move at large
velocities when close to one another. Furthermore, on a
timescale of order M, the BHs collide, and hence the
extrinsic spacetime curvature will take nonzero values,
changing the background spacetime in which scalar per-
turbations propagate. However, albeit an approximation,
restricting to a frozen background still shows the main
feature of the onset of instabilities in binary spacetimes, as
we shall see later.
A CLAP treatment allowing for spontaneous scalariza-

tion during the collision (or the inspiral) of BHs in EsGB is
left for future work.

IV. SCALAR INSTABILITIES

To test the onset of scalar instabilities in BBH geometries,
we study the behavior of small linear scalar fluctuations in
backgrounds described by Eq. (9). These vacuum configu-
rations have been chosen since EsGB allows also for BH
solutions identical to GR.
Small scalar perturbations can be mathematically

expressed replacing Φ → ϵΦ in Eqs. (3) and (4), with ϵ
a small bookkeeping parameter. Thus, one can linearize the
Einstein-Klein-Gordon (KG) system up to OðϵÞ. In this
limit, the KG equation decouples from Einstein’s equa-
tions. Hence, the background spacetime is not affected by
the scalar perturbations. Our perturbation scheme will
eventually break down at sufficiently late times: the
exponentially growing scalar gives rise to an exponentially
growing stress tensor, the backreaction of which on the
geometry can no longer be neglected. Here, we focus solely
on the early-time development of the instability.
What we are left to solve is the KG equation

□Φ ¼ −
η

4

∂fðΦÞ
∂Φ RGB; ð14Þ

where the box operator [□ ¼ 1ffiffiffiffi−gp ∂μðgμν ffiffiffiffiffiffi−gp ∂νÞ] is

defined on the BBH background in Eq. (9). In the following
we further assume that the Gauss-Bonnet coupling is such
that it can be well approximated by a quadratic function
(linearizing it around an extremum for instance); hence,

fðΦÞ ¼ Φ2

2
: ð15Þ

As shown in Refs. [38,39], in this class of theories the KG
equation admits solutions composed by a constant scalar
around spacetimes satisfying GR equations. Furthermore, a
linear stability analysis showed that, for certain values of
the coupling constant η, GR solutions may be unstable.
To find the end point of this instability, one needs to solve
the equation of motion including the backreaction of the
scalar on Einstein’s equations. This eventually leads to
scalarized (or hairy) BHs or stars. For new detailed studies
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of the properties of rotating and nonrotating scalarized BHs
in EsGB we also refer the reader to Refs. [96–101].
Conversely, here we are interested in the effect on scalar

fluctuations due to the presence of a binary in the CLAP.
Hence, since both the box operator and RGB in Eq. (4)
depend on the perturbed BBH spacetime, we may expand
them in powers of the small BHs separation Z0,

□ ¼ □ð0Þ þ Z2
0□

ð1Þ þOðZ3
0Þ;

RGB ¼ Rð0Þ
GB þ Z2

0R
ð1Þ
GB þOðZ3

0Þ: ð16Þ

Decomposing the scalar in spherical harmonics as

Φðt; r; θ;φÞ ¼ 1

r

X
l;m

ψlmðt; rÞYlmðθ;φÞ; ð17Þ

the KG equation is nonseparable because it couples differ-
ent components of the index l. A general method to
separate such equations can be found in Refs. [102,103].
However, given the assumptions of the CLAP, we follow
a different procedure that takes into account the fact that
the equations are almost separable, as already shown in
Refs. [71,104]. The mathematical details of such a method
are given in Appendix.
Let us summarize here only the most important

passages to arrive to the master equation that describes
scalar perturbations in EsGB, in the BBH spacetime.
The key point is that, for each spherical harmonics
index l, the KG equation becomes separable in the
limit Z0 → 0. Hence, we assume that the angular coef-
ficient of the scalar field contains a zeroth order term with
one fixed l, while the first order includes all the l0 ≠ l
contributions:

Φ ¼ ψlmðt; rÞYlmðθ;ϕÞ
r

þ Z2
0

X
l0≠l

ψl0mðt; rÞYl0mðθ;ϕÞ
r

:

ð18Þ

Thanks to this ansatz and to Eq. (16), for each2 l ≥ 1,
Eq. (14) reduces to a Schrödinger-like equation that
includes corrections in Z2

0,

∂2ψlm

∂t2 þ ∂2ψlm

∂r2 ðU0 þ Z2
0Ũ0Þ þ

∂ψlm

∂r ðU1 þ Z2
0Ũ1Þ

þ ψlm

��
W0 þ

η

4
W̃0

�
þ Z2

0

�
W1 þ

η

4
W̃1

��
¼ 0;

ð19Þ

where all the potentials are listed in Eq. (A9). Setting
η=M2 ¼ Z0=M ¼ 0 in Eq. (19), one gets the perturbations
describing scalar perturbations in a static Schwarzschild
spacetime [105]. Additionally, one may notice that the
scalar field fluctuations are independently affected by both
η and Z0. This means that there might be nontrivial effects
on the scalar quasinormal modes of oscillation of a BBH
even in pure GR (setting η ¼ 0 and Z0 ≠ 0). For such a
scenario, we refer the interested reader to Ref. [71]. In the
following we strictly focus on EsGB (hence η ≠ 0).

A. Boundary conditions

To find unstable modes, we start with a harmonic time
dependent scalar field,

ψlmðt; rÞ ¼ Ψðω; rÞe−iωt; ð20Þ
where we dropped the subscript lm in the right-hand side
(RHS). Substituting the ansatz (20) in Eq. (19), an unstable
mode is found when a bounded regular solution of the KG
equation

∂2Ψ
∂r2 ðU0 þ Z2

0Ũ0Þ þ
∂Ψ
∂r ðU1 þ Z2

0Ũ1Þ

þ Ψ
��

W0 þ
η

4
W̃0

�
þ Z2

0

�
W1 þ

η

4
W2

�
− ω2

�
¼ 0;

ð21Þ
with potentials in Eq. (A9), possesses a frequency that
satisfies

ω ¼ ωR þ iωI; with ωI > 0: ð22Þ
Being interested in the onset of the instability, without loss
of generality, we might look for solutions with purely
imaginary frequencies (ωR ¼ 0). The asymptotic behaviors
of Eq. (21) provide us with the proper boundary conditions
to be imposed. Especially, asking for regularity both at the
horizon and at spatial infinity, we get

Ψðr ∼ 2MÞ ¼ ðr − 2MÞ
2MωIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−2ðZ0=MÞ2qð1Þ
lm

p XN
n¼0

anðr − 2MÞn;

Ψðr ∼∞Þ ¼ e−rωI

rl
XN
n¼0

bnr−n; ð23Þ

where the coefficients an and bn have to be found
substituting Eq. (23) in Eq. (21) and solving it order by
order. For each configuration, the value of N has to be
increased until the boundary conditions (23) do not con-
verge to fixed values [102].

B. Isolated black hole scalar bound states

As a consistency check, we first integrate Eq. (21) for a
single static BH (Z0 ¼ 0), searching for static bound states,

2The monopolar l ¼ 0 perturbations are not affected by the Z2
0

corrections [see Eq. (A13)], and hence the l ¼ 0 modes are the
same as in the single BH case.
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as the ones found in [38,39]. This means that in the
following we seek only for solutions with

ω ¼ 0: ð24Þ

Considering the quadratic coupling function in Eq. (15), a
comparison with the results in Ref. [38] is straightforward.
In Fig. 1 we show different scalar bound states that
correspond to unstable solutions around Schwarzschild
BHs for the first three scalarized solutions, for l ¼ 0, 1,
2. Not all the values of η=M2 provide static scalar nontrivial
solutions. In fact, these bound states correspond only to a
specific set of η=M2. The corresponding values of the
coupling parameter are summarized in Table I. Comparing
to previous literature [38], we evaluate the static unstable
bound states also for l > 0. These solutions will serve as
benchmarks for the bound states solution in the BBH case,
as we shall see in the next paragraph.
Each entry in Table I corresponds to a parabola in a

ðη;MÞ plane. Nonlinear studies including the scalar
field backreaction on the spacetime geometry showed
how hairy BH solutions, end points of the tachyonic scalar
instability, belong only to an infinite set of narrow bands in
the ðη;MÞ plane [38]. The values in Table I, computed
through a linear analysis, coincide only with one of the two
ends of each band.

C. Binary black hole spontaneous scalarization

Let us turn now to the case of two BHs in a binary.
Hence, we solve Eq. (21) for Z0 ≠ 0. As is clear from the

coefficients in Eq. (A13), scalar monopolar perturbations
vanish when Z0 ≠ 0. Hence, the results obtained for
isolated BHs hold when l ¼ 0.
For l ≥ 1 instead, we compute how the specific values

of η=M2 shown in Table I vary as a function of the BHs
separation. Results are summarized in Fig. 2. Different
branches for the same l refer to different values of the
spherical harmonic index m. From Eq. (A13) we may
notice that each branch in Fig. 2 departs from the single

BH value (Z0 ¼ 0) to larger values of η=M2 if qðlmÞ
1 > 0,

qðlmÞ
2 < 0, and to smaller ones if qðlmÞ

1 < 0, qðlmÞ
2 > 0.

FIG. 1. Scalar profiles for different values of l, for the first
three scalarized solutions around an isolated static BH. Solid,
dashed, and dot-dashed lines correspond to zero, one, or two
nodes solution, respectively. The black lines (l ¼ 0) match with
previous literature results [38]. Because of spherical symmetry,
scalar perturbations of an isolated BH in EsGB are insensitive to
the specific values of m. Thus, each curve corresponds to a
specific, single value of l, regardless of the value of m.

TABLE I. Values of the coupling constant η corresponding to
the static scalar bound states solutions around isolated BHs. Each
value of η=M2 refers to a different curve in Fig. 1. The values for
l ¼ 0 agree with the literature [38].

ðη=M2ÞnlmZ0¼0

l n ¼ 0 n ¼ 1 n ¼ 2

0 2.902 19.50 50.93
1 8.282 29.82 65.84
2 16.30 42.97 83.82

FIG. 2. Existence lines for the coupling constant of EsGB
gravity, corresponding to static bound state solutions of Eq. (21),
as a function of the normalized geometrical BHs separation
(Z0=M). Each curve is labeled for different values of fn; l; mg.
In both panels, the solid lines correspond to zero node solutions
(n ¼ 0), the dashed lines to one node (n ¼ 1), and the dot-dashed
lines to two nodes (n ¼ 2). Results for negative values of m
coincide with their positive m counterpart, and therefore not
explicitly shown in the legend. All the different branches depart,
respectively, from each value shown in Table I, previously
evaluated for Z0 ¼ 0. Left panel: bound states associated with
l ¼ 1. Right panel: bound states associated with l ¼ 2.
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All the branches in Fig. 2 for which the value of η=M2

decreases when Z0 increases can be approximated by the
following fit

η

M2
≈
�

η

M2

�
nlm

Z0¼0

− anlm
�
Z0

M

�
3=2

; ð25Þ

accurate within 1% for 0 ≤ Z0=M ≤ 0.4. In the above fit, the
first term on the RHS corresponds to each specific entry in
Table I and anlm is a constant that depends on the number of
nodes and on the angular indices. As an example, some of its
values are a011 ¼ 8.74, a022 ¼ 31.64, etc.
Finally, given the assumptions made to build the binary

spacetime in Sec. III, we stress that the results summarized
in Fig. 2, obtained for stationary backgrounds, have to be
intended only as an indication of what happens to scalar
fields in BBH geometries, even when the BHs are left free
to collide.

V. CONCLUSIONS

As depicted in Fig. 2, BBH spacetimes in EsGB might
suffer field instabilities. These results indicate that this
process can happen before the final object is formed.
Specifically, we showed that asymmetric configurations
describing a BBH can scalarize due to different perturbation
modes. Notably, fixing a value of l > 0, this unstable
mechanism can be enhanced by BBH spacetimes, for smaller
values of the coupling constant compare to the correspond-
ing scalarization threshold value of the (final) isolated BH.
Nonetheless, in a realistic scenario the effect of the

velocity of the colliding BHs might change the picture just
described. Furthermore, the assumption that the BHs in the
initial slice are simple Schwarzschild BHs might fail. In
fact, each component of the binary might have already
individually scalarized because of the l ¼ 0 modes shown
in Table I that appear for lower values of η=M2 with respect
to modes with l ≥ 1. However, our findings are not
completely ruled out, since spherically symmetric scalarized
BHs exist only for specific bands3 that depend on the value
η=M2. However, we recognize that the observation of the
binary instability, described by the results in Fig. 2, would
require some undesirable ad hoc fine-tuning of the param-
eters. To conclude, the above results remark once more the
fundamental role that the strong field regime possesses
during BH collisions and coalescences: in order to perform
consistent tests of alternative theories, we need waveforms
that properly account for backreacting effects when high

spacetime curvatures are involved. Again, this work is a first
step toward the study of the GWs produced by merging BHs
in EsGB through the CLAP formalism.
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APPENDIX: SEPARATING AN ALMOST
SEPARABLE KG EQUATION

In this section we show how to separate the KG Eq. (14) in
EsGB, taking into account that the spacetime is only weakly
asymmetric once the CLAP is employed. This is due to the
perturbative nature of the CLAP that, ensuring small initial
separations between the BHs, allows us to consider the
binary as a single perturbed object, where deviations from
spherical symmetry are small by construction.
Let us start with

□Φ ¼ −
η

4
ΦRGB; ðA1Þ

and split both the box operator andRGB in powers of the BH
separation Z0, as shown in Eq. (16). Hence, up to leading
order in the initial BH separation, Eq. (A1) takes the form

ð□ð0Þ þ Z2
0□

ð1ÞÞΦ ¼ −
η

4
ðRð0Þ

GB þ Z2
0R

ð1Þ
GBÞΦ; ðA2Þ

where each contribution on the RHS can be computed
through the BBH spacetime in Eq. (9),

Rð0Þ
GB ¼ 48M2

r6
;

Rð1Þ
GB ¼ −

αðθÞ
Mr6

�
r

�
rð2M − rÞ d

2g
dr2

þ ðr − 5MÞ dg
dr

�

þ 3gð4M − rÞ
�
; ðA3Þ

with αðθÞ ¼ 1þ 3 cosð2θÞ.

3As an example, let us assume that a binary is composed by
two Schwarzschild BHs of mass MBH each and that
η=M2

BH > 19.50. In this case none of the two initial BHs can
be scalarized due to monopolar instabilities, because of being out
of a scalarization band [38]. However, for an initial BH distance
of Z0=ð2MBHÞ ∼ 0.5, the fn;l; mg ¼ f0; 1;�1g mode of the
binary grows unboundedly if, for instance, η=M2

BH ∼ 20.
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Given the symmetry of the problem, a scalar field
expansion in the scalar spherical harmonics base—as in
Eq. (17)4—will eventually lead to an infinite-dimensional
system of equations for ψlm. Specifically, each equation for
a given ψlm will be coupled to other equations in ψl�2m. A
solution of such a system converges exponentially in l and
can be found making use of the orthogonality of the
spherical harmonics and integrating over the solid angle
(see, for instance, Ref. [102] for an overview on this
method and Ref. [103] as one of its recent applications).
In this work instead, we use a similar, but different

approach that relies on the CLAP of BBHs. Notably, this
method that perturbatively separates nonseparable equa-
tions is inspired by the work developed in Ref. [104]. The
procedure goes as follows. Since Schwarzschild’s space-
time is spherically symmetric, the spherical harmonics

are eigenfunctions of the KG operator on gð0Þμν (that is the
background spherical metric obtained when Z0=M ¼ 0).
This means that the zeroth order problem is separable using
spherical harmonics and each of its solutions contains only

one definite value of the index l. The first order KG

operator (□ð1Þ) instead, together with Rð1Þ
GB, corresponds to

the nonseparable part of the equation, and therefore, it
couples harmonics with different l’s. Hence, for a single
value of l, we prescribe a new ansatz for the scalar field in
which the angular coefficients of the field are given by a
zeroth order (that contains only one specific value of l
because of the separability of the spherical background)
plus perturbative corrections in the BH separation that
reasonably appears at leading Z2

0 order, and that contains all
the possible l0 ≠ l,

Φ ¼ ψlmðt; rÞYlmðθ;ϕÞ
r

þ Z2
0

X
l0≠l

ψl0mðt; rÞYl0mðθ;ϕÞ
r

:

ðA4Þ

Employing the ansatz in Eq. (A4) inside Eq. (A2), we
find [dropping the ðθ;ϕÞ dependence in the spherical
harmonics]

□ð0Þ
�
ψlmYlm

r

�
þ Z2

0□
ð1Þ
�
ψlmYlm

r

�
þ Z2

0

X
l0≠l

□ð0Þ
�
ψl0mYl0m

r

�

¼ −
η

4

�
ψlmYlm

r
Rð0Þ

GB þ Z2
0

ψlmYlm

r
Rð1Þ

GB þ Z2
0

X
l0≠l

ψl0mYl0m

r
Rð0Þ

GB

�
: ðA5Þ

Now, to get rid of all the l0 terms, and to obtain a radial decoupled equation, we project Eq. (A5) onto ðYlmÞ�, bearing in
mind that the terms containing Yl0m with l0 ≠ l vanish, because the spherical harmonics are eigenfunctions of □ð0Þ. As a
result, the only remaining OðZ2

0Þ term on the left-hand side (LHS) of Eq. (A5) can be written explicitly as

□
ð1Þ
�
ψlmYlmðθ;ϕÞ

r

�
¼ −

∂Ylm

∂θ
3g sinð2θÞ
8M2r3

ψlm þ Ylm

�
−rð−r2fdg=drþ 4MgÞ ∂ψlm

∂r − 2r3fg
∂2ψlm

∂r2

þ ð−r2fdg=drþ 2gðlðlþ 1Þrþ 2MÞÞψlm

�
αðθÞ

16M2r4
; ðA6Þ

and we remind the reader that f ¼ 1–2M=r.
As expected, the projection on ðYlmÞ� of the Oð0Þ term

on the LHS in Eq. (A5) provides the standard form of the
KG equation in Schwarzschild’s spacetime,

−
1

rf

�∂2ψlm

∂t2 − f2
∂2ψlm

∂r2 − f
df
dr

∂ψlm

∂r
þ f

lðlþ 1Þrþ 2M
r3

ψlm

�
: ðA7Þ

Finally, projecting also the RHS of Eq. (A5) onto ðYlmÞ�,
integrating over the solid angle, and gathering all the
nonvanishing terms, we obtain the final master equation:
a decoupled equation for the scalar field perturbations in
EsGB on a BBH spacetime treated in the CLAP,

∂2ψlm

∂t2 þ ∂2ψlm

∂r2 ðU0 þ Z2
0Ũ0Þ þ

∂ψlm

∂r ðU1 þ Z2
0Ũ1Þ

þ ψlm

��
W0 þ

η

4
W̃0

�
þ Z2

0

�
W1 þ

η

4
W̃1

��
¼ 0;

ðA8Þ

with radial potentials given by

4We assume that the spherical harmonics base possesses aR
dΩðYlmÞ�Yl0m0 ¼ δll0δmm0 .
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U0ðrÞ ¼ −f2;

Ũ0ðrÞ ¼
ðr − 2MÞfqð1Þlmg

8M2r
;

U1ðrÞ ¼ −f
df
dr

;

Ũ1ðrÞ ¼ −
qð1Þlmð2M − rÞð4MgðrÞ − fr2dg=drÞ

16M2r3
;

W0ðrÞ ¼ f
lðlþ 1Þrþ 2M

r3
;

W̃0ðrÞ ¼
�
48M2ð2M − rÞ

r7

�
;

W1ðrÞ ¼
qð1Þlm

16M2r4
ðfr2ðr − 2MÞdg=dr

þ 2gð2M − rÞðlðlþ 1Þrþ 2MÞÞ

þ 3qð2Þlm
ðr − 2MÞg
4M2r3

; ðA9Þ

W̃1ðrÞ ¼ −
2Mqð1Þlmð2M − rÞ

r7

�
3ð4M − rÞΔ1

þ r

�
ðr − 5MÞ dΔ1

dr
þ ð2M − rÞr d

2Δ1

dr2

��
:

ðA10Þ

The coefficients in Eqs. (A9) are defined as

qð1Þlm ≡
Z

dΩðYlmÞ�YlmαðθÞ; ðA11Þ

qð2Þlm ≡
Z

dΩ sin θ cos θðYlmÞ� dY
lm

dθ
: ðA12Þ

Since

qð1Þ00 ¼ qð2Þ00 ¼ 0; ðA13Þ

the l ¼ 0 equation is not affected by theOðZ2
0Þ corrections.

Instead, for 0 < l ≤ 2 one gets

qð1Þ1−1 ¼ qð1Þ11 ¼ −
4

5
; qð1Þ10 ¼ 8

5
;

qð1Þ2−2 ¼ qð1Þ22 ¼ −
8

7
; qð1Þ2−1 ¼ qð1Þ21 ¼ 4

7
; qð1Þ20 ¼ 8

7
;

qð2Þ1−1 ¼ qð2Þ11 ¼ 1

5
; qð2Þ10 ¼ −

2

5
;

qð2Þ2−2 ¼ qð2Þ22 ¼ 2

7
; qð2Þ2−1 ¼ qð2Þ21 ¼ −

1

7
; qð2Þ20 ¼ −

2

7
:

ðA14Þ

As a remark on the ansatz in Eq. (A4), we remind the
reader that we did not assume any ansatz on the radial part
of the scalar field, but only on its angular dependence.
Furthermore, we restricted to excitations with a single value
of l, and we evaluated the corrections arising by the
asymmetric background. Perturbation mixing multiple
values of l’s simultaneously may lower even more the
threshold of instability. We leave this investigation for
future work.
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