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We present PhenomPNR, a frequency-domain phenomenological model of the gravitational-wave signal
from binary-black-hole mergers that is tuned to numerical relativity (NR) simulations of precessing
binaries. In many current waveform models, e.g., the “Phenom” and “EOBNR” families that have been used
extensively to analyse LIGO-Virgo GW observations, analytic approximations are used to add precession
effects to models of nonprecessing (aligned-spin) binaries, and it is only the aligned-spin models that are
fully tuned to NR results. In PhenomPNR we incorporate precessing-binary numerical relativity results in two
ways: (i) we produce the first numerical relativity-tuned model of the signal-based precession dynamics
through merger and ringdown, and (ii) we extend a previous aligned-spin model, PhenomD, to include the
effects of misaligned spins on the signal in the coprecessing frame. The numerical relativity calibration has
been performed on 40 simulations of binaries with mass ratios between 1∶1 and 1∶8, where the larger black
hole has a dimensionless spin magnitude of 0.4 or 0.8, and we choose five angles of spin misalignment with
the orbital angular momentum. PhenomPNR has a typical mismatch accuracy within 0.1% up to mass ratio
1∶4 and within 1% up to mass ratio 1∶8.

DOI: 10.1103/PhysRevD.104.124027

I. INTRODUCTION

Binary black-hole (BBH) mergers are the primary source
of gravitational waves observable with current ground-
based detectors [1,2]; of the 90 detections published by the
LIGO-Virgo Collaborations, 83 were confirmed as BBH
[3–8]. Measurements of each binary’s properties—the
black-hole (BH) masses and spins and the location of
the binary—rely in part on models of the signal predicted
by general relativity. Model development is an active
research area, with the aim that the measurement uncer-
tainties due to model errors, approximations, and incom-
plete physics are smaller than statistical errors arising from
the strength of the signal above the detector noise, or
parameter degeneracies. Models are informed by analytic
approximations for the inspiral of the two BHs and ring-
down of the final BH, and numerical relativity solutions of
Einstein’s equations for the late inspiral, merger, and

ringdown. One key physical effect is the precession of
the binary’s orbital plane due predominantly to spin-orbit
effects, but the two waveform families most commonly
used for LIGO-Virgo parameter estimates, “Phenom” [9–
20] and “EOBNR” [21–27], have not been tuned to
numerical relativity simulations of precessing binaries.
Instead, precession effects during the strongest part of the
signal have been estimated using simple approximations.
These were likely sufficient for observations to date, but,
given that they do not capture several physical features of
the merger signal (e.g., Ref. [28], plus other effects that we
describe in this paper) more accurate models will ulti-
mately be required.
Here, we present the first Phenom model where merger-

ringdown precession effects are explicitly tuned to numeri-
cal relativity simulations. We show that this model is, in
general, significantly more accurate than previous models,
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particularly for binaries with large mass ratios, high spins,
and a large spin misalignment.
A BBH system following noneccentric inspiral is defined

by theBHmasses,m1 andm2 (we choosem1 > m2), and the
BH spin-angular-momentum vectors S1 and S2. As is
standard, we choose the alternative parameterization
into total mass, M ¼ m1 þm2, symmetric mass ratio
η ¼ m1m2=M2, and the dimensionless spins χ i ¼ Si=m2

i ,
where jχ ij ∈ ½0; 1� respects the Kerr limit. It is also con-
venient to decompose the spins into their components
parallel and perpendicular to the direction of the
Newtonian orbital angular momentum, L̂N; i.e., the magni-

tudes of the spins parallel to LN are χki ¼ χ i · L̂N, and the

components that lie in the orbital plane are χ⊥i ¼ χ i − χki L̂N.
If the spins are parallel to the orbital angular momentum,

i.e., χ⊥i ¼ 0, then the orientation of the binary’s orbital
plane, and the directions of the spin and orbital angular
momenta, are all fixed. Waveforms from these aligned-
spin, or nonprecessing, binaries have been modeled with a
combination of post-Newtonian (PN) and effective-one-
body (EOB) results to describe the insipiral and numerical
relativity results to model the late inspiral, merger, and
ringdown, to produce Phenom and EOBNR waveform models
[9,10,15,16,19–21,24]. Surrogate models of nonprecessing
systems have also been constructed purely from numerical
relativity waveforms and also from PN-numerical relativity
hybrids [29,30].
When χ⊥i ≠ 0, the binary precesses. In most cases

the binary undergoes simple precession [31,32], where
the orbital angular momentum and spins precess around the
binary’s total angular momentum, which points in an
approximately fixed direction. Precession modulates the
amplitude and phase of the gravitational-wave signal, and
leads to a significantly more complicated signal than in
nonprecessing configurations. However, if we transform to
a noninertial coprecessing frame that tracks the precession,
then the signal recovers, to a good approximation, the
simple form of a nonprecessing signal [33], and indeed,
during the inspiral, the coprecessing-frame waveform is
approximately the signal from the corresponding non-
precessing binary defined by setting χ⊥i ¼ 0 [34].
This observation has been used to construct current

Phenom and EOBNR waveform models by using a non-
precessing model as a proxy for the precessing-binary
waveform in the coprecessing frame and then transforming
this to the inertial frame via an independent model for the
precession dynamics [11,13,14,17,22,23,26]. Although
some numerical relativity information from precessing-
binary simulations has been used to model the final state
[26], the precession effects have not been tuned to
numerical relativity waveforms and neither have in-
plane-spin contributions to the coprecessing-frame signal.
In addition to these models, surrogate models of precessing
binaries have been constructed using numerical relativity

waveforms that cover roughly 20 orbits before merger
[29,35,36]. This puts an explicit limit on their applicability
to comparatively short signals, i.e., from high-mass binaries
with near-equal masses.
The current work extends the Phenom approach, the

development of which has proceeded in order of the most
measurable physical effects. The most clearly measurable
binary parameters are the chirp mass,M ¼ Mη3=5, for low-
mass binaries where the detectable signal is dominated by
the inspiral and the total mass M for high-mass binaries
where most of the detectable signal power is in the late
inspiral, merger, and ringdown. Hence the first Phenom

model considered nonspinning binaries [37,38]. The next
most significant effect is due to a mass-weighted combi-
nation of the aligned-spin components, and the next set of
Phenom models treated aligned-spin systems and were
tuned to numerical relativity simulations that were para-
metrized by a single effective spin [9,10,39,40]. All of
these models considered only the dominant contribution
to the signal, which is from the (l ¼ 2, jmj ¼ 2) multipole
moments. Subdominant multipoles become stronger as
the mass ratio is increased, and these were first included
through an approximate mapping of the dominant multi-
pole [12] and more recently with full tuning to numerical
relativity simulations [16]. Individual black-hole spins are
unlikely to be measurable for detections with a signal-to-
noise ratio (SNR) of less than ∼100 [41], but a handful of
such detections are likely when the LIGO and Virgo
detectors reach design sensitivity in the next few years
[42] The latest aligned-spin Phenom models include
numerical relativity tuning to unequal-spin numerical
relativity simulations [15]. The Phenom approach has
been predominantly used to produce frequency-domain
models but has recently also been applied in the time
domain [19,20].
Precession effects are typically difficult to measure (as

discussed in detail in Ref. [43] and illustrated with
parameter-estimation examples in Ref. [44,45]) and indeed
have not yet been definitively observed in any single
observation [3,7]. The dominant precession effects follow
the phenomenology of single-spin systems, and thus, the
first precessing Phenom models [11] used a single-spin PN
model to estimate the effects of precession. More recent
models have included two-spin effects [13,14,17,46], but
once again, individual spin measurements will require
SNRs of at least 100, and in most cases likely much
higher [14]. As such, the first priority for a numerical
relativity-tuned precession model is the single-spin param-
eter space. Our new PhenomPNR model is tuned to numerical
relativity simulations that cover mass ratios from equal
mass to 1∶8 (η ∼ 0.1). The larger black hole has a spin
magnitude up to χ1 ¼ 0.8, and, as motivated by the
preceding discussion, the smaller black hole has no spin.
This is the widest systematic coverage of the mass-ratio-
spin parameter space to date [47].
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A. Model approximations and
motivation for a new model

Previous Phenom and EOBNR models make use of several
approximations. In this section, we discuss each of these
and illustrate why we remove some of them in our new
model and the effect this has on the waveforms.
One set of approximations applies to the waveforms in

the coprecessing frame.
First, as described above, during the inspiral the copre-

cessing-frame waveform is approximated by an equivalent
nonprecessing-binary waveform, hNP. In the most recent
EOBNR model, SEOBNRv4PHM [26] the EOB equations of
motion are solved for the full precessing system from a
chosen starting frequency, and then, the approximate
coprecessing-frame waveform is constructed by now solv-
ing the nonprecessing PN equations of motion, but with

time-varying χki ðtÞ taken from the earlier precessing-binary
solution. In the Phenom models, hNP is defined by the
aligned-spin components of the initial spin configuration,

so χki are constant. In both families of models, χ⊥i con-
tributions to the waveform multipole moment amplitudes
are ignored.
Second, the mapping to an equivalent aligned-spin

system breaks down at merger. This was already noted
in the original presentation of the aligned-spin mapping
[34] and is also discussed in Refs. [28,48]. One reason is
that the spin of the final black hole (and therefore the
ringdown frequency and damping time) will be different to
that in the nonprecessing case; to first approximation, we
must include the contribution from the in-plane spins, χ⊥i ,
to the spin of the final BH. In the Phenom models, the
merger-ringdown part of the aligned-spin waveform is
modified by using this in-plane spin contribution to
estimate a modified final spin and hence complex ringdown
frequency [11,13,14,17]; the recent PhenomXP model [17]
provides a number of optional methods to achieve this. In
the EOBNR models, the inspiral construction ends at the
light ring [24], and ringdown modes are attached. In the
most recent SEOBNRv4PHM model [26], these are based on
an numerical relativity-tuned final spin fit [49].
In PhenomPNR, we retain the mapping to an equivalent

aligned-spin system during the early inspiral, but we
introduce the key improvement that in the late inspiral,
merger, and ringdown we explicitly tune the model to
numerical relativity waveforms in the coprecessing frame.
Rather than model the final mass and spin and use those to
estimate the complex ringdown frequency via perturbation
theory, we also explicitly model the ringdown frequencies
from numerical relativity waveforms in the coprecessing
frame. As discussed in Sec. IX, this is necessary because
the ringdown frequency in the coprecessing frame is shifted
with respect to that in the inertial frame.
This issue is illustrated in Fig. 1. The top panel shows the

frequency-domain coprecessing-frame phase derivative

dϕ22=df for one of our numerical relativity simulations,
with mass ratio q ¼ m1=m2 ¼ 4, large-black-hole spin
χ1 ¼ 0.8, and spin misaligned with the orbital angular
momentum by θLS ¼ 60°. The figure also shows the results
from the earlier PhenomPv3 model. In the inspiral, we see a
clear difference between the numerical relativity and
PhenomPv3 results that is largest at low frequencies. The
middle panel shows a second case; this time with a larger
misalignment angle of θLS ¼ 150°. The location of the
minimum can be approximately identified as the ringdown
frequency, and we see that there is a clear shift between the
ringdown frequency in the inertial frame (as used in
PhenomPv3) and the effective ringdown frequency of the
numerical relativity waveform in the coprecessing frame.
This shift is also apparent in the bottom panel, which shows
the amplitude A22 in the coprecessing frame. PhenomPNR

fixes this problem; see, in particular, Sec. V.
A second set of assumptions apply to the precession.

FIG. 1. Frequency domain comparison of numerical relativity
and model waveforms in the coprecessing frame. Top: phase
derivative for the ðq; χ1; θLSÞ ¼ ð4; 0.8; 60°Þ configuration,
which illustrates the variation in the inspiral phase. Middle
and bottom: phase derivative and amplitude for the ðq; χ1; θLSÞ ¼
ð4; 0.8; 150°Þ configuration, which demonstrates the shift in
effective ringdown frequency.
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In previous models the inertial-frame waveform was
constructed via a time- or frequency-dependent rotation of
hNP, using the precession angles relative to the Newtonian
orbital angular momentum, i.e., the normal to the binary’s
orbital plane. This produces the correct inertial-frame
multipoles only in the quadrupole approximation. In order
to tune the precession angles to numerical relativity results,
we need a consistent choice of a coprecessing frame that
can be applied both to PN and numerical relativity data. For
PhenomPNR, we choose the quadrupole-aligned (QA) frame
[33,50,51], which identifies the direction of maximum GW
emission. In time-domain waveforms, the direction of
maximum emission differs depending on whether it was
defined using GW strain, h, the Bondi news function, _h, or
the Weyl scalar, Ψ4 ¼ ḧ; and all three differ from the
direction of the orbital angular momentum L [33,52–54].
(The direction of L also depends on whether we use a
Newtonian or post-Newtonian estimate.) However, we
perform our modeling in the frequency domain, where
the QA direction is independent of the choice of h or Ψ4.
We explain this further in Sec. III, where we also describe
in detail how we calculate the QA frame from the l ¼ 2
multipoles of numerical relativity simulations, and in
Sec. VI B we discuss the QA frame for PN waveforms. We
expect that the latter results would also allow the construc-
tion of more physically accurate EOBNR waveforms.
In most previous Phenom models, the precession angles

were estimated entirely from PN theory. These angles will
not be valid through merger, but as a simple approximation,
they were used throughout the entire waveform. This
approximation was justified by the observation that the
PN angles behave smoothly to arbitrarily high frequencies,
and the model gives reasonable agreement to numerical
relativity waveforms [11,13,14,17]. However, in more
extreme parts of parameter space (high mass ratios and
large in-plane spins), the inaccuracy of this approximation
will become more serious. In EOBNR models, the inspiral
precession dynamics are provided from the solution of the
EOB equations of motion, and in the SEOBNRv4PHM model,
the precession angles are extended through merger and
ringdown using an approximation based on the quantitative
behavior of numerical relativity simulations. The time-
domain Phenom model, PhenomTPHM, employs a similar
approach [19].
Figure 2 shows the precession angles ðα; β; γÞ for a

configuration with ðq; χ; θLSÞ ¼ ð8; 0.8; 60°Þ. The figure
shows both the numerical relativity results and the multi-
scale analysis (MSA) angles [55] used in the PhenomPv3 and
PhenomXP models. We see that at high frequencies that
correspond to the merger and ringdown the MSA estimates
fail to capture the phenomenology of the numerical
relativity data. The angles α and γ both exhibit a “dip”
or “bump”, reminiscent of the dip in the phase derivative in
Fig. 1, which is absent in the MSA estimates. The
numerical relativity opening angle β drops to close to zero

at merger, as we might expect as the two-body inspiral
motion terminates and we are left with only a single
perturbed black hole. This feature cannot be captured by
the MSA expressions, which simply extend the inspiral
behavior to higher frequencies. We also find that the
numerical relativity β does not relax to zero but to some
nonzero value, which, if it does decay, typically does so
very slowly. (There have been approximate estimates
of this asymptotic β decay using a toy ringdown

FIG. 2. Comparison of the post-Newtonian expressions for
each of the precession angles (blue dotted line) with the
numerical relativity data (black solid line) for the case with
ðq; χ; θLSÞ ¼ ð8; 0.8; 60°Þ. The gray vertical lines indicate the
ISCO frequency (Mf ¼ 0.0287) of the final black hole, which
has final spin magnitude χf ¼ 0.799 and final mass
Mf ¼ 0.981M.
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model [19,56,57], which we discuss and clarify in Sec. IX.)
These features must also be modeled.
Finally, we see that at lower frequencies, the MSA α and

γ agree well with the numerical relativity results. However,
although we expect the MSA and numerical relativity β to
also agree at sufficiently low frequencies, they do not agree
over the frequency range of our numerical relativity data
and would likely require numerical relativity simulations
that are many times longer. This discrepancy is due to the
modeling inconsistency discussed earlier: the two estimates
are of different quantities. The MSA β is the orientation of
the orbital plane, while the numerical relativity β is the
orientation of the QA direction of the signal, and these are
not, in general, the same. We show how to significantly
reduce this discrepancy in Sec. VI B. (The high-frequency
oscillations in the numerical relativity β are due to a
combination of numerical noise and Fourier-transform
artifacts. All of our numerical relativity β results show
similar oscillations, with varying amplitude and frequency,
but in these single-spin cases we model only a smooth trend
through the data, which we expect to represent their
relevant physical features.)
The bulk of the results in this paper present a merger-

ringdown model for the coprecessing-frame waveforms
(PhenomDCP) and a separate model for the precession angles
(PhenomAngles). Both modes are tuned to our numerical
relativity data and capture all of the features described here.
We then produce a complete inspiral-merger-ringdown
model (PhenomPNR) by connecting our merger-ringdown
models to inspiral results.
There are two remaining assumptions that were made in

previous models, which we retain in our new model.
Nonprecessing-binary waveforms satisfy a symmetry

between the m > 0 and m < 0 multipoles that is broken
in precessing binaries [28,58,59]. The “twisting-up” con-
struction used by the Phenom and EOBNR models neglects
these asymmetries. Although asymmetries may need to be
included in models to allow accurate spin measurements in
some GW observations [59], in the current PhenomPNR

model, we retain the approximation that the asymmetries
in the multipole moments are zero.
Current Phenom and EOBNR models also assume that the

direction of the total angular momentum remains fixed.
Although the total angular momentum direction changes
little through inspiral, there is some change due to the loss
of angular momentum through GWemission. In PhenomPNR

we explicitly transform the numerical relativity waveforms
to a frame where Ĵ remains fixed along the z axis and use
those waveforms as the basis of the model. In this sense, the
fixed-Ĵ approximation is retained in PhenomPNR and remains
valid over the parameter space used to construct the model,
which is further discussed in Sec. XI E.
This paper is organized as follows. In Sec. II we present

our numerical relativity waveforms. In Sec. III we process
the raw numerical relativity waveforms to produce the

frequency-domain coprecessing-frame waveforms and pre-
cession angles that we wish to model. Since we limit the
numerical relativity tuning to single-spin binaries, in
Sec. IV we specify our procedure to map generic two-spin
systems to approximately equivalent single-spin configu-
rations. With all of these pieces in place, in Sec. V we
present our coprecessing-frame model, PhenomDCP, in
Sec. VI our treatment of the precession angles during
inspiral, and in Sec. VII our merger-ringdown angle model,
PhenomAngles. All of these ingredients are put together into a
full inspiral-merger-ringdown model in Sec. VIII. Having
modeled precessing-binary waveforms, we discuss their
physical features in more detail in Sec. IX and evaluate
their accuracy in Sec. XI.
In all of the discussion of numerical relativity and PN

results, and in all modeling work, we use geometric units,
G ¼ c ¼ 1. We also choose M ¼ 1, although we retain
“M” in plot labels, to make clear that we are dealing with
dimensionless quantities. Physical masses are only be used
in Sec. XI, where we study the performance of models with
respect to a specific detector noise curve. All angles
displayed in figures throughout the paper are given in
radians unless otherwise specified. All of the earlier
waveform models used to generate results in this work
were called from the software package LALSuite [60]. The
specific model names are IMRPhenomD for PhenomD [9,10],
IMRPhenomXAS for PhenomXAS [15], IMRPhenomPv3 for
PhenomPv3 [13], IMRPhenomXP for PhenomXP [17],
SEOBNRv4P for SEOBNRv4P [26], and NRSUR7DQ4 for
NRSUR7DQ4 [36].

II. NUMERICAL RELATIVITY WAVEFORMS

In producing the first precessing-binary model tuned to
numerical relativity waveforms, we wish to capture the
dominant precession effects first. This can be achieved with
single-spin systems; i.e., only one of the black holes is
spinning, since two-spin effects typically produce only
small modulations of the underlying simple precession
[61,62]. We therefore consider single-spin systems that
obey simple precession, and the numerical relativity cata-
logue used to tune the model contains single-spin configu-
rations where the spin is placed on the larger black hole and
neglects two-spin configurations and the impact of the
azimuthal spin angle. This reduces the binary parameter
space from seven dimensions (mass ratio, plus the vector
components of each black-hole spin), to three dimensions:
the symmetric mass ratio, η, the magnitude of the spin on
the larger black hole, χ ≡ χ1, and the angle between the
spin and the orbital angular momentum of the system, θLS.
It is important to note that these are all defined as part of the
initial data of the simulations, since θLS undergoes small
oscillations about some mean value during the inspiral.
We wish our model to extend to the highest mass ratios

feasible with current numerical relativity simulations. The
earlier tuned nonprecessing model PhenomD [9,10] was
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based on a catalogue containing systems up to mass ratio
q ¼ m1=m2 ¼ 18, or η ∼ 0.05. numerical relativity simu-
lations at q ¼ 18 are extremely computationally expensive,
and since the mass ratio of observations is heavily skewed
towards comparable masses [3,7], for the current model, we
restrict to q ¼ 8. We note, however, that one recent GW
observation, GW190814, was measured with a mass ratio
of q ∼ 10 [63], and therefore, extending our model to
higher mass ratios is an urgent requirement for future work.
In order to confidently capture the dependence of

precession effects on mass ratio, we produced simulations
at four different mass ratios, approximately equally spaced
in symmetric mass ratio η. Similarly, we chose four equally
spaced spin magnitudes χ. We already have aligned and
antialigned waveforms in this range of mass ratios and spin
magnitudes, and for nonaligned-spin configurations we
chose five equally spaced values for the spin angle, θLS,
excluding 0° and 180°.
The model is tuned to a subset of this catalogue of 80

waveforms, which was produced using the BAM code [64].
The complete catalogue contains simulations with
q∈ ½1;2;4;8�, (or η ∈ ½0.1; 0.16; 0.22; 0.25�), χ ∈ ½0.2; 0.4;
0.6; 0.8�, and θLSð°Þ ∈ ½30; 60; 90; 120; 150�. For tuning,
we used the 40 waveforms with χ ¼ 0.4 and 0.8. We expect
the dependence of the precession effects on spin magnitude
to be approximately linear, so this is not anticipated to
significantly degrade the accuracy of the tuned part of the
model. This is borne out in validation of the model against
the remaining waveforms in the catalogue, plus 27 wave-
forms from the SXS and Maya catalogues [65–68].
Since our goal is a frequency-domain model, we would

like numerical relativity waveforms that all cover a similar
frequency range. The majority of the waveforms start at a
frequency of MΩ ¼ 0.023. However, some of the higher
mass ratio configurations have a higher starting frequency
in order to ensure the binary merged in a reasonable time to
allow sufficient accuracy. The highest starting frequencies
occur for configurations with a large spin magnitude where
the spin is closest to being aligned with the orbital angular
momentum, due to the hang-up effect [69]. The highest
starting frequency is MΩ ¼ 0.032, for the ðq; χ; θLSÞ ¼
ð8; 0.8; 30°Þ configuration. We find that these starting
frequencies are, in general, sufficient to match smoothly
to PN results. We see in Sec. XI D that there are a few cases
for which we would prefer numerical relativity waveforms
with lower starting frequencies, but these are actually
configurations with large spins and large opening angles,
e.g., ðq; χ; θLSÞ ¼ ð8; 0.8; 150°Þ. Having identified specific
issues with these more challenging regions of parameter
space, we will be able to focus on them in detail in future
iterations of our model.
More details on the production of the numerical relativity

catalogue, and error analysis of the waveforms, will be
given in Ref. [47]. The greatest sources of error in these
numerical waveforms are the finite resolution at which we

performed the simulations and the finite distance from the
source at which we extracted the GW data. We consider the
mismatch (as defined in Sec. XI A) to be the most useful
uncertainty estimate for our purposes. Using separate
convergence analyses (consistent with fourth order con-
vergence with respect to resolution and a 1=r falloff with
respect to extraction radius) allows us to make a
conservative estimate of the mismatch uncertainty between
the waveforms in this numerical relativity catalogue and the
theoretical “analytical” solution ofOð10−3Þ. For the shorter
waveforms in the catalogue, particularly the q ¼ 1 and q ¼
2 cases, the mismatch was found to be Oð10−4Þ. As we see
when validating against independent NR datasets (e.g.,
those from the SXS catalogue, where the finite-extraction-
radius error is minimal), the errors in our model are often an
order of magnitude lower than our upper bound, and where
they are comparable or higher, the accuracy limits due to
the modeling procedure are likely the dominant source
of error.
For each numerical relativity simulation, spin weight −2

spherical harmonic multipole moment data are stored for
the radiative Weyl scalar,

ψlmðtÞ ¼
Z
Ω
rΨ4ðt; r; θ;ϕÞ−2Y�

lmðθ;ϕÞ dΩ; ð1Þ

where � denotes complex conjugation. The ψlm depend on
the choice of decomposition frame, and we provide the
details of our frame choice in Sec. III. Each ψlm time series
contains multipole moment data for inspiral, merger, and
ringdown.
In addition, spurious (“junk”) radiation, due to imperfect

initial data [70], is windowed away, using a window
function that increases from zero to one over the duration
of three gravitational wavelengths. It is found that when
windowing over more than two wavelengths the choice of
(smooth) window function has no significant effect on our
modeling results. For simplicity, a standard Hann window
is used [71]. The window starts at the first peak in the real
part of ψ22 such that the following peak is less than or equal
to the largest distance between peaks in the time series. This
most often results in less than 200M of contaminated
inspiral data being tapered away. The window is applied
equally to the real and imaginary parts of Ψ4 for all
multipoles. Similarly, post-ringdown data are windowed
such that the Hann window turns off to the right between
the point where the exponential decay drops below the
noise floor, as defined by fitting a constant value to the very
end of the time series. The time domain data are also zero
padded to the right such that the frequency domain step
size, in geometric units, is less than 5 × 10−4.
The result of the inspiral and post-ringdown windows is

the reduction of frequency-domain power that is broadband
and unphysical. The result of zero padding is to enforce that
frequency-domain features are consistently resolved.
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III. WAVEFORM FRAMES, CONVENTIONS, AND
APPROXIMATIONS

We wish to model the dominant multipoles of the BBH
signal. The multipoles depend on the choice of reference
frame, and we attempt to choose a frame that simplifies the
modeling. In this section, we present the reference frame in
which we construct our model and several additional
simplifications that we make to the data.
If we have a set of spin-weighted spherical-harmonic

multipoles q1lm and rotate the coordinate system through
the Euler angles ðα; β; γÞ, then the multipoles in the new
frame, q2lm, are given by

q2lm ¼
Xl
m0¼−l

eim
0αdlm0mð−βÞeimγq1lm0 ; ð2Þ

where dlm0m are the Wigner d matrices [64,72].
We apply these rotations twice to our data.
First, we retain the approximation that has been used in

all Phenom and EOBNR models to date, that the direction of
the total angular momentum, Ĵ, is fixed. This convention
amounts to a minor modification of the numerical relativity
data, whose radiative JðtÞ varies by at most ∼6° from its
initial direction. To impose the fixed-Ĵ convention we need
to know JðtÞ at all times in the original simulation. At the
beginning of the simulation Jð0Þ ¼ JADM, which can be
calculated analytically from Bowen-York initial data [73].
The angular momentum flux can be calculated from the
multipole moments, e.g., Ref. [74], and integrating this
specifies the time evolution of JðtÞ. As a consistency check,
we compare J at the end of the simulation with the estimate
of the final black-hole’s spin calculated on the apparent
horizon [75] and find a disagreement of at most 5% in
magnitude and 3% in direction. With JðtÞ now in hand, we
use Eq. (2) to perform a time-dependent rotation to place
the signal in a frame of reference where ĴðtÞ ¼ ẑ at all
times. The impact of this frame convention is well below
the total error budget of the final PhenomPNR model and is
discussed in more detail in Sec. XI E.
Second, we make another time-dependent rotation into a

coprecessing frame. We choose the QA frame, which was
introduced in Ref. [33] and allows us to define a coprecess-
ing frame using the gravitational-wave signal, which is the
observable quantity we ultimately care about, rather than
the orbital dynamics of the two black holes. The QA
method was motivated by the observation that in the
quadrupole approximation, if the orbital plane lies in the
x-y plane, then the signal can be represented entirely by
the (l ¼ 2, jmj ¼ 2) multipoles. At any other orbital plane
orientation, some signal power will be distributed to the
jmj ¼ 1 and m ¼ 0 multipoles, therefore reducing the
amplitude of the (l ¼ 2, jmj ¼ 2) multipoles. It follows
that we can always identify the orientation of the orbital
plane by locating the direction with respect to which the

(l ¼ 2, jmj ¼ 2) multipoles are maximized. In a time-
dependent coprecessing frame where this always holds, we
can represent the entire signal using only the jmj ¼ 2
multipoles, and furthermore, precession modulations of the
signal amplitude and phase will be significantly reduced. In
general, i.e., beyond the quadrupole approximation, this
direction is only approximately equal to the normal to the
orbital plane or to a PN estimate of the direction of the
orbital angular momentum [33,53,54]. However, although
it cannot be directly related to the dynamics, it does provide
us with a convenient signal-based definition of a copre-
cessing frame that suppresses precession modulations.
In the following sections, we use the method described in

Appendix A to calculate the coprecessing frame [50,51].
We use the Euler angles α, β, and γ to describe the
orientation of this direction. Equations (A5)–(A7) define
the angles accordingly, and Fig. 3 illustrates their geometric
meaning.
One potential ambiguity with the QA frame is that

it differs depending on whether it is defined using the
gravitational-wave strain or its time derivatives, the Bondi
news _h or the Newman-Penrose scalar Ψ4. However, this
ambiguity does not exist in the frequency domain.
To see this, consider the multipoles of the gravitational-

wave strain, which can be written as

hlmðtÞ ¼ AlmðtÞe−imΦðtÞ: ð3Þ

Our numerical relativity data satisfy Ψ4 ¼ ḧ, and so we can
write

ψlmðtÞ ¼ A0
lmðtÞe−imΦ0ðtÞ; ð4Þ

where the new amplitude and phase are given by

FIG. 3. The Euler angles ðα; β; γÞ that make up the precession
angles that describe the transformation from the fixed-Ĵ frame
into a coprecessing frame. There are different choices for the
definition of V: the QA direction, the Newtonian orbital angular
momentum, and varying orders of the post-Newtonian orbital-
angular momentum. These directions are all approximately the
same, as discussed in the text.
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A0
lm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðÄ −m2 _Φ2AÞ2 þm2ð2 _Φ _AþΦ̈AÞ2

q
; ð5Þ

Φ0 ¼ Φþ 1

m
arctan

�
mð2 _Φ _AþΦ̈AÞ
Ä −m2 _Φ2A

�
; ð6Þ

where we have dropped the ðl; mÞ subscripts for
brevity. We see that the distribution of power between
the multipoles will, in general, be different for h and for Ψ4

in the time domain, and therefore, the QA angles ðα; β; γÞ
will differ.
By contrast, if we take a Fourier transform of the signal

then in the frequency domain we have

Ψ̃4ðωÞ ¼ F:T:½Ψ4ðtÞ� ¼ F:T:½ḧðtÞ� ¼ −ω2h̃ðωÞ; ð7Þ

where we are using the property of Fourier transforms that
if F:T:½gðtÞ� ¼ G̃ðωÞ, then F:T:½_gðtÞ� ¼ iωG̃ðωÞ, where ω
is the Fourier frequency. Since ω is an overall factor in front
of all of the multipoles at a given frequency, the direction
that maximixes both jh̃j2 and ω4jh̃j2 will be the same. The
QA precession angles will therefore be the same for h and
for Ψ4. Given that the frequency-domain QA angles are
independent of the choice of Ψ4 or strain, we consider this
to be the natural regime in which to work.
Finally, we also retain the standard Phenom and EOBNR

approximation that the coprecessing multipole moments of
our model obey the same symmetry properties as their
nonprecessing counterparts. This means that we neglect to
model �m asymmetries in the multipole moments.
Although the asymmetric contributions are weak, there
is some evidence that they are necessary for nonbiassed
measurements of precessing systems [59], and they are
certainly necessary for measurements of out-of-plane recoil
of the binary [76]. We plan to model these contributions in
future work.
Given ψlm that have been transformed first to the fixed-Ĵ

and then QA frames in the time domain, we construct the
symmetric combination,

ψ sym
2;2 ¼ 1

2
ðψ2;2 þ ψ�

2;−2Þ: ð8Þ

In Equation (8), ψ sym
2;2 effects an average of the coprecess-

ing-frame mass quadrupoles consistent with Ref. [53]. We
then define a symmetrized (l ¼ 2, m ¼ −2) multipole
according to the nonprecessing symmetry relationship
ψ l;−m ¼ ð−1Þlψ�

lm, thus,

ψ sym
2;−2 ¼ ðψ sym

2;2 Þ�: ð9Þ

Together, ψ sym
2;−2 and ψ sym

2;2 encapsulate all waveform infor-
mation that will be retained at this stage. The QA-frame
l > 2 multipoles are discarded, along with the (l ¼ 2,

jmj < 2) multipoles; we leave higher multipoles to
future work.
The symmetrized multipoles are then rotated back into

the fixed-Ĵ frame. We then use these data as our starting
point to transform the multipoles into the frequency domain
and then transform to the QA frame as defined in the
frequency domain.
We separately produce a model (PhenomDCP) of the

coprecessing-frame multipole hCP2;2ðfÞ and another model
(PhenomAngles) of the rotation angles ½αðfÞ; βðfÞ; γðfÞ�.
Given these two models, our full intertial-frame model
(PhenomPNR) of the l ¼ 2multipoles, hJlmðf; λÞ, is given via
Eq. (2),

hJlmðf; λÞ ¼
Xl

m0¼−l

eim
0αdlm0mð−βÞeimγhCPlm0 ðf; λÞ: ð10Þ

IV. SPIN PARAMETRIZATION

Our goal is to model generic noneccentric black-hole
binaries with any physically reasonable values of M, η, χ 1,
and χ 2. Given NR waveforms that cover only the
single-spin parameter space, we require a mapping
between generic two-spin configurations and approxi-
mately equivalent configurations where χ 2 ¼ 0.
Reductions of the spin degrees of freedom have been used
in earlier studies and are common in waveform modeling,
e.g., Refs. [11,39,61,62,77–80]. In this section we sum-
marize the spin parametrization we have adopted. In
Sec. XI E, we demonstrate that the resulting model agrees
well with a subset of the two-spin precessing-binary NR
waveforms that are currently available.
Both our coprecessing-frame model PhenomDCP and angle

model PhenomAngles are tuned to the same 40 single-spin NR
waveforms described in Sec. II.
In the inspiral region PhenomD is based on PN expressions

and so parametrized by the masses m1 and m2 and

dimensionless spins χk1 and χk2 of the binary. The leading-

order PN spin contribution to the phase is χPN ¼ χeff −
38η
113

ðχk1 þ χk2Þ [77,78,81], in which the main contribution is
the symmetric spin combination [39,40],

χeff ¼
m1χ

k
1 þm2χ

k
2

m1 þm2

: ð11Þ

As such, the numerical relativity calibrated merger-ring-
down region of PhenomD is parametrized by the normalized
quantity,

χ̂ ¼
�
1 −

76η

113

�
−1
χPN: ð12Þ

The final black hole is parametrized by the final mass Mf

and spin af, which are estimated using independent fits to
the numerical relativity data [9].
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Although PhenomD is tuned to equal-spin or single-spin
numerical relativity waveforms, and is often described as a
single-spin model, the use of both spins in the underlying
inspiral PN phase expressions, and the two different single-
spin parametrizations χ̂ and af in the merger-ringdown
calibration, mean that the model also incorporates some
two-spin effects and indeed has been shown in some cases
to describe two-spin configurations to high accuracy [82].

PhenomDCP is constructed such that PhenomD is explicitly
recovered in the absence of precession. To this end,
PhenomD’s phenomenological parameters, which we generi-
cally refer to as λk, are modified according to

λ0k ¼ λk þ χ⊥νk; ð13Þ

where νk is the new phenomenological parameter to be
modeled across the intrinsic parameter space, and χ⊥
quantifies the in-plane spin component and as such gives
a measure of the degree of precession in the system. In
Equation (13) it is manifestly evident that when χ⊥ ¼ 0,
PhenomDCP reduces to PhenomD. The parameter χ⊥ is defined
as part of our treatment of the precession angles, which we
now describe.
As with previous precessing-binary Phenom models, we

also use PN results to describe the precession angles
through inspiral. References [13,83] provide complete
two-spin expressions and as such are parametrized by
the masses m1 and m2 and the dimensionless spins χ 1
and χ 2 of the binary.
Conversely, for the merger ringdown we construct

phenomenological expressions for the angles, parametrized
according to the parameters of the single-spin numerical
relativity simulations, ðη; χ; θLSÞ. Although the numerical
relativity-calibrated merger-ringdown angle model is a
model of single-spin systems, we can estimate the angles
for generic two-spin systems by making an approximate
mapping from two-spin systems to our single-spin angle
model. Our mapping is defined as follows.
We first map the spin components to the two effective

spin parameters used in previous Phenom models. For the
aligned-spin components, we use the combination χeff , as
defined in Eq. (11). Although χPN is the appropriate
aligned-spin parameter from PN theory, in precessing
systems χeff is a constant of the PN equations of motion
without radiation reaction [84] and can be seen to vary less
during inspiral than χPN.
Following Ref. [62], we also define the effective pre-

cession spin, χp, based on the leading-order PN precession
dynamics,

χp ¼
Sp
m2

1

; ð14Þ

where Sp ¼ 1
A1
maxðA1S⊥1 ; A2S⊥2 Þ, A1 ¼ 2þ 3m2=ð2m1Þ,

and A2 ¼ 2þ 3m1=ð2m2Þ. χeff parametrizes the spin

parallel to the orbital angular momentum, while χp para-
metrizes the spin perpendicular to the orbital angular
momentum, i.e., in the plane of the binary.
This definition was motivated by the observation that the

vectors S⊥
1 and S⊥

2 rotate in the plane at different rates, and
over the course of the inspiral, the magnitude of their vector
sum will oscillate between the sum and difference of their
two magnitudes. As shown in Ref. [62], the average value
of the in-plane spin contribution to the precession dynamics
can be approximated well by χp for mass ratios q≳ 1.5.
However, at mass ratios very close to one, the spins precess
in the plane at approximately the same rate and so add or
cancel in the same way at all times, and χp does not provide
an ideal single-spin mapping. (This is illustrated in more
detail in Ref. [80].) Extreme examples are the “superkick”
configurations [58], where the black holes are of equal

mass, and χk1 ¼ χk2 ¼ 0 and χ⊥1 ¼ −χ⊥2 . From the symmetry
of the configuration, the two spins rotate at the same rate at
all times. Therefore, the total in-plane spin is zero, and the
system does not precess. For a superkick configuration, χp
clearly does not provide the appropriate “single-spin”
mapping, which in this case should be to a system with
zero in-plane spin.
To deal with such cases, we also introduce χs, which is

constructed from the vector sum of the in-plane spin vectors
at a single reference time/frequency of the waveform. In our
construction, these are the in-plane components of the spin
vectors input to the waveform generation. We define χs as

χs ¼
jS⊥

1 þ S⊥
2 j

m2
1

: ð15Þ

Given a two-spin system defined by S1 and S2, we model
the precession angles through the merger and ringdown by
mapping to a corresponding single spin, which is placed on
the larger black hole. This single spin has magnitude χk in
the direction parallel to the orbital angular momentum and
χ⊥ in the orbital plane, where

χk ¼
Mχeff
m1

; ð16Þ

χ⊥ ¼
�
cos2ðθqÞχs þ sin2ðθqÞχp; 1 ≤ q ≤ 1.5

χp; q > 1.5;
ð17Þ

where θq ¼ ðq − 1Þπ. This combination of χs and χp given
for 1 ≤ q ≤ 1.5 is designed to provide a smooth transition
between the regimes where χs and χp are most appropriate.
The cutoff at q ¼ 1.5 was motivated in part by the work in
Ref. [62] and in part by studying the PN expressions for β
while employing various two-spin mappings. From study-
ing β for systems with q < 1.5 using both the PN
expressions and numerical relativity data, we observe that
the magnitude of β for such systems is consistently small.
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We therefore conclude that the precession effects are weak
for systems with q < 1.5, and so, since we mostly wish to
capture the correct qualitative behavior in this regime, we
expect that different choices for χs, or for the transition to
χp, would have an impact on GW measurements smaller
than the other approximations used in our model. The
mapping we employ here crucially captures the correct
behavior in the equal mass limit. (Alternative choices of
single-spin mapping are suggested in Refs. [79,80]; since
we use a single-spin mapping only to connect our single-
spin merger-ringdown model to a generic-spin inspiral
model, we expect that there are many reasonable choices
of mapping that would work equivalently well.) This
expression for χ⊥ is also used to parametrize the in-plane
spin effects in the coprecessing model, as described
in Eq. (13).
The total spin magnitude χ and the angle between the

orbital and spin angular momenta are given by

χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2k þ χ2⊥

q
; ð18Þ

cos θLS ¼
χk
χ
: ð19Þ

These reduce to the correct values for the cases to which we
tuned the model and also correctly reweight two-spin cases
and cases where the spin is predominantly on the smaller
black hole.
In the J-aligned frame, in which we have constructed our

model, the spin placed on the larger black hole has the
components

S0 ¼

0
BB@

cos αðχ⊥ cos β þ χk sin βÞ
sin αðχ⊥ cos β þ χk sin βÞ
−χ⊥ sin β þ χk cos β

1
CCA; ð20Þ

where α and β are the values of the precession angles
introduced in Sec. III, here evaluated at the reference
frequency.

V. COPRECESSING-FRAME MODEL

A key assumption of most precessing signal models has
been that the coprecessing multipole moments are largely
devoid of precession related effects [11,17,26,33]. This
assumption is motived by the PN description of inspiral,
where in-plane spin components do not impact the copre-
cessing waveforms’ phase and so can be disregarded
[32,85]. In this sense, most precessing signal models have
used unmodified nonprecesssing inspiral waveforms in the
coprecessing frame. Because the PN motivation is only
well suited for inspiral, for the waveforms’ immediate
premerger and merger, additional assumptions must be
made [28,34,48]. For example, all previous precessing-

binary Phenom models use an estimate of the precessing
system’s final mass and spin to compute the remnant BH’s
quasinormal mode (QNM) frequencies. In turn, these QNM
frequencies allow the frequency-domain waveforms’ fea-
tures at merger to be shifted such that they occur near
physically appropriate values. In Sec. I A we illustrated
deviations from the simplifying assumptions made in both
the inspiral and merger ringdown, and in this section, we
refine those assumptions by constructing a tuned copre-
cessing waveform model.
We introduce PhenomDCP, a model for the l ¼ jmj ¼ 2

coprecessing gravitational-wave multipole moment tuned
to numerical relativity. PhenomDCP is tuned to the 40 late
inspiral, merger, and ringdown numerical relativity simu-
lations discussed in Sec. II. By construction, PhenomDCP

reduces to PhenomD for nonprecessing BBH systems. We
could have instead adapted the more recent PhenomXAS

model [15], which is tuned also to two-spin systems, but
since two-spin effects are unlikely to be measurable in most
observations [14,41], and we have tuned to NR results only
from single-spin precessing systems, we leave two-spin
extensions of the coprecessing-frame model to future work.
We consider PhenomDCP to be a first step towards a high

accuracy coprecessing waveform model. Here, we briefly
review the structure of PhenomD and how this structure is
extended by PhenomDCP. Physical features of the numerical
relativity waveforms and PhenomDCP are provided and
discussed in detail in Sec. IX. Plots showing fits of model
parameters across the space of initial binary masses and
spins are provided in Appendix C.

A. Briefly on the structure of PhenomD

PhenomD [9,10] is a phenomenological model for the l ¼
jmj ¼ 2 frequency-domain multipole moments of gravita-
tional-waves from nonprecessing BBHs. The morphology
of each multipole moment is organized into three regimes:
(1) inspiral, where PN theory applies, (2) intermediate,
where the time domain evolution of the black holes is near
merger, and (3) merger ringdown, where the time domain
evolution corresponds to the final coalescence and for-
mation of a stationary remnant BH. PhenomD models each of
these regimes with different Ansätze. The coefficients of
each PhenomD ansatz are functions of the initial binary’s
masses and aligned spins. In PhenomDCP these coefficients
are modified to depend on information about the in-
plane spins.

PhenomD was calibrated to 19 numerical relativity wave-
forms between q¼ 1 and q ¼ 18. For unequal-mass sys-
tems, PhenomD is calibrated to χeff ∈ ½−0.85; 0.85�, and for
equal-mass systems is it calibrated to χeff ∈ ½−0.98; 0.98�.
In each numerical relativity simulation the black-hole spins
were either equal, χ1 ¼ χ2, or the smaller black hole was
nonspinning. The calibration waveforms were hybrids of
SEOBNRv2 (without numerical relativity tuning) and numeri-
cal relativity waveforms. Over the model’s calibration
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region, its typical deviations (mismatches) from numerical
relativity are less than 1% [10].

B. Construction of PhenomDCP

In the PhenomP models [11,13,14] PhenomD is used as an
approximate coprecessing-frame model, with the ringdown
frequency modified according to an estimate of the final
black hole’s spin. In PhenomDCP we instead use numerical
relativity waveforms to tune in-plane-spin deviations to a
subset of the model coefficients. Here, we briefly overview
the modifications of PhenomD that result in PhenomDCP.
As in previous models, PhenomDCP assumes that in the

coprecessing frame only the ðl; mÞ ¼ ð2;�2Þ multipole
moments are needed and that the m ¼ 2 and m ¼ −2 strain
moments are related by conjugation (Sec. III). Under these
assumptions, we only need model the amplitude and phase
of hCP22 ,

hCP22 ðf; λÞ ¼ Aðf; λÞe−iϕðf;λÞ: ð21Þ

In Equation (21), Aðf; λÞ is the frequency-domain ampli-
tude of hCP22 , ϕðf; λÞ is its phase, f ¼ ω=2π references a
frequency bin in geometric units, and λ encapsulates the
system’s initial parameters (Sec. IV),

λ ∈ ðη; χ; θLSÞ; ð22Þ

where, as described in Sec. IV, the total spin χ consists of
the aligned-spin component χeff and the in-plane compo-
nent χ⊥, and for our single-spin calibration wave-
forms, χ⊥ ¼ χp ¼ χ⊥1 .
Given the system’s initial parameters λ, PhenomDCP is

defined by a series of polynomials between λ and phe-
nomenological model parameters. PhenomDCP’s model
parameters are based directly on those of PhenomD

(Eq. (13). Specifically, PhenomDCP uses the PhenomD ampli-
tude and phase ansatz with model parameters offset by a
term proportional to χ⊥. Thus, when χ⊥ ¼ 0, PhenomDCP

reduces to PhenomD.
Precession effects are known to be most relevant in the

late inspiral and merger ringdown [11,14]. Thus PhenomDCP

is made to be equivalent to PhenomD in the early inspiral.
Modified versions of PhenomD are used for the waveforms’
late-inspiral phase, merger-ringdown phase, and merger-
ringdown amplitude,

ϕInt ¼
1

η

�
β0 þ β1f þ β02 lnðfÞ −

β3
3
f−3

�
; ð23Þ

ϕMR ¼ 1

η

�
α0 þ α1f − α2f−1 þ

4

3
α3f3=4

þ α04tan
−1
�
f − α5f

ðϕÞ
0

fðϕÞ1

��
; ð24Þ

AMR

A0

¼ γ1
γ3f

ðAÞ
1

ðf − fðAÞ0 Þ2 þ ðγ3fðAÞ1 Þ2
e
−
γ0
2
ðf−fðAÞ

0
Þ

γ3f
ðAÞ
1 : ð25Þ

In Equations (23) and (25) greek symbols denote model
parameters defined in Ref. [10], and of those, primed
symbols, such as α04, denote parameters modified for
PhenomDCP. Please note that these greek symbols should
not be confused with the Euler angles that define the

coprecessing frame. In Equation (24), fðϕÞ0 is an “effective
ringdown frequency” that is particular to the phase.

Similarly, fðϕÞ1 corresponds to the ringdown decay rate.

In the setting of PhenomD, fðϕÞ0 and fðϕÞ1 are simply referred

to as fRD and fdamp. In Equation (25), fðAÞ0 is an effective

ringdown frequency particular to the amplitude, and fðAÞ1 is
equivalent to the ringdown decay rate used in PhenomD,

fðAÞ1 ¼ fdamp: ð26Þ

Our notation for the effective ringdown frequencies
signals that we do not assume a direct relationship between
the ringdown frequencies predicted by BH perturbation
theory and those relevant for coprecessing waveforms. This
point is discussed further in Sec. IX.
In constructing PhenomDCP it was found that only a subset

of PhenomD’s parameters needed to be modified. These
parameters are those needed to address the disconnect
between PhenomD and the coprecessing frame numerical
relativity data discussed in Sec. II. The modified parameters
correspond to the late inspiral behavior of the frequency
domain phase,

β02 ¼ β2 þ χ⊥ζ2; ð27Þ

the merger-ringdown phase,

α04 ¼ α4 þ χ⊥ν4; ð28Þ

fðϕÞ0 ¼ f0 þ χ⊥ν5; ð29Þ

fðϕÞ1 ¼ f1 þ χ⊥ν6; ð30Þ

and the merger-ringdown amplitude,

γ02 ¼ γ2 þ χ⊥μ2; ð31Þ

fðAÞ0 ¼ f0 þ χ⊥μ4: ð32Þ

In Equations (23) and (26), all parameters not defined in
Equations (27) and (32) are defined in Ref. [14]. Similarly,
in Equations (27) and (32), fα4; f0; f1; γ2g are defined
in Ref. [14].
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The calibration of PhenomDCP has been performed by
fitting Equations (23) and (26) to each numerical relativity
waveform in our calibration set. This yields a collection of
calibration points for each model parameter. For each of
PhenomDCP’s model parameters, these points were modeled
as polynomials in λ using gmvpfit, which uses multidi-
mensional least-squares regression driven by a greedy
algorithm [86,87].
Figures 25 and 26 show the behavior of the PhenomDCP

model parameters as functions of the symmetric mass ratio
and θLS over the calibration space. The parameter surfaces
shown in Figs. 25 and 26 correspond to percent root-mean-
square errors of 3.42% in amplitude and 2.53% in phase.
Figure 4 compares evaluations of PhenomDCP to numerical

relativity and PhenomPv3 for the cases discussed in Sec. I A.
The top panel of Fig. 4 highlights the effect of modifying
the phase. The middle and bottom panels highlight the
effect of modifying the effective ringdown frequency and

damping times. We see that PhenomDCP successfully corrects
for the discrepancies in the modified-PhenomD coprecessing-
frame model used in PhenomPv3; see Sec. XI for quantitative
accuracy results.

VI. PRECESSION ANGLE MODEL: INSPIRAL

Our model of the precession angles consists of two parts.
The first describes the precession during inspiral and is
based on the MSA angles presented in Ref. [55] and used in
previous Phenom models [13,14,17]. The second part is a
phenomenological model of the precession angles during
merger and ringdown, tuned to theNRwaveforms presented
in Sec. II. We discuss the inspiral angles in this section, the
merger-ringdown angles in Sec. VII, and the combined
inspiral-merger-ringdown (IMR) angle model in Sec. VIII.

A. MSA angles

The precession angles in the inspiral regime are calcu-
lated using PN theory. In Refs. [55,83], the authors derived
a closed-form analytic approximation to the inspiral pre-
cession dynamics. To achieve this, a GW driven radiation-
reaction was introduced into an analytic solution to the
conservative precession dynamics [88] by exploiting the
hierarchy of timescales in the binary inspiral problem using
a mathematical technique called multiple scale analysis
[89,90]. The hierarchy of timescales are torb ≪ tprec ≪ trr,
where torb, tprec, and trr are the orbital, precession, and
radiation-reaction timescales, respectively. This model is a
function of all six spin components (two 3-vectors for each
BH) and incorporates spin-orbit and spin-spin effects to
leading order in the conservative dynamics and up to 3.5
PN order in the dissipative dynamics, ignoring spin-spin
terms. The MSA angles are shown for an example
configuration in Fig. 2. We can see that the agreement is
poor for all three angles at high frequencies, which
correspond to the merger and ringdown. At lower frequen-
cies, the PN and NR values for α and γ agree well, but for β
do not. As noted earlier, this is because the PN β describes
the inclination of the orbital plane with respect to Ĵ, which
differs from the inclination of the QA direction.
In the next section, we apply higher-order PN informa-

tion to improve the PN estimate of β.

B. Higher-order PN corrections to β

As discussed in Sec. III, in the quadrupole approxima-
tion the maximum GW signal power is emitted
perpendicular to the orbital plane, and therefore, the angles
that describe the precession dynamics of the orbital plane
are the same as those associated with the QA frame of the
GW signal [33,50,51]. This motivated the original QA
procedure presented in Ref. [33]. For the full signal, this
identification is only approximate [33,52–54], and we
expect the approximation to be less accurate at higher
frequencies. Our modeling approach is based on applying a

FIG. 4. Frequency domain comparison of numerical relativity
and model waveforms in the coprecessing frame. Top: phase
derivative for the ðq; χ; θLSÞ ¼ ð4; 0.8; 60°Þ configuration, which
illustrates the variation in the inspiral phase. Middle and bottom:
phase derivative and amplitude for the ðq; χ; θLSÞ ¼ ð4; 0.8; 150°Þ
configuration, which demonstrates the shift in effective ringdown
frequency.

ELEANOR HAMILTON et al. PHYS. REV. D 104, 124027 (2021)

124027-12



frequency-dependent rotation to a model of the waveform
in the coprecessing QA frame, and as such, the rotation
angles should be those associated with the signal. However,
all current models [11,13,22,23] use the angles associated
with the dynamics.
As we saw in Fig. 2, the MSA dynamics α and γ provide

a good approximation to the corresponding numerical
relativity signal angles at low frequencies, but the MSA
β does not. Fortunately, we have access to PN signal
amplitudes beyond the quadrupole approximation and can
use these to calculate a more accurate estimate of the signal
β. One way to do this would be to calculate a full PN
waveform, e.g., from the model in Ref. [83], and apply the
quadrupole-alignment procedure to calculate β. However,
this will be much more computationally expensive than the
current MSA approximant, and it is possible to obtain a
sufficiently accurate result with a simpler approach.
In this calculation, we refer to the opening angle of the

orbital plane with respect to J as ι and continue to denote
the opening angle of the QA frame by β. These angles are
therefore given by

cos ι ¼ L̂ · Ĵ; ð33Þ
cos β ¼ V̂ · Ĵ; ð34Þ

where L̂ is the orbital angular momentum and V̂ is the
direction of maximum emission.
To illustrate our approach, consider the rotation from a

coprecessing signal that contains only the (l ¼ 2, jmj ¼ 2)
multipoles, hNP2;�2, to produce a precessing-binary signal in
the inertial frame. We begin in the quadrupole approxima-
tion, where the inertial frame is identified with the
precession of the orbital plane, and so we use the opening
angle ι. We focus on only the resulting (2,2) and (2,1)
multipoles in the inertial frame and only the angles ι, α
(since the additional phase rotation γ will not affect our
argument). The precessing-binary signal in the inertial
frame, hP, is now

hP2;2 ¼ e−2iα
�
cos4

�
ι

2

�
hNP2;2 þ sin4

�
ι

2

�
hNP2;−2

�
; ð35Þ

hP2;1 ¼ −2e−iα
�
cos3

�
ι

2

�
sin

�
ι

2

�
hNP2;2

− cos

�
ι

2

�
sin3

�
ι

2

�
hNP2;−2

�
: ð36Þ

The nonprecessing multipoles can be written as

hNP2;�2 ¼ Ae∓2iΦ; ð37Þ

where A andΦ are the time/frequency-dependent amplitude
and orbital phase. When ι is small, hNP2;2 makes the strongest
contribution to the precessing-waveformmultipoles, andwe

see that ι determines the relative amplitude of hP2;2 and h
P
2;1.

We can isolate the e−2iΦ term as follows:

h̄P2;2 ¼
1

2π

Z
2π

0

hP2;2e
2iΦdΦ ð38Þ

¼ Ae−2iαcos4
�
ι

2

�
; ð39Þ

h̄P2;1 ¼ −2Ae−iαcos3
�
ι

2

�
sin

�
ι

2

�
: ð40Þ

From these, we can readily calculate that the inclination ι is

ι ¼ 2tan−1
� jh̄P2;1j
2jh̄P2;2j

�
: ð41Þ

At leading (quadrupole) order, ι is the precession angle β.
If we now use higher-order PN amplitude expressions

[85], then the angle β that identifies the frame in which the
(l ¼ 2, jmj ¼ 2) multipoles are maximized will not nec-
essarily be the same as the inclination angle ι, but the
expression above will still give us an estimate of the orbit-
averaged β. Note that the MSA angles in Ref. [83] are also
orbit averaged (i.e., nutation effects are absent), so this is a
consistent treatment.
Themultipole expressions inRef. [85] aregiven in terms of

the orbital phaseΦ, the precession anglesα and ι, and the spin
components. For the spin components, we make an approxi-
mate reduction to our single-spin systems as follows. The
inclination of the spin from the z axis is the spin’s inclination
from the orbital angular momentum vector, θLS, minus the
inclinationof theorbital angularmomentumfrom the z axis, ι.
The azimuthal angle of the spin vector is (αþ π), because,
since L ¼ J − S, the x-y-plane components ofL and S will
be in opposite directions, and so their azimuthal angles will
differ byπ. The final result, for a given configuration, depends
only on the dynamics inclination ι as a function of frequency;
we use the MSA expression for ιðfÞ.
In Ref. [85] the amplitudes are expanded in powers of

v ¼ ðπfÞ1=3. We define δ ¼ m1 −m2, wherem1 > m2, and
so δ > 0; η ¼ m1m1=ðm1 þm2Þ2, χs ¼ ðχ1 þ χ2Þ=2,
χa ¼ ðχ1 − χ2Þ=2, and so,

χs=a;x ¼ χ sinðθLS − ιÞ cosðαþ πÞ=2;
χs=a;y ¼ χ sinðθLS − ιÞ sinðαþ πÞ=2;
χs=a;z ¼ χ cosðθLS − ιÞ=2: ð42Þ

If we substitute these into the PN multipole expressions for
hP2;2 and hP2;1, and then apply Eq. (41), we obtain the
relatively simple expression,

β ¼ 2tan−1
�
secðι=2Þðc0 þ c2v2 þ c3v3Þ

d0 þ d2v2 þ d3v3

�
; ð43Þ

where
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c0 ¼ 84 sin ι;

c2 ¼ ð110η − 214Þ sin ι;
c3 ¼ −7ð6þ 6δþ 5ηÞð2 cos ι − 1Þχ sin θLS

þ 56ð3π − ð1þ δ − ηÞχ cos θLSÞ sin ι;

d0 ¼ 84 cos

�
ι

2

�
;

d2 ¼ ð110η − 214Þ cos
�
ι

2

�
;

d3 ¼ 14ð6þ 6δþ 5ηÞχ sin θLS sin
�
ι

2

�
þ 56 cos

�
ι

2

�
× ð3π − ð1þ δ − ηÞχ cos θLSÞ: ð44Þ

Figure 5 also shows the modified βðιÞ for the
ðq; χ; θLSÞ ¼ ð8; 0.8; 60°Þ configuration. We see the PN
inspiral βðιÞ now shows much better agreement with the
numerical relativity result at low frequencies. We find
similar results across the parameter space that we have
considered, and therefore, to calculate β in our model, we
use Eq. (43) in conjunction with the MSA ι as calculated in
Refs. [13,83] to construct β through the inspiral. The
features of the numerical relativity ðα; β; γÞ at higher
frequencies, which are not captured at all by the PN
expressions, are explicitly modeled in Sec. VII.

C. Two-spin β

The MSA ι for a two spin system shows oscillations
that become unphysically large through late inspiral and
toward merger and which are not seen in the precession
angles calculated for two-spin numerical relativity systems,
as can be seen in Fig. 6. These oscillations also complicate
connecting the inspiral expression to the single-spin-tuned
merger-ringdown ansatz. We therefore taper these oscil-
lations to recover the value and gradient of β for an
equivalent single-spin system at the point at which we
wish to connect the inspiral and merger-ringdown parts of
the model.
For a system described by two spins S1 and S2 (with total

spin S ¼ S1 þ S2), we use the mapping to the appropriate
single-spin system defined in Sec. IV: S0

1 is given by
Eq. (20) and S0

2 ¼ ð0; 0; 0Þ. We evaluate the PhenomPv3

expression for ι for both of these configurations
and identify the oscillations introduced by the two-spin
effects as

ιosc ¼ ιðS1;S2Þ − ιðS0
1;S

0
2Þ: ð45Þ

FIG. 5. Opening angles for the ðq; χ; θLSÞ ¼ ð8; 0.8; 60°Þ con-
figuration. Solid black: the numerical relativity opening angle of
the QA frame, β. Dotted blue: the PN opening angle of the orbital
plane, ι. Dashed magenta: Approximate QA angle β as a function
of ι; see text for details.

FIG. 6. Various options for the PN expression for the opening angle. The left-hand panel shows the PN value of ι for a two-spin system
(blue) and for the equivalent single-spin system (green) calculated using the expressions used in PhenomPv3. In light blue is shown the effect
of tapering the two-spin oscillations to the single-spin value at the connection frequency fc, shown as a gray vertical line. In the right-hand
panel, the value for β used in themodel (pink) is comparedwith the numerical relativity value of β found for this case.We only show ι and β
up to fc, since the merger-ringdown model is used at higher frequencies. The configuration shown is SXS1397 in Table II.
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We then apply a taper to these oscillations that ensures ιwill
tend to the single-spin value and gradient at a given
frequency fc and add the oscillations back to the single-
spin function. The final two-spin expression for ι is then
given by

ι ¼
8<
: ιðS0

1;S
0
2Þ þ cos2

�
2πf
4fc

�
× ιosc f ≤ fc

ιðS0
1;S

0
2Þ f > fc

; ð46Þ

where fc is the frequency at which the inspiral expression
for β is connected to the merger-ringdown expression
defined below in Eq. (58).
Given an estimate for the dynamics ι, we now wish to

rescale it to produce an estimate for the signal β, as
described in Sec. VI B. To do this, we also need an estimate
of the frequency-dependent in-plane spin component and,
therefore χ and θLS, as required in Eqs. (42). We assume
that the component of the spin S parallel to the orbital
angular momentum, Sk, remains fixed. We further approxi-
mate that the frequency dependence of the magnitude of J
is dominated by changes to the magnitude of L,

JðfÞ ¼ J0 þ LðfÞ − L0; ð47Þ

where the magnitude L is given by the 3PN expression for
the orbital angular momentum used by PhenomPv3 to
calculate ι and the 0 subscript denotes quantities specified
at the reference frequency. As such, we may write the
frequency-dependent magnitude of the in-plane component
S⊥ of spin S as

S⊥ðfÞ ¼ JðfÞ sin ι: ð48Þ

Substituting this expression for Sp in Eq. (14), we get a
value for χp. The quantities χ and cos θLS are then
calculated as described in Eqs. (11)–(19), and these values
are used to rescale ι to produce β, according to Eq. (43).
The effect of this treatment can be seen in Fig. 6, which

shows β for SXS1397 (the intrinsic properties of which are
given in Table II). The PN expression for the angle captures
the oscillations seen at low frequency very well. However,
these oscillations do not continue to high frequency and are
greatly overestimated by the full two-spin PN expression.
Tapering the oscillations to the single spin value at the
connection frequency resolves this issue well. For f > fc
the PN expression is replaced by the merger-ringdown
expression described in the following section, so the
behavior of the PN angles here are not an issue. In the
rare event where the merger-ringdown contributions are not
attached (see Sec. VIII D), only the effective single-spin
beta is used beyond f > fc.

VII. PRECESSION ANGLE MODEL:
MERGER RINGDOWN

The PN expressions for the precession angles cannot be
reliably extended through merger and ringdown and when
compared with the numerical relativity angles do not
capture the features present at high frequency, as was
clear in Fig. 2. We therefore present a phenomenological
description of the precession angles α and β in the merger-
ringdown regime; the remaining angle γ can then be
calculated via Eq. (A7). We describe the functional form
of the angles and produce a global fit for each of the
coefficients of the ansatz. This provides a frequency
domain description of the precession angles across the
parameter space.

A. Functional forms of α and β

The morphology of the merger ringdown part of α is
qualitatively very similar to that of the phase derivative,
seen in Refs. [9,10]. α shows a 1=f falloff with a Lorentzian
dip centred around what is approximately the ringdown
frequency of the BBH system. This prompts the ansatz,

αðfÞ − hαðfÞi ¼ A1

f
þ A2

ffiffiffiffiffi
A3

p
A3 þ ðf − A4Þ2

; ð49Þ

where hαðfÞi is the mean value of α calculated over the
frequency range of the fitting region defined below and A1,
A2, A3, and A4 are free coefficients.
The fitting region is based around the Lorentzian dip; it is

defined to be the range fdip − 0.0225 ≤ f ≤ fdip þ 0.0075,
where fdip is the frequency at which α reaches its mini-
mum, and recall that we have chosenM ¼ 1. The global fit
for α within this fitting region has a root-mean-square error
of 4.80 × 10−5, averaged across the 40 waveforms. Some
example comparisons of the results of these fits with the
numerical relativity value for α are shown in Fig. 7.
During merger and ringdown, β drops rapidly as the

dominant emission direction relaxes to its final direction, as
discussed in more detail in Sec. IX. The ansatz used to
describe β is therefore chosen to grow at low frequencies
(as seen in the PN expressions), turnover at the correct
frequency, capture the drop, and finally tend asymptotically
toward the constant value to which the dominant emission
direction relaxes. The ansatz we chose to describe this
behavior is

βðfÞ − hβðfÞi ¼ B1 þ B2f þ B3f2

1þ B4ðf þ B5Þ2
; ð50Þ

where hβðfÞi is the mean value of β calculated over the
frequency range of the fitting region defined below and B1,
B2, B3, B4, and B5 are free coefficients.
The fitting region for β is centered around the inflection

point in the turnover finf ; f ∈ finf � 0.03. The global fit for
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β within this fitting region has a root-mean-square error of
7.47 × 10−6, averaged across the 40 waveforms. Some
example comparisons of the result of these fits with the
numerical relativity value for β are shown in Fig. 8.
It should be noted that a key feature of the above ansatz

is that it does not fall to zero after merger. This feature can
be seen in both the time and frequency-domain values of β,
as shown in Figs. 8 and 12. We discuss this in more detail
in Sec. IX.

B. The phenomenological coefficients

The two Ansätze given above, which describe the
merger-ringdown behavior of α, Eq. (49), and β,
Eq. (50), have 10 free coefficients between them. Each
of these coefficients was fit across the three-dimensional
parameter space described by the symmetric mass ratio, η,
the dimensionless spin magnitude, χ, and the cosine of the
angle between the orbital angular momentum and the spin
angular momentum, cos θLS.
The optimum value of each of the coefficients for each

waveform in the calibration set was found by fitting the
relevant ansatz to the numerical relativity data using the
nonlinear least-squares fitting function curve_fit from
the PYTHON package SciPy [91]. This function uses the
Levenberg-Marquardt algorithm to perform the least-
squares fitting. We then performed a three-dimensional
fit of each of the coefficients using the fitting algorithm
mvpolyfit [86,87]. This gives each of the coefficients as

a polynomial expansion in η, χ, cos θLS. We specify the
terms that appear in the expansion, and the algorithm finds
the coefficients of these terms that optimize the fit as well as
a measure of how good the fit is. Since we have 40
calibration waveforms, the maximum possible number of
terms that can appear in these expressions is 39 in order to
avoid over fitting. The fits are restricted so that the highest
order term in each dimension is one less than the total
number of data points in that dimension. Since the value of
each of the coefficients in the ansatz is to some extent
dependent on the value of each of the other coefficients, we
found a global fit for each coefficient in turn, refitting the
ansatz to the data while keeping fixed the coefficients that
had already been fit. We first fitted the coefficients that
varied most smoothly across the parameter space and those
for which the general behavior across the parameter space
was already understood. For α, this meant we first fitted the
location of the dip, A4, followed by the other coefficients in
the order A1, A2. and A3. For β, we fitted the value of hβðfÞi
separately as this had a clear parameter space trend. We
then fitted the coefficients in the order B1, B2, B3, B5, and
B4 since the coefficients in the numerator were generally
better behaved than those in the denominator.
The general expression for each coefficient is

Λi ¼
X3
p¼0

X1
q¼0

X4
r¼0

λipqrη
pχqcosrθLS; ð51Þ

FIG. 7. Comparison of the phenomenological ansatz presented in Eq. (49) (solid lines) with the numerical relativity data (translucent
lines) over the frequency range to which the coefficients in the ansatz were tuned for a selection cases in the numerical relativity
catalogue with θLS ¼ 90° at varying mass ratios. We have made use of the freedom to choose a constant offset in α in order to offset the
curves shown here to make them easier to distinguish.
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where Λ ∈ ½A;B� are the coefficients in the ansatz describ-
ing α and β, respectively, and i ∈ ½1; 2; 3; 4� and [0, 1, 2, 3,
4, 5], respectively. The λipqr give the coefficients of the
polynomial expansion of the multidimensional fits of Λi.
This expression has a maximum of 40 terms. Not all of
these terms are used in the expressions for each of the
coefficients; the coefficient with the fewest number of
terms has only 25, while that with the greatest number of
terms contains 39.
The coefficients for α and β vary smoothly across the

parameter space, as can be seen in Figs. 27 and 28 in
Appendix C, respectively. The residual plots above the fit
surfaces show that the global fits agree closely with the
values of the coefficients found from fitting the ansatz to
each individual simulation.

VIII. FULL INSPIRAL-MERGER-RINGDOWN
ANGLE MODEL

The expressions for the precession angles for the two
distinct inspiral and merger-ringdown regions are con-
nected so that the connection is smooth, and the full
IMR expression for the angles agrees with the numerical
relativity data over the entirety of the region for which it is
available. The method used to connect the two regions was
different for each angle.

A. Connection method for α

For α, the regions are connected using an interpolating
function of the form

αinterpðfÞ ¼ a0f2 þ a1f þ a2 þ
a3
f
; ð52Þ

defined over the frequency range ½f1; f2�. This range was
chosen to be as small as possible. The lower frequency limit
was chosen to be the highest frequency for which the
inspiral expressions agreed with the numerical relativity
data, while the upper frequency limit was chosen to be the
lower limit for which the fitted merger-ringdown expres-
sions still agreed well with the numerical relativity data.
Since the MSA PN expressions for the angles agree well
with the numerical relativity data over most of the wave-
form, there is a wide range of frequency values over which
the interpolation could be performed. We choose the
frequency range to be defined in terms of the location of
the Lorentzian dip, A4: f1 ¼ 2A4=7 and f2 ¼ A4=3.
The coefficients of Eq. (52) are chosen so that
(1) αinterpðf1Þ¼αPNðf1Þ and αinterpðf2Þ¼αMRðf2Þ, since

there is freedom in an overall constant offset in α,
(2) α0interpðf1Þ ¼ α0PNðf1Þ and α0interpðf2Þ ¼ α0MRðf2Þ

in order to ensure the two parts are connected
continuously.

αPN is the MSA PN expression used for α in the inspiral
regime. αMR is the merger-ringdown ansatz given in
Eq. (50). The coefficients are given by

a0 ¼
1

D
½2ðf1α1 − f2α2Þ − ðf1 − f2Þððf1α01 þ f2α02Þ þ ðα1 − α2ÞÞ�;

a1 ¼
1

D
½3ðf1 þ f2Þðf1α2 − f2α1Þ þ ðf1 − f2Þððf1 þ 2f2Þðf1α01 þ α1Þ þ ð2f1 þ f2Þðf2α02 þ α2ÞÞ�;

a2 ¼
1

D
½6f1f2ðf1α1 − f2α2Þ þ ðf1 − f2Þðf2ð2f1 þ f2Þðf1α01 þ α1Þ þ f1ðf1 þ 2f2Þðf2α02 þ α2ÞÞ�;

a3 ¼
1

D
½f1f22ðf2 − 3f1Þα1 − f21f2ðf1 − 3f2Þα2 þ f1f2ðf1 − f2Þðf2ðf1α01 þ α1Þ þ f1ðf2α02 þ α2ÞÞ�; ð53Þ

where αi and α0i, i ¼ 1, 2 are the value of α and its derivative
at the limits of the frequency range, and D ¼ ðf2 − f1Þ3.

B. Connection method for β

For β, the agreement between the PN expression and the
numerical relativity data is insufficient to employ the
interpolation method described above. Even including
the higher-order amplitude corrections described in
Sec. VI B, the starting frequency of the numerical relativity
simulations is not low enough in order to cover the region
in which the PN expression closely matches the data for all
cases. Instead, we employ a rescaling function that leaves
the PN expression invariant at low frequencies but ensures
it smoothly connects with the merger-ringdown value of β

at the connection frequency fc. This rescaling function is
given by

kðfÞ ¼ 1þ b1f þ b2f2; ð54Þ
which tends to one at low frequencies thus leaving the PN
expression unchanged. In order to ensure the value of β and
its derivative match at the connection frequency, the
coefficients b1 and b2 are given by

b1 ¼ −
1

β21fc
½−2β1ðβ2 − β1Þ þ ðβ1β02 − β2β

0
1Þfc�; ð55Þ

b2 ¼ −
1

ðβ1fcÞ2
½β1ðβ2 − β1Þ − ðβ1β02 − β2β

0
1Þfc�; ð56Þ
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where the βi and β0i are the value of β and its derivative
evaluated at the connection frequency. The subscript 1
indicates that this is the value of β given by the original PN
expressions while subscript 2 indicates the values from the
merger-ringdown expression.
The definition of the connection frequency depends on

the morphology of the merger-ringdown ansatz for β for a
particular case. As can be seen in Fig. 8, in some parts of
the parameter space, β rises gently until just before merger
then turns over and drops rapidly. However, in other parts
of the parameter space, this turnover is much more gradual
and begins at much lower frequencies. In general, we note
that the turnover shifts to lower frequencies as the mass
ratio increases and that this trend is most marked for cases
with larger θLS and larger spin magnitude. Our ansatz for β
captures both of these morphologies well. In cases where
the turnover occurs within the fitting region, we define the
connection frequency fc as the frequency at which
the merger-ringdown part has a particular gradient dβc.
The value of this gradient varies across the parameter space.
We define it to be

dβc ¼ 2.5 × 10−4 × dβ2inf ; ð57Þ

where dβinf is the gradient at the inflection point. The
connection frequency is then found by expanding the
gradient of the curve about the maximum as a Taylor
series. We find the connection frequency is given by

fc ¼ fmax þ
1

β000

�
−β00 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β002 þ 2β000dβc

q �
; ð58Þ

where fmax is the frequency at which the maximum occurs,
and β00 and β000 are the second and third derivatives of β
evaluated at fmax, respectively.
In cases where the turnover is not present within the

fitting region, we instead define the connection frequency
to be the lower frequency limit of the fitting region, thus
ensuring β is still falling at this frequency. In this case,

fc ¼
�
finf − 0.03; finf ≥ 0.06

3finf=5; finf < 0.06;
ð59Þ

where finf is the inflection point.

C. Full IMR expressions

The expressions describing the precession angles in each
of the different regions are connected using piecewise C1-
continuous functions.
The full IMR expression for α is

αIMRðfÞ ¼

8>><
>>:

αPN 0 ≤ f < f1
αinterp f1 ≤ f < f2
αMR f2 ≤ f

; ð60Þ

where αPN, αinterp, and αMR are the PN expression used to
describe α during inspiral, the interpolating function used

FIG. 8. Comparison of the phenomenological ansatz presented in Eq. (50) (solid lines) with the numerical relativity data (translucent
lines) over the frequency range to which the coefficients in the ansatz were tuned for a selection of cases in the numerical relativity
catalogue with θLS ¼ 90° at varying mass ratios.
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to describe the late inspiral angles in the region f1 to f2,
and the phenomenological ansatz used which has been
tuned to numerical relativity to describe the merger-
ringdown angles, respectively.
Across the majority of the parameter space, the merger-

ringdown ansatz for β has a minimum immediately
following the inflection point (as shown in the central
panel of Fig. 10). In these cases, the full IMR expression for
β is

βIMRðfÞ ¼

8>><
>>:

kβPN 0 ≤ f < fc
βMR fc ≤ f < ff
βRD ff ≤ f

; ð61Þ

where βPN is the PN expression for β including the higher-
order amplitude corrections discussed in Sec. VI B, k is the
rescaling function applied to these expressions as outlined
above, βMR is the phenomenological ansatz which has been
tuned to numerical relativity in the merger-ringdown
regime, and βRD is the constant value of β to which the
system settles down after merger, as discussed in Sec. IX B.
We model this quantity by the minimum value of β in the
merger-ringdown expression. ff is correspondingly given
by the frequency at which the minimum occurs.
In cases where β tends toward an asymptote immediately

following the inflection point (which occurs in some
regions of parameter space beyond the fitting region),
the full IMR expression for β is

βIMRðfÞ ¼
�
kβPN 0 ≤ f < fc
βMR fc ≤ f

: ð62Þ

We would physically expect β to be bounded by 0 and π
across the parameter space. In order to enforce this require-
ment, we pass the resulting βIMR through a windowing
function wðβÞ given by

wðβÞ ¼ sgn

�
β −

π

2

��
π

2

�
1−p

arctanp
��

β − π
2

ðπ
2
Þ1−p

�1
p
�
þ π

2
;

ð63Þ

where p ¼ 0.002. This function is linear with wðβÞ ¼ β
over the range β ∈ ½0.01; π − 0.01� to within 0.045%. This
ensures that the fits for β are unaffected within the
calibration but that β is bounded by 0 and π across the
whole of parameter space.
The precession angle γ is then calculated over the

entirety of the frequency range for which the waveform
is produced by enforcing the minimal rotation condition
given in Equation (A7). The decision to do this rather than
produce a separate model for γ was made as it was found
that γ must be very accurate in order to consistently

transform between an inertial frame and the coprecessing
frame. The very small discrepancy between the expression
for γ presented in [83] and the numerically calculated value
is sufficient to seriously degrade the model. This discrep-
ancy is exacerbated here since we are no longer using the
dynamical expression for β presented in [83]. [We note that
independently integrating Eq. (A7) was also found to be
more accurate in the SEOBNRPv4HM and PhenomTPHM mod-
els [19,26].]
The full model of these angles is shown for two examples

in very different parts of the parameter space in Fig. 9.

D. Behavior beyond calibration region

As with any tuned model, beyond the calibration region
there is no guarantee of the accuracy of the model for the
angles. However, we want to ensure that they do not
display pathological or obviously physically incorrect
behavior.
For α, there are a number of possibilities inherent in the

ansatz to see either pathological or physically incorrect
behavior. We have implemented restrictions on the values
taken by the coefficients to ensure this does not occur, and a
visual inspection of the waveforms shows that we do not
see any pathological features. We would see pathological
behavior for A3 < 0 and physically incorrect behavior for
A1 < 0 (α would decrease as a function of frequency) or
A2 > 0 (the dip in α would have the wrong sign). As it is
only a small region of parameter space in which this might
happen, we enforce the conditions that A1; A3 > 0, and
A2 < 0 by taking the absolute value of the coefficients
with the appropriate sign. For A2, we replace any positive
values with zero. A1 and A2 take the wrong sign for
systems with q < 10 only at very small spins (χ < 0.1) or
large antialigned spins (χ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− cos θ

p
∼ 0.7). For A2, there is

an additional region for q > 7 around χ ¼ 0.4 for anti-
aligned spins (cos θ > 0.75). A3 does not go negative
within the calibration region, though this does start to
occur for q > 10.
We see pathological behavior for B4 ≲ 0. Physically

incorrect behavior starts to emerge when B4 drops below
Oð102Þ. In order to avoid such behavior, we require B4 ≥
175 and replace the fitted value of B4 by 175 where it falls
below this value. Since B4 > 175 throughout the calibra-
tion region, this concern only arises for systems where the
accuracy of the model cannot be guaranteed anyway (such
as q > 10).
The morphology of the merger-ringdown ansatz of β also

changes in some parts of the parameter space outside the
calibration region, as shown in Fig. 10. We can ensure we
always employ the correct part of the expression (for which
β displays a drop at merger) in our model by selecting the
correct inflection point. The inflection points of an expres-
sion occur at the roots of the second derivative of the
expression. The second derivative of Eq. (50) takes the
form
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β00ðfÞ ¼ af3 þ bf2 þ cf þ d
ð1þ B4ðB5 þ fÞ2Þ3 ; ð64Þ

where a, b, c, and d are functions of the fitting coefficients
B1, B2, B3, B4, and B5. In order to find the roots of this
cubic, we rewrite it in the form of a depressed cubic

x03 þ px0 þ q ¼ 0; ð65Þ

where

x0 ¼ xþ b
3a

; ð66Þ

p ¼ 3ac − b2

3a2
; ð67Þ

q ¼ 2b3 − 9abcþ 27a2d
27a3

: ð68Þ

In the case where this expression has three real roots, these
are given by

FIG. 9. Comparison of the complete model for each of the precession angles (thick red line) with the numerical relativity data (thin
black line). The MSA angles (blue dotted line) are shown for reference. The left hand column shows the case with
ðq; χ; θÞ ¼ ð1; 0.4; 30°Þ. The right hand column shows the case with ðq; χ; θÞ ¼ ð8; 0.8; 60°Þ. The vertical black lines show the
connection frequencies for α and β.
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x0 ¼ 2

ffiffiffiffiffiffiffiffi
−
p
3

r
cos

�
1

3
arccos

�
3q
2p

ffiffiffiffiffiffiffiffi
−
3

p

s �
−
2nπ
3

�
; ð69Þ

where n ¼ 0, 1, 2.
We want to be able to define a single, smoothly varying

inflection point that tracks the location of the turnover in β
during merger across the parameter space. As the coef-
ficients of the cubic vary, the morphology of Eq. (50)
changes, as shown in Fig. 10. For a < 0, we have the
morphology shown in the central panel of the figure. We
therefore select the central root, which is the only one with
a negative gradient. For a > 0, we have the morphology
shown in the outer panels. For this morphology, we need to
distinguish between the two outer roots, which both have a
negative gradient. This is determined by the “shift” of the
roots, b=3a. In cases where

b
3a

>
B5

2
þ λB2

004

4λB3

004

; ð70Þ

where the λipqr are the coefficients given in Eq. (51), we
choose the first root (as seen in the left-hand panel);
otherwise, we choose the final root (as seen in the right-
hand panel). This condition was found to select the correct
root across the entire calibration region for the model as
well as most of the extended regions encompassing the
validation waveforms.
In the case where we have complex roots, two of the

roots will be in the complex plane, while one will be on the
real axis. In this case, we select the only real root.
We also consider the case where a ¼ 0 and the second

derivative is a quadratic. In this case, we have only one root
with a negative gradient, which is the desired root. Finally,
we consider the case where both a ¼ 0 and b ¼ 0. Here, we
have only one root which gives us the desired inflec-
tion point.

Enforcing these conditions gives us a smoothly varying
value of the inflection point across the parameter space and
ensures our expression for β always has the correct
morphology, dropping off at merger.

IX. PHYSICAL FEATURES OF THE WAVEFORMS

In motivating, constructing, and presenting the
PhenomPNR model, we have observed several features of
precessing-binary waveforms that deserve more detailed
discussion.

A. Ringdown frequency

As discussed in Sec. V, in previous Phenom models, the
coprecessing-frame model consists of an aligned-spin
model, with ringdown frequency and damping time
adjusted according to the values predicted for the full
precessing configuration. This prediction was made by
using approximate numerical relativity fits for the final
mass and spin, which then imply, via perturbation theory,
the ringdown frequencies [9,86,92,93]. This prediction of
the ringdown frequency was then used in the coprecessing-
frame model [10,86,87].
One interesting feature of this approach is that in some

parts of the parameter space it leads to a discontinuity in the
ringdown-frequency estimate. This arises as follows. There
are two possibilities of ringdown frequency for a given BH
spin, depending on whether the BH perturbations were
generated by orbits that were prograde or retrograde with
respect to the final BH spin; this can be represented as
choosing either a positive or negative final spin [9,92]. As
an example, consider configurations with mass ratio q ¼ 8
and a spin on the larger BH of χ ¼ 0.8. If the spin is aligned
with the orbital angular momentum, we predict that after
merger the final BH will have a spin of 0.86 and a ringdown
frequency of ∼0.1. If the large BH spin is antialigned to the
orbital angular momentum, i.e., θLS ¼ 180°, then the final
BH spin is −0.275, and the ringdown frequency is ∼0.06.

FIG. 10. Possible morphologies of the ansatz given by Eq. (50) depending on the values taken by the coefficients in different regions of
the parameter space. From left to right, the panels show systems with ðq; χ; θLSÞ ¼ ð8; 0.2; 155°Þ, (2.5, 0.4, 90°), and (5, 0.8, 160°). The
red dots mark the extrema. The green crosses show the inflection points, and the blue dot indicates the inflection point chosen as
described in Sec. VIII D. The points of maximum curvature around this inflection point are shown by the black lines, which give a
measure of the width of the turnover. The solid black line in the shaded region indicates the frequency region that will be used as the
merger-ringdown portion of the full angle model. All cases within our calibration region will have the morphology shown in the middle
panel; the outer panels show that a reasonable choice is made outside the calibration region.
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(These values were calculated using the PhenomD final-spin
fit [9], which is also what is used in our new model; at this
level of accuracy any more recent fit will give similar
results.)
We can now ask, what happens for other values of θLS?

One way to estimate the final spin is as follows. We first
estimate the final spin for an equivalent aligned-spin binary,
χAS, and then calculate the vector sum of this aligned spin
with the in-plane spin contribution χp, which, in our single-
spin example above, would take the value χ sinðθLSÞ. The
final spin can then be estimated as

χf ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2AS þ ðm1=MfÞ2χ2p

q
: ð71Þ

This approach was first used in the PhenoMP model
described in Ref. [11], with more explicit details provided
in the presentation of PhenomPv3 in Ref. [13]; a similar
approach is also followed in all current precessing-binary
Phenom models [14,17,46].
When we use this final-spin estimate to calculate the

ringdown frequency, we must choose a sign. In previous
Phenom models, the same sign was chosen as χAS, but in
some cases (as in the example above), this means that χf
swaps sign at some value of θLS. The resulting estimate of
the ringdown frequency is discontinuous. This is illustrated
by the dashed line in Fig. 11 for our q ¼ 8, χ ¼ 0.8 series
of configurations. As an estimate of the ringdown fre-
quency in the (l ¼ 2; jmj ¼ 2) multipoles in the J-aligned
frame, this approach appears to be quite accurate, including
the sharp transition from prograde to retrograde branches.

One issue with this approach is that the transformation
from the coprecessing to inertial frame will introduce a shift
in the GW frequency and therefore a change in the
ringdown frequency. If we apply the correct inertial-frame
ringdown frequency to our coprecessing-frame model, it
will be changed when the angle model is applied, and the
final model will have the wrong ringdown frequency. This
is what happens in previous Phenom models. We could take
this shift into account when we prescribe the ringdown
frequency in the coprecessing frame, but instead we simply
produce a phenomenological fit to the ringdown frequency
in the construction of the coprecessing-frame model
PhenomDCP. This is also shown in Fig. 11, in comparison
with the effective coprecessing-frame ringdown frequency
that we find from the numerical relativity data.

B. The collapse of β through merger

During the inspiral, the angle β is related to the opening
angle between the total and orbital angular momenta, i.e.,
the opening angle of the precession cone. At merger the
orbital motion ceases, and we are left with a ringing black
hole and would expect that the corresponding optimal

emission direction would relax to the Ĵ direction of the final
black hole. However, we may also consider an alternative
picture. A stationary BH does not radiate. We may perturb a
nonspinning BH such that we completely determine the
dominant emission direction as the perturbation rings
down. Adding spin to the BH, either small or large, does
not change this freedom. Thus, the optimal emission
direction after merger and, in particular, the final values
of α and β may encode information about how the remnant
BH was perturbed through merger, and the relationship to Ĵ
is not so clear.
In Ref. [56] an attempt was made to describe the late-

time precession behavior using results from perturbation
theory. We know the general form of the ringdown signal,

hlmðtÞ ≈ Almeiωlmte−t=τlm; ð72Þ

where the Alm are unknown constants, and fωlm; τlmg are
determined by the mass and spin of the final BH through
perturbation theory. Given this general form, we can predict
the general behavior of the precession angles α and β in the
ringdown regime, similar to the approximate approach
followed in Sec. VI B. Reference [56] notes that, if we
consider only the dominant l ¼ 2 modes, the QA direction
precesses around Ĵwith a frequency ω22 − ω21, and β either
falls exponentially to zero at a rate given by τ22 − τ21 or
grows exponentially to π, depending on the relative
magnitude of the two damping times. A similar calculation
was later discussed in Refs. [19,26,57].
Several points are worth noting. (1) For much of the

parameter space, although the decay of βðtÞ is exponential,
it is nonetheless extremely slow and on a much longer

FIG. 11. Effective frequency-domain ringdown frequencies for
ðq; χÞ ¼ ð8; 0.8Þ, as modeled by PhenomPv3 and PhenomDCP.
Additional lines show QNM frequencies predicted from standard
perturbation theory methods using the remnant BH’s mass and
spin [92]. The solid thick gray line traces prograde QNM
frequencies, and the dashed thick gray line traces the retrograde
QNM frequencies. All curves are bound between prograde and
retrograde QNM frequencies. PhenomPv3 displays a discontinuity
near θLS ¼ 120°, while numerical relativity data and PhenomPNR

do not.
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timescale than the decay of the signal amplitude. (2)We can
consider nonzero ðl ¼ 2; jmj ¼ 2Þ and ðl ¼ 2; jmj ¼ 1Þ
multipoles where the QA direction does not precess at all,
for example, aligned-spin binaries. (3) Just as BH pertur-
bation theory cannot tell us how much each QNM is excited
[94,95], this analysis cannot tell us the magnitude of β at
whatever point we wish to designate as the beginning of the
ringdown regime.
We now turn to our numerical relativity data to address

these points. Figure 12 shows the late-time behavior of
numerical relativity β for the ðq; χ; θLSÞ ¼ ð4; 0.4; 60°Þ and
(8, 0.4, 30°) configurations, as well as approximate fits to
the β decay rate predicted by the ringdown toy model
discussed above. In particular, the analytic ringdown
estimate shown in Fig. 12 is derived in Ref. [19]. In these
fits, the decay rate is prescribed by the toy model, and only
the overall amplitude is fit to the numerical data. The data
are not clean enough to conclusively show that late-time β
follows the decay rate predicted by the toy model, but the
data are certainly consistent with that model. What is worth
highlighting is that the decay rate is indeed very slow; we
expect β to be greater than, say, 10% of its peak value, for
several hundred M after merger, at which point the total
signal amplitude will have decayed by several orders of
magnitude. In this context, our simple approximation in
PhenomPNR, that late-time β is constant, appears to be
justified.
The other important observation is that this late-time

ringdown behavior begins after β has dropped significantly
through merger. This strongly suggests that ringdown
begins significantly after the peak in both strain and ψ4,

which is possibly at tension with recent efforts to apply BH
perturbation theory at those points [96].
Although a PN treatment can approximately describe β

during the inspiral, and a simple ringdown analysis can
describe the decay rate of β during ringdown, neither can
capture the rapid drop in β through merger or predict the
value of β at the point where the ringdown behavior takes
over. This feature, which is included in PhenomPNR, was not
explicitly modeled in previous Phenom and EOBNR models.
PhenomP/Pv2/Pv3/XP used the MSA angles at all frequencies,
and both SEOBNRv4PHM and PhenomTP use a constant late-
time value of β determined by its value near merger.

C. Hierarchy in the turnover frequency
of the l = 2 multipoles

The rapid drop in β described in the previous section
results in a key feature of precessing waveforms: a
hierarchy in the turnover frequency of the l ¼ 2 multi-
poles. From Eq. (41), we can see that β is approximately
given by the ratio of the amplitude of the (2,2) and (2,1)
multipoles. The drop in β therefore implies that the

FIG. 12. Comparison of analytic ringdown estimate [Eq. (57b)
of Ref. [19] ] and numerical relativity for (top) ðq; χ; θLSÞ ¼
ð4; 0.4; 60°Þ and (bottom) ðq; χ; θLSÞ ¼ ð8; 0.4; 30°Þ.

FIG. 13. Amplitudes of the l ¼ 2 multipoles for the
ðq; χ; θLSÞ ¼ ð4; 0.4; 90°Þ configuration at 100 M⊙. The numeri-
cal relativity data are shown in black on all panels, with
PhenomPNR (top panel in blue), PhenomPv3 and PhenomXP (central
panel in purple), and SEOBNRv4P (bottom panel in red). The
vertical line indicates the frequency of the peak (2,2) amplitude.
The small vertical line segments indicate the turnover frequency
of each of the subdominant modes.
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amplitude of the (2,1) multipole must have decreased
relative to the (2,2) multipole, and so the (2,1) multipole
will begin to experience ringdown decay before the (2,2)
multipole. Once both multipoles are decaying exponen-
tially (at roughly the same rate), β levels off. This trend
continues for all of the l ¼ 2 multipoles.
By capturing the drop in β in our model, we successfully

model this hierarchy in the turnover frequency of the l ¼ 2
multipoles, as seen in the top panel of Fig. 13. This feature
has not been modeled in previous precessing Phenom

models, and the central panel of Fig. 13 shows the multi-
pole hierarchy for PhenomXP, which is also the behavior for
PhenomPv3, since both use the same MSA angle model. We
see that in these models each of the l ¼ 2 multipoles turn
over at the same frequency. SEOBNRv4P, shown in the
bottom panel, does capture this hierarchy, but the amplitude
of the higher-order multipoles is not well modeled. This is

due to modeling ι rather than β, which typically over-
estimates the amplitude as discussed in Sec. VI B.

X. TIME DOMAIN VALIDATION

A. Time domain waveform

The improvements made in modeling precessing systems
presented here—both to the underlying coprecessing model
and the precession angles—can also be clearly seen when
inspecting the waveforms in the time domain. As can be
seen in Fig. 14, PhenomPNR correctly captures the precession
envelope and the phasing of the waveform through inspiral,
merger, and ringdown. This figure also clearly shows that
the frequency-domain modeling presented here does not
introduce any strange artifacts in the time domain. For
comparison, we also show SEOBNRv4P, a naturally time
domain precessing model. The configurations shown here

FIG. 14. A comparison of the time domain obtained from PhenomPNR with the numerical relativity data. The top panel shows the case
ðq; χ; θLSÞ ¼ ð4; 0.8; 60°Þ, while the bottom panel shows the case ðq; χ; θLSÞ ¼ ð8; 0.8; 60°Þ. Both are for a face on (θLN ¼ 0°) binary
with a total mass of 100 M⊙. For comparison, we also show the waveform produced using SEOBNRv4P. The match values for the specific
configuration for each of the waveforms plotted are given in the legend.
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are for a binary with the intrinsic properties ðq; χ; θLSÞ ¼
ð4; 0.8; 60°Þ (top panel) and ðq; χ; θLSÞ ¼ ð8; 0.8; 60°Þ (bot-
tom panel). We have plotted both waveform models for a
binary taken to be face-on (θLN ¼ 0°) at the reference
frequency, which is given in Table I. We particularly note
the good agreement between PhenomPNR and the numerical
relativity waveform after merger (the shaded region) due to
accurately modeling the merger-ringdown precession
angles and the effective ringdown frequency of the copre-
cessing waveform.
The time and phase alignment of the waveforms plotted

in Fig. 14 has been performed over the same range of
frequencies as were used in calculating the matches
detailed in Sec. XI and quoted in the figure legend. This
range is much greater than that shown in the plot so the
deviations between the models and the numerical relativity
seen here do not contribute as much as might naïvely be
expected. We have plotted the waveform for the in-plane
spin configuration and polarization of the signal for which
we get the maximummatch. PhenomPNR agrees well with the
numerical relativity data from inspiral through merger and
ringdown, capturing both the precession envelope and the
phasing of the waveform correctly.

B. Time domain angles

Accurately modeling the merger-ringdown features of
the angles in the frequency domain has also enabled us to
reproduce key features of the angles in the time domain
after merger. We compared the time domain angles for four
models (PhenomPv3, PhenomXP, SEOBNRv4P, and PhenomPNR)
with the numerical relativity angles. In order to avoid the
introduction of artifacts due to unnecessary processing of
the numerical relativity data, we compare against the time
domain angles calculated using the cleaned and sym-
metrized Ψ4 data rather than h.

In order to calculate the precession angles for each of the
models, we require the l ¼ 2 modes in the J frame. For
each of the models investigated we used the J frame
defined by the developers of the model.
The time domain angles for the frequency domain

models (those belonging to the Phenom family) are calcu-
lated as follows. First, we compute the ψ4;lm l ¼ 2 multi-
poles from the strain multipoles in the frequency domain
using ψ̃4;lmðfÞ ¼ ð2πfÞ2h̃lmðfÞ. We then compute the
time domain multipoles by performing the inverse
Fourier transform each of the l ¼ 2 frequency domain
multipoles. Finally, we calculate the precession angles from
the set of time domain l ¼ 2 multipoles.
For SEOBNRv4P, a time domain model, we differentiated

each of the l ¼ 2 time domain multipoles twice to get
ψ4;lm from hlm. We then calculated the precession angles
using these multipoles. Since the connection between the
inspiral and ringdown parts of the models for the multipole
moments and the precession angles used in SEOBNRv4P is
C1 continuous, we see a discontinuity in the time domain
angles presented here as a result of the double
differentiation.
The results of this comparison are shown in Figs. 15

and 16. Since PhenomPv3 and PhenomXP use the same model
for the precession angles with a different coprecessing
model, the time domain angles presented here agree very
closely. The two most notable features in the time domain
angles are the continued rise in α after merger and the rapid
drop in the value of β. If α takes a constant value, it implies
the precession of the optimum emission direction has
stopped. As has been noted previously [56], this is clearly
not seen in the numerical relativity data. This feature of the
precessional motion is captured by SEOBNRv4P and
PhenomPNR but not by PhenomPv3 and PhenomXP. The rapid
drop in the value of β is captured accurately only by
PhenomPNR, although SEOBNRv4P does show some evidence

FIG. 16. Comparison of the time domain precession angles
for the PhenomPv3, PhenomXP, SEOBNRv4P, and PhenomPNR models
with the numerical relativity data. These angles are for the case
with ðq; χ; θLSÞ ¼ ð8; 0.8; 60°Þ.

FIG. 15. Comparison of the time domain precession angles for
the PhenomPv3, PhenomXP, SEOBNRv4P, and PhenomPNR models
with the numerical relativity data. These angles are for the case
with ðq; χ; θLSÞ ¼ ð4; 0.4; 60°Þ.

MODEL OF GRAVITATIONAL WAVES FROM PRECESSING … PHYS. REV. D 104, 124027 (2021)

124027-25



of a drop in the value of β. This shows we have managed to
capture the closing up of the opening angle as the angular
momentum is radiated away through gravitational-wave
emission. The final feature to note is that the amplitude of β
throughout inspiral is captured reasonably well by
PhenomPNR whereas the other models all show a slight offset
since (as previously discussed) they use the angles that
describe the precessional dynamics rather than the preces-
sion of the direction of optimal emission. This can be seen
more clearly at earlier times than are shown in Figs. 15 and
16 since here we chose to focus on the merger-ringdown
region where data processing artifacts from the Fourier
transform are stronger.

XI. MODEL VALIDATION: MATCHES

We now wish to test the accuracy of our new precessing
model in the context of gravitational-wave signal analysis.
To do this we calculate the match (using the method
detailed below in Sec. XI A) between the numerical
relativity waveform and our model for a given configura-
tion. We performed three sets of matches in order to inspect
each of the components of our model individually as well
as the complete final model. To assess the accuracy of the
underlying coprecessing model, we calculated the standard
nonprecessing match for a waveform containing only
the (2,2) multipole between the coprecessing model
PhenomDCP and the coprecessing numerical relativity wave-
form. In order to assess the accuracy of the angle model
itself, we model the precessing waveform by twisting up
the coprecessing numerical relativity waveform with the
PhenomAngles angles and match it against the corresponding
J-aligned numerical relativity waveform. Finally, we
assessed the accuracy of the complete tuned precessing
model PhenomPNR by performing the SNR-weighted match
between the model and the J-aligned numerical relativity
waveforms, containing the l ¼ 2 multipoles. The match
calculated between the numerical relativity waveform and
the complete model will contain errors introduced by
inaccuracies in both PhenomDCP and PhenomAngles. Since
we do not aim to model asymmetries in the multipole
moments in this work, our model does not capture them.
We therefore perform matches testing the angle model
using the symmetrized numerical relativity waveform (in
both the J-aligned and coprecessing frames).

A. Match Definitions

The disagreement between two waveforms, a model
template ht and an numerical relativity signal hs, is
quantified using the standard inner product weighted by
the power spectral density of the detector SnðfÞ [78],
chosen for this work to be the noise spectrum of advanced
LIGO at design sensitivity [97],

hhsjhti ¼ 4Re
Z

fmax

fmin

h̃sðfÞh̃�t ðfÞ
SnðfÞ

df: ð73Þ

The match is then given by the inner product between two
normalized waveforms,

Mðhs; htÞ ¼ max
Ξt

hhsjhtiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhsjhsihhtjhti
p ; ð74Þ

maximized over a set of template parameters Ξt
described below.
Time shifts and reference phase shifts have no physical

effect on the signal; a time shift corresponds only to a
change in the merger time of the binary, while a change in
the phase corresponds to a change in the initial orientation
of the binary’s orbit. For nonprecessing waveforms con-
taining only the (2,2) multipole, the resulting match value
is independent of the inclination and polarization of
the signal, as changes to the inclination simply rescale the
overall amplitude of both the signal and template, and the
polarization is degenerate with the reference phase and
therefore optimized away. When computing the match for
nonprecessing signals, as is done in Sec. XI C, the
maximization done in Equation (74) is done over time
and phase shifts, Ξt ¼ ft0;ϕ0g.
For precessing waveforms, both the inclination and

polarization must be taken into account. First, we compute
the match outlined in Equation (74) while keeping the
signal phase and polarization fixed, and maximize over
time shifts, reference phase, and template polarization
following Ref. [98]. We further optimize over rotations
to the in-plane spin components of the template at the
reference frequency as in Ref. [17], which effectively
optimizes the match over the initial precession phase α0,
i.e., Ξt ¼ ft0;ϕ0;ψ0; α0g. We then follow previous efforts
to quantify precessing models [13,17,62] and introduce an
SNR-weighted match.
The SNR-weighted match is computed by averaging the

match computed at each given signal phase and polariza-
tion while volume weighting with the SNR of the signal,

Mw ¼
�P

ψ s;ϕs
M3hhsjhsi32P

ψ s;ϕs
hhsjhsi32

�1
3

; ð75Þ

where we have summed over the values of signal phase and
polarization, ϕs and ψ s, respectively. This is done to better
account for the large variation in detectability and signal
strength with sky location that occurs in precessing signals.
Finally, we compute the mismatch between the signal

and template for nonprecessing signals as,

M ¼ 1 −M; ð76Þ

and similarly for precessing signals the SNR-weighted
mismatch,

Mw ¼ 1 −Mw: ð77Þ
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B. Verification waveforms

We performed matches against 76 of the waveforms
taken from the BAM catalogue described in Sec. II. We also
considered an additional set of waveforms taken from the
SXS [65,99] and Maya catalogues [67]. This enabled us to
test the accuracy of the model for configurations for which
it was not tuned, including two-spin configurations. The
additional verification waveforms from the SXS and Maya
catalogues were chosen to include those cases that gave
particularly poor matches for PhenomPv3 (since that is the
model we aim to directly improve upon) with a few cases of
additional interest such as SXS1397 (a long two-spin
waveform) and precessing systems with q > 4. The addi-
tional BAM waveforms provide a systematic coverage of
the parameter space over which we have tuned our model.
A summary of the waveforms taken from the BAM

catalogue are given in Table I, while the details of those
taken from the SXS and Maya catalogues are in Table II.
Only the subset of waveforms taken from the BAM
catalogue were used to study the accuracy of the individual
components of the model: the underlying coprecessing
model and the model for the precession angles. The
complete set of waveforms, taken from all three catalogues,
was used to test the accuracy of the full model over a range
of total masses for the system.

C. Matches: Accuracy of the coprecessing model

We computed the match between various models for the
coprecessing waveform and the coprecessing numerical
relativity waveform. We considered a system of total mass
100 M⊙ and performed the match over the frequency range
for which the numerical relativity data was available: from
ðfref þ 5Þ Hz to 244 Hz. The value of the reference
frequency fref for each simulation is given in Table I.
The coprecessing-frame models we consider are PhenomD,
PhenomXAS and PhenomDCP. For both PhenomD and PhenomXAS,
we considered the version where the final spin has been

modified to take into account the in-plane spin component
for precessing systems.
As can be seen from Fig. 17, the assumptions that go into

producing the aligned-spin mapping used in the production
of modified PhenomD and modified PhenomXAS become less
accurate as both mass ratio and spin are increased.
PhenomDCP performs better than both modified PhenomD

and modified PhenomXAS for almost all cases, with the
most noticeable improvement for the higher mass ratio,
high-spin cases where we are in greatest need of a tuned
coprecessing model. In the cases where PhenomDCP has a
similar or slightly worse performance than either of the
other two models, the match is generally already compa-
rable to the accuracy level of our input numerical relativity
waveforms.

D. Matches: Accuracy of the angle model

In order to test the accuracy of the angle model, we
constructed a set of precessing waveforms by calculating
the symmetrized frequency-domain coprecessing numeri-
cal relativity waveform containing only the l ¼ 2 multi-
poles and “twisting” this waveform up with the modeled
precession angles. We have previously seen the angle
model performs well qualitatively in Sec. VII. We choose
to study the match here as it provides the most physically
meaningful way to assess the significance of the angle
model as a whole. We constructed two sets of precessing
waveforms in this fashion, one using the model for the
angles presented in this paper and the other using the MSA
angles, in order to quantify the effect of modeling the
merger-ringdown behavior of the angles. We then calcu-
lated the SNR-weighted match between these waveforms
and the symmetrized numerical relativity waveforms in the
J-aligned frame comprising only the l ¼ 2 multipoles. As
with the coprecessing matches described above, these
matches were calculated at a fixed total mass M ¼
100 M⊙ and performed over a frequency range from

FIG. 17. Mismatches for each of the BAM calibration and verification waveforms, at a total mass of 100 M⊙. Mismatches are between
the symmetrized coprecessing numerical relativity waveforms and PhenomDCP (purple diamonds), modified PhenomD (blue circles),
and modified PhenomXAS (red squares). The configuration mass ratio increases from left to right (with q ∈ f1; 2; 4; 8g). Solid black
lines separate cases mass ratios, and dotted lines separate spin magnitudes.
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ðfref þ 5Þ Hz to 244 Hz (the frequency range for which the
numerical relativity data was available).
In Fig. 18, we have shown the inclination average of the

full precessing match for ease of presentation. We can see
that the matches using the improved angle model are above
0.99 across the majority of the parameter space. The only
cases for which this is not true are in the most extreme
corner of the parameter space we modeled: cases with
q ¼ 8, χ ¼ 0.6 and θLS ≥ 90°. In these cases, we find the
PN expressions used for α during inspiral deviate
from those calculated from the numerical relativity wave-
form at reasonably low frequencies. In the case of
ðq; χ; θLSÞ ¼ ð8; 0.8; 120°Þ, this is before the start of the
numerical relativity waveform, as shown in Fig. 19.
Improving the model for these cases would require a
model for the intermediate region between where the PN
expression ceases to be accurate and where the current
model begins, which may require longer numerical rela-
tivity waveforms to be produced. Additionally, we expect
that modeling this intermediate region will improve
matches for several other cases as well, where the PN
expressions for the angles deviate from what we see in the
numerical relativity data at lower frequencies than are
covered by our current merger-ringdown model for the
angles. Nonetheless, in all cases, we see significant
improvement over the previous model.
The best matches are seen in the least extreme part of

parameter space, namely, for low mass ratio systems. This
is the region of parameter space where existing models for
the angles already perform reasonably well. The biggest
improvement in the matches as a result of the improved
model for the angles is seen at higher mass ratios,
particularly for larger θLS.
For a selection of these cases, we show the mismatch as

a function of θJN in Fig. 20. The figure shows both the
SNR-weighted average and the range of mismatches
with respect to signal polarization and phase. We see

that the mismatches against symmetrized numerical rel-
ativity waveforms are approximately symmetric about
θJN ¼ π=2. The MSA angles generally give the worst
SNR-weighted average mismatch for systems with
θJN ¼ 0; π, although this is not always the case, and the
variations with respect to different choices of polarization
and phase are often larger than those with respect to
inclination. This mismatch then typically improves as it
approaches θJN ¼ π=2 systems, with a slight increase for
systems at exactly π=2 in most cases. In contrast, the SNR-
weighted average mismatches involving the new angle
model show one of two main behaviors with respect to
inclination; the first gives the lowest mismatches for
systems with θJN ¼ 0; π with a marked degradation
towards θJN ¼ π=2, while the second shows approxi-
mately constant values for the mismatch with respect to
inclination, with a possible slight improvement for sys-
tems with θJN ¼ π=2. However, we do not observe any

FIG. 18. SNR-weighted mismatches for the same configurations as in Fig. 17, averaged over inclination. These mismatches are
between the symmetrized numerical relativity waveforms in the J-aligned frame and the coprecessing numerical relativity waveform
twisted up with the angle model presented here (purple diamonds) and twisted up with the angle model used by PhenomPv3 (steel blue
triangles).

FIG. 19. Comparison MSA α (blue dashed line) with the value
calculated from the numerical relativity waveform (black solid
line) for the ðq; χ; θLSÞ ¼ ð8; 0.8; 120°Þ configuration. In order to
see a region over which the two values agree well, we would need
a longer numerical relativity waveform; see text for more details.
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clear pattern in how these two trends manifest themselves
across the parameter space. The most important result to
note is that in comparing the new angle model with the
MSA angles in this figure, for the new angle model
the lowest mismatch is always better (the lower edge of
the envelopes), the highest mismatch is always better (the
upper edge of the envelopes), and the SNR-weighted
mismatch is always better.
In general, we might expect errors in the angle models to

lead to worse mismatches for edge-on configurations, since
at these orientations the contributions of the subdominant
l ¼ 2 multipoles are largest, and the strength of those
multipoles in our model is directly related to the precession
angles, in particular, β. However, θJN ¼ π=2 does not
necessarily correspond to the binary being edge-on to
the detector, unless β is close to zero; in general, a system
viewed from θJN ¼ π=2 is never edge on. Because of this,
and because of the large variation in matches across the
cases shown in Fig. 20, we revisit this question in the full-
model mismatches in the next section, where we specify the
binary orientation at the beginning of the waveform (so
θLN ¼ π=2 corresponds to edge-on at least at one point in
the inspiral) and consider an exhaustive set of masses,

orientations, and polarizations for every numerical rela-
tivity waveform.

E. Matches: Accuracy of PhenomPNR

In this section, we compare the accuracy of the complete
PhenomPNR model to existing precessing waveform models
by computing SNR-weighted mismatches between these
approximants and the various numerical relativity wave-
forms detailed in Sec. XI B. Each SNR-weighted mismatch
is computed over a range of total masses Mtotal ∈
½100; 120; 140; 160; 180; 200; 220; 240� M⊙ and at four
inclination values, θLN ∈ ½0; π=6; π=3; π=2�, specified at
the reference frequencies given in the waveform tables.
The choice to sample in θLN, rather than θJN as done above,
was motivated partially by the frame convention of LALSuite
[60], which specifies that the LAL inertial frame
[100] in which the waveforms are generated be instanta-
neously L̂ aligned at the given reference frequency. This
choice allows for comparisons with match results already
present in the literature. As was also noted in the previous
section, the conventional wisdom gleaned from nonpre-
cessing signals regarding model performance and the

FIG. 20. Mismatch as a function of the inclination of the binary, quantified by the angle between the line of sight and the total angular
momentum θJN, for four cases, at 100 M⊙. These mismatches consider the coprecessing NR waveform twisted up with the angle model
used by PhenomPv3 (steel blue) and PhenomPNR (purple). The solid markers show the SNR-weighted average mismatch, while the shaded
regions show the variation with respect to signal polarization and phase.
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importance of higher multipoles for configurations with
θLN ∼ π=2 also holds for precessing cases where β remains
small throughout most of the inspiral, as is the case with
most of the numerical relativity waveforms we consider.
The matches were performed starting at a frequency of
20 Hz or fref þ 5 Hz, whichever was higher, with fref listed
for each numerical relativity waveform in Tables I and II.
The nominal starting frequency of 20 Hz was chosen to
match the approximate low-frequency cutoff of typical
signal analysis and dictated our choice of 100 M⊙ as the
lowest total mass we consider.

1. Match variation with inclination

As discussed in the previous section, we would expect
improvement in PhenomPNR to be most apparent when trying
to replicate highly precessing signals at high inclination,
θLN ∼ π=2, where the modulations in the signal due to
precession grow stronger as more power is distributed across
thel ¼ 2multipoles.We therefore compare the performance
of PhenomPNR with the earlier precessing model PhenomPv3,
plotting the SNR-weighted mismatches between these two
models and the numerical relativity waveforms for each
inclination value used. We choose PhenomPv3, since it was the
base model that we modified to produce PhenomPNR, and this
comparison provides the most direct measure of the level of
improvement achieved by including numerical relativity-
tuned precession effects in both the coprecessing-frame and
angle models. The overall distribution of SNR-weighted
mismatches is shown in Fig. 21. For PhenomPv3, which uses
the uncalibrated MSA angles, the performance noticeably
degrades as the signal inclination increases, whereas the
mismatches for PhenomPNR remain relatively unchanged with
respect to changes in inclination. This is largely consistent
with Fig. 20, where the average match shows little variation
with respect to inclination for three out of the four configu-
rations shown and suggests that the behavior of themodel for
the ðq; χ; θLSÞ ¼ ð8; 0.8; 90°Þ case is atypical.

2. General match results

We compare the performance or PhenomPNR against the
precessing waveform approximants PhenomXP, SEOBNRv4P,
and NRSUR7DQ4. The full results are shown for all incli-
nations and total masses in Fig. 22, and the mass- and
inclination-averaged SNR-weighted mismatches are shown
per waveform in Fig. 23. The model NRSUR7DQ4 was
calibrated only up to q ¼ 4, and while its implementation
in LALSuite allows for extrapolation beyond this, we choose
to limit the comparison with this model to the subset of the
available numerical relativity waveforms with q ≤ 4 to
ensure accuracy is maintained.
Overall, we see an improvement in the mismatches

between PhenomPNR and the numerical relativity waveforms
compared to PhenomXP and SEOBNRv4P. The mismatch
results show comparable performance between PhenomPNR

and NRSUR7DQ4, but we caution a reminder that NRSUR7DQ4

FIG. 21. Histograms of the SNR-weighted mismatches be-
tween the numerical relativity waveforms listed in Tables I and II
and thewaveformmodels PhenomPNR and PhenomPv3. Each subplot
contains the SNR-weighted mismatches for all total masses
separated by inclination descending as θLN ∈ ½0°; 30°; 60°;
90°�. The mismatches for all total mass values listed in Sec. XI E
are included at each inclination. The results for PhenomPNR are
present in solid black, while the results for PhenomPv3 are given in
dashed red.
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is a model that does not make the simplifying assumptions
outlined in Sec. III, and while the effects of these additional
physical features are generally small, we expect that
their presence in NRSUR7DQ4 compared to the numerical
relativity data used for this comparison would bias the
results toward slightly higher mismatches. Nonetheless, it
is encouraging to observe that the PhenomPNR model,

while tuned to a comparatively small number of waveforms
over a large configuration parameter space and using a
simple set of model Ansätze and several simplifying
assumptions, in general, has comparable mismatches to
the NRSUR7DQ4 model.
From Fig. 23 it is apparent that the overall mismatch

increases with mass ratio, and for each mass ratio the

FIG. 22. Histograms of the SNR-weighted mismatches between various models in comparison and the numerical relativity waveforms
listed in Tables I and II. The mismatches for all inclination and total mass values listed in Sec. XI E are included. In all three subplots, the
results for PhenomPNR (“PNR”) are presented with a solid black outline, with the other model results given with dashed outlines from left
to right as PhenomXP (“XP”) in red, SEOBNRv4P (“EOB”) in blue, and NRSUR7DQ4 (“SUR”) in green. For the comparison plot between
PhenomPNR and NRSUR7DQ4 we only include results of numerical relativity waveforms for which both models are run.

FIG. 23. SNR-weighted mismatches averaged over total mass and inclination between the precessing waveform models PhenomPNR

(“PNR”), PhenomXP (“XP”), and SEOBNRv4P (“EOB”), and the numerical relativity waveforms listed in Tables I and II, shown in order of
the table listings. For the BAM cases, the solid vertical lines separate cases by mass ratio, and the dashed vertical lines separate spin
magnitude. For the SXS and Maya cases, the solid vertical line splits by numerical relativity catalogue, and the dashed vertical line
indicates a transition from single-spin to two-spin cases.
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mismatch generally worsens with increasing spin magni-
tude. This behavior is largely responsible for the long tails
toward high mismatch value present in Fig. 22. Such a trend
is also visible in Figs. 17 and 18. A simple explanation for
this observation arises from the PN scaling of the opening
angle ι with symmetric mass ratio and spin magnitude in
quasicircular binaries with simple precession [31],

sin ι ¼ S⊥ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðη ffiffiffiffiffiffiffiffi

MR
p þ SkÞ2 þ S2⊥

q ; ð78Þ

where M is the system’s total mass and R its orbital
separation. A larger opening angle increases the impact of
precession modulations on the signal, and these are where
model inaccuracies will be most apparent. One would
similarly expect to see worsening mismatches as S⊥ is
maximized, i.e., θLS ¼ 90° for single-spin cases; however,
this trend is not as apparent in the results. The results in
Fig. 23 show that PhenomPNR is an improvement over
PHENOMXP in the most extreme region of parameter space
for q ¼ 8; χ ∈ ½0.6; 0.8�, while SEOBNRv4P yields better
results in this region when θLS > 90°.
Regarding the performance of PhenomPNR for the two-

spin numerical relativity cases listed in Table II, specifically
cases 8–19 and cases 23–27, we observe that PhenomPNR and
PhenomXP perform surprisingly similarly for these cases,
both for the SXS and MAYA cases, whereas PhenomPNR

provides a general improvement over SEOBNRv4P for the
two-spin cases. These results provide a reassuring valida-
tion of the single-spin mapping detailed in Sec. IV.

Finally, we remark on the impact of the fixed-Ĵ
assumption used in the modeling of PhenomPNR and outlined
in Sec. I A. We computed the SNR-weighted mismatches
between the raw numerical relativity signals in an initially
Ĵ-aligned frame and those in the fixed-Ĵ frame and find that
the resulting mismatches are more than an order of
magnitude lower than the mismatches between
PhenomPNR and the fixed-Ĵ frame numerical relativity
signals presented in this section and in all cases lower
than 5.1 × 10−4 at 100 M⊙. The full comparison is dis-
played in Fig. 24 and shows that the fixed-Ĵ approximation
remains valid over a broad range of parameter space where
θLS < 90° but begins to break down for systems with higher
mass ratio and opening angle, implying that future model-
ing efforts should take care to re-evaluate the validity of this
approximation in more extreme regions of parameter space.

XII. CONCLUSION

We have presented a new model of the GW signal from
the inspiral, merger, and ringdown of precessing non-
eccentric black-hole binaries, PhenomPNR. This is the first
model to explicitly calibrate precession effects through
merger and ringdown to numerical relativity simulations
and to use higher-order PN amplitude terms to consistently
define a signal-based coprecessing frame (the “quadrupole
aligned” (QA) or “optimal emission direction”) throughout
the model.
The model is calibrated to 40 numerical relativity sim-

ulations of binaries where only the larger black hole is
spinning; the simulations cover fourmass ratios (q ¼ 1, 2, 4,
8), two spinmagnitudes (χ ¼ 0.4, 0.8), and five values of the
spin misalignment angle (θLS ¼ 30°; 60°; 90°; 120°; 150°).
In the frequency domain, we separately model the copreces-
ing-frame signal, hCP2;2ðfÞ, and the precession angles,
ðα; β; γÞ. We model only the dominant ðl ¼ 2; jmj ¼ 2Þ
multipoles in the coprecessing frame and neglect �m
asymmetries in the multipoles.
The coprecessing-frame model, PhenomDCP, is an exten-

sion of the earlier aligned-spin model PhenomD, which was
calibrated to 19 numerical relativity simulations of either
single-spin or equal-spin binaries, up to q ¼ 18 and spins
of jχj ≤ 0.85. Our extension captures the effect of in-plane
spin on the amplitude and phase of the coprecessing-frame
signal in the late inspiral and merger ringdown. We note for
the first time that the final black hole’s ringdown frequency
is shifted to an effective ringdown frequency in the
coprecessing frame. For this reason, we explicitly model
the effective ringdown frequency across the single-spin
parameter space and do not make use of estimates of the
final black hole’s mass and spin.
The angle model, PhenomAngles, uses during inspiral the

MSA PN angles used in previous Phenom models. These
angles describe the dynamics of the orbital plane of the
binary, which is only approximately equal to the QA

FIG. 24. SNR-weighted mismatches computed at 100 M⊙ and
averaged over inclination between the precessing waveform
model PhenomPNR (“PNR”) and the numerical relativity wave-
forms listed in Table I, shown in order of the table listings.
Alongside these results are plotted the SNR-weighted mis-
matches computed between the numerical relativity waveforms
in the initially Ĵ-aligned frame and the fixed-Ĵ frame (“NR”). The
solid vertical lines separate cases by mass ratio, and the dashed
vertical lines separate spin magnitude.
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direction that we require to correctly model the signal. We
find that this approximation holds well throughout the
inspiral for the angles α and γ but is not sufficiently accurate
for β. However, it is possible to use higher-order PN
amplitude expressions, and reduction to a single-spin sub-
space, to transform the MSA binary inclination into a good
approximation of the QA β. This is discussed in Sec. VI B.
Note that current EOBNR models also use the orbital
precession dynamics as an approximation to the signal
precession dynamics, and so an approach like the one used
here is likely to also improve the accuracy of those models.
The PhenomAngles precession angles through merger and

ringdown are where our model differs most significantly
from previous Phenom and EOBNR models. We observe and
model a “dip” in αðfÞ [and therefore γðfÞ] around the
effective ringdown frequency, similar to that found in the
phase derivative when constructing PhenomD [9,10]. Most
importantly, we also model the steep collapse of β through
merger. As we discuss in Sec. IX, this feature is quite
distinct from the asymptotic ringdown behavior of β and
results in a shift in the frequency location of the peak
amplitude for each of the l ¼ 2 multipoles; see Fig. 13.
Our precession model is tuned to single-spin numerical

relativity simulations, but we make use of a nonbijective
mapping between the six spin components required to
describe a two-spin system, and the two components
required in our single-spin fits to numerical relativity data;
see Sec. IV. In some parts of our model, this is equivalent to
using the χp parameter from earlier Phenom models, but we
also introduce modifications to produce a mapping with
greater physical fidelity near q ¼ 1. In the precession
dynamics, we taper away two-spin oscillations as the
system approaches merger. The result is an approximate
IMR model for two-spin systems.
In Sec. XI we demonstrate the accuracy of PhenomDCP,

PhenomAngles, and the complete IMR model PhenomPNR, by
calculating matches against numerical relativity wave-
forms. The matches are calculated against not only the
40 calibration waveforms, but an additional 36 BAM

verification waveforms from across the same single-spin
parameter space, plus 27 SXS and Maya waveforms, which
include two-spin systems. We find that our model in
general improves significantly over previous Phenom and
EOBNR models, as illustrated in Fig. 23.
There are several immediate directions for future work.

PhenomPNR does not model subdominant multipoles in the
coprecessing frame, but these will be essential for meas-
uring the properties of observations at larger mass ratios,
which is the very region of parameter space where
PhenomPNR shows the greatest improvement over previous
models. This could be achieved through directly modeling
each of the multipoles and including mode-mixing effects
as in Ref. [16]. Alternatively, one could estimate the
subdominant multipoles through the approximation used
in Ref. [12].

Beyond this, the model needs to be extended to include
explicit numerical relativity calibration to two-spin systems
and to model �m multipole asymmetries. Our results also
suggest that the angle modeling needs to be improved at
lower frequencies for cases with large mass ratios, large
spins, and large values of θLS; it is possible that this will
require longer numerical relativity simulations.

PhenomPNR models the signal in a frame where the
direction of the total angular momentum is constant, by
first transforming the calibration numerical relativity wave-
forms to a frame that tracks the evolution of ĴðtÞ. The error
incurred by this approximation is evaluated in Fig. 24 for
the calibration cases used to tune the model, and we note
that this error is, in general, at least an order of magnitude
below the other sources of modeling error as measured
from model mismatches except in two cases: ðq; χ; θLSÞ ¼
ð4; 0.8; 150°Þ and ðq; χ; θLSÞ ¼ ð8; 0.4; 150°Þ. While these
results largely validate the use of this assumption in
constructing PhenomPNR, it is clear from Fig. 24 that current
modeling efforts are encroaching regions of parameter
space where this approximation is no longer valid. In
the future, if we wish to construct models with mismatch
errors below 10−4 or extend the current model to even
higher mass ratios and spin magnitudes, this approximation
will need to be removed.
Finally, although most GW observations to date have

been of systems with comparable masses, there has been
one observation (GW190814 [63]) where the mass ratio is
likely outside the calibration region of this model, and so it
is necessary that the calibration region be extended to
higher mass ratios. All of these areas are the subject of
ongoing work.
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APPENDIX A: CALCULATION OF
PRECESSION ANGLES

Here, we outline the calculation of the coprecessing
frame quantified by αðfÞ, βðfÞ, and γðfÞ; see Fig. 3. To
calculate each angle, we use the rotationally invariant
eigenvalue method [50,51]. As shown in Ref. [51], when
multipole moments are limited to cases where l ¼ 2, this is
equivalent to the original QA method [33]. The result is
independent of the initial inertial frame when the minimum
rotation condition is imposed [51].
The eigenvalue method and minimal rotation convention

are described in Refs. [48,50,51]. Reference [50] introdu-
ces the eigenvalue method. Reference [48] details the
practical structure of this method in its Appendix A, and
Ref. [51] adds the minimal rotation convention which
defines the optimal emission direction in a frame invariant
way. Here, we provide a self-contained description of the
algorithm to calculate αðfÞ, βðfÞ and γðfÞ.
Starting with the discrete Fourier transform of Ψ4

decomposed into spin weight −2 spherical harmonics,
ψ̃lm, we compute the effect of all pairwise angular
momentum generators averaged about the binary’s center
of mass. This is hLðaLbÞi, where

hLðaLbÞi ¼
1

2
hLaLb þ LbLai

¼
R
Ω Ψ̃�

4ðfÞLðaLbÞΨ̃4ðfÞdΩR
Ω jΨ̃4ðfÞj2dΩ

; ðA1Þ

with a and b over fx; y; zg, and where

Lx ¼
1

2
ðLþ þ L−Þ; Ly ¼ −i

1

2
ðLþ − L−Þ;

L� ¼ e�iφ½�i∂θ − cot θ∂φ − is csc θ�; ðA2Þ

and

Lz ¼ ∂φ: ðA3Þ

In Equation (A2) s is the spin weight of the object being
acted upon [104,105]. As we are only interested in out-
going gravitational-wave radiation, s ¼ −2.
In practice, evaluation of Equation (A1) need not require

direct integration when Ψ̃4 is written in terms of its
multipole moments, ψ̃lm; see Equation (1). That is, as
the operation of L� and Lz on −2Ylm are known [74,104],
one finds that

hLðaLbÞi

¼ 1P
l;mjψ̃lmj2

2
664
I0þReðI2Þ ImI2 ReI1

I0−ReðI2Þ ImI1
Izz

3
775;

ðA4aÞ

where

I2 ≡ 1

2
ðΨ̃;LþLþΨ̃Þ

¼ 1

2

X
l;m

clmclmþ1ψ̃
�
lmþ2ψ̃lm; ðA4bÞ

I1 ≡ ðΨ̃;LþðLz þ 1=2ÞΨ̃Þ
¼

X
lm

clmðmþ 1=2Þψ̃�
lmþ1ψ̃lm; ðA4cÞ

I0 ≡ 1

2
ðΨ̃jlðlþ 1Þ − L2

z jΨ̃Þ

¼ 1

2

X
lm

½lðlþ 1Þ −m2�jψ̃lmj2; ðA4dÞ

Izz≡ðΨ̃;LzLzΨ̃Þ ¼
X
lm

m2jψ̃lmj2; ðA4eÞ

and where clm ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ 1Þ −mðmþ 1Þp

.
The resulting tensor, hLðaLbÞi, is analogous to the

Cauchy stress tensor in continuummechanics and describes
infinitesimal changes in momenta (linear and angular)
associated with Ψ̃4ðfÞ averaged about the source.
From the discussion in Sec. III, we see that hLðaLbÞi is

unchanged when considering h̃ðfÞ rather than Ψ̃4ðfÞ, as the
factor of 1=2πf amounts to a simple overall rescaling that
does not affect normalized eigenvectors. From these points,
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it follows that the eigenvector of hLðaLbÞi with the largest
eigenvalue describes the direction about the source that
experiences the largest strain (or curvature) and strain rate
(or curvature rate). This is the coprecessing frame.
If we label hLðaLbÞi’s dominant normalized eigenvector

as V̂ ¼ ðvx; vy; vzÞ, then the angles associated with the
coprecessing frame are given by

αðfÞ ¼ arctan

�
vyðfÞ
vxðfÞ

�
; ðA5Þ

βðfÞ ¼ arccos ðvzðfÞÞ; ðA6Þ

γðfÞ ¼ −
Z

fð∂f0αðf0ÞÞ cos βðf0Þdf0: ðA7Þ

Equations (A5) and (A6) follow from the use of a source
centered spherical polar coordinate system in the asymp-
totically flat decomposition frame. Equivalently, this is
related to the frame of a distant observer. Equation (A7) is
the minimum rotation condition presented in Ref. [51],

TABLE I. BAM single-spin configurations used in tuning the
coprecessing and angle models as well as in the assessment of the
accuracy of the model.

Simulation ID 100 M⊙
M fref (Hz) q χ θLSð∘Þ

CF21-1 14.8 1 0.2 30
CF21-2 14.8 1 0.2 60
CF21-3 � � � � � � � � � � � �
CF21-4 � � � � � � � � � � � �
CF21-5 14.7 1 0.2 150
CF21-6 14.8 1 0.4 30
CF21-7 14.8 1 0.4 60
CF21-8 14.9 1 0.4 90
CF21-9 14.8 1 0.4 120
CF21-10 14.8 1 0.4 150
CF21-11 18.2 1 0.6 30
CF21-12 14.8 1 0.6 60
CF21-13 14.9 1 0.6 90
CF21-14 14.8 1 0.6 120
CF21-15 14.8 1 0.6 150
CF21-16 14.8 1 0.8 30
CF21-17 14.7 1 0.8 60
CF21-18 14.9 1 0.8 90
CF21-19 14.9 1 0.8 120
CF21-20 15.2 1 0.8 150
CF21-21 14.7 2 0.2 30
CF21-22 14.7 2 0.2 60
CF21-23 14.8 2 0.2 90
CF21-24 15.2 2 0.2 120
CF21-25 14.8 2 0.2 150
CF21-26 14.8 2 0.4 30
CF21-27 14.6 2 0.4 60
CF21-28 14.7 2 0.4 90
CF21-29 14.8 2 0.4 120
CF21-30 14.8 2 0.4 150
CF21-31 14.7 2 0.6 30
CF21-32 14.9 2 0.6 60
CF21-33 14.5 2 0.6 90
CF21-34 14.9 2 0.6 120
CF21-35 14.4 2 0.6 150
CF21-36 14.9 2 0.8 30
CF21-37 14.9 2 0.8 60
CF21-38 14.7 2 0.8 90
CF21-39 15.0 2 0.8 120
CF21-40 15.0 2 0.8 150
CF21-41 � � � � � � � � � � � �
CF21-42 16.0 4 0.2 60
CF21-43 16.8 4 0.2 90
CF21-44 15.3 4 0.2 120
CF21-45 15.2 4 0.2 150
CF21-46 16.6 4 0.4 30
CF21-47 16.3 4 0.4 60
CF21-48 14.7 4 0.4 90
CF21-49 14.8 4 0.4 120
CF21-50 15.0 4 0.4 150
CF21-51 17.0 4 0.6 30
CF21-52 16.2 4 0.6 60
CF21-53 15.8 4 0.6 90
CF21-54 15.1 4 0.6 120

(Table continued)

TABLE I. (Continued)

Simulation ID 100 M⊙
M fref (Hz) q χ θLSð∘Þ

CF21-55 14.0 4 0.6 150
CF21-56 17.5 4 0.8 30
CF21-57 16.8 4 0.8 60
CF21-58 14.9 4 0.8 90
CF21-59 14.8 4 0.8 120
CF21-60 14.9 4 0.8 150
CF21-61 18.4 8 0.2 30
CF21-62 18.1 8 0.2 60
CF21-63 17.8 8 0.2 90
CF21-64 17.3 8 0.2 120
CF21-65 17.2 8 0.2 150
CF21-66 19.0 8 0.4 30
CF21-67 18.6 8 0.4 60
CF21-68 17.8 8 0.4 90
CF21-69 17.0 8 0.4 120
CF21-70 16.5 8 0.4 150
CF21-71 19.7 8 0.6 30
CF21-72 � � � � � � � � � � � �
CF21-73 17.9 8 0.6 90
CF21-74 16.7 8 0.6 120
CF21-75 17.0 8 0.6 150
CF21-76 20.5 8 0.8 30
CF21-77 19.5 8 0.8 60
CF21-78 18.0 8 0.8 90
CF21-79 16.0 8 0.8 120
CF21-80 15.2 8 0.8 150
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which removes secular changes in phase due to the
evolution of α and β.

APPENDIX B: WAVEFORMS USED IN ANALYSIS

The numerical relativity waveforms used in the
analysis of the model are listed in Tables I and II.

Table I contains the 80 waveforms which comprise the
BAM catalogue [47] of single spin precessing systems up
to mass ratio q ¼ 8 and single-spin magnitude χ ¼ 0.8. A
subset of 40 of these waveforms were also used in tuning
the model. Table II lists the additional waveforms taken
from the SXS [65,99] and Maya catalogues [67] used in
assessing the accuracy of the model and ensuring it was

FIG. 25. Amplitude parameters for tuned coprecessing waveform model, PhenomDCP. The fits are shown as two-dimensional surfaces
covering the parameter space described by η and cos θLS. On the left in blue are the fits for the simulations with χ ¼ 0.4, and on the right
in red are the fits for χ ¼ 0.8. Above each of these surfaces are shown the residuals.

TABLE II. Additional configurations from the SXS and MAYA catalogues used in the assessment of the accuracy of the model.

Simulation ID 100 M⊙
M fref (Hz) q χ θLSð ∘Þ χ1 χ2

SXS0097 9.2 1.5 0.5 90 ð−0.493; 0; 0.083Þ (0,0,0)
SXS0018 7.9 1.5 0.5 90 ð−0.494; 0; 0.078Þ (0,0,0)
SXS0092 9.4 1.5 0.5 150 ð−0.29; 0;−0.407Þ (0,0,0)
SXS0033 11.2 3.0 0.5 30 ð−0.19; 0; 0.463Þ (0,0,0)
SXS0035 8.5 3.0 0.5 90 ð−0.476; 0; 0.154Þ (0,0,0)
SXS1109 10.2 5.0 0.5 90 ð−0.435; 0; 0.246Þ (0,0,0)
SXS0062 14.1 5.0 0.5 116 ð−0.492; 0; 0.088Þ (0,0,0)
SXS0161 9.2 1.0 1.199 120 ð−0.579; 0;−0.158Þ ð−0.579; 0;−0.158Þ
SXS0115 10.2 1.07 0.246 74 ð−0.027;−0.016;−0.203Þ ð−0.236; 0.018; 0.304Þ
SXS0116 10.2 1.08 0.167 40 ð0.022;−0.099; 0.032Þ ð−0.143; 0.115; 0.106Þ
SXS0124 10.2 1.26 0.412 44 ð−0.247;−0.041; 0.091Þ ð−0.079; 0.065; 0.294Þ
SXS0102 9.3 1.5 0.5 90 ð−0.486; 0; 0.116Þ ð−0.486; 0; 0.116Þ
SXS1397 5.1 1.56 0.299 111 ð−0.242; 0.037;−0.172Þ ð0.458;−0.089; 0.102Þ
SXS0135 10.3 1.64 0.186 128 ð−0.059; 0.095; 0.025Þ ð0.003;−0.257;−0.228Þ
SXS0143 10.2 1.92 0.441 28 ð−0.072; 0.041; 0.443Þ ð−0.413;−0.15;−0.056Þ
SXS0144 10.2 1.94 0.214 146 ð−0.135; 0.011;−0.281Þ ð0.05;−0.04; 0.213Þ
SXS0049 11.2 3.0 0.527 72 ð−0.474; 0; 0.159Þ (0.159,0,0.474)
SXS1160 11.1 3.0 0.658 63 ð−0.455;−0.024; 0.531Þ ð0.41; 0.212;−0.384Þ
SXS0165 18.1 6.0 0.93 125 ð−0.648; 0.003; 0.639Þ ð−0.186;−0.094;−0.216Þ
GT0745 22.3 6.0 0.6 91 ð−0.437; 0; 0.411Þ (0,0,0)
GT0742 21.9 7.0 0.6 91 ð−0.404; 0; 0.444Þ (0,0,0)
GT0834 20.9 7.0 0.8 168 ð−0.375; 0; 0.706Þ (0,0,0)
GT0880 22.0 4.5 0.537 52 ð−0.269; 0; 0.536Þ ð0.269; 0;−0.536Þ
GT0887 21.8 5.0 0.543 51 ð−0.256; 0; 0.542Þ ð0.256; 0;−0.542Þ
GT0889 21.6 6.0 0.552 50 ð−0.234; 0; 0.552Þ ð0.234; 0;−0.552Þ
GT0888 21.4 7.0 0.559 49 ð−0.216; 0; 0.56Þ ð0.216; 0;−0.56Þ
GT0886 21.4 8.0 0.564 49 ð−0.2; 0; 0.566Þ ð0.2; 0;−0.566Þ
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not overfitted. This selection of waveforms includes two-
spin cases.

APPENDIX C: PARAMETER-SPACE FITS

Here, we show how each of the coefficients that appear
in PhenomPNR vary across the parameter space. Figures 25

and 26 show the variation of the coefficients which appear
in PhenomDCP, as described in Sec. V. Figure 27 shows the
coefficients in the ansatz for α, and Fig. 28 shows those in
the ansatz for β, which are presented in Sec. VII. As can be
seen from these figures, the coefficients vary smoothly
across the parameter space.

FIG. 26. Phase parameters for tuned coprecessing waveform model, PhenomDCP. The fits are shown as two-dimensional surfaces
covering the parameter space described by η and cos θLS. On the left in blue are the fits for the simulations with χ ¼ 0.4, and on the right
in red are the fits for χ ¼ 0.8. Above each of these surfaces are shown the residuals.
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FIG. 27. Comparison of the fits for each of the coefficients for the ansatz for α given in Eq. (49) with the coefficients found from the
data as described in Sec. VII. The fits are shown as two-dimensional surfaces covering the parameter space described by η and cos θLS.
On the left in blue are the fits for the simulations with χ ¼ 0.4, and on the right in red are the fits for χ ¼ 0.8. Above each of these
surfaces are shown the residuals.
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FIG. 28. Comparison of the fits for each of the coefficients for the ansatz for β given in Eq. (50) with the coefficients found from the
data as described in Sec. VII. The fits are shown as two-dimensional surfaces covering the parameter space described by η and cos θLS.
On the left in blue are the fits for the simulations with χ ¼ 0.4, and on the right in red are the fits for χ ¼ 0.8. Above each of these
surfaces are shown the residuals.
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