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Extreme mass-ratio inspirals (EMRIs) detectable by the Laser Inteferometric Space Antenna (LISA) are
unique probes of astrophysics and fundamental physics. Parameter estimation for these sources is
challenging, especially because the waveforms are long, complicated, known only numerically, and slow to
compute in the most relevant regime, where the dynamics is relativistic. We perform a time-consuming
Fisher-matrix error analysis of the EMRI parameters using fully relativistic numerical waveforms to leading
order in an adiabatic expansion on a Kerr background, taking into account the motion of the LISA
constellation, higher harmonics, and also including the leading correction from the spin of the secondary in
the postadiabatic approximation. We pay particular attention to the convergence of the numerical
derivatives in the Fisher matrix and to the numerical stability of the covariance matrix, which for some
systems requires computing the numerical waveforms with approximately 90-digit precision. Our analysis
confirms previous results (obtained with approximated but much more computationally efficient wave-
forms) for the measurement errors on the binary’s parameters. We also show that the inclusion of higher
harmonics improves the errors on the luminosity distance and on the orbital angular momentum angles by
one order and two orders of magnitude, respectively, which might be useful to identify the environments
where EMRIs live. We particularly focus on the measurability of the spin of the secondary, confirming that,
for spin-aligned EMRIs on quasicircular orbits, it cannot be measured with sufficient accuracy. However,
due to correlations, its inclusion in the waveform model can deteriorate the accuracy on the measurements
of other parameters by orders of magnitude, unless a physically motivated prior on the secondary spin is

imposed.
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I. INTRODUCTION

Gravitational-wave (GW) observations with the future
space-based Laser Interferometer Space Antenna (LISA)
will allow us to obtain unprecedented information about new
GW sources [1]. Among the most promising sources that
LISA is expected to observe are extreme mass-ratio inspirals
(EMRISs) [2]: compact binary systems where a small compact
object (henceforth dubbed secondary) with mass p~
1-100 M, orbits a supermassive black hole (BH) (hence-
forth primary) with mass M ~ 10°~107 M. Due to the small
mass ratio ¢ = /M < 1, these systems can last years in the
LISA frequency band, performing up to O(1/g) orbital
cycles before the secondary object plunges. Combined with
the richness of their gravitational waveform, EMRI signals
will allow us to measure some of the parameters of these
sources with extreme precision [2], and perform exquisite
tests of gravity and of the nature of compact objects [3,4].

Due to their small mass ratio, the dynamics and GW
emission of an EMRI can be accurately computed using
tools from BH perturbation theory (see e.g., [5-7] for
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recent reviews). In this approach, the dynamics is solved
perturbatively in the mass ratio ¢ < 1 and the spacetime of
the binary can be treated as being given by the super-
massive BH metric plus small perturbations due to the
presence of the small companion object. In addition, for
very small mass ratios, the radiation-reaction timescale
is much longer than the typical orbital period so that the
secondary’s orbital motion around the primary can be
evolved in a quasiadiabatic fashion [8]. The effect of the
secondary spin in the GW phase enters at first order in a
postadiabatic expansion, being thus suppressed by the
small mass ratio [9], but still entering at the same order
in g as the leading order postadiabatic self-force corrections
[10—-14]. This fact makes it important to fully understand
the impact of the secondary spin when attempting to
compute accurate waveforms. Indeed, accurate parameter
estimation with EMRIs will require gravitational wave-
forms valid up to at least first postadiabatic order [8].
The impact of the secondary spin on the dynamics and
GW emission in EMRIs has been studied in several works

© 2021 American Physical Society
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(seee.g., [10,11,14-25]). Most recently, Ref. [12] computed
relativistic waveforms for a spinning compact object in
generic inspirals around a massive nonrotating BH, including
all first-order in g self-force effects, whereas Refs. [26,27]
computed GW fluxes for a spinning secondary orbiting a
spinning massive BH for bound circular, equatorial orbits.
This was extended to eccentric, equatorial orbits in
Refs. [28,29]. GW fluxes and waveforms for a spinning
secondary have also been computed using effective-one-
body models in the test-mass limit [30-32]. For instance, an
estimate of the conservative contributions on the dynamics
induced by the secondary spin was computed in Ref. [18].

In practice, however, due to the complexity and the slow
generation of EMRI waveforms computed using BH
perturbation theory, almost all parameter-estimation studies
done so far made use of approximated—but fast to generate
—waveforms [2,33-36] (commonly known as “kludge”
waveforms [33,37,38]). In fact, techniques to generate fast
and fully relativistic EMRI waveforms have only recently
started to be developed [39-42], but so far fully Bayesian
studies with these waveforms have only been done for a
nonspinning secondary in eccentric orbits around a
Schwarzschild massive BH [41].

Previous work [34,35] computed Fisher-matrix errors
using a numerical kludge waveform including corrections
due to the spin of the secondary. Their results suggest that
LISA will be unable to constrain the magnitude of the
secondary spin for systems with mass ratios g < 1074,
Since the secondary spin introduces a non-negligible dephas-
ing [26,27], its unmeasurability can be probably related to
correlations among the waveform parameters. One of the
main purposes of this paper is to study whether these
conclusions hold when considering more accurate (albeit
much slower to generate) waveforms. Indeed, it is known that
using kludge waveforms may lead to large systematic errors
when performing parameter estimation [41].

Using the methods recently developed in Refs. [26,27],
and focusing on circular and equatorial orbits, we extend
previous work by performing Fisher-error analyses using
fully relativistic waveforms computed within an adiabatic
approximation but taking into account the leading-order
postadiabatic correction due to the secondary spin. To the
best of our knowledge, even neglecting the secondary spin,
ours is among the first studies presenting a Fisher-matrix
analysis on the EMRI parameters using fully relativistic,
Teukolsky-based waveforms on a Kerr background. The
only exception is Ref. [43] where a Fisher-matrix analysis
using Teukolsky-based waveforms for a nonspinning sec-
ondary and without including LISA’s antenna pattern
functions in the analysis, was presented. Our work should
be seen as a benchmark for fully Bayesian parameter
estimation studies and for other analyses using approxi-
mated (but significantly more efficient) waveforms.

The rest of this paper is organized as follows. In Sec. 11
we summarize our setup and the procedure to obtain fully

relativistic, gravitational waveforms to leading order in an
adiabatic expansion, also including the leading correction
from the spin of the secondary in the postadiabatic
approximation. In Sec. III we explain the procedure to
perform an accurate Fisher-matrix analysis for this system.
In Sec. IV we present and discuss our results (the busy
reader mainly interested in the numerical results of our
paper may jump directly to this section). We conclude in
Sec. V with possible extensions. Finally, we present some
technical details in the appendixes. Appendix A is devoted
to the resolution of Teukolsky equation in hyperboloidal-
slicing coordinates; in Appendix B we give some details on
the procedure to linearize the field equations to linear order
in the secondary spin; whereas Appendix C provides some
details on how we assess the accuracy and convergence of
the Fisher-matrix error analysis. We use G = ¢ = 1 units
throughout and the notation follows that of [27].

II. SETUP

A. Orbital dynamics for a spinning secondary

If the typical size of a body is much smaller than the
curvature of the background spacetime, the object can be
approximately treated as a point particle equipped with an
infinite tower of multipole moments. The latter can be
determined through a suitable expansion of the body’s
stress-energy tensor T (see [16,44,45] for a detailed
discussion). The mass u and the intrinsic spin S of the
object are the first two moments of this series and read

W ==p°p,.

1
S = 2 M s (1)
where p* is the object’s four-momentum and S* is the
skew-symmetric spin tensor. The motion of a spinning
particle is then determined by the Mathisson-Papapetrou-
Dixon equations:

dx~
M 2
a0 (2)
V.ph = lR/‘ v§ap 3
P = _E vapl SS9, ( )
V.S = 2pliy, (4)
H= _puvﬂv (5)

where Vi ="V, v is the tangent vector to the repre-
sentative worldline X# (1), with 1 an affine parameter. The
former provide a closed set of equations once a spin-
supplementary condition has been fixed. We choose the
Tulczyjew-Dixon condition:

$*p, =0, (6)
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which guarantees that the mass y and spin S are constants
of motion [46]. We introduce the dimensionless spin
parameter o:

S

—_= ——— N 7
o= X (7)

where y = S/u? is the reduced spin of the secondary, and
q = u/M < 1 is the binary mass ratio, with M and u being
the mass of the primary and secondary, respectively. For
EMRIs, the parameter |y| < 1/¢, which implies |o| < 1.

In the following, we consider a Kerr background space-
time, described in Boyer-Lindquist coordinates by the
following line element:

ds* = —dt* + X(A7'dr? + d&?) + (r* + a?) sin® Od¢p?

M
+ Tr (asin? 0dgp — dt)?, (8)

where A = 12 = 2Mr+a%, X = 1> + a?cos? @, and a is
the spin parameter such that |a| < M. Without loss of
generality, we assume that the specific spin a of the
primary is aligned to the z axis, namely a > 0. We focus
on circular equatorial orbits with the spin of the secondary
aligned (antialigned) to a, ie., S>0 (§<0). In our
numerical calculations we only consider prograde orbits,
i.e., orbits for which the initial z component of the angular
momentum L, is positive. Hereafter hatted quantities
refer to dimensionless variables normalized by M, namely
Q=MQ, a=a/M.

The Kerr spacetime admits two integrals of motion, the
(normalized) energy E = E/u and angular momentum
J, =J,/(uM) [47]. Since for EMRISs |o| < 1, we expand
both E,J. in terms of the spin parameters, considering
linear corrections only, such that at first order in o:

E=E"+oE", J. =1+ o]l 9)
with
- ta+ (F=2)72
B = "*AB(/Z ) (10)
r A:l:
(@ F VPGB F A4
E = S11/4 A3 ) (11)
271/4A3
_ 2182207
Jg:ir"k?u—w’ (12)
r‘/ A:t
- 1
Il = (3a* £ Vi(3F = 7) (& + 3a#?)
©o2pIAAY
+2a%H(F +2) + P (P -2)(27 = 9)), (13)

where A, = \/ 424 + (# —3)V/7, and the upper (lower)
sign corresponds to prograde (retrograde) orbits [48]. The
orbital frequency Qis given by

N

Q) = Q°(#) + oQ!(7) (14)

where Q°(#) = 1/(a + #/?) is the Keplerian frequency for
a nonspinning particle, and

3 ViFa

Alpy - - vi+—%
Q (I‘) - zﬁ(?3/2:|:a)2’

(15)

The orbital dynamics is completely determined by E,J,
and Q once the orbital radius # and the parameters & and &
are specified.

B. Radiation-reaction effects and orbital evolution

At the adiabatic level, the rate of change of the constants
of motion £ and J, is related to the fluxes carried away by
gravitational radiation. These balance laws hold at first
order in ¢ for a spinning particle, as shown in Ref. [13].
A caveat remains since—at variance with the y = 0 case
[49]—there is no rigorous proof yet that circular orbit
remains circular even for a spinning secondary in the
adiabatic approximation, i.e., that

dE . dJ,
T (16)
holds for a spinning secondary. In principle, given a circular
geodesic, small perturbations induced by the spin can
induce eccentricity [50] or push the orbit off the equatorial
plane for not aligned spins [51,52]. Nevertheless, we shall
assume that a circular orbit remains circular under radia-
tion-reaction effects even when the secondary is spinning
[with the spin vector (anti)aligned to the primary spin]. In
this framework the energy fluxes can be expanded as well
in o:

F(#,Q) = FO>+.Q%) +oF1(#,.Q°.Q"),  (17)

at fixed spins @ and orbital radius 7, with

l@L @5 o

where (%)gvf," are the energy flux across the horizon and at

infinity, respectively. Let us define

6.0 = (§) 7.0 (19)

then, at first order in ¢
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G(7.Q) = (7#.Q° + 06" (7, Q°, Q1), (20)
_ dE\!
Q= (d?> Fo, (21)

dEN\ -1 dEO\ -2 /dE!
gl:(d?) fl_(d?) (d?)FO’ (22)

which yield for the time evolution of the orbital radius

e
A — — A,Q
a9

A

) —6G (7, Q0. Q). (23)
Finally, at first order in o the orbital phase is given by

T QU(#) +0Q' (7). (24)
Solving Egs. (23) and (24) and linearizing them in ¢ one
can obtain 7(7) and ¢(7) to O(o).

C. GW fluxes in the Teukolsky formalism: Linear
expansion in the secondary spin

We have computed the GW fluxes using the Teukolsky
formalism. For circular equatorial orbits, the fluxes at
infinity are

:izlfmv (25)

=2 m=1 =2 m=1
NI 3 S ES
m»
‘5 i 2n0 = m=1?
while at the horizon
dE)H N, 286l Sy
Iy = Opm = _ ,p — Hep,. (27)
dJZ H o = 4 m|mea) - 2 m
) =SS a Ml S,
GW /=2 m=1 =2 m=1

(28)

with @ = m and the coefficient a,,, being given in [53].
The procedure to compute the amplitudes /,,, and H,, to
linear order in o is explained below. By symmetry,
zhe = (=1)"Z%*  where the bar denotes complex

ma?
conjugation. The complex amplitudes

H,c0 H,c0 ad® pin up
me(u mea)(j’flmf)’ —ZSfm’Rfmw’Rfmw) (29)

depend on the solutions of two decoupled ordinary differ-
ential equations, whereas 4,,,; and —25?’;(2 are respectively

the eigenvalues and eigenfunctions
Teukolsky equation:

1 d d S m —2cos 6?2
Lm@d@(made) ¢sinf ( 5in6 )

lfma) 2Sfm7 (30)

of the angular

+4ccosf -2+ 2mc] 2So, =

where ¢ = a®. The following identities hold: 1,,,_; =
j’f—m&) and
—ZSEEm (9) = (_1)1—2S;m (ﬂ - 0), (31)

while _,5¢, (0)e™? reduces to the spin-weighted spherical
harmonics for a =0 or @ = 0. Similarly, the functions

R . and R} . are linearly independent solutions of the
radial Teukolsky equation:
d /1dR,, ) )
i (3] VR =0, (@

where the potential V(7) reads

K? +4i(F — 1)K

V() = — + 8id) P +Apper  (33)
K= (*+a&)d—am, (34)
A= 4a2-2f (35)

while

. dRY dRri
., =_ [ Rin ‘mé RYP ‘md 36
WV A ( ma d7 ‘mad dr > ( )

is the corresponding Wronskian. It is possible to write the

amplitudes Zzn"(f) for a specific orbital radius 7 as
o 2m d
Z = o [Ao (A1+Bl)@
d2 d3 in,uj
B =B R )
O=n/2,p=1(1)

The general expressions for the coefficients Ay, A, A, and
By, By, B, as a function of #, Az, and _,S22, is given
in [27].

Following the linearized approach applied before, we
compute spin-corrections to the fluxes (25) and (27) at first
order in o, keeping the orbital radius 7 fixed. To this aim,
we first expand the solutions of the Teukolsky angular and
radial equations, i.e.,

Afm@ = j‘()f)’m(c()) + Uﬂ;}m(co, C1>, (38)
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—ZS;m(H) 2Sfm (0’ CO) + 0-—2S3”m (9’ CO’ Cl>’ (39)
RE . (7) = RE2(7,0) + oRE) (7,00, &), (40)
RY . (7) = R2O(7,0°) + oRD! (7,00, @'),  (41)

where @' = mQ', and we expanded ¢ = ¢ + oc! + O(6?),
where ¢! = a®' with i = 0, 1. We shall now describe the
procedure we adopted to compute all the components of
Egs. (38)-(41) as well as of Egs. (25)-(27).

1. Linearization in the secondary spin: Angular solutions

If we impose regularity of the solutions at the boundaries
0 =0 and 6 =x, which are regular singular points,
Eq. (30) defines a Sturm-Liouville eigenvalue problem.
Despite being a singular Sturm-Liouville problem (see
Appendix B 1), for real frequencies, Eq. (30) retains much
of the properties of a regular one. In particular, it can be
seen as an eigenvalue problem for a Hermitian operator H:

HIS) = =AemalS). (42)

where |S) = _,59,(0) and H is the left-hand side of
Eq. (30). If we expand H, Az, and |S) to linear order
in o, we obtain:

HOIS) = =22,,(<%)IS?), (43)

Ao (c0)IS")

where _,89, (0,c%) =15% and _,S),(0,c° c')=|S").
The functional form of V! is given in the Appendix B,
while H° is simply given by H with ¢ <> ¢°. In this
fashion, we can consider V! as a penurbatlon of a
Hermitian operator H°, and the corrections 4}, (c’, c!)
induced by the spin ¢ can be obtained using the same
techniques of time-independent perturbation theory for a
(nondegenerate) quantum mechanical system, i.e.,

HOST) + VIS0) = = A (<, cD)|S?), (44)

L (0 cl) = (SOVHS0) = / " 589 V.80 sinodo.
0
(45)

Once the corrections to the eigenvalues AL, (c% c!) are
known, we can compute the corrections to the eigenfunc-
tions SL (0,c% c') by expanding in o the series coeffi-
cients of the solution obtained with Leaver’s method (see
Appendix B 1 for more details). To compute the zeroth
order eigenvalues 12, (c°) and eigenfunctions _,8% (6, c°)
of Eq. (30) we used Leaver’s method implemented in the
Black Hole Perturbation Toolkit [54].

It is worth remarking that we can always find the exact
solutions of Eq. (30) for any value of ¢, and then interpolate

to extract the first-order correction in the spin. However, the
semianalytic linearization approach described above pro-
vides a powerful and fast method to avoid such numerical
procedure. It may happen, though, that in some regions of
the parameter space, the input parameters require higher
precision than expected due to large numerical cancella-
tions in the algorithm. When the precision of the correc-
tions obtained with the semianalytic method dropped below
a certain threshold, we used as a “backup” approach—a
simple interpolation from the exact solutions, i.e.,

(0 _ 1
/1 }“zf’mw<c +éec ) ﬂfmm(c ec >’ (46)

€

(+ect) (c"—ec!)
S S
—ZS;’m _ =2¢m —2%¢m , (47)

€

where the exact eigenvalues Az, (c” +€c ) Apmi(c® =

ec') and eigenfunctions ,S' ¢, s of (30) were
computed using the Leaver method of the Black Hole
Perturbation Toolkit with ¢ = 107%. We have checked that
the corrections obtained with the semianalytic method and
with the numerical interpolation agree in all the parameter

space under investigation.

2. Linearization in the secondary spin: Radial solutions

Equation (32) is a stiff differential equation, i.e., the
solutions of physical interest are fast oscillating functions
with amplitudes increasing as 73 at infinity. The stiffness is
caused by the long range of the potential, which makes it
challenging to obtain an accurate solution in the domain
of integration. Two workarounds of this issue are the
semianalytic Mano-Suzuki-Takasugi method [55,56] and
the numerical Sasaki-Nakamura method [57]. Here we
employed a third method, which consists in considering a
particular ansatz of the solutions of Eq. (32) based on
hyperboloidal-slicing coordinates [58] (see also [59,60] for
more details). Such ansatz is!

Rppo(F) = 17 A= eTOT emPy (i), (48)
when the minus (plus) sign refers to R, - (R ), s refers
to the spin of the perturbation of the Kerr metric
(s = 0, %1, £2 for scalar, vector and metric perturbations,
respectively), and

b=—2 1n<f_f+>, (49)
r_ r r

2%, (F=F,\  2r  [P—F
=7 1 - 1 (50
it ypry n( 2 ) r+—f’_n< 2 ) (50)

"The original ansatz used in [58] [their Eq. (13)] has wrong
signs in some factors.
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with 7, = 1 + V1 — a%. By plugging the ansatz (48) in
Eq. (32), we obtain an ordinary differential equation for y:

d>y
di?

- d -
VARG L U Hy =0, (51)

A2
dr

where the functions F(7; H) and U(# H) are given in
Appendix A. Solving Eq. (51) numerically is much easier
than solving Eq. (32) because the potential U(7; H)/A? is
short ranged and the oscillating behavior at the horizon and
infinity is already factored out in the ansatz (48). It is worth
noticing that the oscillating term e¥*"" does not enter in the
Wronskian W;. We found exact boundary conditions for
Eq. (51), which allowed us to find the radial solutions R}, .
and R}’ . quickly and accurately. Such boundary condi-
tions are provided in Appendix A 1.

After expanding the ansatz (48) as shown in Appendix B
2, we obtained some algebraic formulas for Ri;,‘nl and R;I:r‘ll
that depend on the linear corrections y™™°, ™! and
w0yl We computed such solutions by solving a
system of ordinary differential equations derived by
expanding Eq. (51) and the related boundary conditions
to O(o). See Appendix B 2 for more details.

3. Linearization in the secondary spin: GW fluxes

Once the zeroth- and first-order corrections to the
Teukolski variables are known, it is then possible to expand

the complex amplitudes Z?,’,fg) as
Z0,0(1) = 203 (7. 0°) + 0Zp,, (7,60, 0').  (52)
Z3,0(7) = 25 (1. 0%) + 6Z5 1 (7.0°.0"),  (53)

and finally obtain the correction to the fluxes at the horizon
and infinity for each £, m as follows:

Ipn(7) =19, (F,0°) +olb, (7,00, &), (54)
Hy,(7) = HY,, (7, @°) + oH}, (7,0°,&"),  (55)

where /,,, and H,, have been defined in Egs. (25) and
(27), respectively. The coefficients 19, .1}, and HY,  H},
are given in Appendix B 3.

To compute the fluxes, we constructed a nonuniform
grid in the orbital radius 7 defined as follows: given
v(7) = (Q°)/3 = (/2 + a)~'/3, we considered 180 points
for a < 0.99 and 200 points for a = 0.99 evenly spaced
in v, starting from vy, = v(# =14) and ending at
Vend = V(Pisco)s With Fgco being the innermost stable
circular orbit (ISCO) for a nonspinning test particle. The
radiation reaction grid in 7 was then obtained as the
solution of 7; = (1/v} —a)~%/3 for i = 1,...180(200) for
a <0.99 (a=0.99).

In the computation of the fluxes, we summed over all
multipoles £ up to £ = 20 (Cnax = 24) for a < 0.99
(a = 0.99), summing over the index m = 1, ..., Z for each
harmonic index #. As shown in Table I of Ref. [27], the
fractional error in truncating the multipole sum at 7, is no
larger than ~1073,

Finally, we compared the linearized fluxes with the
results available in the literature. In the case of a
Schwarzschild spacetime, our results are in perfect
agreement with those of Ref. [13] (they agree within
all the digits shown in Table I of [13]). In Ref. [27], the
linear corrections to the fluxes in a Kerr spacetime
were computed through a cubic interpolation of the
exact fluxes in o (we refer to the first-order corrections
computed in this way as F} ). In order to compare with
the semianalytic linear corrections F! obtained in this
work, we recomputed F} . as done in Ref. [27] with the
following differences:

(i) We solved the radial Teukolsky equation in hyper-
boloidal slicing coordinates, using the same radia-
tion-reaction grid adopted here;

(i1) for each #, we summed over all azimuthal indexes
m=1,...,7, as done in this work.

The fractional difference between F. . and F! is, at most,
10719% (10™4%) for a=0.9 (a=0.99) (the largest
differences occurring at the ISCO), as also shown in
Fig. 1 for a = 0.99.

D. Waveform computation

We focus on EMRISs on circular and equatorial orbits, for
which the emitted waveform in the Teukolsky formalism is
given by

1074

1073 —e— a/M=0.99

[%]

10°°

1
nter

1077

108

- —* W eq oo

L LU b o v i i 1 |T||||-l..a|||

-F NIF,

10°°

inter

S 107

107

10—12

1071
MQ

FIG. 1. Percentage fractional difference between F} . and F!
for a primary with spin a = 0.99.
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h, —ih, =2~ ZAM,

fm

ZSfm 8 t) il )’ (56)

®(1) = mp(1) + m(g + o), (57)
where ¢ is the initial orbital phase, A,,; = mew /@?, and
VA m>zy .. D is the source’s luminosity distance
from the detector,” and (&, ¢) identify the direction, in
Boyer-Lindquist coordinates, of the latter in a reference
frame centered at the source. Since ¢y in Eq. (56) is
degenerate with the azimuth direction ¢, from now on we
will identify the initial phase as ¢y — ¢ + ¢o. From
Eq. (56) it is straightforward to identify the two waveform
polarizations

ht = 2% 585, (ReAs,5 cos @ + ImA,,; sin®),  (58)
h%,, = 2 a 585, (ReAsp sin® —ImAg,,; cos @), (59)

being ReAy,,; and Im A, the real and imaginary parts of
Ame- In the presence of the secondary spin, we expand the

amplitudes Ay, = A2, (0°) + 6 AL (&°, &) + O(c?),
where
Zimis
AY = o) (60)
+ Zino
AL, =2 AOA (w e (61)

Therefore, we recast the two polarizations as

h;zn =2 ( ZSfm + 6—2Sfm) ‘m’ (62)

Ol= bl‘t

?m =2 (—2S(}m + U—ZS;m)A;m’ (63)

with

A} =Re(AY, +0AL )cos®+Im(A%, + oAl )sind,
(64)

A%, =Re(AY +0AL )sin® —Im(A%, +cAL, ) cos®.

(65)

The LISA response to the GW signal emitted by an
EMRI can be written in terms of the +, x polarizations as

*In this detector frame configuration, the component masses in
Eq. (56) are rescaled with respect to the source-frame quantities
by the redshift factor (1 + z).

ho(t) = Fg (9p, p, ¥)h (1, D, 9, @)
+ Fa(8p, ¢p, ¥)h, (t,D,9,9),  (66)

where a = I, I1 refers to the two independent Michelson-
like detectors that constitute the LISA response [61].
The antenna pattern functions® F; and F> depend on
the direction (9p,¢p) of the source with respect to the
detector’s frame and on the polarization angle ¥ [34]:

1
Ff = 5 (1 + cos? 8p) cos(2¢p) cos(2W¥)
— cos 9p sin(2¢p) sin(2¥), (67)

1
F} = > (1 + cos? 9p) cos(2¢p ) sin(2¥)

+ cos Ip sin(2¢p) cos(2¥), (68)

where F;;* can be obtained by rotating ¢, in the
previous expressions by —z/4. ie., F};*(9p,pp,y) =
F ™ (8p, op — /4, w).

Given the LISA satellite motion, such angles are not
constant but vary with time. However it is possible to recast
(9p, ¢p,¥) in terms of fixed angles (Js, ps) and (I, ¢x)
which provide the direction of the source and of the orbital
angular momentum (which for equatorial orbits coincides
with the direction of the primary spin) in a heliocentric
reference frame attached with the ecliptic [63]. The same
applies to the polar angle 9 in the signal (56):

cos & = cos Jg cos I + sinJg sin Ix cos(ps — pg). (69)

Finally, we also include the effect of the Doppler modu-
lation by introducing an offset in the phase

A

(1) — (1) + % Csin b cos[2a(t/ Tusa) — 5], (70)

where R =1 AU and Tyiga =1 yr is LISA’s orbital
period [34].

We have considered 7 = 1 yr observation time, ending
the orbital evolution at the onset of the transition region as
defined in [64], i.e., at Figco + 07 with 67 = 4¢%/>. We have
chosen 67 by setting X = 1 and Ry = 4 in Eq. (3.20) of [64]
for all the configurations analyzed. In general, 67 ~ yg*/°
with y ~ O(1), and we checked that the Fisher matrices
computed below are unaffected by the specific value of y,
since the signal-to-noise ratio (SNR) accumulated around
the transition region is negligible.

*For simplicity, we assume that F', , are constant within the
frequency range sampled by the binary configurations consid-
ered. However, for values of f larger than f, = 19.1 mHz,
LISA’s antenna pattern functions also depend on the GW
frequency [62].
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III. ACCURATE FISHER MATRIX ANALYSIS
FOR EMRI WAVEFORMS

In Ref. [27] we computed the GW dephasing due to
a nonvanishing secondary spin, showing that the effect
of the secondary spin can contribute to more than 1 rad
dephasing, therefore suggesting that it could provide
detectable effects. However, such a simplified analysis
neglects possible correlations between the waveform
parameters that might hamper their measurability, espe-
cially for subleading terms. In order to gain a deeper insight
on the detectability of the secondary spin in the following
we shall perform a Fisher matrix analysis.

The GW signal emitted by an EMRI with a spinning
secondary, moving on the equatorial plane with spin (anti)
aligned to the z axis, is completely specified by eleven
parameters X = {X[,Xg}: (i) five intrinsic parameters
X = (Inp,InM, a, y, and 7;) and (ii) six extrinsic param-
eters Xg = (¢o, s, @s, 9k, ¢k, In D), where we remind
the reader that (M, u) are the mass components with
qg=pu/M <1, (a,y) are the primary and secondary spin
parameters, (¢, o) define the binary initial phase and
orbital radius, and D is the source luminosity distance. The
four angles (ds,¢s) and (9k,@g) correspond to the
colatitude and the azimuth of the source sky position
and of the orbital angular momentum, respectively [63].
Since the orbit is circular and equatorial, the orbital angular
momentum has no precession around the primary spin, and
the orbital and primary angular momenta are parallel to
each other.

In the limit of large SNR, the errors on the source
parameters inferred by a given EMRI observation can be
determined using the Fisher information matrix:

dhy,| dh
ry= 3 (Sef ) 71
! a=1,11<dxl dx]>)?=fco 7

where X, corresponds to the true set of binary parameters,
and we have introduced the noise-weighted scalar product
between two waveforms p, and ¢, in the frequency
domain:

(e =2 [ S 3 + pra ) (72

Here the tilded quantities correspond to the Fourier trans-
form of the time-domain waveforms, and a star identifies
complex conjugation. We used Simpson’s integration rule
to compute the scalar product. As discussed in the previous
section, the index a runs over the two independent channels
of the LISA interferometer. In our computations we set
fmin = 107 Hz, while we choose f . as

fmax 1

Smax = w M [Q° (F1sco) + 09 (Fisco)].  (73)

where 7i5co 1s the ISCO for a nonspinning test particle
and 7, the maximum harmonic index # considered for a
given system. Following the Shannon theorem, for the
sampling time we used Af, = [1/(2fma) — 1] while the
number of samples n, = T/At, is adjusted to be an even
number for a more efficient computation of the fast Fourier
transform. As discussed before, for all systems the binary
evolves for T = 1 yr before the plunge, so the frequency
content of the signal is smaller than the range [f nin, fmax)-

The waveform scalar product also allows us to define the
optimal SNR for a given signal 4 as

SNR = (h|h)!/?, (74)

which scales linearly with the inverse of the luminosity
distance. Furthermore, in the large-SNR limit the covari-
ance matrix scales inversely with the SNR so, for a given
set of parameters, it is straightforward to rescale the errors
by changing the distance D (and hence the SNR).

The inverse of I';; yields the covariance matrix, %;;,
whose diagonal elements correspond to the statistical
uncertainties of the waveform parameters,

0'%; =Z; > ([T, (75)

whereas the off-diagonal elements correspond to the
correlation coefficients,

Cxx; = sz/ Vv ZiZjj- (76)

Hereafter we consider two data-analysis scenarios,
depending on whether we also include a prior proba-
bility functions on the spin of the secondary or not.
We follow the approach described in [65], assuming for
the prior a Gaussian distribution pg(y) with standard
deviation o, = 1. Given I the Fisher matrix of the prior
[which in our case has all vanishing elements except for the
diagonal term corresponding to the secondary spin, with
(T),, = 1/0,], the new errors on the source parameters are

obtained by modifying Eq. (75) as
of, = [T +To) ;i (77)

We notice that the matrix I'; is independent of the distance
D; therefore when including a prior, the error on y does not,
in general, scale inversely with the SNR.

In addition to the standard deviations on the eleven
parameters defined above, we also analyze the error box on
the solid angle spanned by the unit vector associated with

(95, @s) and (9, pk):

_ - 2 2 2
AQ; = 2z(sind,|\/05 0, —

ip;*

(78)

where i = (S, K).
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From a technical point of view, the fact that the EMRI
waveform is known numerically implies that, to compute
the Fisher matrix, one needs to evaluate numerical deriv-
atives. Apart from the derivative with respect to the
luminosity distance D (which can be obtained analytically
since the waveform scales as & ~ 1/D), we have computed
the derivatives of the other ten parameters using the five-
points stencil formula, namely:

dh 1
dx  12e
—8h(x —¢€)] + O(e*). (79)

[A(x —2€) — h(x + 2¢) + 8h(x +¢)

The numerical derivative is sensitive to the value of the
shift € chosen to compute the finite differences. We have
explored various combinations of e for each parameter,
finding in general a range of at least two orders of
magnitude in which the Fisher (and the covariance)
matrices show convergence in the small-e limit (see
Appendix C for a detailed analysis).

It is well known that the Fisher matrices used for the data
analysis of EMRIs are badly ill conditioned [66], which
means that a small perturbation in the matrix (due to
numerical or systematic errors) is greatly amplified after
computing the inverse. As a rule of thumb, for a condition
number® x = 10, one may lose up to k digits of accuracy,
which should be added to the numerical errors. In our setup,
an accurate inversion of the Fisher matrix requires at least
60-digit precision in the waveform in most of the configu-
rations, and in the worst case (namely a =0.9, y =1,
u =10, 100 M), up to 90-digit precision. To achieve such
precision in the waveform, we have computed the GW
fluxes with 70-digit precision (100-digit precision in the
most demanding case), which allowed us to derive the
Fisher matrices with no less than 38-digit precision. In
Appendix C we provide a detailed analysis of the stability
of the Fisher matrix for the problem at hand.

IV. RESULTS AND DISCUSSION
A. Settings

We have computed the numerical integral in Eq. (72)
using the LISA noise sensitivity curve of Ref. [62],
including the contribution of the confusion noise from
the unresolved Galactic binaries assuming 7 =1 yr of
observation time. In order to reduce the spectral leakage in
the frequency domain due to the Fourier transform, we have
tapered the time-domain waveforms with a Tukey window
with window size f# = 0.05. We checked that our results
do not change noticeably when varying f around this
fiducial value.

*For a symmetric, positive-definite matrix, the condition
number k is given by the ratio between the largest and the
smallest of the matrix eigenvalues.

For simplicity, in our analysis we fix the injected angles
to the fiducial values ¢ =r/4, ¢s=0, 9 = x/8,
¢x = 0. Moreover, we consider a primary mass
M = 10° Mg, and two choices of the secondary mass:
u=(10,100) My. We compute the Fisher matrices for
sources at fixed luminosity distance D =1 Gpc, but
renormalize the results to a fixed fiducial SNR such that
SNR = 30 and SNR = 150, for the two choices of pu,
respectively.

In order to analyze how the inclusion of higher-order
(Z > 2) multipoles in the signal (66) may affect the
measurement of the source parameters, in the following
we consider the purely quadrupolar case (£ = 2), and the
cases in which the octupole (£ = 3) and the hexadecapole
(¢ = 4) are included.

Finally, we shall discuss two cases separately: first, in
Sec. IVB we neglect the spin of the secondary (i.e.,
removing y from the waveform parameters); then, in
Sec. IV C we perform a more comprehensive analysis by
including also the secondary spin.

B. Neglecting the spin of the secondary

We start by neglecting the secondary spin y from the
waveform parameters. Our results are summarized in
Tables I and II.

Table I shows results when we also neglect the spin a
from the waveform parameters, and assume that both the
primary and the secondary are nonspinning. In Table II
instead, we include the spin of the primary as a parameter,
injecting a = 0.9 but keeping all other parameters
unchanged with respect to the injection of Table I (except
for 7, since the latter changes in order for the binary to take
exactly 7' =1 yr to reach the ISCO).

For £ = 2, our results are in very good agreement with
the analysis of [34,35] which used approximated kludge
waveforms. Being the latter analytical, the Fisher-matrix
analysis is significantly faster than in our case. It is
therefore reassuring that a fully relativistic, numerical
waveform provides the same results.

Furthermore, we find that including the octupole (£ = 3)
contribution to the signal does not affect the measurement
errors on the intrinsic parameters, but it improves the errors
on the luminosity distance and on the solid angle which
defines the orbital angular momentum (A€g) by one order
and two orders of magnitude, respectively. Adding the £ =
4 multipole does not improve such errors significantly,
suggesting that Z > 4 multipoles are negligible for this
purpose.

As expected, augmenting the dimensionality of the
waveform parameter space by including the primary spin
reduces the accuracy on the intrinsic parameters, especially
the masses. This happens despite the fact that the ISCO
frequency is higher for a rapidly spinning BH, since we
chose to normalize the results to the same SNR. For sources
at a fixed distance, the SNR in the a = 0.9 case is four
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TABLE 1.  Errors on the intrinsic source parameters, on the luminosity distance, and on the solid angles which
define the orientation and the orbital angular momentum of the binary, for various choices of the multipoles included
in the waveform. Both EMRI components are nonspinning (& = y = 0), with M = 10° M and u = 10 M. We
neglect the spin parameters of both binary components (¢ and y) in the waveform. The SNR for the three
configurations (D = 1 Gpc) is SNR = (22.2,24.8,25.2), but the errors are all normalized to the fiducial value
SNR = 30. For clarity, we present the log;, of the errors on In M, In y, 7, ¢po, and In D. For example, an entry “—4”
for In M (7,) means that the relative (absolute) error on M () is 107*.

4 InM lnﬂ ?0 ¢0 InD AQS AQK

2 -4.62 -4.19 —4.96 0.54 -0.27 3.1 x1073 1.5
2+3 —4.64 —4.22 —-4.97 —0.66 —1.46 2.4 x1073 7.9 x 1073
2+3+4 —4.64 —4.22 -4.97 —-0.67 —1.46 2.4 x 1073 7.3 x 1073
TABLE II. Same as Table I but assuming a spinning primary with @ = 0.9 and including & in the waveform

parameters. In this case the SNR of the three configurations is SNR = 92.2, 94.7, 95, but we again normalize the
errors to the fiducial value SNR = 30.

¢ InM In a 7o bo InD AQ; AQy
2 324 353  —415  —445 048  —-033  79x10™* 25

243 325 354  —416  —-446 052  -134  73x10* 13 x 102
24344 325  -355 -416  -446  -053  —-135  72x10~* 1.1 %1072

PHYS. REV. D 104, 124019 (2021)

times larger than in the nonspinning case, almost compen-
sating the higher dimensionality of the parameter space.

Overall, all parameters are measured with exquisite
accuracy, confirming previous analyses that used approxi-
mated semirelativistic waveforms [2,34,35,63].

C. Including the spin of the secondary

We now move to a more comprehensive analysis, by
including the secondary spin in the waveform parameters.
We shall present two cases: with and without imposing a
Gaussian prior on y. We start by neglecting the spin of the
primary in the waveform parameters and injecting a = 0.
The results of the Fisher-matrix error analysis are presented
in Table III, which is the extension of Table I to the case of a
spinning secondary.

By comparing Table III with Table I we observe some
interesting features. First of all, in the case in which a prior
on the secondary spin is not imposed the relative error on y

is around 30000%, confirming that this parameter is not
measurable [34,35]. Nonetheless, in this case the errors on
both masses deteriorate significantly (albeit they remain
excellent in absolute terms). This issue is due to non-
negligible correlations between y and the masses. Indeed,
we find that all the intrinsic parameters are strongly
correlated with y. The correlation (in absolute value) is
typically 20.99 and never less than 0.95. Therefore, large
variations in y as those shown in Table III can correlate with
a small change in the total mass or in the mass ratio.
This issue can be fixed by imposing a prior on the
secondary spin, in such a way that also its errors cannot
become too large. As shown in Table III, imposing a
Gaussian prior on y with standard deviation 6, = 1 reduces
the errors on this parameters, but the confidence interval
is as large as the prior range, again confirming that this
parameter is not measurable. (In other words, the measure-
ment errors are dominated by the priors.) Nonetheless,
adding a prior on y restores the accuracy in the measurements

TABLEIIL. Same as Table I but including a spinning secondary with y = 1 and also considering the case in which

a Gaussian prior on y (with ¢, = 1) is enforced.

4 Prior InM Inu X 7o bo InD AQgq AQg

2 No -295  -3.66 2.51 -4.18 0.55 —0.27  44x1073 1.6
Yes -4.62 —419 —0.13 —4.96 0.55 -027 3.1x1073 1.5

2+3 No -297  -3.67 2.50 —-4.19 -0.64 —-146 38x107° 8.6 x 1073
Yes -4.63 —422 -0.082 497 0.6 -146  24x103%  79x1073

2+3+4 No -297  -3.67 2.50 -419 =065 -146 37x10% 79x1073
Yes —-4.63 —-422 -0.076 -497 =067 —-146 24x107 73 x107°
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TABLE IV. Fisher-matrix errors on the EMRI parameters including both binary components spin in the waveform
and including a spinning secondary with y = 1. We include only the quadrupole (£ = 2) in the signal and consider
two choices of the mass ratios and two values of the primary spin, with and without imposing a Gaussian prior on y.
In these configurations, the SNR for y = 10 M (100 M) is SNR = 92.2 (SNR = 174) when & = 0.9 and SNR =
100 (SNR = 195) when a = 0.99. However, also in this table the results have been rescaled to have SNR = 30
(SNR = 150) when p = 10 M4(100 M), regardless of the primary spin.

Ainjected H/Mg Prior InM Inp a X Fo bo
0.9 10 No -2.26 —2.41 —2.66 2.85 —3.88 0.48
Yes —-3.24 —3.53 —4.14 0.48 —4.45 0.48
100 No -2.20 -2.39 —2.78 1.66 —4.14 —0.015
Yes -3.30 -3.52 —4.32 0.064 —4.93 —0.024
0.99 10 No -2.81 -2.96 —4.55 1.98 -3.89 0.47
Yes -3.51 -3.76 —4.67 0.52 —4.32 0.47
100 No -2.14 -2.33 -3.39 1.21 -3.75 -0.12
Yes -3.01 -3.22 —4.03 0.11 —4.50 -0.12

PHYS. REV. D 104, 124019 (2021)

of the other intrinsic parameters, which become very similar
to the case in which y is neglected in the waveform (compare
Table III with prior to Table I). We also find that, including a
prior on y, the correlations between y and the other
parameters are much smaller.

From Table III we also observe that the role of £ > 2
multipoles is not affected by the secondary spin: also in this
case the inclusion of the # = 3 multipole improves the errors
on the distance and on the orbital angular momentum solid
angle by one and two orders of magnitude, respectively.

Finally, we are now in a position to present the complete
analysis by including both the spin of the primary and of
the secondary. A summary of our results is presented in
Table IV for the cases with a = 0.9 and a = 0.99, and
considering both =10 My and p =100 My. In this
analysis we only include the quadrupole (7 = 2) since
anyway the higher multipoles do not affect the errors on the
intrinsic parameters.

Also in this general case we observe the same features of
the previous analyses. In particular, the secondary spin is
not measurable but its inclusion can significantly deterio-
rate the accuracy in the measurements of the masses, unless
a prior on y is enforced. Even in an extreme case (@ = 0.99,
u = 100 M) the relative error on y is larger than 100% for
SNR < 2433. Also in this general case, we find that
including the secondary spin with a prior yields the same
errors as in the case in which y is neglected in the waveform
parameters.

Strictly speaking, it is not possible to rescale the
covariance matrix of the posterior by a fiducial SNR when
a prior is introduced because Iy does not depend on the
distance D. However, since the error on y is largely
dominated by the prior, our numerical results are practically
unaffected for the fiducial SNRs we used. Finally, it is
worth noticing that, by rescaling only the likelihood
covariance matrix, the posterior variance of y would remain
close to the prior variance even if the fiducial SNR were to
be increased.

V. CONCLUSION

EMRIs are unique GW sources that can be potentially
used to tests fundamental physics and astrophysics to
unprecedented levels. However, this huge potential comes
with its own burden: data analysis and parameter estimation
of EMRIs are challenging and, in many respects, still an
open issue.

In this work we have focused on circular equatorial
motion around a Kerr BH and computed the waveform
numerically to leading order in an adiabatic expansion,
taking into account the motion of the LISA constellation,
higher harmonics, and also including the leading correction
from the spin of the secondary in the postadiabatic
approximation. We have then performed a brute-force
Fisher-matrix analysis without resorting to approximated
or kludge waveforms. Clearly our approach is very time
consuming and inefficient for practical purposes, but can be
used to quantify the accuracy of approximated waveforms
that are instead much more efficient for EMRI parameter
estimation. Our analysis confirmed that using approxi-
mated (and dramatically more efficient) waveforms
[2,34,35] does not significantly affect the measurement
errors on the binary’s parameters, including the subleading
spin of the secondary.

The measurability of the secondary spin is particularly
interesting for various applications, including model-
agnostic tests of the Kerr hypothesis [26,27]. We have
therefore performed a detailed analysis on this aspect. We
confirm the results of Refs. [34,35] which, using approxi-
mated waveforms, found that the secondary spin for EMRIs
with (anti)aligned spins on quasicircular orbits is not
measurable, although it produces a non-negligible dephas-
ing [26,27] (see also Table V). This is due to correla-
tions that exist between the secondary spin and the other
intrinsic parameters. Because of these correlations, even if
the secondary spin is not measurable, its inclusion in
the waveform model can deteriorate the accuracy on the
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TABLE V. GW dephasing d¢gw between a spinning particle
with ¥ = 1 and a nonspinning particle for the cases considered in
Tables IIT and IV. The GW phase difference is computed for the
dominant £ = 2 mode, i.e., Pgw (1) = 2¢(1) at Fgco + 67

u/Mo a S lrad]

10 0 1.06
0.9 2.38
0.99 3.48

100 0.9 5.48
0.99 6.47

measurements of other parameters by orders of magnitude,
unless a physically motivated prior on the secondary spin
is imposed. In the latter case, we find that the Fisher-
matrix errors are identical to those obtained neglecting
the secondary spin in the waveform parameters. This
further suggests that, for the orbital configurations we have
considered, the secondary spin in EMRIs is negligible for
parameter estimation.

Finally, we found that including higher harmonics in
the GW signal improves the errors on the luminosity
distance by an order of magnitude and those on the binary
orbital angular-momentum angles by two orders of mag-
nitude, relative to the quadrupole-only case. This is par-
ticularly relevant to identify the environment where EMRIs
form [67,68], for possible applications of multimessenger
astronomy with EMRIs [69] and for prospects to use
EMRIs as standard sirens [70].

Our brute force analysis should be intended as a proof-
of-concept aimed at assessing the accuracy of more
efficient (but approximated) methods which, after a positive
benchmark, can be used more confidently in parameter
estimation. At the same time our analysis can and should be
extended in various directions, to provide a necessary
benchmark for more complete waveforms, for example
the recent ones obtained by using order-reduction and
deep-learning techniques for eccentric nonspinning orbits
around Schwarzschild [39,41]. Obvious extensions of our
work are the inclusion of eccentricity and nonequatorial
orbits, as well as spin misalignment. Finally, our waveform
does not include all the next-to-leading order terms in an
adiabatic expansion, in particular it lacks the leading-order
conservative self-force corrections. Including all these
interesting effects is left for future work.

The supporting data for this paper are openly available
online [71].
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APPENDIX A: TEUKOLSKY EQUATION IN
HYPERBOLOIDAL-SLICING COORDINATES

The coefficients F(#) and U(#) of Eq. (51) are given by

R 2 (A1)

G(rH) = (P +a*)[s(p = 1) — (> + &>)oH + ma)]

a*A
: A2
- (A2)
U(# H) = 2is@[fA(1 — H) — (?? — a*)(1 + H)]
A, .
+ 2 [28° = P dpme — 27(s + 1)]
+=2ma®(t* +a*)(1 + H)
A
—2ia—(m+awH), (A3)
r

where H = —1(+1) for the linearly independent solution
w"(y'?). This is the same convention adopted in the
Teukolsky package of the Black Hole Perturbation
Toolkit [54]. Notice that

U(r;—1) =0, (A4)
U(r —>2c>o; 1) N _Aemo + 4a:721&) + 4isc?)’ (AS)
A 7
F(7 .1
% - 2id. (A6)

It is easy to show that the ordinary differential equation (51)
has three singularities on the real positive axis: two at the
horizons 7 = 7_ and 7 = 7., both of which are regular
singularities, and one at 7 = co which is an irregular
singularity of rank 1. Despite having different coefficients,
the radial Teukolsky equation, the Sasaki-Nakamura equa-
tion, and Eq. (51) have the same singularities. Therefore,
both the Sasaki-Nakamura transformation and transforma-
tion (48) preserve the singularity structure of the radial
Teukolsky equation. We compute accurate boundary con-
ditions at the outer horizon 7, and at infinity through
suitable series expansions, as done in Ref. [27]. The Fuchs
theorem guarantees that the solutions of (51) around 7, can
be written as Frobenius series, with radius of convergence
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1- a2 (A7)

At infinity or when a =1 (for which 7, =7_), the
boundary conditions can be computed accurately as asymp-
totic expansions.

1. Boundary conditions for the Teukolsky equation in
hyperboloidal-slicing coordinates

a. Boundary condition at the horizon

To compute the boundary conditions at the outer horizon
7., it is convenient to rewrite Eq. (51) as

o dZWin o R dl//m o
(=7 o (= 7)) o+ au (P =,
(A8)
where
. F(-1) o U@#-1)
pH(r) - F—f s QH(r) - (? > )2 (Ag)

0
= dE an s

where the index d is a solution of the indicial equation

(A10)

I(d)=d(d-1)+ py(?)d + qu(#,) =0. (All)
For Eq. (51), the latter is given by
4ir,
I(d)=dd—-cy)=0, cy=——xr+s (Al2)
I

and k=d — m&/(2?+)
the radial solution R';mw
behavior:

Near the outer horizon 7,
has the following asymptotic

Rln

tmo ™ A_Se_iﬁ*’ (A13)

[

Thus, only d =0 is a physical solution of the indicial
equation. Moreover, we notice that the ansatz (48) for the

R}}‘mw solution can be rewritten as
R (7)) = P 1A e emion(lyn(3) - (A14)
am |7 =T
oy (7)) = —+1 AlS5
o5 s

Therefore, to ensure the correct physical behavior of

R . (7) at the outer horizon, we fix d = 0 and write the

Frobenius series (A10) as

yin =i, " a, (b= 7). (A16)

n=0

The recursion relation for the coefficients a, is (setting
ag=1)

an =~ S kI () + g0V e (A7)
1(n) 2

where p§§>(?+) and q(f’,()(iur) are the kth derivatives of the

coefficients py(?) and gy(7) with respect to 7, and
calculated at 7, . Their general expression is given by

1—cy n=0,

P ) = (037) 7 [=282 4 @23 + 25 + 4t &) + P (=2iam + 2ia%6 — (P, + 25 +2i2@))] n=1, (Al8)
2(=2 )" = pyt + p T 2571 + 2i2 @ + 2i(—am + is + 4*)) n>1,
0 n=0,

a3, (puty) " [2iam +2(s = 1) = 2ia*® + 4 (2 + Ay, — 41T 50))] n=1. (A19)
2n—1)(=2 )"+ pi’ [(2+Afm(;,—4i?’_scb)+§—f(s—1+i&(m—2zc?)))2 ( — 2 )} n>1,

where py = (7. —7,) and ,F (1,1 —n;2;7_/7,) is the

hypergeometric function ,F,(a, b;c; z).

b. Boundary condition at infinity

General expressions for series solutions around irregular
singularities are also available in the literature [72-74].

[

However, unlike the regular case, these solutions are not
convergent, and have to be considered as asymptotic
expansions. To calculate the boundary conditions at infin-
ity, we rewrite Eq. (51) as

d*y? L dy'P
gz TP

T qe (P =0, (A20)
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where

ui1) (A21)

The functions p,(7) and ¢, (7) are analytic on the positive
real axis, so the series

(n)

A 1 P A - | g
pDO(r) = ZOE ?n ’ qOO(r) = ZOE ?n
n= n=

converge, with pg,') and qg,') being the nth derivatives of

the coefficients p., and ¢, with respect to 7. In the case
of irregular singularities of rank 1, the formal solution is
given by

[s9)

N b

Yy = erips AZ ,
n=0

(A22)

provided that at least one of pf,g), qf,g), or qg}) iS nonzero.

The exponent y is one of the solutions of the characteristic
equation

7+ py + 49 —o, (A23)
while
W, . 0
=Pl Tln (A24)
P +2y

For Eq. (51) we have

(1) (0)

dD =0=4V, p¥ =2ie, pY =4ip-2s, (A25)

N y(2id — s)
2 =0, =—-—". A26
vy + 2id) 3 o (A26)
When # — oo, the radial solution R}’ . has the following
asymptotic behavior:
R .~ st gidi P — . (A27)

Thus, only y = 0 is a physical solution of the characteristic
equation, and we can write

[ee]
w_N\0n
yt = o

n=0

The general recursion relation for the coefficients b,, is (we
set again by = 1)

(A28)

(P2 + 2 b, = (= E)n—1 = b,y + Y ol
k=1
+ g% — (n =k = &) pEb, . (A29)

In our case, we can write

n—1 1 (k) @
by=""—b,_ = = (= K)pe by
0= e 1+2ié)n;[q (n=k)poo' |byi
(A30)
where
2idy n=0,
pg,l) —{ 4i6)—2s n=1, (A31)
?’l_l+?:l>_l+P—_P+ n>1,
277! R (& 2 1+ ad)a
Pe= T (1= ba)s tilam + (R4 a)0)). (A32)
H
and
O n = 07 1’
gl = { —(4amd> + 4isd + Aems) n=2,  (A33)
20, +%0, n>2
with
U
Q) = M2, — P2 —E(r’j "= ma
+ —(iam + s + 1 + ia*®) (P72 = 7177), (A34)

y = isd[py(n — 1) (172 + 772) = 2(7271 = 771
+ (is +am)[" (2 — npy) — M. (2 + npy)]
+&mlpy (1= n) (P72 4+ 7472) + 20727 = 771

+— 2R (- ).

5 (A35)

APPENDIX B: LINEARIZATION IN THE
SECONDARY SPIN

1. Linearization of the angular Teukolsky equation

For the study of the eigenvalues and eigenfunctions of
Eq. (30), it is convenient to perform a change of variable
defining x = cos @, obtaining

H|S> = _ﬂfmé)

S), [S)y=842 H=K+V, (Bl

with
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ICE%((I —x2)%>, (B2)

(m + sx)?

V=cx(cx —2s) —c? + s+ 2me — =2
—x

,  (B3)
where the dependence on the spin perturbation s is under-
stood to reduce clutter in the notation. We consider here
only the case in which ¢ € R. Physical solutions of (B3)
must be regular in the interval [—1, 1], which entails that #
and m must be integers with |m| <

Eq. (B3) can be written as a series expansion around the
singular points x = £1 [75,76]:

—— (1 + ) (1 =x)* Y d,(1+x)"
iy >

where ky = |m + 2|/2 and the coefficients d,, are given by
the three-term recursion relations

Som = (B4)

agdy + fody = 0, (B5)
apdyiy + Pudy +vudyoy =0n=12...  (B6)
with
a,=-2(n+1)(n+2k_+1), (B7)
Po=nn+1)+2n(k;+1—-2c)=2c(2k_+s+1)
+ky(kg+ 1) = s(s + 1) = Agpg — 2me, (B8)
Yn=2c(n+ky+5s), (B9)

2T'(1 +2k_ + n) -
N= 2"F , n; didn—i’ Bl11
; T2+ 2k, + n) (nnc); (B11)
F(n,n;c) = F(1 +2k_+n,2+ 2k, +n;4c), (B12)

while I'(z) is the Euler gamma function and | F,(a, b; z) is
the Kummer confluent hypergeometric function. To ensure
the convergence of the series (B4) at x = +£1, the eigen-
value A,,,; must satisfy the implicit continued fraction

oY1 0172 0‘2}’%

Pr— Pa= P3—

With the requirement of regularity at the boundaries [—1, 1],
Eq. (B3) defines a Sturm-Liouville eigenvalue problem.
In particular, the eigenvalue problem is singular because
the coefficient (1 — x?) vanishes at the boundaries. Never-
theless, it can be shown that Eq. (B3) still satisfies many of
the properties of a regular Sturm-Liouville problem,
namely the following (see [77] and references therein):
(i) the operator H is Hermitian, ie., (v|H|w)=
(w|H|v) for any vector v, w;
(i) given a set s, m, ¢, the functions S2%(9) form a
(strong) complete, orthogonal set on [—1, 1], labeled
by the additional integer £ (see [78]);
(iii) each eigenvalue A,,,; has (up to a constant) a unique
eigenfunction for any set s, m, c.
Thus, we can conveniently treat the secondary spin ¢ as a
small perturbation of a Hermitian operator and compute the
linear corrections in o to A,,,; using the same techniques of
nondegenerate perturbations of a quantum mechanical
system [79]. To linear order in o, we obtain

0=po- (B13)

HO|S%) = =2, |S%). (B14)
and k; = k, + k_. The normalization constant A/ can be ol el oo o ol o
written analytically as HISY) + VHSP) = =22,|S") — 42,,[8°). (B15)
1 HY =K+, (B16)
N = / (S, (x))2dx = (27)21 % e=2T(1 + 2k, )R,
-l Y =2c! (% = sx +m— ), (B17)
(B10)
where 1 is simply given by H with ¢ < %, §% =
where |8%), SL = |S!) and
1 I n
= (SVIS) = [ 80,805 = = 05> SO F o+ 1) =) Flnm )] S e . (BIS)
- n=0 i=0
[
with
(n) = 2+ 2k;+n)(1 +2k, —m+s). (B21)
I'(1+2k_+n)
= = n+l Z .o .
E(n) =2"" T3 +k +n) (B19) " The term MO is given by M with ¢ <> ¢°. We computed the

Y(n) = (1+2k.)(2+2k +n+2s), (B20)

zeroth order eigenvalue Afm, the corresponding eigenfunc-
tions S% ~and the coefficients d) using the routines of
the SPINWEIGHTEDSPHEROIDALHARMONICS Mathematica
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package of [54]. Once the correction to the eigenvalue /ILLm
is known, we can evaluate the correction to the eigenfunc-
tion S. by expanding in o the Leaver series (B4),
obtaining

0

1 _ ¢ k. N
Sfm_ﬁ(l l—x ZO|:

+di(1 +x)”((1 +x) — 9;;)}

where the three-term recursion relation for the correction d,
is given by, for n = 1,2...

X

(B22)

dy=0  ayd] + pd) = (B23)
a,dl,, + BodL + BLdS + y0dl_ +yidl_ =0, (B24)
with
py=—=2c"(1+2k_+m+2n+s)—i,.  (B25)
vy =2c" (kg + s +n), (B26)
and
2 201 + 2k, + n) n
n' = + F(n,n;c®) " d%d!
; T(2 + 2k, +n) [ (””C)IZO P i
1+2k_+n n
2————F 1, I; d'd°_,
2 i Lt ) 2 n_l]
(B27)

2. Linearization of the radial Teukolsky equation

The linear corrections in o, R;‘ml, and R;E;l, were
obtained by expanding the ansatz (48) as follows. Let us
first define

NO = p1A=sFidT gimd, (B28)

DY = NAO <A+2 (#—1) ii(?2+&2)d)0+i&m>,
(B29)
=F io! (7”2 JArflz NO +#DO > (B30)
It is possible then to write
R = NGy, (B31)
RSy = N%(p™! F ia #y ), (B32)

dR%O dy "
d;m _ aODO + N? lg,\ , (B33)
dR%!
d:m _ l//a'lD(:)F + wa-,OD%F_'_ (B34)

o (D! e dy*
+N]F< & Fid P > (B35)
where a = in(up) for the minus (plus) sign. Finally, we
computed the linear corrections y'™?, /™! and yP-0, yup:!
as solutions of a system of ordinary differential equations
obtained by expanding Eq. (51) and the related boundary
conditions in o.

For the solutions y'™9, y/™!, the system of differential
equations is

dy | py () dy™  ay() o
in0 =0, (B36
T N (A (B36)
Py py(R) dw™ | py(F) dy™
i F—t, di  F—F, dP
0 (5 1 (%
au(®) au(P) o
+ Lyt 0 =, (B37)
(’”"’4—)2 (7 _’"+)2
where
2G! (7 -1) U'(#-1
1 (s 1 (%) — >
pH(r) (?_?_ (?2+&2) QH(F) (?_?_)2 ’
(B38)
G' (7 —1) = i(#* + a*)’d", (B39)

Ul(?;—l):A{—l‘ —|—2160]< +2rs>] (B40)

and the boundary conditions for y'™! are

©
;\, 5y () E Cl n

n=0

y™ ! (7) (B41)

The recursion relation for the coefficients a)
1 _
a, =0)

is (setting

n—1 0

N n—k),1 /a a

ah == (kpy ") + g ) T

=0 1(n)
TN (k)0 (nk).0 a, _ cpa,
+=) (kpy ) Fay () T -
rar A + " ) n—-cY
(B42)

where ¢}, = —f"fg_ ®" and
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- n=0,
P () = § <208 =300l n=1. (B43)
2i(a* + #2)py @t n> 1,
0 n=0,
?+(l;’"_4if+sa)l>_2ia2&)l n = 17
T'+PH

’;+ {JF/II —4ia’®' s+

—n2i212&)12F,(11 2)} n> 1.

(B44)

The coefficients ¢%(?), p%(#),a% and the boundary con-

ditions for ™ are given in Appendix A 1 with @ < @°,
/Ifm(b <> /I(}m

For the solutions yP* y P! the system of differential
equations is

d2wup,0 0 Wup,O 0
7 Fyrd =0 B45
g2 TP = o+ as(Pw . (B45)
dZWup,l 0 dl//up 1 Wln 0
Y+ () e+ Pl ()
+ g (P! + qo (PP = 0 (B46)
where
2G'(#;1) U'(71)
o(F) = — : W) =—75—=. (B47
Peo(P) N 7) A2 (B47)
G'(#1) = —i(# + a)%e" (B48)
U'(#1) = 4o ' [ma(i? + a®) +i(# — a*)s]+ (B49)
&2
(ﬂ +2iw T) (B50)
r
and the boundary conditions for y>! are
pi) =3 (351
n=0 "

The recursion relation for the coefficients b} is [setting
bl =0]

|
)0 (k.07 by
bl k)P
210) Z (n=k)p ]Zi&)()n
(k1)1 Wi, by @ 0.
% —k)ps - —b B52
+ 1?:1 lq (n=k)pe 55 =5 (B52)
where

2id! n=0,
P — 4 n=1, (B53)

4i(?" —M)a'lpy n>1,

0 n=20,1,
qgg),l ) AL —4@am+is)d' n=1, (B54)

01+ 0 n>2,
with
1,

0) = _E(’"— b )ﬂ}m (B55)

The coefficients g% (7), p%(#), b and the boundary
conditions for w"P? are given in Appendix A1 with
@ < 0°, dpps < /l(}m.

3. Linearization of the source

In order to write the linearized amplitudes mew in the
parameter o, it is convenient first to recast Eq. (37) as a
function of only R, " and its first derivative. Taking
advantage of the analyticity of the radial solutions in the
positive real axis (except at the inner and outer horizons),

second and higher order derivatives can be written solely in

terms of Ri;,;:g and its first derivative. Thus, we can write
Eq. (37) as
2 dRinuP
2t = 2% (xG)RED + () ). (B56)
r

where V(7) is the Teukolsky potential of Eq. (32), while

o V(7) B3 dV/(7)
. 200 —1 B
Y(#)=-C, + %cz - f (24 V(#), (B58)
C]EA]+B], CZEA2+B2. (B59)

After expanding Eq. (B56) in the parameter o, we can write
the zeroth order term as

2]1' dRa,O
p0 2,0 n om
me - WO <X0( )Rfm + YO(I”) W) s (B60)
where = H(oo) when a = in(up), while
Ve
X0(7) =AY + X) cs, (B61)
2(F=1)

c. (B62)
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(K°)* + 4i(# — 1)K°
A

V(i) = - + 8id°? +1%,, (B63)

KO = (? 4+ a%)a° — am, (B64)

1/ . dr™®? dRin0
W=+ <R1;,;? - R T ) . (B65)

Before writing the zeroth order source terms AJ, C9, C9, we
need to define the following auxiliary quantities:

0= _,89 (7/2,c0), (B66)
80 = CL—? —mS® + 080, (B67)
S = —%S%‘;m + 80 (co —m— %), (B68)
and
JY =17 - E%, (B69)
Py = —J% + E°(#* + &%), (B70)
0= P + a%) + angl. (B71)

The zeroth order source terms can then be written as

1
Af = ~ %A [LAD 4,40 + (T2)2S° (A + ,AD)]. (B72)
J? ~
Y == o [i7P9S0 + SO TYA + il + ia #(c® — m))),
r
(B73)
SO(jO)ZA
where
lAg = 27(PY)%S8°, (B75)

LAY = 2PISO 70((4i — ma)? + (P + a*) (F&° — 2i)],
(B76)
JAY =2i(3a%7 4 72)° + (7 + a%)* (Fa° - 20)@°,  (B77)

JA) = ma*t — 2mala® (7 — i) 4 7(3i — 2iF + @°1?)).

(B78)

The first-order correction Z?’,g is given by

2w
T

0
dR ;m

pl_
me - dr

(x o+

dr%! wl
+ XO(FRE) + YO(#) f’”)— Lz (B79)

~ 0 “¢m>
dr W5

where again f = H(oo0) when a = in(up), while

1 dvo(p
X'(7) = A} +x (vl(%)cg + VO(R)C) - ( )B;>,

dr
(BS0)
2(7 -1 2+ VO(7
Y =—cl 4 20D 28V g1 gy
A A
2KO +4i(7 -1
Vi(F) = —$K1 +8id' P+ AL . (BS2)
K'= (P +a%)a. (B83)
1/ nodREL R
1= Rln,O ‘m Rln,l ‘m
Wr A( ‘m d7 + ‘m d7
1 OdRin,l ldRin.O
_ RUP» ‘m RUP. ‘m . B84
+ A( ‘m dr + ‘m dr ( 8 )

The first-order source terms A}, C}, Cl, Al are quite
cumbersome, and they are provided in a supplemental
Mathematica notebook [71].

Once the amplitudes Z7° Z/;‘,; with = (H, o) are

‘m>
known, it is possible to compute the corrections to the

fluxes of Eqgs. (54) and (55) as follows:

H0p2
[(} (7 @0) — M
m 9

- 2x(@°)* (B85)

ZH,O‘H,I &)l
1 (2 20 ~1\ _ ‘m“~fm 0 (2 ~0
1, (7.a", &) = <72 +c.c. —2—6)01fm(r,a) )),

27(&°)
(B86)
0 (5 20 agm 00,012
Hfm(r’a) ) = 2—‘me | ’ (B87)
T

1 (2 20 ~l agm 00,0 00,1 &}m 00,012

Hfm(r,a) , )zz—ﬂ(me me +CC)+g|me s
(B88)

where c.c. stands for complex conjugation, and

o _ L

&, = 7 [256(27, °RO((R)” + 4¢%) ((Ro)? + 16€%)d"].

(B89)
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D',

D', 256(2F,)°
m DO ‘m

0
Cfm

+20(ex®)?(k° + 30°) + (K9)*(x° + 50°)],

&' [64e*(K° + o)
(B90)
with e = V1 = a2/(4#,), &% = &° — am/(2#, ) and

D = [(29,, +2)* +4c%(m = )][(47,,)* + 36c°(m — °)]
+ (229, +3)[96(c%)? — 48mc] + 144(a%)*(1 — a?),
(B91)

D' = 4{(22,)34,, + (A2,)? 32}, + 10(m — 2c°)c"]
+ 220, [ Ay + 1023,¢%(m = %) + 6¢' (m + 2¢°)]
+ 726%0'[1 + a*(m — 2¢°) (m — ¢°)]

+12c%L (m + )} (B92)

APPENDIX C: ASSESSMENT OF THE
STABILITY AND CONVERGENCE OF THE
FISHER AND COVARIANCE MATRICES

In this Appendix we provide some details on our
procedure to assess the stability and numerical convergence
of the Fisher and covariant matrices.

This task is particularly delicate for EMRI waveforms,
since the Fisher matrix is known to be ill conditioned [66].
In the best configuration, the condition number was
k ~ 10'2, while in the worst scenario (typically occurring
in the presence of a spinning secondary), the condition
number was as large as x ~ 10%°. Moreover, all waveform
derivatives were computed numerically, which is an ill-
conditioned operation.

To ameliorate the ill-condition issues, we performed our
computation with arbitrary-precision arithmetic, obtaining
Fisher matrices with precision no less than 38-digit in all
elements and for all configurations.

We validated our Fisher analysis by

(i) testing the stability of the Fisher and covariance

matrices under random perturbations;

(i1) testing the convergence of the Fisher and covariance
matrices under a change in the finite-difference
parameter e that regulates the accuracy of the
numerical derivatives.

We check the stability of the Fisher and covariance
matrices by perturbing each element with a deviation
matrix F/. All elements of F/ are drawn from a uniform
distribution U, which depends on the configuration under
exam. Then, we compute

((C+ F)~ =)
(F—l)ij

Ostability = ml?].lx (C1)

By performing a case-by-case careful analysis and
boosting the numerical precision of our codes, we find
that for the worst cases in all configurations:

(i) the Fisher matrices converges within two orders of
magnitude in the e parameters with relative devia-
tions at the level of 0.03% (another worst case is a
convergence within three orders of magnitude in e
with deviations at 0.2%);

(i) the inverse matrix without priors converges in two
orders of magnitude in e with deviations at 14%,
while the diagonal elements converge with devia-
tions at 0.1%;

(iii) the inverse with priors converges in two orders of
magnitude in e with deviations at 3.8%;

(iv) the inverse without priors is stable with Sgpitiy =
7.5% and perturbations U[—1077,1077];

(v) the inverse with priors is stable with Sty = 4.1%
and perturbations U[-107%,1079].

Moreover, we noticed that, in order to achieve a convergent
inverse with an accuracy of order O(1%), it was necessary
to compute a convergent Fisher matrices accurate at a the
level of O(0.01%).

Finally, it is worth noticing that, for some configurations
in the presence of the secondary spin, we were unable to
obtain a fully convergent covariance matrix: only the
diagonal terms were convergent. Nonetheless, for all
configurations presented in the main text the covariance
matrix was found to be fully convergent.
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