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We consider spatially covariant modified gravity in which the would-be scalar degree of freedom is made
nondynamical and hence there are just two tensorial degrees of freedom, i.e., the same number of dynamical
degrees of freedom as in general relativity. Focusing on a class of such modified gravity theories characterized
by three functions of time, we discuss how modified gravity with two tensorial degrees of freedom can be
distinguished observationally or phenomenologically from general relativity. It is checked that the theory
gives the same predictions as general relativity for the parametrized post-Newtonian parameter γ and the
propagation speed of gravitational waves. We also find that there is no modification to asymptotically flat
black holes at rest with respect to the preferred frame. Due to a large degree of freedom to choose the time-
dependent functions in the theory, the homogeneous and isotropic cosmological dynamics can be made close
to or even identical to that of the ΛCDMmodel. We investigate the behavior of cosmological perturbations in
the long- and short-wavelength limits and show that in both limits the effects of modified gravity appear only
through the modification of the background evolution. Finally, it is remarked that in the presence of a Galileon
field in the matter sector, the scalar degree of freedom is revived, ruining the essential feature of the theory.

DOI: 10.1103/PhysRevD.104.124020

I. INTRODUCTION

According to Lovelock’s theorem [1,2], the Einstein
tensor plus a cosmological term is the only possible
second-order Euler-Lagrange equation that is obtained
from a diffeomorphism-invariant action constructed from
the metric tensor alone in four spacetime dimensions.
Modifying gravity amounts to relaxing the postulates of
the theorem. Abandoning full spacetime diffeomorphism
invariance, one can for example consider modified gravity
enjoying only three-dimensional spatial diffeomorphism
invariance. Basically, this way of modifying gravity is
equivalent to introducing a new dynamical scalar degree
of freedom (d.o.f.) that spontaneously breaks time diffeo-
morphism invariance. This is the underlying idea utilized
in the construction of effective field theories for inflation
and dark energy [3–6]. A general framework for scalar-
tensor theories based on this idea has been developed in
Refs. [7,8].
An interesting twist is that a scalar d.o.f. incorporated

in such a framework is not necessarily dynamical and it is
possible that modified gravity in which time diffeomor-
phism invariance is broken has only two tensorial degrees
of freedom like general relativity (GR). The simplest
example of such “scalarless” scalar-tensor theories is the
cuscuton theory [9], in which the scalar field has an

infinite propagation speed. An attempt to identify the
cuscuton-like subclass within the Horndeski [10] and
beyond Horndeski [11] theories was presented in
Ref. [12]. Other modified gravity theories with two
d.o.f. have been constructed in Refs. [13–17], a subclass
of which is in fact equivalent to the cuscuton theory [18].
On the basis of the general framework of spatially
covariant theories of gravity [7,8], Ref. [19] has derived
through a rigorous Hamiltonian analysis the conditions
under which there are only two d.o.f. and presented a
particular action satisfying the conditions. The action is
composed of two derivative terms built out of three-
dimensional geometrical quantities as in GR, but depends
on the lapse function in a nontrivial manner. A comple-
mentary perturbative approach to spatially covariant
modified gravity without a scalar d.o.f. has been pro-
posed in Ref. [20].
The purpose of this paper is to explore phenomenologi-

cal aspects of the theory of modified gravity with two
tensorial d.o.f. proposed in Ref. [19] to see how the theory
can be distinguished observationally from GR. We will see
that it is quite difficult to find differences between the two
theories in the weak gravity regime, gravitational wave
propagation, black hole spacetimes, and cosmology, when
restricted to a certain subset of the theories of Ref. [19]. The
theory of modified gravity we study in this paper is
somewhat similar to the infrared limit of Hořava gravity
[21] in some respects, and we share the same motivation,
e.g., as Ref. [22].
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The structure of this paper is as follows. In the next
section, we review modified gravity theories with two
tensorial d.o.f. [19] which we study in this paper. In
Sec. III, we identify the subclass of the theories that gives
the same predictions as general relativity for the parame-
trized post-Newtonian (PPN) parameter γ and the propaga-
tion of gravitational waves. Then, we study black hole
spacetimes in Sec. IVand cosmological aspects in Sec. V. In
Sec. VI, a side remark concerning a coupling to a Galileon
field is given. Finally, we draw our conclusions in Sec. VII.

II. SPATIALLY COVARIANT GRAVITY WITH
TWO TENSORIAL DEGREES OF FREEDOM

In this section, we introduce a class of spatially covariant
modified gravity in which there are just two tensorial d.o.f.
[19] and in particular there is no scalar d.o.f.

A. “Scalarless” scalar-tensor theories

Let us begin with scalar-tensor theories with one scalar
d.o.f., ϕ, on top of two tensorial d.o.f. In the unitary gauge
where ϕ is homogeneous on constant time hypersurfaces,
ghost-free scalar-tensor theories can in general be described
by the action of the form [7,8],

S ¼
Z

dtd3xN
ffiffiffi
γ

p
LðN; γij; Kij; Rij; Di; tÞ; ð1Þ

whereN is the lapse function, γij is the spatial metric, Kij is
the extrinsic curvature of constant time hypersurfaces,

Kij ¼
1

2N
ð∂tγij −DiNj −DjNiÞ; ð2Þ

with Ni being the shift vector, Rij is the intrinsic curvature
tensor, and Di is the covariant derivative with respect to γij.
The Horndeski action [10,23,24] can be recast in the above
form in terms of these Arnowitt-Deser-Misner (ADM)
variables. One may also include the velocity of the lapse
function, ∂tN − NiDiN, and explore a larger class of healthy
scalar-tensor theories with three d.o.f. [25]. Although such a
generalization leads to an interesting class of theories called
degenerate higher-order scalar-tensor theories [26–28], we
focus for simplicity on the action of the form (1).
Thus, in general, the action (1) describes scalar-tensor

theories with three d.o.f. However, in a particular subset of
theories, the scalar mode obeys an elliptic equation and does
not propagate. Consequently, such theories have only two
tensorial d.o.f. as in GR, but the action is certainly different
from that of GR. A particular example is given by [19]

S ¼ 1

2

Z
dtd3xN

ffiffiffi
γ

p �
β0N

β2 þ N
KijKij

−
β0
3

�
2N

β1 þ N
þ N
β2 þ N

�
K2

þ α1 þ α2Rþ 1

N
ðα3 þ α4RÞ

�
; ð3Þ

where βA and αA are functions of t. A rigorous Hamiltonian
analysis has shown that this theory indeed has only two
tensorial d.o.f. [19].1 One might worry that the number of
propagating d.o.f. may depend on the gauge choice. This
concern was addressed recently in the context of higher-
order scalar-tensor theories in Refs. [29,30], where it was
argued that the unitary gauge analysis is sufficient. The
cuscuton theory [9] is reproduced by setting β0 ¼ α2 ¼ 1
and β1 ¼ β2 ¼ α4 ¼ 0, with α3 coming from the cuscuton
term σðϕÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−∂μϕ∂μϕ
p

, while the extended cuscuton theories
[12,31] correspond to the case with β1 ¼ β2. The covariant
expression for the action (3) in terms of a Stückelberg scalar
field is given in Appendix B. It is instructive to rewrite the
kinetic part of the Lagrangian as

β0
2

 
N

β2 þ N
K̃ijK̃ij −

2

3

N
β1 þ N

K2

!
; ð4Þ

where K̃ij ≔ Kij − ð1=3ÞKγij is the traceless part of the
extrinsic curvature. This expression shows the roles of the
functions β1 and β2 more clearly. In the following we will
explore various aspects of the gravitational theory with the
action (3).
Before proceeding let us comment on other examples of

“scalarless” scalar-tensor theories with two d.o.f. Under the
assumption that the Lagrangian is linear in the lapse
function [i.e., L in Eq. (1) is independent of N], the
conditions for a theory to have only two tensorial d.o.f.
have been addressed in Ref. [13]. References [14–16]
obtained gravitational theories with two d.o.f. via canonical
transformations from GR in the Hamiltonian formulation.
In the context of the recent claim concerning the D → 4
limit of D-dimensional Gauss-Bonnet gravity [32], a
consistent theory with two d.o.f. has been proposed [17]
that avoids the propagation of the scalar mode present in the
previous derivations [33–37]. Symmetries that prohibit the
scalar mode from propagating have been discussed in
Ref. [38]. See Refs. [39–41] for further developments in
“scalarless” modified gravity and Refs. [42–44] for the
application to cosmology.

1The case with β0 ¼ 1was presented in Ref. [19], but it is clear
from the footnote of Ref. [19] that one can include this time-
dependent coefficient.
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B. Quasi-Einstein frame

A field redefinition of a metric given by a disformal
transformation [45] retains the number of propagating d.o.f.
as long as the transformation is invertible. In terms of the
ADM variables, it is expressed as

N → N ðt; NÞ; Ni → Ni; γij → Aðt; NÞγij: ð5Þ

Let us consider a special case of a disformal transformation,

N → b0ðtÞN þ b1ðtÞ; Ni → Ni; γij → γij: ð6Þ

Under the transformation (6), the form of the action (3) is
invariant, with βAðtÞ and αAðtÞ being transformed as

β0 → β0=b0; β1;2 → ðβ1;2 þ b1Þ=b0;
α1;2 → b0α1;2; α3;4 → α3;4 þ b1α1;2: ð7Þ

Therefore, via the field redefinition (6) one can always set
β0 ¼ 1 and β2 ¼ 0. Since the coefficient of KijKij is now
standard, we dub this frame the quasi-Einstein frame. This
motivates us to study the action of the form2

S ¼ 1

2

Z
dtd3xN

ffiffiffi
γ

p �
KijKij −

1

3

�
2N

β þ N
þ 1

�
K2

þ α1 þ α2Rþ 1

N
ðα3 þ α4RÞ

�
; ð8Þ

where β ≔ β1, as the case of particular interest. General
relativity with a cosmological constant is reproduced by
setting β ¼ α3 ¼ α4 ¼ 0, α1 ¼ const, and α2 ¼ 1. Theories
with β ≠ 0 are not included in the (extended) cuscuton
family, and hence the impacts of β have not been inves-
tigated so far in the literature.
Note that a subtlety arises when matter is present. In this

paper we assume that matter is minimally coupled to
gravity in this quasi-Einstein frame.
Here we should point out the similarity and difference

between the action (8) and that of the infrared limit of
nonprojectable Hořava gravity [21,46,47],

S ¼ 1

2

Z
dtd3 xN

ffiffiffi
γ

p ðKijKij − λK2

þ α1 þ α2Rþ ηaiaiÞ; ð9Þ

where ai ≔ Di ln N and now all the coefficients are
constants. The same action is also obtained in the context
of Einstein-aether theory [48] if the aether field is restricted
to be hypersurface orthogonal [49,50]. While being mostly
similar, the essential difference can be perceived in the

structure of the coefficient of K2. In the case of η ¼ 0,
nonprojectable Hořava gravity has odd dimensionality of
the phase space at each spacetime point and hence is
inconsistent [51,52]. By contrast, the action (8) is free of
such a trouble thanks to the particular structure of the
coefficient of K2.

III. SOLAR SYSTEM TESTS AND
GRAVITATIONAL WAVES

Let us study gravitational potentials produced by non-
relativistic matter and the propagation of gravitational waves
in the theory described by the action (8). We assume that
α1; α3 ∼H2

0, where H0 is the Hubble scale, so that they are
only relevant to the large-scale cosmological dynamics. We
also assume that α2 and α4 could vary only on cosmological
time scales, because otherwise nearly static gravitational
potentials would not be possible. We can then consider scalar
and tensor perturbations on a Minkowski background, using
the approximation α1; α3 ≪ ∂2

t ;Δð≔ δij∂i∂jÞ.
Static scalar perturbations of the ADM variables are

given by

N ¼ 1þΦðx⃗Þ; Ni ¼ ∂iχðx⃗Þ;
γij ¼ ½1 − 2Ψðx⃗Þ�δij: ð10Þ

The quadratic action reads

S ¼
Z

dtd3 x

�
−ðα2 þ α4ÞΨΔΨþ 2α2ΦΔΨ

þ β

3ð1þ βÞ ðΔχÞ
2 −Φρðx⃗Þ

�
; ð11Þ

where ρðx⃗Þ is the matter energy density. This matter is
assumed to be minimally coupled to gravity and at rest with
respect to the preferred frame. Note that in deriving Eq. (11)
we actually assumed that βΔ ≫ H2

0. The equations of
motion are then solved to give

ΔΦ¼
�
1þα4

α2

�
ρ

2α2
; ΔΨ¼ ρ

2α2
; Δχ¼0: ð12Þ

This result implies that

α2 ≃ const and α4 ≃ 0 ð13Þ

are required in order to evade Solar System constraints (light
bending, the Shapiro time delay, and the time variation of
Newton’s constant).3

2As will be clear shortly, we use units in which Newton’s
constant, GN , is equal to ð8πα2Þ−1, and we will be interested
mainly in the case with α2 ¼ 1.

3According to the current limits on the time variation of
Newton’s constant, j _α2=α2j must be much smaller than H0 [53].
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Tensor perturbations are given by

N ¼ 1; Ni ¼ 0; γij ¼ δij þ hijðt; x⃗Þ; ð14Þ

for which the quadratic action is

S ¼ 1

8

Z
dtd3 x½ð∂thijÞ2 þ ðα2 þ α4ÞhijΔhij�: ð15Þ

The observation of GW170817 and GRB 170817A put a
tight bound on the speed of gravitational waves, cGW ≃ 1
[54,55]. It is therefore required that

α2 þ α4 ≃ 1: ð16Þ

Summarizing these results, we identify a phenomeno-
logically interesting class characterized by

α2 ¼ 1; α4 ¼ 0: ð17Þ

Note that in these noncosmological phenomena we do not
see any effects of nonvanishing β.
A few remarks are now in order. First, here we have only

considered the most basic PPN parameter, which is often
denoted as γð≔ Ψ=ΦÞ. Clearly, this is a minimum require-
ment for viable modified gravity and all the other PPN
parameters must eventually be evaluated. In particular, a
source may move with respect to the preferred frame in
which our action is defined, and then the PPN parameters
that signal the preferred frame effect are expected not to
vanish. Nevertheless, a study on the analogous theory with
the action (9) [47] implies that the corresponding PPN
parameters would vanish if only the coefficient of K2 is
modified.
The second remark is on the propagation of gravitational

waves in an inhomogeneous background. The effect of
small inhomogeneities produced by scalar perturbations on
the gravitational wave propagation can be seen by calcu-
lating the cubic terms in the action composed of one scalar
and two tensor perturbations such as Ψ _h2ij and ΦhijΔhij. It
is easy to see that K2 does not generate any such terms, and
hence gravitational waves propagate in an inhomogeneous
background in exactly the same way as in GR if only the
coefficient of K2 is modified.

IV. BLACK HOLE SOLUTIONS

In this section, we study black hole solutions in the theory
defined by the action (8). On the basis of the discussion in
the previous section, we are interested in the phenomeno-
logically viable case with α2 ¼ 1 and α4 ¼ 0. Black holes
under consideration are supposed to be much smaller than
the size of the cosmological horizon and at rest with respect
to the preferred frame. Therefore, we are mostly interested in
asymptotically flat black holes obtained ignoring α1 and α3.
(These two functions are assumed to be characterized by

the cosmological horizon scale.) The remaining unfixed
function, β, is assumed to be constant in this section, because
we are looking for stationary black hole solutions. Our focus
is therefore on whether the effects of β can be seen or not
in black hole solutions. Nevertheless, having said that, we
allow α1 to be a nonvanishing constant and α2 to be a
constant different from 1 in the following discussion,
because relaxing these assumptions does not hinder us from
presenting an analytic solution below. To sum up, in this
section we have three constant parameters, β, α1, and α2,
though we are mostly interested in the case with α1 ¼ 0
and α2 ¼ 1.

A. Static and spherically symmetric solution

The ADM variables for static and spherically symmetric
solutions are taken to be

N ¼ NðrÞ; Nidxi ¼ BðrÞFðrÞdr;
γijdxidxj ¼ F2ðrÞdr2 þ r2dΩ2; ð18Þ

where dΩ2 ¼ dθ2 þ sin2θdφ2. Since the action is only
invariant under spatial diffeomorphisms, at this stage we
do not make a temporal coordinate transformation,
t → Tðt; rÞ, to remove B. Such a coordinate transformation
would result in an inhomogeneous configuration of the
nondynamical scalar field.
Substituting the ADM variables (18) into the action and

varying it with respect to N, B, and F, we obtain

α1 þ
2α2
r2

��
F2 − 1

F2

�
r

�0
þ 2ðrB2Þ0
r2ðβ þ NÞ2F2

−
2r2

3

βðβ þ 2NÞ
N2ðβ þ NÞ2F2

½ðB=rÞ0�2 ¼ 0; ð19Þ

r2B
ðβ þ NÞ2F2

½ðβ þ NÞF�0 þ β

3

�
r4ðB=rÞ0

Nðβ þ NÞF
�0

¼ 0; ð20Þ

α1
N
F
þ 2α2

r2
N
F

�
F2 − 1

F2
−
2rN0

NF2

�

þ 2ðrB2Þ0
r2NF3

−
2β

3r4Nðβ þ NÞF3
½ðr2BÞ0�2 ¼ 0; ð21Þ

where a dash denotes differentiation with respect to r. The
system is of second order for B (provided that β ≠ 0) and of
first order for N and F.
Since it is difficult to obtain a general solution to

Eqs. (19)–(21), we start with finding a particular solution.
One can easily verify that Eqs. (19)–(21) admit the following
solution:

N¼N0

ffiffiffiffiffiffiffiffiffi
fðrÞ

p
; F¼ 1ffiffiffiffiffiffiffiffiffi

fðrÞp ; B¼N0b0
r2

; ð22Þ
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where

fðrÞ ≔ 1þ α1
6α2

r2 −
μ0
r
þ b20
α2r4

; ð23Þ

and N0, μ0, and b0 are integration constants. Here, N0 is
physically less important because it may be set to 1 by
rescaling the unit of t.
To see the spacetime structure of this solution more

clearly, we note that the four-dimensional metric can be
written as

ds2 ¼ −ðN2 − B2Þ
�
dt −

BF
N2 − B2

dr

�
2

þ N2F2

N2 − B2
dr2 þ r2dΩ2; ð24Þ

where

N2 − B2 ¼ N2
0

�
1þ α1

6α2
r2 −

μ0
r
þ 1 − α2

α2

b20
r4

�
; ð25Þ

NF ¼ N0: ð26Þ

Thus, introducing a new time coordinate defined by dT ¼
N0fdt − ½BF=ðN2 − B2Þ�drg, one can write the metric in a
diagonal form at the expense of a homogeneous configu-
ration of the nondynamical scalar field (see Appendix B).
It is now obvious that in the phenomenologically inter-
esting case of α2 ¼ 1, the solution (22) describes
Schwarzschild–(anti–)de Sitter spacetime. Importantly,
we see no β dependence in this solution. Note that inside
the black hole horizon there is a location at which N ¼ 0.
If α1 < 0, such a location also exists outside the cosmo-
logical horizon. This is called the universal horizon, which
has been studied in Einstein-aether theory and Hořava
gravity [56,57].
Aside from the cosmological constant term, essentially

the same expression for a black hole solution has been
obtained in Einstein-aether theory [58]. This is not
surprising because the solution (22) satisfies the maximal
slicing condition, K ¼ −ðr2BÞ0=r2NF ¼ 0, while the
crucial difference between the two theories is found in
the coefficient of K2 in the action. The maximal slicing
condition is the very reason why there is no β dependence
in the solution.4 Note that a similar solution was found in
a different modified gravity theory with two tensorial
d.o.f. [59].

B. Static perturbations

We have thus obtained a particular solution (22), but at
this stage it is not clear whether or not there exist other black
hole solutions with the appropriate asymptotic behavior.
Since B obeys the second-order differential equations, one
might rather expect that there should be another integration
constant in addition to N0, μ0, and b0. To address this point,
let us consider a slightly deformed solution,

N ¼ N0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ h0ðrÞ

p
; F ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f þ h1ðrÞ
p ;

B ¼ N0

�
b0
r2

þ h2ðrÞ
�
; ð27Þ

where h1, h2, and h3 are to be treated as small perturbations.
Equations (19) and (21) reduce, respectively, to

f

�
2b0
α2

�
h2
r

�0
− ðrh1Þ0

�
þ 3b20
α2r4

ðh0 − h1Þ ¼ 0; ð28Þ

f

�
2b0
α2

�
h2
r

�0
−ðrh0Þ0

�
þ
�
1þ α1

2α2
r2
�
ðh0−h1Þ¼0: ð29Þ

Eliminating h2 from these two equations, we obtain

fðh0 − h1Þ0 − f0ðh0 − h1Þ ¼ 0; ð30Þ

which can be integrated to give

h0 − h1 ¼ C1f; ð31Þ

where C1 is an integration constant. This integration
constant can be absorbed into a redefinition of N0.
Substituting this into Eq. (28), we have

h0 ¼ −
μ1
r
þ C1

�
f −

b20
α2r4

�
þ 2b0

α2

h2
r2

; ð32Þ

h1 ¼ −
μ1
r
−
C1b20
α2r4

þ 2b0
α2

h2
r2

; ð33Þ

where μ1 is an integration constant. This integration constant
simply corresponds to a constant shift of the mass parameter
μ0. Finally, substituting all these results into Eq. (20), we
arrive at

ðβ þ N0

ffiffiffi
f

p
Þ
�
h002 þ

2

r
h02 −

2

r2
h2

�

− N0ð
ffiffiffi
f

p
Þ0
�
h02 þ

2

r
h2

�
¼ 0; ð34Þ

where we assumed β ≠ 0. This equation can be integrated
to give

4It should be noted here that any solution in GR satisfying the
maximal slicing condition is a solution in the present theory. The
maximal slicing condition is often used in numerical relativity
simulations, and such realistic numerical solutions in GR are
solutions in the present theory.
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h2 ¼
b1
r2

þ ϵ1
r2

Z
r
r2 ðβ þ N0

ffiffiffi
f

p
Þ dr; ð35Þ

where b1 and ϵ1 are integration constants. The former
integration constant corresponds to a constant shift of b0,
while the latter cannot be absorbed into a shift of the
integration constants of the solution (22). Let us now focus
specifically on the case of a zero cosmological constant,
α1 ¼ 0, where the solution is asymptotically flat at zeroth
order. In this case, we have

h2 ∼
ϵ1
3
ðβ þ N0Þr ð36Þ

for large r, which would invalidate the perturbative approxi-
mation unless ϵ1 ¼ 0. Therefore, no asymptotically flat
solution can be obtained by a small deformation of the
solution (22). Our result agrees with that of the decoupling
limit analysis of the khrononmetric theory [60].

C. Numerical solutions

We perform a numerical analysis that is complementary
to and can go beyond the perturbative study in the previous
subsection.
In the vicinity of the horizon, r ¼ rh, the ADM variables

can be expanded as

N ¼ Nh þ N1ðr − rhÞ þ � � � ; ð37Þ

F ¼ 1

Nh
þ F1ðr − rhÞ þ � � � ; ð38Þ

B ¼ Nh þ B1ðr − rhÞ þ
B2

2
ðr − rhÞ2 þ � � � : ð39Þ

Here, one may set FðrhÞ ¼ 1=Nh without loss of general-
ity since doing so corresponds to fixing the scale of time.
For given ðrh; Nh; B1Þ, one can numerically integrate

Eqs. (19)–(21) from the horizon outwards to determine
the profile of N, F, and B. We thus try to find asymptotically
flat solutions that are not described as a perturbation of the
Schwarzschild spacetime foliated by maximal slices.
We consider again the case without the cosmological

constant, α1 ¼ 0. For

B1 ¼ −
2Nh

rh
; ð40Þ

one has the asymptotically flat solution given by Eq. (22)
(with α1 ¼ 0). As far as we have investigated numerically,
no asymptotically flat solutions have been found if the
condition (40) is not satisfied.5 Typical examples obtained in
the case of detuned conditions are given in Figs. 1 and 2. The
large-r behavior of these numerical solutions is also different
from that of asymptotically de Sitter solutions.
Our numerical analysis thus supports the conclusion that

asymptotically flat, spherically symmetric black holes at
rest with respect to the preferred frame in the theory defined
by the action (8) with β ¼ const, α2 ¼ 1, and α1 ¼ α3 ¼
α4 ¼ 0 are indistinguishable from those in GR.

D. Slowly rotating solution

Let us now discuss slowly rotating black hole solutions
(see Refs. [61–63] for rotating black holes in Einstein-
aether theory and Hořava gravity). To first order in the
black hole spin, we write [64,65]

δN¼0; δNidxi¼−r2sin2θωðr;θÞdφ; δγij¼0: ð41Þ

The ðrφÞ component of the evolution equations reads

∂θ ðsin3 θ∂θωÞ ¼ 0; ð42Þ
FIG. 1. Numerical solution for rh ¼ 1, Nh ¼ 0.1, and
B1 ¼ −1.9Nh. The theory parameters are given by α1 ¼ 0,
α2 ¼ 1, and β ¼ 0.2.

FIG. 2. Numerical solution for rh ¼ 1, Nh ¼ 0.1, and
B1 ¼ −3Nh. The theory parameters are given by α1 ¼ 0,
α2 ¼ 1, and β ¼ −0.3.

5We have not looked for asymptotically flat solutions in the
case of α1 ≠ 0.
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which, together with the regularity at the pole, yields
ω ¼ ωðrÞ. Then, the φ component of the momentum
constraints reduces to

�
r4ω0

NF

�0
¼ 0: ð43Þ

This can be integrated to give

ωðrÞ ¼ −
3J
4π

Z
r NF
r4

drþ ω0; ð44Þ

where J and ω0 are integration constants. Upon using
NF ¼ 1 we arrive at ω ¼ J=4πr3 þ ω0. (For simplicity,
here we have set N0 ¼ 1 without loss of generality.) Noting
that the time coordinate t that we are using is nonstandard,
we perform a coordinate transformation

φ → φþ
Z

r BF
N2 − B2

ðω − ω0Þdrþ ω0t: ð45Þ

The four-dimensional metric then becomes

ds2 ¼ −ðN2 − B2ÞdT2 þ dr2

N2 − B2
þ r2dΩ2

−
Jsin2θ
2πr

dTdφ; ð46Þ

which is nothing but the Kerr metric in GR under the slow-
rotation approximation. Thus, we conclude that no effect of
β can be seen in slowly rotating black holes at rest with
respect to the preferred frame.

V. COSMOLOGY

Our next step is the analysis of cosmology. In this
section, we will mainly consider the phenomenologically
most interesting case with the time-dependent functions

β0¼ 1; β1 ¼ βðtÞ; β2 ¼ 0;

α1¼ α1ðtÞ; α2 ¼ 1; α3 ¼ α3ðtÞ; α4¼ 0: ð47Þ

However, when deriving a quadratic action for cosmologi-
cal perturbations, we will work in the general action (3)
where no assumptions are made on these functions, because
the general form of the quadratic action will be used for
another purpose in the next section.
To investigate cosmology, we add a (irrotational, baro-

tropic) perfect fluid which is minimally coupled to gravity.
Such a fluid component can be mimicked by a scalar field
whose action is given by

Smat ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
PðYÞ; Y ≔ −

1

2
ð∂φÞ2: ð48Þ

The matter energy-momentum tensor reads

Tμν ¼ ðρþ PÞuμuν þ Pgμν; ð49Þ

where the energy density and the four-velocity are given
respectively by

ρ ¼ 2YP;Y − P; uμ ¼ −
∇μφffiffiffiffiffiffi
2Y

p : ð50Þ

The equation of motion for φ is equivalent to the
conservation law, ∇μT

μ
ν ¼ 0. Here, ∇μ stands for the

usual four-dimensional covariant derivative. The sound
speed of the fluid is given by

c2s ¼
P;Y

P;Y þ 2YP;YY
; ð51Þ

where the right-hand side is evaluated at the homogeneous
background. For P ∝ Yð1þwÞ=2w with w ¼ const, we
have c2s ¼ P=ρ ¼ w.

A. Homogeneous and isotropic background

The total action is now composed of the gravity sector
(8) and the action for a cosmological fluid (48).
The ADM variables for a homogeneous and isotropic

universe are given by

N ¼ N̄ðtÞ; Ni ¼ 0; γij ¼ a2ðtÞδij: ð52Þ

Since time reparametrization symmetry is spontaneously
broken, one cannot put N̄ ¼ 1 in general, but, as we will
show below, the lapse function is determined from the
equations of motion. From the Hamiltonian constraint and
the evolution equations, we obtain

3H2

ðβ=N̄ þ 1Þ2 þ
α1
2
¼ ρ; ð53Þ

−
3H2

β=N̄þ1
−
2

N̄
d
dt

�
H

β=N̄þ1

�
−
1

2

�
α1þ

α3
N̄

�
¼P; ð54Þ

where H ≔ N̄−1d ln a=dt is the Hubble parameter. (As far
as the spatially flat model is concerned, the coefficients of R,
i.e., α2 and α4, do not appear anyway in the equations for a
homogeneous universe.) The conservation law reads

N̄−1 _ρþ 3Hðρþ PÞ ¼ 0; ð55Þ

where a dot stands for differentiation with respect to t. Given
the equation of state, this equation can be integrated to give
ρ and P as a function of a: ρ ¼ ρðaÞ, P ¼ PðaÞ. Note that
Eq. (55) is not an automatic consequence of Eqs. (53) and
(54). Rather, substitution of Eqs. (53) and (54) into Eq. (55)
yields
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_α1− 3Hα3 −
6βH

β=N̄þ 1

�
3H2

β=N̄þ 1
þ 2

N̄
d
dt

�
H

β=N̄þ 1

��
¼ 0:

ð56Þ

Using Eqs. (53) and (54) again, one can write this equation as
the constraint among the time-dependent functions,

_α1 −
ffiffiffi
3

p �
ρ −

α1
2

�
1=2

½α3 − ðα1 þ 2PÞβ� ¼ 0: ð57Þ

In the covariant formulation presented in Appendix B, this
follows from the equation of motion for a Stückelberg scalar
field [see Eq. (B17)]. In the ADM formulation of usual
scalar-tensor theories with two tensorial and one scalar d.o.f.,
the equation corresponding to Eq. (57) reduces to a first-order
differential equation for the lapse function, which can be used
to determine N̄ ¼ N̄ðtÞ. In contrast, in the present case
Eq. (57) does not contain N̄, which is the crucial point in
“scalarless” theories. Given that ρ andP are now expressed in
terms of a, Eq. (57) instead allows us to write a in terms of t.
Finally, substituting a ¼ aðtÞ into Eq. (53), one can deter-
mine the lapse function N̄ as a function of t.
Let us now present an example. Suppose that the

universe is filled with a fluid with a constant equation of
state parameter, w ¼ P=ρ, and the time-dependent func-
tions are given by

β ¼ const; α2 ¼ 1; α4 ¼ 0; ð58Þ

α1 ¼ 6h20

�
1

ξ
−

1

ð1þ βÞ2
�
coth2

�
3

2
ð1þwÞh0t

�
−
6h20
ξ

; ð59Þ

α3 ¼ 6h20

�
1þ wð1þ βÞ
ð1þ βÞ2 −

1þ w
ξ

�
csch2

�
3

2
ð1þ wÞh0t

�

−
6βh20

ð1þ βÞ2 ; ð60Þ

where ξ and h0 are constant parameters. This example
admits the following solution:

N̄ ¼ 1; a3ð1þwÞ ∝ sinh2
�
3

2
ð1þ wÞh0t

�
: ð61Þ

Noting that α1 can be written as

α1 ¼ 6

�
1

ξ
−

1

ð1þ βÞ2
�
H2 − 6

h20
ξ
; ð62Þ

we see that Eqs. (53) and (54) read

3H2 ¼ ξρþ 3h20; ð63Þ

−2 _H ¼ ξðρþ PÞ: ð64Þ

This shows that the cosmological gravitational constant
differs from Newton’s constant GN by the factor ξ:

Gcos

GN
¼ ξ: ð65Þ

[Recall that we are working in units where 8πGN ¼
1ð¼ 1=α2Þ.] Aside from this modification, the background
evolution obeys the standard Friedmann equations in the
presence of a cosmological constant. A similar situation
occurs in Einstein-aether theory and Hoŕava gravity, where
a mild bound on the difference between Gcos and GN has
been obtained from the measurement of the primordial
abundance of He4 as jξ − 1j≲ 0.1 [46,66]. In our example,
ξ is a free parameter so that one may set ξ ¼ 1, leading to
the background evolution that is completely indistinguish-
able from that in GR.
In the above example, α1 and α3 track the cosmic evolution

as α1; α3 ∼H2. We present another example in which α1 and
α3 instead remain as small asH2

0 and simply behave as a dark
energy component with a constant equation of state param-
eter wDE. In the case where the matter component is a
pressureless fluid, the model is given by

β ¼ const; α2 ¼ 1; α4 ¼ 0; ð66Þ

α1 ¼ −2ρDEðtÞ; ð67Þ

α3 ¼ 2½1þ wDEð1þ βÞ�ρDEðtÞ; ð68Þ

ρDE ∝ A−3ð1þwDEÞ; ð69Þ

where A and t are related via

t ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r0

p
3H0

A3=2

× 2F1ð1=2;−1=2wDE; 1 − 1=2wDE;−r0A−3wDEÞ: ð70Þ

Here, 2F1 is the hypergeometric function and r0 ≔
ρDE=ρja¼1 is the present value of the ratio between the dark
energy density and the matter energy density. One can check
that the solution is given by N̄ ¼ 1 and a ¼ AðtÞ. This
example yields the background evolution subject to

3H2 ¼ ð1þ βÞ2ðρþ ρDEÞ; ð71Þ

−2 _H ¼ ð1þ βÞ2½ρþ ð1þ wDEÞρDE�; ð72Þ

i.e., it mimics the cosmology with Gcos ¼ ð1þ βÞ2GN and
the dark energy component.

B. Cosmological perturbations

We go on to the analysis of scalar perturbations around a
cosmological background, with a particular focus on the
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case of a pressureless fluid. The perturbed ADM variables
are given by

N¼ N̄ð1þδnÞ; Ni¼ N̄∂iχ; γij¼a2e−2ψδij; ð73Þ

where we used the spatial gauge degrees of freedom to
write γij in the above form.
For the moment we work in the general action (3) to

derive the quadratic action for the scalar perturbations, and
later we will focus on the specific case of our interest. The
action (3) can be expanded to quadratic order in perturba-
tions as

Sð2Þ ¼
Z

dtd3 xN̄a3
�
−
3β0
β̄1

�
ψn þ

Hδn

β̄1

�
2

−
2β0
β̄1

�
ψn þ

Hδn

β̄1

�
Δχ
a2

þ β0ðβ̄1 − β̄2Þ
3β̄1β̄2

�
Δχ
a2

�
2

−
�
α2 þ

α4
N̄

�
ψΔψ
a2

þ 2α2δn
Δψ
a2

�
; ð74Þ

where the notations ψn ≔ N̄−1∂tψ and β̄1;2 ≔ β1;2=N̄ þ 1

are used. The matter action (48) can also be expanded in
terms of perturbations as

Sð2Þmat ¼
Z

dtd3xN̄a3
�
ρþP
c2s

��
c2s

δφ

φn

Δχ
a2

þ δn2

2
−
δφn

φn
δn

− 3c2s
δφn

φn
ψ þ 1

2

�
δφn

φn

�
2

þ c2s
2

δφΔδφ
φ2
na2

�
; ð75Þ

where δφ is the perturbation of φ. Our total action is given

by Sð2Þtot ¼ Sð2Þ þ Sð2Þmat.
6 This is the complete expression for

the quadratic action derived from the general action (3)
in the presence of a perfect fluid (or a shift-symmetric
k-essence field).
Now we focus on the case of our interest: β0 ¼ α2 ¼ 1

and β2 ¼ α4 ¼ 0 with the notation β1 ¼ β. For simplicity,
we consider the background with N̄ ¼ 1. We follow the
analysis of density perturbations in the extended cuscuton
theory [31] to derive the reduced action written solely in
terms of a single variable δ defined by

δ ¼ ρþ P
ρc2s

�
_δφ

_φ
− δn

�
−
3ðρþ PÞ

ρ
ψ ; ð76Þ

where note that the density perturbation is given by δρ ¼
ðρþ PÞ=c2s · ð _δφ= _φ − δnÞ. Later at an appropriate point we
will carefully take the limit c2s ; P → 0while keeping ρ finite.

We start with introducing δ as an auxiliary field and write

Sð2Þtot equivalently as

Sð2Þtot ¼ Sð2Þ þ Sð2Þmat −
Z

dtd3 xa3
�
ρþ P
2c2s

�

×

�
_δφ

_φ
− δn − c2s

�
ρδ

ρþ P
þ 3ψ

��
2

: ð77Þ

The additional third term is introduced so that it removes _δφ2

in Sð2Þtot . Namely, one ends up with the action that depends
linearly on _δφ. The equation of motion for δ yields Eq. (76).
Substituting this into Eq. (77), the third term vanishes and

the action reduces back to the original one, Sð2Þ þ Sð2Þmat.
Thus, the two representations are indeed equivalent.
Since Sð2Þtot is now linear in _δφ, one can use the equation of

motion to remove δφ from the action. At this stage one may
substitute P ∝ Yð1þwÞ=2w and express the action in terms
of ρ and w, which allows for a w → 0 limit without any
divergences. Then, δn and χ can also be removed from the
action by the use of their equations of motion. The resulting
action is of the form

Sð2Þtot ¼
Z

dtd3 xa3½_δAðt;ΔÞ_δþ δO1ðt;ΔÞδ

þ 2ψO2ðt;ΔÞδþ ψO3ðt;ΔÞψ �; ð78Þ

where

A ¼ ρ

3ρ − 2Δ=a2
: ð79Þ

The explicit expressions for O1, O2, and O3 are messy and
not illuminating. Finally, one can eliminate ψ by using its
equation of motion and arrive at the reduced action
expressed in terms of δ alone:

Sð2Þtot ¼
Z

dtd3 xa3½_δAðt;ΔÞ_δþ δBðt;ΔÞδ�: ð80Þ

On the basis of this action we move to study the behavior
of the perturbations in the short- and long-wavelength
limits. In both limits, we will see that the effect of
modification of gravity comes into play only through the
underlying background model.

1. Short-wavelength limit

In the short-wavelength limit, Δ=a2 ≫ ρ, we have

A ≃ −
1

2
a2ρΔ−1; B ≃ −

1

4
a2ρ2Δ−1: ð81Þ

6We omit δnψ and ψ2 from Eqs. (74) and (75) because upon
combining Sð2Þ and Sð2Þmat they can be eliminated in the end by the
use of the background equations.
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The time-dependent function in the action β has dropped out.
Since ρ ∝ a−3, the equation of motion for δ is found to be

δ̈þ 2H _δ ¼ 1

2
ρδ: ð82Þ

Recalling that 4πGN ¼ 1=ð2α2Þ ¼ 1=2, this is identical
to the evolution equation for matter density perturbations
in GR. Note, however, that the evolution of δ depends
on the underlying background model, which could be
different from that of the ΛCDM model. For example, if
Gcos=GN ≠ 1 as in the example in the previous subsection,
the actual evolution of the density perturbations would be
modified.
The equations of motion for δn, χ, and ψ allow us to

write these variables in terms of δ. In the short-wavelength
limit, we obtain

δn ≃
1

2
a2ρΔ−1δ; ð83Þ

χ ≃ −
3a4ρ

2ð1þ βÞ ½HΔ−2δþ ð1þ βÞΔ−2 _δ�; ð84Þ

ψ ≃
1

2
a2ρΔ−1δ: ð85Þ

Therefore, the metric potentials that are used in the familiar
Newtonian gauge analysis,

Φ ≔ δnþ _χ; ð86Þ

Ψ ≔ ψ −Hχ; ð87Þ

obey the standard relation,

ΔΦ ¼ ΔΨ ¼ a2

2
ρδ; ð88Þ

with δ ≃ δρ=ρ. If one ignores the cosmic expansion, then
this reproduces the result obtained in Sec. III. Note that the
subleading terms do depend on β, as seen from Eq. (84),
and hence small nonstandard effects could in principle
appear.

2. Long-wavelength limit

In the long-wavelength limit, Δ=a2 ≪ ρ, we have

A ≃
1

3
; B ≃ −

1

9

Δ
a2

: ð89Þ

Again, β dependence has dropped out. The long-wavelength
solution to the equation of motion for δ is given by

δ ≃ δ0ðx⃗Þ −
Δδ0ðx⃗Þ

3

Z
t dt0

a3ðt0Þ
Z

t0

dt00 aðt00Þ; ð90Þ

where δ0 is independent of time and the decaying mode has
been discarded. From the equations of motion for the other
variables in the long-wavelength limit, we obtain

δn ¼ OðΔδ=a2H2Þ; ð91Þ

χ ≃ a2Δ−1 _δ; ð92Þ

ψ ≃ −
δ

3
; ð93Þ

leading to

Φ ¼ Ψ ¼ −
δ0ðx⃗Þ
3

�
1 −

H
a

Z
t
aðt0Þdt0

�
: ð94Þ

The solution expressed in this way is the same as the long-
wavelength solution for Φ and Ψ in the presence of a
pressureless fluid and a cosmological constant in GR. In
particular, in the matter-dominated era, a ∝ t2=3, we have the
time-independent metric potentials, Φ ¼ Ψ ¼ −δ0=5. Note,
however, that Eq. (94) has been derived without assuming
any particular form of aðtÞ for an accelerated phase of the
cosmic expansion. In our modified theory of gravity,
the background evolution (of the accelerated phase) could
be different from that of the ΛCDM model depending on the
time-dependent functions in the action, so that the actual time
dependence of Φ and Ψ could be different from that in the
ΛCDM model away from the matter-dominated era.

VI. WHEN MATTER MATTERS

Finally, we discuss the problem of the coupling to
generalized matter fields. Let us consider the cubic
Galileon [67] whose action is given by

Sgal ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
−
1

2
ð∂φÞ2 − c

2
ð∂φÞ2□φ

�
; ð95Þ

where c is a nonzero constant. In the following we will
show that the extra dynamical scalar d.o.f. would
reappear when one adds to the action (3) the Galileon
as a matter field. This fact can be demonstrated by
studying a quadratic action for scalar perturbations
around a cosmological background.
Expanding the action (95) to second order in perturba-

tions, we obtain
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Sð2Þgal ¼
Z

dtd3xN̄a3
�
ðφn − 3cHφ2

nÞδφ
Δχ
a2

þ cφ2
nδφn

Δχ
a2

− cφ3
nδn

Δχ
a2

− cφ2
nδn

Δδφ
a2

þ φ2
n

2
ð1 − 12cHφnÞδn2

− φnð1 − 9cHφnÞδnδφn − 3cφ3
nδnψn − 3 ðφn − 3cHφ2

nÞψδφn þ 3cφ2
nψnδφn þ

1

2
ð1 − 6cHφnÞδφ2

n

þ 1

2a2
ð1 − 4cHφn − 2cφnnÞδφΔδφ

�
; ð96Þ

where δφ is the fluctuation of the Galileon field. We add

this to the action (74): Sð2Þtot ¼ Sð2Þ þ Sð2Þgal. To highlight
what causes the problem, we do not make any further
simplification.
Using the equations of motion for δn and χ, one can

eliminate them from the action. The resultant quadratic
action is of the form

Sð2Þtot ¼
Z

dtd3 xN̄a3ðKIJqInqJn þ � � �Þ; ð97Þ

where qI ¼ fψ ; δφg and we wrote only the terms quadratic
in time derivatives. A straightforward calculation yields

det K ¼ −
27½cβ0ðβ1=N̄ÞHφ2

n�2
Ξ

; ð98Þ

with

Ξ ≔ 12β20H
2 − 2β0β̄

2
1ðβ̄1 − β̄2Þφ2

n

þ 12cβ0β̄1½2β̄1ðβ̄1 − β̄2Þ þ β̄2�Hφ3
n

þ 3c2β̄31β̄2φ
6
n: ð99Þ

This result shows that there are two scalar d.o.f. in the
system unless cβ1 ¼ 0; the scalar d.o.f. reappears in the
presence of a Galileon field if it is minimally coupled to
gravity in the frame where β1 ≠ 0.7 We note in passing that
the revived scalar mode itself is not necessarily problematic
if det K > 0.
What we have seen here is analogous to the issue

pointed out in the context of degenerate higher-order
scalar-tensor theories [68,69]. In the case of the degen-
erate higher-order scalar-tensor theories, the constraint
associated with the degeneracy is lost if a matter field is
coupled to the Christoffel symbol. In the present case, the
constraint that removes the scalar d.o.f. in the gravity
sector is lost due to the coupling of the cubic Galileon to
the Christoffel symbol.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we have studied aspects of spatially
covariant theories of gravity with two tensorial d.o.f.,
namely, modified gravity having the same number of
d.o.f. as GR. We have mainly focused on a subset of the
general theories developed in Ref. [19] that is charac-
terized by three time-dependent functions. Two of the
three functions are related to the cuscuton terms [9]
expressed in the unitary gauge, while the remaining
one (denoted as β) is not included even in the extended
cuscuton theory [12]. More specifically, we have worked
with the action (8) with α2 ¼ 1 and α4 ¼ 0 as a particu-
larly interesting subclass of the general action (3), with the
purpose of exploring how the theory can be distinguished
observationally or phenomenologically from GR.
First, we have seen that the theory of modified gravity

under consideration can evade Solar System tests as far
as the parametrized post-Newtonian parameter γ is con-
cerned. We have also seen that the speed of gravitational
waves is equal to the speed of light. Therefore, there is no
obvious contradiction with observations and experiments
at this point.
Next, we have studied black hole solutions ignoring the

cuscuton terms that are supposed to be relevant only on
cosmological scales. Since the only modification in the
action appears in the coefficient of K2, where K is the trace
of the extrinsic curvature of constant time hypersurfaces,
the theory admits GR solutions foliated by maximal slices
(K ¼ 0). Therefore, we have the Schwarzschild solution.
The situation here is essentially the same as that in Einstein-
aether theory and the infrared limit of Hořava gravity. We
have considered small deformations of the Schwarzschild
solution, showing that no other asymptotically flat solutions
can be obtained by a perturbative treatment. Our numerical
analysis beyond the perturbative treatment supports the
conclusion that the Schwarzschild solution is the only static,
spherically symmetric, and asymptotically flat vacuum
solution at rest with respect to the preferred frame. We have
also considered a slowly rotating black hole and obtained the
Kerr solution in the slow-rotation approximation.
We have then investigated the cosmological dynamics

of the homogeneous and isotropic background and scalar
perturbations. Since we have a large degree of freedom to
choose the time-dependent functions in the action includ-
ing the cuscuton part, it is easy to realize the background

7Note that β1 can be removed by a disformal transformation.
This implies that if φ is nonminimally coupled to gravity in a
particular way, then it is possible that β1 ¼ 0 in the framewhere φ
is minimally coupled to gravity.
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evolution that is very close to or even identical to that of
the ΛCDM model in GR. As far as the long- and short-
wavelength limits are concerned, we have found that the
perturbation dynamics is modified only through the
modification of the background evolution.
Combining these results, we conclude that it is quite

difficult to distinguish modified gravity with the action (8)
with α2 ¼ 1 and α4 ¼ 0 observationally or phenomeno-
logically from GR, albeit a certain amount of modification
is expected to arise on horizon scales.
Finally, we have noted, as a side remark, that in

the presence of a Galileon field in the matter sector, the
dynamical scalar degree of freedom eliminated from
the gravitational sector could reappear in a similar way
to the case analyzed in Refs. [68,69]. The result of our
analysis implies that a Galileon field must be coupled
nonminimally to gravity in the frame where the action
takes the form of Eq. (8).
Let us comment on several issues that are left for

future work.
(1) All the parametrized post-Newtonian parameters

must be evaluated to ensure that the present theory
is viable. In particular, the preferred frame effect is
interesting to explore. A study of a moving black
hole [70] would also be necessary.

(2) Newtonian gravity is reproduced in the weak field
regime, and stationary black hole solutions in GR are
obtained in the strong field regime in vacuo. It is
then natural to move on to the study of the structure
of relativistic stars.

(3) It would be interesting to study black hole pertur-
bations and quasinormal modes, which could help us
to distinguish modified gravity with two tensorial
d.o.f. from GR.

(4) In the present paper, we have studied cosmological
perturbations only in the long- and short-wavelength
limits. On intermediate scales the perturbation evolu-
tion could differ from that in GR even if the back-
ground evolution coincides with that of the ΛCDM
model. A more detailed investigation is necessary.

(5) An application to inflationary cosmology would also
be interesting.

These issues will be addressed in our forthcoming papers.
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APPENDIX A: EQUATIONS OF MOTION

The equations of motion in vacuum derived from the
action (8) are given as follows.

(1) The Hamiltonian constraint:

KijKij −
1

3

�
2

�
N

β þ N

�
2

þ 1

�
K2 − α1 − α2R ¼ 0:

ðA1Þ
(2) The momentum constraints:

Djπ
ij ¼ 0; ðA2Þ

where

πij ≔ Kij −
1

3

�
2N

β þ N
þ 1

�
Kγij: ðA3Þ

(3) The evolution equations:

1

N
ffiffiffi
γ

p ∂tð ffiffiffi
γ

p
πklÞγikγjl −

1

2

�
α1 þ

α3
N

�
γij

þ 2

�
KikKk

j −
1

3

�
2N

β þ N
þ 1

�
KKij

�

−
1

2

�
KklKkl −

1

3

�
2N

β þ N
þ 1

�
K2

�
γij

þ
�
α2 þ

α4
N

��
Rij −

1

2
Rγij

�

þ α2
N

ðD2Nγij −DiDjNÞ þ 1

N
½DkðπikNjÞ

þDkðπjkNiÞ −DkðπijNkÞ� ¼ 0: ðA4Þ

APPENDIX B: COVARIANT FORM
OF THE ACTION

In the main text, we use the ADM decomposition and
consider the action of the form (3) which no longer has full
diffeomorphism invariance. However, one can always
restore it by introducing a Stückelberg field ϕðxμÞ. In this
appendix, we derive the covariant form of the action written
in terms of the four-dimensional metric gμν and ϕ.
The Stückelberg scalar field is introduced by writing the

unit normal to constant time hypersurfaces as nμ ¼
−ϕμ=

ffiffiffiffiffiffi
2X

p
, where ϕμ ≔ ∇μϕ and X ≔ −ϕμϕμ=2 with ∇μ

being the usual four-dimensional covariant derivative. The
ADM variables in the action (3) are then replaced as
follows:

N →
1ffiffiffiffiffiffi
2X

p ; ðB1Þ

Kij → Kμν ≔ −
ϕμνffiffiffiffiffiffi
2X

p þ nμaν þ nνaμ

þ 1

2X
nμnνnρ∇ρX; ðB2Þ
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R → ð4ÞR −KμνKμν þK2 − 2∇μðKnμ − aμÞ; ðB3Þ

where ϕμν ≔ ∇μ∇νϕ, aμ ≔ nρ∇ρnμ, and ð4ÞR is the four-
dimensional Ricci scalar. One thus obtains

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L; ðB4Þ

L ¼
�
1

2
B̃ðϕ; XÞ − f̃ðϕ; XÞ

�
ðKμνKμν −K2Þ

þ C̃ðϕ; XÞK2 þ 1

2
½α̃1ðϕÞ þ α̃3ðϕÞ

ffiffiffiffiffiffi
2X

p
�

þ f̃ðϕ; XÞ½ð4ÞR − 2∇μðKnμ − aμÞ�; ðB5Þ

where

f̃ ¼ 1

2
½α̃2ðϕÞ þ α̃4ðϕÞ

ffiffiffiffiffiffi
2X

p
�; ðB6Þ

B̃ ¼ β̃0ðϕÞ
β̃2ðϕÞ

ffiffiffiffiffiffi
2X

p þ 1
; ðB7Þ

C̃ ¼ β̃0ðϕÞ
3

·
½β̃1ðϕÞ − β̃2ðϕÞ�

ffiffiffiffiffiffi
2X

p

½β̃1ðϕÞ
ffiffiffiffiffiffi
2X

p þ 1�½β̃2ðϕÞ
ffiffiffiffiffiffi
2X

p þ 1� : ðB8Þ

The time-dependent functions in the action (3) are given
by8

β0ðtÞ ¼ β̃0ðϕðtÞÞ; β1;2ðtÞ ¼ _ϕðtÞβ̃1;2ðϕðtÞÞ;
α1;2ðtÞ ¼ α̃1;2ðϕðtÞÞ; α3;4ðtÞ ¼ _ϕðtÞα̃3;4ðϕðtÞÞ: ðB13Þ

With some manipulation, the Lagrangian can be written
in a more suggestive form as

L¼ α̃1
2
− α̃2

00ð2X−X ln XÞþ α̃3
2

ffiffiffiffiffiffi
2X

p
þ α̃004ð2XÞ3=2

−
�
α̃02
2
ln Xþ 2α̃04

ffiffiffiffiffiffi
2X

p �
□ϕþ f̃ð4ÞRþLquad; ðB14Þ

where a prime here denotes differentiation with respect
to ϕ and

Lquad ¼ A1ϕμνϕ
μν þ A2ð□ϕÞ2 þ A3□ϕϕμϕμνϕ

ν

þ A4ϕ
μ ϕμρϕ

ρνϕν þ A5ðϕμϕμνϕ
νÞ2; ðB15Þ

with

A1 ¼
B̃
4X

−
f̃
2X

; A2 ¼ −A1 þ 4X2A5;

A3 ¼ −A4 þ 4XA5; A4 ¼
f̃;X þ A1

X
;

A5 ¼
C̃
8X3

: ðB16Þ

This is a particular case of the U-degenerate theories, i.e.,
higher-order scalar-tensor theories that are degenerate when
restricted to the unitary gauge [29]. It is easy to check that
the above Lagrangian does not satisfy the degeneracy
conditions in an arbitrary gauge if C̃ ≠ 0. In general, there
is one dynamical scalar d.o.f. in a U-degenerate theory in
the unitary gauge. However, with the above particular form
of the Lagrangian, it turns out that ϕ does not propagate.
To demonstrate that ϕ does not propagate, let us study the

equation of motion for ϕ in a Friedmann-Lemaître-
Robertson-Walker universe with the metric ds2 ¼ −dt2þ
a2ðtÞdx⃗2. For simplicity, we consider the case with α2 ¼
β0 ¼ 1 and α4 ¼ β2 ¼ 0. The equation of motion for ϕ then
reads

α̃01 _ϕ − 3Hα̃3 _ϕ −
6β̃1 _ϕH

β̃1 _ϕþ 1
P ¼ 0; ðB17Þ

where

P ≔ 2
d
dt

�
H

β̃1 _ϕþ 1

�
þ 3H2

β̃1 _ϕþ 1
: ðB18Þ

This equation does contain ϕ̈ as well as _H. However, the ðijÞ
components of the field equations have the form,

P þ 1

2
ðα̃1 þ α̃3 _ϕÞ þ � � � ¼ 0; ðB19Þ

where the ellipsis denotes the pressure of other matter fields.
The evolution equations for the metric and ϕ are thus
degenerate as in extended cuscuton theories [12], implying
that the scalar d.o.f. is in fact not dynamical.

8The relation (B13) can be used to write the ϕ-dependent
functions explicitly, for example, in the first concrete model
presented in Sec. VA (with w ¼ 0) as

α̃1 ¼ 6

��
1

ξ
−

1

ð1þ βÞ2
�
ϕ2 −

h20
ξ

�
; ðB9Þ

α̃3 ¼
4

ϕ2 − h20

��
1

ξ
−

1

ð1þ βÞ2
�
ϕ2 −

�
1

ξ
−

1

1þ β

�
h20

�
; ðB10Þ

β̃1 ¼ −
2β

3ðϕ2 − h20Þ
; ðB11Þ

α̃2 ¼ β̃0 ¼ 1; α̃4 ¼ β̃2 ¼ 0; ðB12Þ
with the solution for the scalar field ϕðtÞ ¼ h0 coth½ð3=2Þh0t�.
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Let us turn to discuss black hole solutions in the case
where

β̃1 ¼ const; β̃2 ¼ 0; α̃1 ¼ α1 ¼ const;

α̃2 ¼ α2 ¼ const; α̃3 ¼ α̃4 ¼ 0: ðB20Þ

Concerning black hole solutions, working in the covariant
action results in much more involved equations. However,
it is not difficult to see that the field equations admit the
following configuration of the metric and ϕ:

ds2 ¼ −hðrÞdT2 þ dr2

hðrÞ þ r2dΩ2; ðB21Þ

ϕðT; rÞ ¼ 1

N0

�
T þ

Z
r b0=r2

h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hþ b20=r

4
p dr

�
; ðB22Þ

where

hðrÞ ≔ 1þ α1
6α2

r2 −
μ0
r
þ 1 − α2

α2

b20
r4

: ðB23Þ

Note that ϕ is allowed to have the linear T dependence
thanks to the shift symmetry ϕ → ϕþ const. This is a so-
called stealth solution (when α2 ¼ 1), but, in contrast to the
familiar examples in the literature, we have X ≠ const in
the present case. (See Ref. [71] for a comprehensive
discussion on stealth solutions in quadratic degenerate
higher-order scalar-tensor theories.) Moving to the unitary
gauge, ϕðT; rÞ ¼ t, this solution reproduces the one
obtained in Sec. IVA.
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