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Extreme mass-ratio inspirals (EMRIs) detectable by the Laser Inteferometric Space Antenna (LISA) are
unique probes of astrophysics and fundamental physics. Parameter estimation for these sources is
challenging, especially because the waveforms are long, complicated, known only numerically, and slow to
compute in the most relevant regime, where the dynamics is relativistic. We perform a time-consuming
Fisher-matrix error analysis of the EMRI parameters using fully relativistic numerical waveforms to leading
order in an adiabatic expansion on a Kerr background, taking into account the motion of the LISA
constellation, higher harmonics, and also including the leading correction from the spin of the secondary in
the postadiabatic approximation. We pay particular attention to the convergence of the numerical
derivatives in the Fisher matrix and to the numerical stability of the covariance matrix, which for some
systems requires computing the numerical waveforms with approximately 90-digit precision. Our analysis
confirms previous results (obtained with approximated but much more computationally efficient wave-
forms) for the measurement errors on the binary’s parameters. We also show that the inclusion of higher
harmonics improves the errors on the luminosity distance and on the orbital angular momentum angles by
one order and two orders of magnitude, respectively, which might be useful to identify the environments
where EMRIs live. We particularly focus on the measurability of the spin of the secondary, confirming that,
for spin-aligned EMRIs on quasicircular orbits, it cannot be measured with sufficient accuracy. However,
due to correlations, its inclusion in the waveform model can deteriorate the accuracy on the measurements
of other parameters by orders of magnitude, unless a physically motivated prior on the secondary spin is
imposed.

DOI: 10.1103/PhysRevD.104.124019

I. INTRODUCTION

Gravitational-wave (GW) observations with the future
space-based Laser Interferometer Space Antenna (LISA)
will allow us to obtain unprecedented information about new
GW sources [1]. Among the most promising sources that
LISA is expected to observe are extrememass-ratio inspirals
(EMRIs) [2]: compact binary systemswhere a small compact
object (henceforth dubbed secondary) with mass μ ∼
1–100 M⊙ orbits a supermassive black hole (BH) (hence-
forthprimary)withmassM ∼ 105–107 M⊙.Due to the small
mass ratio q≡ μ=M ≪ 1, these systems can last years in the
LISA frequency band, performing up to Oð1=qÞ orbital
cycles before the secondary object plunges. Combined with
the richness of their gravitational waveform, EMRI signals
will allow us to measure some of the parameters of these
sources with extreme precision [2], and perform exquisite
tests of gravity and of the nature of compact objects [3,4].
Due to their small mass ratio, the dynamics and GW

emission of an EMRI can be accurately computed using
tools from BH perturbation theory (see e.g., [5–7] for

recent reviews). In this approach, the dynamics is solved
perturbatively in the mass ratio q ≪ 1 and the spacetime of
the binary can be treated as being given by the super-
massive BH metric plus small perturbations due to the
presence of the small companion object. In addition, for
very small mass ratios, the radiation-reaction timescale
is much longer than the typical orbital period so that the
secondary’s orbital motion around the primary can be
evolved in a quasiadiabatic fashion [8]. The effect of the
secondary spin in the GW phase enters at first order in a
postadiabatic expansion, being thus suppressed by the
small mass ratio [9], but still entering at the same order
in q as the leading order postadiabatic self-force corrections
[10–14]. This fact makes it important to fully understand
the impact of the secondary spin when attempting to
compute accurate waveforms. Indeed, accurate parameter
estimation with EMRIs will require gravitational wave-
forms valid up to at least first postadiabatic order [8].
The impact of the secondary spin on the dynamics and

GW emission in EMRIs has been studied in several works
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(see e.g., [10,11,14–25]). Most recently, Ref. [12] computed
relativistic waveforms for a spinning compact object in
generic inspirals around amassive nonrotatingBH, including
all first-order in q self-force effects, whereas Refs. [26,27]
computed GW fluxes for a spinning secondary orbiting a
spinning massive BH for bound circular, equatorial orbits.
This was extended to eccentric, equatorial orbits in
Refs. [28,29]. GW fluxes and waveforms for a spinning
secondary have also been computed using effective-one-
body models in the test-mass limit [30–32]. For instance, an
estimate of the conservative contributions on the dynamics
induced by the secondary spin was computed in Ref. [18].
In practice, however, due to the complexity and the slow

generation of EMRI waveforms computed using BH
perturbation theory, almost all parameter-estimation studies
done so far made use of approximated—but fast to generate
—waveforms [2,33–36] (commonly known as “kludge”
waveforms [33,37,38]). In fact, techniques to generate fast
and fully relativistic EMRI waveforms have only recently
started to be developed [39–42], but so far fully Bayesian
studies with these waveforms have only been done for a
nonspinning secondary in eccentric orbits around a
Schwarzschild massive BH [41].
Previous work [34,35] computed Fisher-matrix errors

using a numerical kludge waveform including corrections
due to the spin of the secondary. Their results suggest that
LISA will be unable to constrain the magnitude of the
secondary spin for systems with mass ratios q≲ 10−4.
Since the secondary spin introduces a non-negligible dephas-
ing [26,27], its unmeasurability can be probably related to
correlations among the waveform parameters. One of the
main purposes of this paper is to study whether these
conclusions hold when considering more accurate (albeit
much slower to generate)waveforms. Indeed, it is known that
using kludge waveforms may lead to large systematic errors
when performing parameter estimation [41].
Using the methods recently developed in Refs. [26,27],

and focusing on circular and equatorial orbits, we extend
previous work by performing Fisher-error analyses using
fully relativistic waveforms computed within an adiabatic
approximation but taking into account the leading-order
postadiabatic correction due to the secondary spin. To the
best of our knowledge, even neglecting the secondary spin,
ours is among the first studies presenting a Fisher-matrix
analysis on the EMRI parameters using fully relativistic,
Teukolsky-based waveforms on a Kerr background. The
only exception is Ref. [43] where a Fisher-matrix analysis
using Teukolsky-based waveforms for a nonspinning sec-
ondary and without including LISA’s antenna pattern
functions in the analysis, was presented. Our work should
be seen as a benchmark for fully Bayesian parameter
estimation studies and for other analyses using approxi-
mated (but significantly more efficient) waveforms.
The rest of this paper is organized as follows. In Sec. II

we summarize our setup and the procedure to obtain fully

relativistic, gravitational waveforms to leading order in an
adiabatic expansion, also including the leading correction
from the spin of the secondary in the postadiabatic
approximation. In Sec. III we explain the procedure to
perform an accurate Fisher-matrix analysis for this system.
In Sec. IV we present and discuss our results (the busy
reader mainly interested in the numerical results of our
paper may jump directly to this section). We conclude in
Sec. V with possible extensions. Finally, we present some
technical details in the appendixes. Appendix A is devoted
to the resolution of Teukolsky equation in hyperboloidal-
slicing coordinates; in Appendix B we give some details on
the procedure to linearize the field equations to linear order
in the secondary spin; whereas Appendix C provides some
details on how we assess the accuracy and convergence of
the Fisher-matrix error analysis. We use G ¼ c ¼ 1 units
throughout and the notation follows that of [27].

II. SETUP

A. Orbital dynamics for a spinning secondary

If the typical size of a body is much smaller than the
curvature of the background spacetime, the object can be
approximately treated as a point particle equipped with an
infinite tower of multipole moments. The latter can be
determined through a suitable expansion of the body’s
stress-energy tensor Tμν (see [16,44,45] for a detailed
discussion). The mass μ and the intrinsic spin S of the
object are the first two moments of this series and read

μ2 ¼ −pσpσ; S ¼ 1

2
SμνSμν; ð1Þ

where pμ is the object’s four-momentum and Sμν is the
skew-symmetric spin tensor. The motion of a spinning
particle is then determined by the Mathisson-Papapetrou-
Dixon equations:

dXμ

dλ
¼ vμ; ð2Þ

∇v⃗pμ ¼ −
1

2
Rμ

ναβvνSαβ; ð3Þ

∇v⃗Sμν ¼ 2p½μvν�; ð4Þ

μ ¼ −pμvμ; ð5Þ

where ∇v⃗ ≡ vμ∇μ, vμ is the tangent vector to the repre-
sentative worldline XμðλÞ, with λ an affine parameter. The
former provide a closed set of equations once a spin-
supplementary condition has been fixed. We choose the
Tulczyjew-Dixon condition:

Sμνpν ¼ 0; ð6Þ
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which guarantees that the mass μ and spin S are constants
of motion [46]. We introduce the dimensionless spin
parameter σ:

σ ¼ S
μM

¼ χq; ð7Þ

where χ ¼ S=μ2 is the reduced spin of the secondary, and
q ¼ μ=M ≪ 1 is the binary mass ratio, withM and μ being
the mass of the primary and secondary, respectively. For
EMRIs, the parameter jχj ≪ 1=q, which implies jσj ≪ 1.
In the following, we consider a Kerr background space-

time, described in Boyer-Lindquist coordinates by the
following line element:

ds2 ¼ −dt2 þ ΣðΔ−1dr2 þ dθ2Þ þ ðr2 þ a2Þ sin2 θdϕ2

þ 2Mr
Σ

ða sin2 θdϕ − dtÞ2; ð8Þ

where Δ ¼ r2 − 2Mrþ a2, Σ ¼ r2 þ a2 cos2 θ, and a is
the spin parameter such that jaj ≤ M. Without loss of
generality, we assume that the specific spin a of the
primary is aligned to the z axis, namely a ≥ 0. We focus
on circular equatorial orbits with the spin of the secondary
aligned (antialigned) to a, i.e., S > 0 (S < 0). In our
numerical calculations we only consider prograde orbits,
i.e., orbits for which the initial z component of the angular
momentum Lz is positive. Hereafter hatted quantities
refer to dimensionless variables normalized by M, namely
Ω̂ ¼ MΩ, â ¼ a=M.
The Kerr spacetime admits two integrals of motion, the

(normalized) energy Ẽ ¼ E=μ and angular momentum
J̃z ¼ Jz=ðμMÞ [47]. Since for EMRIs jσj ≪ 1, we expand
both Ẽ; J̃z in terms of the spin parameters, considering
linear corrections only, such that at first order in σ:

Ẽ ¼ Ẽ0 þ σẼ1; J̃z ¼ J̃0z þ σJ̃1z ; ð9Þ

with

Ẽ0 ¼ �âþ ðr̂ − 2Þr̂1=2
r̂3=4Δ�

; ð10Þ

Ẽ1 ¼ ðâ ∓ ffiffiffî
r

p Þð3â2 ∓ 4
ffiffiffî
r

p þ r̂2Þ
2r̂11=4Δ3

�
; ð11Þ

J̃0z ¼ � r̂2 þ â2 ∓ 2â
ffiffiffî
r

p

r̂3=4Δ�
; ð12Þ

J̃1z ¼
1

2r̂11=4Δ3
�
ð3â4 �

ffiffiffî
r

p
ð3r̂ − 7Þðâ3 þ 3âr̂2Þ

þ 2â2r̂ðr̂þ 2Þ þ r̂3ðr̂ − 2Þð2r̂ − 9ÞÞ; ð13Þ

where Δ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2âþ ðr̂ − 3Þ ffiffiffî

r
pq

, and the upper (lower)

sign corresponds to prograde (retrograde) orbits [48]. The
orbital frequency Ω̂ is given by

Ω̂ðr̂Þ ¼ Ω̂0ðr̂Þ þ σΩ̂1ðr̂Þ ð14Þ

where Ω̂0ðr̂Þ ¼ 1=ðâ� r̂3=2Þ is the Keplerian frequency for
a nonspinning particle, and

Ω̂1ðr̂Þ ¼ −
3

2

ffiffiffî
r

p ∓ âffiffiffî
r

p ðr̂3=2 � aÞ2 : ð15Þ

The orbital dynamics is completely determined by Ẽ; J̃z
and Ω̂ once the orbital radius r̂ and the parameters â and σ
are specified.

B. Radiation-reaction effects and orbital evolution

At the adiabatic level, the rate of change of the constants
of motion Ẽ and J̃z is related to the fluxes carried away by
gravitational radiation. These balance laws hold at first
order in σ for a spinning particle, as shown in Ref. [13].
A caveat remains since—at variance with the χ ¼ 0 case
[49]—there is no rigorous proof yet that circular orbit
remains circular even for a spinning secondary in the
adiabatic approximation, i.e., that

dẼ
dt̂

¼ Ω̂
dJ̃z
dt̂

ð16Þ

holds for a spinning secondary. In principle, given a circular
geodesic, small perturbations induced by the spin can
induce eccentricity [50] or push the orbit off the equatorial
plane for not aligned spins [51,52]. Nevertheless, we shall
assume that a circular orbit remains circular under radia-
tion-reaction effects even when the secondary is spinning
[with the spin vector (anti)aligned to the primary spin]. In
this framework the energy fluxes can be expanded as well
in σ:

F ðr̂; Ω̂Þ ¼ F 0ðr̂; Ω̂0Þ þ σF 1ðr̂; Ω̂0; Ω̂1Þ; ð17Þ

at fixed spins â and orbital radius r̂, with

F ¼ 1

q

��
dẼ
dt̂

�
H

GW
þ
�
dẼ
dt̂

�
∞

GW

�
; ð18Þ

where ðdẼdt̂ ÞH;∞
GW are the energy flux across the horizon and at

infinity, respectively. Let us define

Gðr̂; Ω̂Þ ≔
�
dẼ
dr̂

�
−1
F ðr̂; Ω̂Þ; ð19Þ

then, at first order in σ
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Gðr̂; Ω̂Þ ¼ G0ðr̂; Ω̂0Þ þ σG1ðr̂; Ω̂0; Ω̂1Þ; ð20Þ

G0 ¼
�
dẼ0

dr̂

�
−1
F 0; ð21Þ

G1 ¼
�
dẼ0

dr̂

�
−1
F 1 −

�
dẼ0

dr̂

�
−2
�
dẼ1

dr̂

�
F 0; ð22Þ

which yield for the time evolution of the orbital radius

dr̂
dt̂

¼ −G0ðr̂; Ω̂0Þ − σG1ðr̂; Ω̂0; Ω̂1Þ: ð23Þ

Finally, at first order in σ the orbital phase is given by

dϕ
dt̂

¼ Ω̂0ðr̂Þ þ σΩ̂1ðr̂Þ: ð24Þ

Solving Eqs. (23) and (24) and linearizing them in σ one
can obtain r̂ðt̂Þ and ϕðt̂Þ to OðσÞ.

C. GW fluxes in the Teukolsky formalism: Linear
expansion in the secondary spin

We have computed the GW fluxes using the Teukolsky
formalism. For circular equatorial orbits, the fluxes at
infinity are

�
dẼ
dt̂

�
∞

GW
¼

X∞
l¼2

Xl
m¼1

jZH
lmω̂j2
2πω̂2

¼
X∞
l¼2

Xl
m¼1

Ilm; ð25Þ

�
dJ̃z
dt̂

�
∞

GW
¼

X∞
l¼2

Xl
m¼1

mjZH
lmω̂j2

2πω̂3
¼

X∞
l¼2

Xl
m¼1

m
ω̂
Ilm; ð26Þ

while at the horizon:

�
dẼ
dt̂

�
H

GW
¼

X∞
l¼2

Xl
m¼1

αlm
jZ∞

lmω̂j2
2πω̂2

¼
X∞
l¼2

Xl
m¼1

Hlm; ð27Þ

�
dJ̃z
dt̂

�
H

GW
¼

X∞
l¼2

Xl
m¼1

αlm
mjZ∞

lmω̂j2
2πω̂3

¼
X∞
l¼2

Xl
m¼1

m
ω̂
Hlm;

ð28Þ

with ω̂ ¼ mΩ̂ and the coefficient αlm being given in [53].
The procedure to compute the amplitudes Ilm and Hlm to
linear order in σ is explained below. By symmetry,
ZH;∞
l−m−ω̂ ¼ ð−1ÞlZ̄H;∞

lmω̂, where the bar denotes complex
conjugation. The complex amplitudes

ZH;∞
lmω̂ ¼ ZH;∞

lmω̂ðλlmω̂; −2S
â ω̂
lm; R

in
lmω̂; R

up
lmω̂Þ; ð29Þ

depend on the solutions of two decoupled ordinary differ-
ential equations, whereas λlmω̂ and −2S

â ω̂
lm are respectively

the eigenvalues and eigenfunctions of the angular
Teukolsky equation:

�
1

sin θ
d
dθ

�
sin θ

d
dθ

�
− c2sin2θ −

�
m − 2 cos θ

sin θ

�
2

þ 4c cos θ − 2þ 2mc

�
−2S

c
lm ¼ −λlmω̂−2S

c
lm; ð30Þ

where c≡ â ω̂. The following identities hold: λlm−ω̂ ¼
λl−mω̂ and

−2S
−c
l−mðθÞ ¼ ð−1Þl−2Sclmðπ − θÞ; ð31Þ

while −2S
c
lmðθÞeimϕ reduces to the spin-weighted spherical

harmonics for â ¼ 0 or ω̂ ¼ 0. Similarly, the functions
Rin
lmω̂ and Rup

lmω̂ are linearly independent solutions of the
radial Teukolsky equation:

Δ2
d
dr̂

�
1

Δ
dRlmω

dr̂

�
− Vðr̂ÞRlmω̂ðr̂Þ ¼ 0; ð32Þ

where the potential Vðr̂Þ reads

Vðr̂Þ ¼ −
K2 þ 4iðr̂ − 1ÞK

Δ
þ 8iω̂ r̂þλlmω̂; ð33Þ

K ¼ ðr̂2 þ â2Þω̂ − âm; ð34Þ

Δ ¼ r̂2 þ â2 − 2r̂; ð35Þ

while

Wr̂ ≡ 1

Δ

�
Rin
lmω̂

dRup
lmω̂

dr̂
− Rup

lmω̂

dRin
lmω̂

dr̂

�
ð36Þ

is the corresponding Wronskian. It is possible to write the
amplitudes ZH;∞

lmω̂ for a specific orbital radius r̂ as

ZH;∞
lmω̂ ¼ 2π

Wr̂

�
A0 − ðA1 þ B1Þ

d
dr̂

þ ðA2 þ B2Þ
d2

dr̂2
− B3

d3

dr̂3

�
Rin;up
lmω̂

����
θ¼π=2;r̂¼r̂ðt̂Þ

: ð37Þ

The general expressions for the coefficients A0, A1, A2 and
B1, B2, B3, as a function of r̂, λlmω̂ and −2S

â ω̂
lm , is given

in [27].
Following the linearized approach applied before, we

compute spin-corrections to the fluxes (25) and (27) at first
order in σ, keeping the orbital radius r̂ fixed. To this aim,
we first expand the solutions of the Teukolsky angular and
radial equations, i.e.,

λlmω̂ ¼ λ0lmðc0Þ þ σλ1lmðc0; c1Þ; ð38Þ
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−2S
c
lmðθÞ ¼ −2S

0
lmðθ; c0Þ þ σ−2S

1
lmðθ; c0; c1Þ; ð39Þ

Rin
lmω̂ðr̂Þ ¼ Rin;0

lm ðr̂;ω0Þ þ σRin;1
lm ðr̂; ω̂0; ω̂1Þ; ð40Þ

Rup
lmω̂ðr̂Þ ¼ Rup;0

lm ðr̂;ω0Þ þ σRup;1
lm ðr̂; ω̂0; ω̂1Þ; ð41Þ

where ω̂i ¼ mΩ̂i, and we expanded c¼ c0þ σc1þOðσ2Þ,
where ci ¼ âω̂i with i ¼ 0, 1. We shall now describe the
procedure we adopted to compute all the components of
Eqs. (38)–(41) as well as of Eqs. (25)–(27).

1. Linearization in the secondary spin: Angular solutions

If we impose regularity of the solutions at the boundaries
θ ¼ 0 and θ ¼ π, which are regular singular points,
Eq. (30) defines a Sturm-Liouville eigenvalue problem.
Despite being a singular Sturm-Liouville problem (see
Appendix B 1), for real frequencies, Eq. (30) retains much
of the properties of a regular one. In particular, it can be
seen as an eigenvalue problem for a Hermitian operator H:

HjSi ¼ −λlmω̂jSi; ð42Þ

where jSi≡ −2S
c
lmðθÞ and H is the left-hand side of

Eq. (30). If we expand H; λlmω̂, and jSi to linear order
in σ, we obtain:

H0jS0i ¼ −λ0lmðc0ÞjS0i; ð43Þ

H0jS1i þ V1jS0i ¼ −λ0lmðc0ÞjS1i − λ1lmðc0; c1ÞjS0i; ð44Þ

where −2S
0
lmðθ; c0Þ≡ jS0i and −2S

1
lmðθ; c0; c1Þ≡ jS1i.

The functional form of V1 is given in the Appendix B,
while H0 is simply given by H with c ↔ c0. In this
fashion, we can consider V1 as a perturbation of a
Hermitian operator H0, and the corrections λ1lmðc0; c1Þ
induced by the spin σ can be obtained using the same
techniques of time-independent perturbation theory for a
(nondegenerate) quantum mechanical system, i.e.,

λ1lmðc0; c1Þ ¼ hS0jV1jS0i≡
Z

π

0
−2S

0
lmV

1
−2S

0
lm sin θdθ:

ð45Þ

Once the corrections to the eigenvalues λ1lmðc0; c1Þ are
known, we can compute the corrections to the eigenfunc-
tions S1lmðθ; c0; c1Þ by expanding in σ the series coeffi-
cients of the solution obtained with Leaver’s method (see
Appendix B 1 for more details). To compute the zeroth
order eigenvalues λ0lmðc0Þ and eigenfunctions −2S

0
lmðθ; c0Þ

of Eq. (30) we used Leaver’s method implemented in the
Black Hole Perturbation Toolkit [54].
It is worth remarking that we can always find the exact

solutions of Eq. (30) for any value of σ, and then interpolate

to extract the first-order correction in the spin. However, the
semianalytic linearization approach described above pro-
vides a powerful and fast method to avoid such numerical
procedure. It may happen, though, that in some regions of
the parameter space, the input parameters require higher
precision than expected due to large numerical cancella-
tions in the algorithm. When the precision of the correc-
tions obtained with the semianalytic method dropped below
a certain threshold, we used as a “backup” approach—a
simple interpolation from the exact solutions, i.e.,

λ1lm ¼ λlmω̂ðc0 þ ϵc1Þ − λlmω̂ðc0 − ϵc1Þ
ϵ

; ð46Þ

−2S
1
lm ¼ −2S

ðc0þϵc1Þ
lm − −2S

ðc0−ϵc1Þ
lm

ϵ
; ð47Þ

where the exact eigenvalues λlmω̂ðc0 þ ϵc1Þ, λlmω̂ðc0 −
ϵc1Þ and eigenfunctions −2S

ðc0þϵc1Þ
lm , −2S

ðc0−ϵc1Þ
lm of (30) were

computed using the Leaver method of the Black Hole
Perturbation Toolkit with ϵ ¼ 10−6. We have checked that
the corrections obtained with the semianalytic method and
with the numerical interpolation agree in all the parameter
space under investigation.

2. Linearization in the secondary spin: Radial solutions

Equation (32) is a stiff differential equation, i.e., the
solutions of physical interest are fast oscillating functions
with amplitudes increasing as r̂3 at infinity. The stiffness is
caused by the long range of the potential, which makes it
challenging to obtain an accurate solution in the domain
of integration. Two workarounds of this issue are the
semianalytic Mano-Suzuki-Takasugi method [55,56] and
the numerical Sasaki-Nakamura method [57]. Here we
employed a third method, which consists in considering a
particular ansatz of the solutions of Eq. (32) based on
hyperboloidal-slicing coordinates [58] (see also [59,60] for
more details). Such ansatz is1

Rlmω̂ðr̂Þ ¼ r̂−1Δ−se∓iω̂r̂�eimϕ̃ψðr̂Þ; ð48Þ

when the minus (plus) sign refers to Rin
lmω̂ðRup

lmω̂Þ, s refers
to the spin of the perturbation of the Kerr metric
(s ¼ 0;�1;�2 for scalar, vector and metric perturbations,
respectively), and

ϕ̃ ¼ â
r̂þ − r̂−

ln

�
r̂ − r̂þ
r̂ − r̂−

�
; ð49Þ

r̂� ¼ r̂þ 2r̂þ
r̂þ − r̂−

ln

�
r̂− r̂þ
2

�
−

2r−
rþ− r̂−

ln

�
r̂− r̂−
2

�
; ð50Þ

1The original ansatz used in [58] [their Eq. (13)] has wrong
signs in some factors.
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with r̂� ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − â2

p
. By plugging the ansatz (48) in

Eq. (32), we obtain an ordinary differential equation for ψ :

Δ2
d2ψ
dr̂2

þ ΔF̃ðr̂;HÞ dψ
dr̂

þ Ũðr̂;HÞψ ¼ 0; ð51Þ

where the functions F̃ðr̂;HÞ and Ũðr̂;HÞ are given in
Appendix A. Solving Eq. (51) numerically is much easier
than solving Eq. (32) because the potential Ũðr̂;HÞ=Δ2 is
short ranged and the oscillating behavior at the horizon and
infinity is already factored out in the ansatz (48). It is worth
noticing that the oscillating term e∓iω̂r̂� does not enter in the
Wronskian Wr̂. We found exact boundary conditions for
Eq. (51), which allowed us to find the radial solutions Rin

lmω̂

and Rup
lmω̂ quickly and accurately. Such boundary condi-

tions are provided in Appendix A 1.
After expanding the ansatz (48) as shown in Appendix B

2, we obtained some algebraic formulas for Rin;1
lm and Rup;1

lm
that depend on the linear corrections ψ in;0;ψ in;1 and
ψup;0;ψup;1. We computed such solutions by solving a
system of ordinary differential equations derived by
expanding Eq. (51) and the related boundary conditions
to OðσÞ. See Appendix B 2 for more details.

3. Linearization in the secondary spin: GW fluxes

Once the zeroth- and first-order corrections to the
Teukolski variables are known, it is then possible to expand
the complex amplitudes ZH;∞

lmω̂ as

ZH
lmω̂ðr̂Þ ¼ ZH;0

lm ðr̂;ω0Þ þ σZH;1
lm ðr̂; ω̂0; ω̂1Þ; ð52Þ

Z∞
lmω̂ðr̂Þ ¼ Z∞;0

lm ðr̂;ω0Þ þ σZ∞;1
lm ðr̂; ω̂0; ω̂1Þ; ð53Þ

and finally obtain the correction to the fluxes at the horizon
and infinity for each l; m as follows:

Ilmðr̂Þ ¼ I0lmðr̂;ω0Þ þ σI1lmðr̂; ω̂0; ω̂1Þ; ð54Þ

Hlmðr̂Þ ¼ H0
lmðr̂;ω0Þ þ σH1

lmðr̂; ω̂0; ω̂1Þ; ð55Þ

where Ilm and Hlm have been defined in Eqs. (25) and
(27), respectively. The coefficients I0lm; I

1
lm and H0

lm;H
1
lm

are given in Appendix B 3.
To compute the fluxes, we constructed a nonuniform

grid in the orbital radius r̂ defined as follows: given
vðr̂Þ≡ ðΩ̂0Þ1=3 ¼ ðr̂3=2þ âÞ−1=3, we considered 180 points
for a < 0.99 and 200 points for a ¼ 0.99 evenly spaced
in v, starting from vstart ¼ vðr̂ ¼ 14Þ and ending at
vend ¼ vðr̂ISCOÞ, with r̂ISCO being the innermost stable
circular orbit (ISCO) for a nonspinning test particle. The
radiation reaction grid in r̂ was then obtained as the
solution of r̂i ¼ ð1=v3i − âÞ−2=3 for i ¼ 1;…180ð200Þ for
â < 0.99 (â ¼ 0.99).

In the computation of the fluxes, we summed over all
multipoles l up to lmax ¼ 20 (lmax ¼ 24) for a < 0.99
(a ¼ 0.99), summing over the index m ¼ 1;…;l for each
harmonic index l. As shown in Table I of Ref. [27], the
fractional error in truncating the multipole sum at lmax is no
larger than ∼10−5.
Finally, we compared the linearized fluxes with the

results available in the literature. In the case of a
Schwarzschild spacetime, our results are in perfect
agreement with those of Ref. [13] (they agree within
all the digits shown in Table I of [13]). In Ref. [27], the
linear corrections to the fluxes in a Kerr spacetime
were computed through a cubic interpolation of the
exact fluxes in σ (we refer to the first-order corrections
computed in this way as F 1

inter). In order to compare with
the semianalytic linear corrections F 1 obtained in this
work, we recomputed F 1

inter as done in Ref. [27] with the
following differences:

(i) We solved the radial Teukolsky equation in hyper-
boloidal slicing coordinates, using the same radia-
tion-reaction grid adopted here;

(ii) for each l, we summed over all azimuthal indexes
m ¼ 1;…;l, as done in this work.

The fractional difference between F 1
inter and F

1 is, at most,
10−10% (10−4%) for â ¼ 0.9 (â ¼ 0.99) (the largest
differences occurring at the ISCO), as also shown in
Fig. 1 for â ¼ 0.99.

D. Waveform computation

We focus on EMRIs on circular and equatorial orbits, for
which the emitted waveform in the Teukolsky formalism is
given by

FIG. 1. Percentage fractional difference between F 1
inter and F 1

for a primary with spin â ¼ 0.99.
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hþ − ih× ¼ 2
μ

D

X
l;m

Almω̂ðtÞ−2Sclmðϑ; tÞe−iΦðtÞ; ð56Þ

ΦðtÞ ¼ mϕðtÞ þmðφþ ϕ0Þ; ð57Þ

where ϕ0 is the initial orbital phase,Almω̂ ≡ ẐH
lmω̂=ω̂

2, and
ẐH
lmω̂ ¼ M2ZH

lmω̂. D is the source’s luminosity distance
from the detector,2 and ðϑ;φÞ identify the direction, in
Boyer-Lindquist coordinates, of the latter in a reference
frame centered at the source. Since ϕ0 in Eq. (56) is
degenerate with the azimuth direction φ, from now on we
will identify the initial phase as ϕ0 → φþ ϕ0. From
Eq. (56) it is straightforward to identify the two waveform
polarizations

hþlm ¼ 2
μ

D −2S
c
lmðReAlmω̂ cosΦþ ImAlmω̂ sinΦÞ; ð58Þ

h×lm ¼ 2
μ

D −2S
c
lmðReAlmω̂ sinΦ − ImAlmω̂ cosΦÞ; ð59Þ

being ReAlmω̂ and ImAlmω̂ the real and imaginary parts of
Almω̂. In the presence of the secondary spin, we expand the
amplitudes Almω̂ ¼ A0

lmðω̂0Þ þ σA1
lmðω̂0; ω̂1Þ þOðσ2Þ,

where

A0
lm ¼ ẐH;0

lmω̂

ðω̂0Þ2 ; ð60Þ

A1
lm ¼ −2

ω̂1

ω̂0
A0

lm þ ẐH;1
lmω̂

ðω̂0Þ2 : ð61Þ

Therefore, we recast the two polarizations as

hþlm ¼ 2
μ

D
ð−2S0lm þ σ−2S

1
lmÞAþ

lm; ð62Þ

h×lm ¼ 2
μ

D
ð−2S0lm þ σ−2S

1
lmÞA×

lm; ð63Þ

with

Aþ
lm ¼ ReðA0

lm þ σA1
lmÞ cosΦþ ImðA0

lm þ σA1
lmÞ sinΦ;

ð64Þ

A×
lm ¼ ReðA0

lm þ σA1
lmÞ sinΦ − ImðA0

lm þ σA1
lmÞ cosΦ:

ð65Þ

The LISA response to the GW signal emitted by an
EMRI can be written in terms of the þ;× polarizations as

hαðtÞ ¼ Fþ
α ðϑD;φD;ΨÞhþðt; D; ϑ;φÞ

þ F×
α ðϑD;φD;ΨÞh×ðt; D; ϑ;φÞ; ð66Þ

where α ¼ I; II refers to the two independent Michelson-
like detectors that constitute the LISA response [61].
The antenna pattern functions3 Fþ

α and F×
α depend on

the direction ðϑD;φDÞ of the source with respect to the
detector’s frame and on the polarization angle Ψ [34]:

Fþ
I ¼ 1

2
ð1þ cos2 ϑDÞ cosð2φDÞ cosð2ΨÞ

− cosϑD sinð2φDÞ sinð2ΨÞ; ð67Þ

F×
I ¼ 1

2
ð1þ cos2 ϑDÞ cosð2φDÞ sinð2ΨÞ

þ cos ϑD sinð2φDÞ cosð2ΨÞ; ð68Þ

where Fþ;×
II can be obtained by rotating φD in the

previous expressions by −π=4. i.e., Fþ;×
II ðϑD;φD;ψÞ ¼

Fþ;×
I ðϑD;φD − π=4;ψÞ.
Given the LISA satellite motion, such angles are not

constant but vary with time. However it is possible to recast
ðϑD;φD;ΨÞ in terms of fixed angles ðϑS;φSÞ and ðϑK;φKÞ
which provide the direction of the source and of the orbital
angular momentum (which for equatorial orbits coincides
with the direction of the primary spin) in a heliocentric
reference frame attached with the ecliptic [63]. The same
applies to the polar angle ϑ in the signal (56):

cosϑ ¼ cos ϑS cosϑK þ sinϑS sinϑK cosðφS − φKÞ: ð69Þ

Finally, we also include the effect of the Doppler modu-
lation by introducing an offset in the phase

ΦðtÞ → ΦðtÞ þ ω̂R
M

sinϑS cos½2πðt=TLISAÞ − φS�; ð70Þ

where R ¼ 1 AU and TLISA ¼ 1 yr is LISA’s orbital
period [34].
We have considered T ¼ 1 yr observation time, ending

the orbital evolution at the onset of the transition region as
defined in [64], i.e., at r̂ISCO þ δr̂with δr̂ ¼ 4q2=5. We have
chosen δr̂ by setting X ¼ 1 and R0 ¼ 4 in Eq. (3.20) of [64]
for all the configurations analyzed. In general, δr̂ ∼ γq2=5

with γ ∼Oð1Þ, and we checked that the Fisher matrices
computed below are unaffected by the specific value of γ,
since the signal-to-noise ratio (SNR) accumulated around
the transition region is negligible.

2In this detector frame configuration, the component masses in
Eq. (56) are rescaled with respect to the source-frame quantities
by the redshift factor (1þ z).

3For simplicity, we assume that Fþ;× are constant within the
frequency range sampled by the binary configurations consid-
ered. However, for values of f larger than f� ¼ 19.1 mHz,
LISA’s antenna pattern functions also depend on the GW
frequency [62].
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III. ACCURATE FISHER MATRIX ANALYSIS
FOR EMRI WAVEFORMS

In Ref. [27] we computed the GW dephasing due to
a nonvanishing secondary spin, showing that the effect
of the secondary spin can contribute to more than 1 rad
dephasing, therefore suggesting that it could provide
detectable effects. However, such a simplified analysis
neglects possible correlations between the waveform
parameters that might hamper their measurability, espe-
cially for subleading terms. In order to gain a deeper insight
on the detectability of the secondary spin in the following
we shall perform a Fisher matrix analysis.
The GW signal emitted by an EMRI with a spinning

secondary, moving on the equatorial plane with spin (anti)
aligned to the z axis, is completely specified by eleven
parameters x⃗ ¼ fx⃗I; x⃗Eg: (i) five intrinsic parameters
x⃗I ¼ ðln μ; lnM; â; χ, and r̂0) and (ii) six extrinsic param-
eters x⃗E ¼ ðϕ0; ϑS;φS; ϑK;φK; lnD), where we remind
the reader that ðM; μÞ are the mass components with
q ¼ μ=M ≪ 1, ðâ; χÞ are the primary and secondary spin
parameters, ðϕ0; r0Þ define the binary initial phase and
orbital radius, and D is the source luminosity distance. The
four angles ðϑS;φSÞ and ðϑK;φKÞ correspond to the
colatitude and the azimuth of the source sky position
and of the orbital angular momentum, respectively [63].
Since the orbit is circular and equatorial, the orbital angular
momentum has no precession around the primary spin, and
the orbital and primary angular momenta are parallel to
each other.
In the limit of large SNR, the errors on the source

parameters inferred by a given EMRI observation can be
determined using the Fisher information matrix:

Γij ¼
X
α¼I;II

�
dh̃α
dxi

���� dh̃αdxj

�
x⃗¼x⃗0

; ð71Þ

where x⃗0 corresponds to the true set of binary parameters,
and we have introduced the noise-weighted scalar product
between two waveforms pα and qα in the frequency
domain:

ðpαjqαÞ ¼ 2

Z
fmax

fmin

df
SnðfÞ

½p̃�
αðfÞq̃αðfÞþ p̃αðfÞq̃�αðfÞ�: ð72Þ

Here the tilded quantities correspond to the Fourier trans-
form of the time-domain waveforms, and a star identifies
complex conjugation. We used Simpson’s integration rule
to compute the scalar product. As discussed in the previous
section, the index α runs over the two independent channels
of the LISA interferometer. In our computations we set
fmin ¼ 10−4 Hz, while we choose fmax as

fmax ¼
lmax

2π

1

M
½Ω̂0ðr̂ISCOÞ þ σΩ̂1ðr̂ISCOÞ�; ð73Þ

where r̂ISCO is the ISCO for a nonspinning test particle
and lmax the maximum harmonic index l considered for a
given system. Following the Shannon theorem, for the
sampling time we used Δts ¼ b1=ð2fmaxÞ − 1c while the
number of samples ns ¼ T=Δts is adjusted to be an even
number for a more efficient computation of the fast Fourier
transform. As discussed before, for all systems the binary
evolves for T ¼ 1 yr before the plunge, so the frequency
content of the signal is smaller than the range ½fmin; fmax�.
The waveform scalar product also allows us to define the

optimal SNR for a given signal h as

SNR ¼ ðhjhÞ1=2; ð74Þ

which scales linearly with the inverse of the luminosity
distance. Furthermore, in the large-SNR limit the covari-
ance matrix scales inversely with the SNR so, for a given
set of parameters, it is straightforward to rescale the errors
by changing the distance D (and hence the SNR).
The inverse of Γij yields the covariance matrix, Σij,

whose diagonal elements correspond to the statistical
uncertainties of the waveform parameters,

σ2xi ¼ Σii ≥ ðΓ−1Þii; ð75Þ

whereas the off-diagonal elements correspond to the
correlation coefficients,

cxixj ¼ Σij=
ffiffiffiffiffiffiffiffiffiffiffiffi
ΣiiΣjj

p
: ð76Þ

Hereafter we consider two data-analysis scenarios,
depending on whether we also include a prior proba-
bility functions on the spin of the secondary or not.
We follow the approach described in [65], assuming for
the prior a Gaussian distribution p0ðχÞ with standard
deviation σχ ¼ 1. Given Γ0 the Fisher matrix of the prior
[which in our case has all vanishing elements except for the
diagonal term corresponding to the secondary spin, with
ðΓ0Þχχ ¼ 1=σχ], the new errors on the source parameters are
obtained by modifying Eq. (75) as

σ2xi ¼ ½ðΓþ Γ0Þ−1�ii: ð77Þ

We notice that the matrix Γ0 is independent of the distance
D; therefore when including a prior, the error on χ does not,
in general, scale inversely with the SNR.
In addition to the standard deviations on the eleven

parameters defined above, we also analyze the error box on
the solid angle spanned by the unit vector associated with
ðϑS;φSÞ and ðϑK;φKÞ:

ΔΩi ¼ 2πj sinϑij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ϑiσ

2
φi
− Σ2

ϑiφi

q
: ð78Þ

where i ¼ ðS;KÞ.
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From a technical point of view, the fact that the EMRI
waveform is known numerically implies that, to compute
the Fisher matrix, one needs to evaluate numerical deriv-
atives. Apart from the derivative with respect to the
luminosity distance D (which can be obtained analytically
since the waveform scales as h ∼ 1=D), we have computed
the derivatives of the other ten parameters using the five-
points stencil formula, namely:

dh
dx

¼ 1

12ϵ
½hðx − 2ϵÞ − hðxþ 2ϵÞ þ 8hðxþ ϵÞ

− 8hðx − ϵÞ� þOðϵ4Þ: ð79Þ

The numerical derivative is sensitive to the value of the
shift ϵ chosen to compute the finite differences. We have
explored various combinations of ϵ for each parameter,
finding in general a range of at least two orders of
magnitude in which the Fisher (and the covariance)
matrices show convergence in the small-ϵ limit (see
Appendix C for a detailed analysis).
It is well known that the Fisher matrices used for the data

analysis of EMRIs are badly ill conditioned [66], which
means that a small perturbation in the matrix (due to
numerical or systematic errors) is greatly amplified after
computing the inverse. As a rule of thumb, for a condition
number4 κ ¼ 10k, one may lose up to k digits of accuracy,
which should be added to the numerical errors. In our setup,
an accurate inversion of the Fisher matrix requires at least
60-digit precision in the waveform in most of the configu-
rations, and in the worst case (namely â ¼ 0.9, χ ¼ 1,
μ ¼ 10, 100 M⊙), up to 90-digit precision. To achieve such
precision in the waveform, we have computed the GW
fluxes with 70-digit precision (100-digit precision in the
most demanding case), which allowed us to derive the
Fisher matrices with no less than 38-digit precision. In
Appendix C we provide a detailed analysis of the stability
of the Fisher matrix for the problem at hand.

IV. RESULTS AND DISCUSSION

A. Settings

We have computed the numerical integral in Eq. (72)
using the LISA noise sensitivity curve of Ref. [62],
including the contribution of the confusion noise from
the unresolved Galactic binaries assuming T ¼ 1 yr of
observation time. In order to reduce the spectral leakage in
the frequency domain due to the Fourier transform, we have
tapered the time-domain waveforms with a Tukey window
with window size β ¼ 0.05. We checked that our results
do not change noticeably when varying β around this
fiducial value.

For simplicity, in our analysis we fix the injected angles
to the fiducial values ϑS ¼ π=4, ϕS ¼ 0, ϑK ¼ π=8,
ϕK ¼ 0. Moreover, we consider a primary mass
M ¼ 106 M⊙, and two choices of the secondary mass:
μ ¼ ð10; 100Þ M⊙. We compute the Fisher matrices for
sources at fixed luminosity distance D ¼ 1 Gpc, but
renormalize the results to a fixed fiducial SNR such that
SNR ¼ 30 and SNR ¼ 150, for the two choices of μ,
respectively.
In order to analyze how the inclusion of higher-order

(l ≥ 2) multipoles in the signal (66) may affect the
measurement of the source parameters, in the following
we consider the purely quadrupolar case (l ¼ 2), and the
cases in which the octupole (l ¼ 3) and the hexadecapole
(l ¼ 4) are included.
Finally, we shall discuss two cases separately: first, in

Sec. IV B we neglect the spin of the secondary (i.e.,
removing χ from the waveform parameters); then, in
Sec. IV C we perform a more comprehensive analysis by
including also the secondary spin.

B. Neglecting the spin of the secondary

We start by neglecting the secondary spin χ from the
waveform parameters. Our results are summarized in
Tables I and II.
Table I shows results when we also neglect the spin ã

from the waveform parameters, and assume that both the
primary and the secondary are nonspinning. In Table II
instead, we include the spin of the primary as a parameter,
injecting â ¼ 0.9 but keeping all other parameters
unchanged with respect to the injection of Table I (except
for r̂0, since the latter changes in order for the binary to take
exactly T ¼ 1 yr to reach the ISCO).
For l ¼ 2, our results are in very good agreement with

the analysis of [34,35] which used approximated kludge
waveforms. Being the latter analytical, the Fisher-matrix
analysis is significantly faster than in our case. It is
therefore reassuring that a fully relativistic, numerical
waveform provides the same results.
Furthermore, we find that including the octupole (l ¼ 3)

contribution to the signal does not affect the measurement
errors on the intrinsic parameters, but it improves the errors
on the luminosity distance and on the solid angle which
defines the orbital angular momentum (ΔΩK) by one order
and two orders of magnitude, respectively. Adding the l ¼
4 multipole does not improve such errors significantly,
suggesting that l > 4 multipoles are negligible for this
purpose.
As expected, augmenting the dimensionality of the

waveform parameter space by including the primary spin
reduces the accuracy on the intrinsic parameters, especially
the masses. This happens despite the fact that the ISCO
frequency is higher for a rapidly spinning BH, since we
chose to normalize the results to the same SNR. For sources
at a fixed distance, the SNR in the â ¼ 0.9 case is four

4For a symmetric, positive-definite matrix, the condition
number κ is given by the ratio between the largest and the
smallest of the matrix eigenvalues.
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times larger than in the nonspinning case, almost compen-
sating the higher dimensionality of the parameter space.
Overall, all parameters are measured with exquisite

accuracy, confirming previous analyses that used approxi-
mated semirelativistic waveforms [2,34,35,63].

C. Including the spin of the secondary

We now move to a more comprehensive analysis, by
including the secondary spin in the waveform parameters.
We shall present two cases: with and without imposing a
Gaussian prior on χ. We start by neglecting the spin of the
primary in the waveform parameters and injecting â ¼ 0.
The results of the Fisher-matrix error analysis are presented
in Table III, which is the extension of Table I to the case of a
spinning secondary.
By comparing Table III with Table I we observe some

interesting features. First of all, in the case in which a prior
on the secondary spin is not imposed the relative error on χ

is around 30000%, confirming that this parameter is not
measurable [34,35]. Nonetheless, in this case the errors on
both masses deteriorate significantly (albeit they remain
excellent in absolute terms). This issue is due to non-
negligible correlations between χ and the masses. Indeed,
we find that all the intrinsic parameters are strongly
correlated with χ. The correlation (in absolute value) is
typically ≈0.99 and never less than 0.95. Therefore, large
variations in χ as those shown in Table III can correlate with
a small change in the total mass or in the mass ratio.
This issue can be fixed by imposing a prior on the

secondary spin, in such a way that also its errors cannot
become too large. As shown in Table III, imposing a
Gaussian prior on χ with standard deviation σχ ¼ 1 reduces
the errors on this parameters, but the confidence interval
is as large as the prior range, again confirming that this
parameter is not measurable. (In other words, the measure-
ment errors are dominated by the priors.) Nonetheless,
adding a prior on χ restores the accuracy in themeasurements

TABLE II. Same as Table I but assuming a spinning primary with â ¼ 0.9 and including â in the waveform
parameters. In this case the SNR of the three configurations is SNR ¼ 92.2, 94.7, 95, but we again normalize the
errors to the fiducial value SNR ¼ 30.

l lnM ln μ â r̂0 ϕ0 lnD ΔΩS ΔΩK

2 −3.24 −3.53 −4.15 −4.45 0.48 −0.33 7.9 × 10−4 2.5
2þ 3 −3.25 −3.54 −4.16 −4.46 −0.52 −1.34 7.3 × 10−4 1.3 × 10−2

2þ 3þ 4 −3.25 −3.55 −4.16 −4.46 −0.53 −1.35 7.2 × 10−4 1.1 × 10−2

TABLE I. Errors on the intrinsic source parameters, on the luminosity distance, and on the solid angles which
define the orientation and the orbital angular momentum of the binary, for various choices of the multipoles included
in the waveform. Both EMRI components are nonspinning (â ¼ χ ¼ 0), with M ¼ 106 M⊙ and μ ¼ 10 M⊙. We
neglect the spin parameters of both binary components (â and χ) in the waveform. The SNR for the three
configurations (D ¼ 1 Gpc) is SNR ¼ ð22.2; 24.8; 25.2Þ, but the errors are all normalized to the fiducial value
SNR ¼ 30. For clarity, we present the log10 of the errors on lnM, ln μ, r̂0, ϕ0, and lnD. For example, an entry “−4”
for lnM (r̂0) means that the relative (absolute) error on M (r̂0) is 10−4.

l lnM ln μ r̂0 ϕ0 lnD ΔΩS ΔΩK

2 −4.62 −4.19 −4.96 0.54 −0.27 3.1 × 10−3 1.5
2þ 3 −4.64 −4.22 −4.97 −0.66 −1.46 2.4 × 10−3 7.9 × 10−3

2þ 3þ 4 −4.64 −4.22 −4.97 −0.67 −1.46 2.4 × 10−3 7.3 × 10−3

TABLE III. Same as Table I but including a spinning secondary with χ ¼ 1 and also considering the case in which
a Gaussian prior on χ (with σχ ¼ 1) is enforced.

l Prior lnM ln μ χ r̂0 ϕ0 lnD ΔΩS ΔΩK

2 No −2.95 −3.66 2.51 −4.18 0.55 −0.27 4.4 × 10−3 1.6
Yes −4.62 −4.19 −0.13 −4.96 0.55 −0.27 3.1 × 10−3 1.5

2þ 3 No −2.97 −3.67 2.50 −4.19 −0.64 −1.46 3.8 × 10−3 8.6 × 10−3

Yes −4.63 −4.22 −0.082 −4.97 −0.6 −1.46 2.4 × 10−3 7.9 × 10−3

2þ 3þ 4 No −2.97 −3.67 2.50 −4.19 −0.65 −1.46 3.7 × 10−3 7.9 × 10−3

Yes −4.63 −4.22 −0.076 −4.97 −0.67 −1.46 2.4 × 10−3 7.3 × 10−3
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of the other intrinsic parameters, which become very similar
to the case in which χ is neglected in thewaveform (compare
Table III with prior to Table I). We also find that, including a
prior on χ, the correlations between χ and the other
parameters are much smaller.
From Table III we also observe that the role of l > 2

multipoles is not affected by the secondary spin: also in this
case the inclusion of thel ¼ 3multipole improves the errors
on the distance and on the orbital angular momentum solid
angle by one and two orders of magnitude, respectively.
Finally, we are now in a position to present the complete

analysis by including both the spin of the primary and of
the secondary. A summary of our results is presented in
Table IV for the cases with â ¼ 0.9 and â ¼ 0.99, and
considering both μ ¼ 10 M⊙ and μ ¼ 100 M⊙. In this
analysis we only include the quadrupole (l ¼ 2) since
anyway the higher multipoles do not affect the errors on the
intrinsic parameters.
Also in this general case we observe the same features of

the previous analyses. In particular, the secondary spin is
not measurable but its inclusion can significantly deterio-
rate the accuracy in the measurements of the masses, unless
a prior on χ is enforced. Even in an extreme case (â ¼ 0.99,
μ ¼ 100 M⊙) the relative error on χ is larger than 100% for
SNR < 2433. Also in this general case, we find that
including the secondary spin with a prior yields the same
errors as in the case in which χ is neglected in the waveform
parameters.
Strictly speaking, it is not possible to rescale the

covariance matrix of the posterior by a fiducial SNR when
a prior is introduced because Γ0 does not depend on the
distance D. However, since the error on χ is largely
dominated by the prior, our numerical results are practically
unaffected for the fiducial SNRs we used. Finally, it is
worth noticing that, by rescaling only the likelihood
covariance matrix, the posterior variance of χ would remain
close to the prior variance even if the fiducial SNR were to
be increased.

V. CONCLUSION

EMRIs are unique GW sources that can be potentially
used to tests fundamental physics and astrophysics to
unprecedented levels. However, this huge potential comes
with its own burden: data analysis and parameter estimation
of EMRIs are challenging and, in many respects, still an
open issue.
In this work we have focused on circular equatorial

motion around a Kerr BH and computed the waveform
numerically to leading order in an adiabatic expansion,
taking into account the motion of the LISA constellation,
higher harmonics, and also including the leading correction
from the spin of the secondary in the postadiabatic
approximation. We have then performed a brute-force
Fisher-matrix analysis without resorting to approximated
or kludge waveforms. Clearly our approach is very time
consuming and inefficient for practical purposes, but can be
used to quantify the accuracy of approximated waveforms
that are instead much more efficient for EMRI parameter
estimation. Our analysis confirmed that using approxi-
mated (and dramatically more efficient) waveforms
[2,34,35] does not significantly affect the measurement
errors on the binary’s parameters, including the subleading
spin of the secondary.
The measurability of the secondary spin is particularly

interesting for various applications, including model-
agnostic tests of the Kerr hypothesis [26,27]. We have
therefore performed a detailed analysis on this aspect. We
confirm the results of Refs. [34,35] which, using approxi-
mated waveforms, found that the secondary spin for EMRIs
with (anti)aligned spins on quasicircular orbits is not
measurable, although it produces a non-negligible dephas-
ing [26,27] (see also Table V). This is due to correla-
tions that exist between the secondary spin and the other
intrinsic parameters. Because of these correlations, even if
the secondary spin is not measurable, its inclusion in
the waveform model can deteriorate the accuracy on the

TABLE IV. Fisher-matrix errors on the EMRI parameters including both binary components spin in the waveform
and including a spinning secondary with χ ¼ 1. We include only the quadrupole (l ¼ 2) in the signal and consider
two choices of the mass ratios and two values of the primary spin, with and without imposing a Gaussian prior on χ.
In these configurations, the SNR for μ ¼ 10 M⊙ð100 M⊙Þ is SNR ¼ 92.2 (SNR ¼ 174) when â ¼ 0.9 and SNR ¼
100 (SNR ¼ 195) when â ¼ 0.99. However, also in this table the results have been rescaled to have SNR ¼ 30
(SNR ¼ 150) when μ ¼ 10 M⊙ð100 M⊙Þ, regardless of the primary spin.

ãinjected μ=M⊙ Prior lnM ln μ â χ r̂0 ϕ0

0.9 10 No −2.26 −2.41 −2.66 2.85 −3.88 0.48
Yes −3.24 −3.53 −4.14 0.48 −4.45 0.48

100 No −2.20 −2.39 −2.78 1.66 −4.14 −0.015
Yes −3.30 −3.52 −4.32 0.064 −4.93 −0.024

0.99 10 No −2.81 −2.96 −4.55 1.98 −3.89 0.47
Yes −3.51 −3.76 −4.67 0.52 −4.32 0.47

100 No −2.14 −2.33 −3.39 1.21 −3.75 −0.12
Yes −3.01 −3.22 −4.03 0.11 −4.50 −0.12
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measurements of other parameters by orders of magnitude,
unless a physically motivated prior on the secondary spin
is imposed. In the latter case, we find that the Fisher-
matrix errors are identical to those obtained neglecting
the secondary spin in the waveform parameters. This
further suggests that, for the orbital configurations we have
considered, the secondary spin in EMRIs is negligible for
parameter estimation.
Finally, we found that including higher harmonics in

the GW signal improves the errors on the luminosity
distance by an order of magnitude and those on the binary
orbital angular-momentum angles by two orders of mag-
nitude, relative to the quadrupole-only case. This is par-
ticularly relevant to identify the environment where EMRIs
form [67,68], for possible applications of multimessenger
astronomy with EMRIs [69] and for prospects to use
EMRIs as standard sirens [70].
Our brute force analysis should be intended as a proof-

of-concept aimed at assessing the accuracy of more
efficient (but approximated) methods which, after a positive
benchmark, can be used more confidently in parameter
estimation. At the same time our analysis can and should be
extended in various directions, to provide a necessary
benchmark for more complete waveforms, for example
the recent ones obtained by using order-reduction and
deep-learning techniques for eccentric nonspinning orbits
around Schwarzschild [39,41]. Obvious extensions of our
work are the inclusion of eccentricity and nonequatorial
orbits, as well as spin misalignment. Finally, our waveform
does not include all the next-to-leading order terms in an
adiabatic expansion, in particular it lacks the leading-order
conservative self-force corrections. Including all these
interesting effects is left for future work.

The supporting data for this paper are openly available
online [71].
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APPENDIX A: TEUKOLSKY EQUATION IN
HYPERBOLOIDAL-SLICING COORDINATES

The coefficients F̃ðr̂Þ and Ũðr̂Þ of Eq. (51) are given by

F̃ðr̂;HÞ ¼ 2

r̂2 þ â2
ðr̂2 − â2 − G̃ðr̂;HÞÞ; ðA1Þ

G̃ðr̂;HÞ ¼ ðr̂2 þ â2Þ½sðr̂ − 1Þ − iððr̂2 þ â2Þω̂H þmâÞ�

þ â2Δ
r̂

; ðA2Þ

Ũðr̂;HÞ ¼ 2isω̂½r̂Δð1 −HÞ − ðr̂2 − â2Þð1þHÞ�

þ Δ
r̂2
½2â2 − r̂2λlmω̂ − 2r̂ðsþ 1Þ�

þ −2mâ ω̂ðr̂2 þ â2Þð1þHÞ

− 2iâ
Δ
r̂
ðmþ â ω̂HÞ; ðA3Þ

where H ¼ −1ðþ1Þ for the linearly independent solution
ψ inðψupÞ. This is the same convention adopted in the
Teukolsky package of the Black Hole Perturbation
Toolkit [54]. Notice that

Ũðr̂þ;−1Þ ¼ 0; ðA4Þ

Ũðr̂ → ∞; 1Þ
Δ2

→ −
λlmω̂ þ 4amω̂þ 4isω̂

r̂2
; ðA5Þ

F̃ðr̂ → ∞; 1Þ
Δ

→ 2iω̂: ðA6Þ

It is easy to show that the ordinary differential equation (51)
has three singularities on the real positive axis: two at the
horizons r̂ ¼ r̂− and r̂ ¼ r̂þ, both of which are regular
singularities, and one at r̂ ¼ ∞ which is an irregular
singularity of rank 1. Despite having different coefficients,
the radial Teukolsky equation, the Sasaki-Nakamura equa-
tion, and Eq. (51) have the same singularities. Therefore,
both the Sasaki-Nakamura transformation and transforma-
tion (48) preserve the singularity structure of the radial
Teukolsky equation. We compute accurate boundary con-
ditions at the outer horizon r̂þ and at infinity through
suitable series expansions, as done in Ref. [27]. The Fuchs
theorem guarantees that the solutions of (51) around r̂þ can
be written as Frobenius series, with radius of convergence

TABLE V. GW dephasing δϕGW between a spinning particle
with χ ¼ 1 and a nonspinning particle for the cases considered in
Tables III and IV. The GW phase difference is computed for the
dominant l ¼ 2 mode, i.e., ϕGWðtÞ ¼ 2ϕðtÞ at r̂ISCO þ δr̂.

μ=M⊙ â δϕGW[rad]

10 0 1.06
0.9 2.38
0.99 3.48

100 0.9 5.48
0.99 6.47
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r̂þ − r̂− ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − â2

p
: ðA7Þ

At infinity or when â ¼ 1 (for which r̂þ ¼ r̂−), the
boundary conditions can be computed accurately as asymp-
totic expansions.

1. Boundary conditions for the Teukolsky equation in
hyperboloidal-slicing coordinates

a. Boundary condition at the horizon

To compute the boundary conditions at the outer horizon
r̂þ, it is convenient to rewrite Eq. (51) as

ðr̂ − r̂þÞ2
d2ψ in

dr̂2
þ ðr̂ − r̂þÞpHðr̂Þ

dψ in

dr̂
þ qHðr̂Þψ in ¼ 0;

ðA8Þ
where

pHðr̂Þ ¼
F̃ðr̂;−1Þ
r̂ − r̂−

; qHðr̂Þ ¼
Ũðr̂;−1Þ
ðr̂ − r̂−Þ2

: ðA9Þ

We seek for a Frobenius power series solution of the form

ψ in ¼ ðr̂ − r̂þÞd
X∞
n¼0

anðr̂ − r̂þÞn; ðA10Þ

where the index d is a solution of the indicial equation

IðdÞ ¼ dðd − 1Þ þ pHðr̂þÞdþ qHðr̂þÞ ¼ 0: ðA11Þ

For Eq. (51), the latter is given by

IðdÞ ¼ dðd − cHÞ ¼ 0; cH ¼ 4ir̂þ
r̂þ − r̂−

κ þ s; ðA12Þ

and κ ¼ ω̂ −mâ=ð2r̂þÞ. Near the outer horizon r̂þ,
the radial solution Rin

lmω̂ has the following asymptotic
behavior:

Rin
lmω̂ ∼ Δ−se−iκ̂r̂

�
; r̂ → r̂þ; ðA13Þ

Thus, only d ¼ 0 is a physical solution of the indicial
equation. Moreover, we notice that the ansatz (48) for the
Rin
lmω̂ solution can be rewritten as

Rin
lmω̂ðr̂Þ ¼ r̂−1Δ−se−iκr̂

�
e−iδHðr̂Þψ inðr̂Þ; ðA14Þ

δHðr̂Þ≡ am
r̂þ

�
r̂
2
þ ln

�
r̂ − r̂−

2

��
: ðA15Þ

Therefore, to ensure the correct physical behavior of
Rin
lmω̂ðr̂Þ at the outer horizon, we fix d ¼ 0 and write the

Frobenius series (A10) as

ψ in ¼ r̂þeiδHðr̂þÞ
X∞
n¼0

anðr̂ − r̂þÞn: ðA16Þ

The recursion relation for the coefficients an is (setting
a0 ¼ 1)

an ¼ −
1

IðnÞ
Xn−1
k¼0

ðkpðn−kÞ
H ðr̂þÞ þ qðn−kÞH ðr̂þÞÞak; ðA17Þ

where pðkÞ
H ðr̂þÞ and qðkÞH ðr̂þÞ are the kth derivatives of the

coefficients pHðr̂Þ and qHðr̂Þ with respect to r̂, and
calculated at r̂þ. Their general expression is given by

pðnÞ
H ðr̂þÞ ¼

8>><
>>:

1 − cH n ¼ 0;

ðρ2Hr̂þÞ−1½−2r̂2− þ â2ð3þ 2sþ 4ir̂þω̂Þ þ r̂þð−2iâmþ 2iâ2ω̂ − ðr̂þ þ 2sþ 2ir̂2þω̂ÞÞ� n ¼ 1;

2ð−r̂þÞ−n − ρ−nH þ ρ−n−1H ½2sr̂− þ 2ir̂2−ω̂þ 2ið−âmþ isþ â2ω̂Þ� n > 1;

ðA18Þ

qðnÞH ðr̂þÞ ¼

8>><
>>:

0 n¼ 0;

ðρHr̂þÞ−1½2iâmþ 2ðs− 1Þ− 2iâ2ω̂þ r̂þð2þ λlmω̂− 4ir̂þsω̂Þ� n¼ 1;

2ðn−1Þð−r̂þÞ−nþ ρ−nH

h
ð2þ λlmω̂ −4ir̂−sω̂Þþ 2n

r̂þ
ðs− 1þ iâðm− â ω̂ÞÞ2F1

�
1;1−n; 2; r̂−r̂þ

	i
n > 1;

ðA19Þ

where ρH ≡ ðr̂− − r̂þÞ and 2F1ð1; 1 − n; 2; r̂−=r̂þÞ is the
hypergeometric function 2F1ða; b; c; zÞ.

b. Boundary condition at infinity

General expressions for series solutions around irregular
singularities are also available in the literature [72–74].

However, unlike the regular case, these solutions are not
convergent, and have to be considered as asymptotic
expansions. To calculate the boundary conditions at infin-
ity, we rewrite Eq. (51) as

d2ψup

dr̂2
þ p∞ðr̂Þ

dψup

dr̂
þ q∞ðr̂Þψup ¼ 0; ðA20Þ
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where

p∞ðr̂Þ ¼
F̃ðr̂; 1Þ

Δ
; q∞ðr̂Þ ¼

Ũðr̂; 1Þ
Δ2

: ðA21Þ

The functions p∞ðr̂Þ and q∞ðr̂Þ are analytic on the positive
real axis, so the series

p∞ðr̂Þ ¼
X∞
n¼0

1

n!
pðnÞ
∞

r̂n
; q∞ðr̂Þ ¼

X∞
n¼0

1

n!
qðnÞ∞

r̂n

converge, with pðnÞ
∞ and qðnÞ∞ being the nth derivatives of

the coefficients p∞ and q∞ with respect to r̂. In the case
of irregular singularities of rank 1, the formal solution is
given by

ψup ¼ eγr̂r̂ξ
X∞
n¼0

bn
r̂n

; ðA22Þ

provided that at least one of pð0Þ
∞ , qð0Þ∞ , or qð1Þ∞ is nonzero.

The exponent γ is one of the solutions of the characteristic
equation

γ2 þ pð0Þ
∞ γ þ qð0Þ∞ ¼ 0; ðA23Þ

while

ξ ¼ −
pð1Þ
∞ γ þ qð1Þ∞

pð0Þ
∞ þ 2γ

: ðA24Þ

For Eq. (51) we have

qð0Þ∞ ¼ 0 ¼ qð1Þ∞ ; pð0Þ
∞ ¼ 2iω̂; pð1Þ

∞ ¼ 4iω̂ − 2s; ðA25Þ

γðγ þ 2iω̂Þ ¼ 0; ξ ¼ −
γð2iω̂ − sÞ
γ þ iω̂

: ðA26Þ

When r̂ → ∞, the radial solution Rup
lmω̂ has the following

asymptotic behavior:

Rup
lmω̂ ∼ r−ð2sþ1Þeiω̂r̂� ; r̂ → ∞: ðA27Þ

Thus, only γ ¼ 0 is a physical solution of the characteristic
equation, and we can write

ψup ¼
X∞
n¼0

bn
r̂n

: ðA28Þ

The general recursion relation for the coefficients bn is (we
set again b0 ¼ 1)

ðpð0Þ
∞ þ 2γÞnbn ¼ ðn − ξÞðn − 1 − ξÞbn−1 þ

Xn
k¼1

½γpðkþ1Þ
∞

þ qðkþ1Þ
∞ − ðn − k − ξÞpðkÞ

∞ �bn−k: ðA29Þ

In our case, we can write

bn ¼
n − 1

2iω̂
bn−1 þ

1

2iω̂n

Xn
k¼1

½qðkþ1Þ
∞ − ðn − kÞpðkÞ

∞ �bn−k;

ðA30Þ

where

pðnÞ
∞ ¼

8<
:

2iω̂ n ¼ 0;

4iω̂ − 2s n ¼ 1;

r̂n−1− þ r̂n−1þ þ P− − Pþ n > 1;

ðA31Þ

P� ¼ 2r̂n−1�
ρH

½ð1 − r̂�Þsþ iðâmþ ðr̂2� þ â2Þω̂Þ�; ðA32Þ

and

qðnÞ∞ ¼

8>><
>>:

0 n ¼ 0; 1;

−ð4âmω̂þ 4isω̂þ λlmω̂Þ n ¼ 2;
2
ρH
Q1 þ 4ω̂

ρ3H
Q2 n > 2;

ðA33Þ

with

Q1 ¼ r̂n−2− r̂þ − r̂−r̂n−2þ −
1

2
ðr̂n−1− − r̂n−1þ Þλlmω̂

þ −ðiâmþ sþ 1þ iâ2ω̂Þðr̂n−2− − r̂n−2þ Þ; ðA34Þ

Q2 ¼ isâ2½ρHðn − 1Þðr̂n−2− þ r̂n−2þ Þ − 2ðr̂n−1− − r̂n−1þ Þ�
þ ðisþ âmÞ½r̂n−ð2 − nρHÞ − r̂nþð2þ nρHÞ�
þ â3m½ρHð1 − nÞðr̂n−2− þ r̂n−2þ Þ þ 2ðr̂n−1− − r̂n−1þ Þ�

þ −
i
2
ρ2Hâ

2ðr̂n−2− − r̂n−2þ Þ: ðA35Þ

APPENDIX B: LINEARIZATION IN THE
SECONDARY SPIN

1. Linearization of the angular Teukolsky equation

For the study of the eigenvalues and eigenfunctions of
Eq. (30), it is convenient to perform a change of variable
defining x ¼ cos θ, obtaining

HjSi ¼ −λlmω̂jSi; jSi≡ Sâ ω̂lm; H ¼ Kþ V; ðB1Þ

with
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K≡ d
dx

�
ð1 − x2Þ d

dx

�
; ðB2Þ

V ≡ cxðcx − 2sÞ − c2 þ sþ 2mc −
ðmþ sxÞ2
1 − x2

; ðB3Þ

where the dependence on the spin perturbation s is under-
stood to reduce clutter in the notation. We consider here
only the case in which c ∈ R. Physical solutions of (B3)
must be regular in the interval ½−1; 1�, which entails that l
and m must be integers with jmj ≤ l. The solutions to
Eq. (B3) can be written as a series expansion around the
singular points x ¼ �1 [75,76]:

Sclm ¼ ecxffiffiffiffiffi
N

p ð1þ xÞk−ð1 − xÞkþ
X∞
n¼0

dnð1þ xÞn; ðB4Þ

where k� ¼ jm� 2j=2 and the coefficients dn are given by
the three-term recursion relations

α0d1 þ β0d0 ¼ 0; ðB5Þ

αndnþ1 þ βndn þ γndn−1 ¼ 0n ¼ 1; 2… ðB6Þ

with

αn ¼ −2ðnþ 1Þðnþ 2k− þ 1Þ; ðB7Þ

βn ¼ nðnþ 1Þ þ 2nðks þ 1 − 2cÞ − 2cð2k− þ sþ 1Þ
þ ksðks þ 1Þ − sðsþ 1Þ − λlmω̂ − 2mc; ðB8Þ

γn ¼ 2cðnþ ks þ sÞ; ðB9Þ

and ks ¼ kþ þ k−. The normalization constant N can be
written analytically as

N ≡
Z

1

−1
ðSlmðxÞÞ2dx ¼ ð2πÞ21þ2kse−2cΓð1þ 2kþÞN;

ðB10Þ

where

N≡X∞
n¼0

Γð1þ 2k− þ nÞ
Γð2þ 2ks þ nÞ 2

nFðn; n; cÞ
Xn
i¼0

didn−i; ðB11Þ

Fðn; n; cÞ ≔ 1F1ð1þ 2k− þ n; 2þ 2ks þ n; 4cÞ; ðB12Þ
while ΓðzÞ is the Euler gamma function and 1F1ða; b; zÞ is
the Kummer confluent hypergeometric function. To ensure
the convergence of the series (B4) at x ¼ �1, the eigen-
value λlmω̂ must satisfy the implicit continued fraction

0 ¼ β0 −
α0γ1
β1−

α1γ2
β2−

α2γ3
β3−

…: ðB13Þ

With the requirement of regularity at the boundaries ½−1; 1�,
Eq. (B3) defines a Sturm-Liouville eigenvalue problem.
In particular, the eigenvalue problem is singular because
the coefficient ð1 − x2Þ vanishes at the boundaries. Never-
theless, it can be shown that Eq. (B3) still satisfies many of
the properties of a regular Sturm-Liouville problem,
namely the following (see [77] and references therein):

(i) the operator H is Hermitian, i.e., hvjHjwi ¼
hwjHjvi for any vector v, w;

(ii) given a set s, m, c, the functions Sâ ω̂lmðθÞ form a
(strong) complete, orthogonal set on ½−1; 1�, labeled
by the additional integer l (see [78]);

(iii) each eigenvalue λlmω̂ has (up to a constant) a unique
eigenfunction for any set s, m, c.

Thus, we can conveniently treat the secondary spin σ as a
small perturbation of a Hermitian operator and compute the
linear corrections in σ to λlmω̂ using the same techniques of
nondegenerate perturbations of a quantum mechanical
system [79]. To linear order in σ, we obtain

H0jS0i ¼ −λ0lmjS0i; ðB14Þ
H0jS1i þ V1jS0i ¼ −λ0lmjS1i − λ1lmjS0i; ðB15Þ

H0 ¼ Kþ V0; ðB16Þ
V1 ¼ 2c1ðc0x2 − sxþm − c0Þ; ðB17Þ

where V0 is simply given by H with c ↔ c0, S0lm ≡
jS0i; S1lm ≡ jS1i and

λ1lm ¼ hS0jV1jS0i≡
Z

1

−1
S0lmV

1S0lmdx ¼ −
c1

N0

X∞
n¼0

ΞðnÞ½ϒðnÞFðn; nþ 1; c0Þ − ΠðnÞFðn; n; c0Þ�
Xn
i¼0

d0i d
0
n−i; ðB18Þ

with

ΞðnÞ≡ 2nþ1
Γð1þ 2k− þ nÞ
Γð3þ ks þ nÞ ; ðB19Þ

ϒðnÞ≡ ð1þ 2kþÞð2þ 2ks þ nþ 2sÞ; ðB20Þ

ΠðnÞ≡ ð2þ 2ks þ nÞð1þ 2kþ −mþ sÞ: ðB21Þ

The term N0 is given by N with c ↔ c0. We computed the
zeroth order eigenvalue λ0lm, the corresponding eigenfunc-
tions S0lm and the coefficients d0n using the routines of
the SPINWEIGHTEDSPHEROIDALHARMONICS Mathematica
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package of [54]. Once the correction to the eigenvalue λ1lm
is known, we can evaluate the correction to the eigenfunc-
tion S1lm by expanding in σ the Leaver series (B4),
obtaining

S1lm ¼ ec
0xffiffiffiffiffiffiffi
N 0

p ð1þ xÞk−ð1 − xÞkþ
X∞
n¼0

�
d1nð1þ xÞn

þ d0nð1þ xÞn
�
ð1þ xÞ − N1

2N0

��
; ðB22Þ

where the three-term recursion relation for the correction d1n
is given by, for n ¼ 1; 2…

d10 ¼ 0 α0d11 þ β10d
0
0 ¼ 0; ðB23Þ

αnd1nþ1 þ β0nd1n þ β1nd0n þ γ0nd1n−1 þ γ1nd1n−1 ¼ 0; ðB24Þ

with

β1n ¼ −2c1ð1þ 2k− þmþ 2nþ sÞ − λ1lm; ðB25Þ

γ1n ¼ 2c1ðks þ sþ nÞ; ðB26Þ

and

N1 ≡X∞
n¼0

2nþ1Γð1þ 2kþ þ nÞ
Γð2þ 2ks þ nÞ

�
Fðn; n; c0Þ

Xn
i¼0

d0i d
1
n−i

þ 2
1þ 2k− þ n
2þ 2ks þ n

Fðnþ 1; nþ 1; c0Þ
Xn
i¼0

d0i d
0
n−i

�
:

ðB27Þ

2. Linearization of the radial Teukolsky equation

The linear corrections in σ, Rin;1
lm , and Rup;1

lm , were
obtained by expanding the ansatz (48) as follows. Let us
first define

N0∓ ¼ r̂−1Δ−se∓iω̂0 r̂�eimϕ̃; ðB28Þ

D0∓ ¼ −
N0∓
Δ

�
Δ
r̂
þ 2sðr̂ − 1Þ � iðr̂2 þ â2Þω̂0 þ iâm

�
;

ðB29Þ

D1∓ ¼∓ iω1

�
r̂2 þ â2

Δ
N0∓ þ r̂�D0∓

�
: ðB30Þ

It is possible then to write

Rα;0
lm ¼ N0∓ψα;0; ðB31Þ

Rα;1
lm ¼ N0∓ðψα;1 ∓ iω̂1r̂�ψα;0Þ; ðB32Þ

dRα;0
lm

dr̂
¼ ψα;0D0∓ þ N0∓

dψα;0

dr̂
; ðB33Þ

dRα;1
lm

dr̂
¼ ψα;1D0∓ þ ψα;0D1∓þ ðB34Þ

þ N0∓
�
dψα;1

dr̂
∓ iω̂1r̂�

dψα;0

dr̂

�
; ðB35Þ

where α ¼ inðupÞ for the minus (plus) sign. Finally, we
computed the linear corrections ψ in;0;ψ in;1 and ψup;0;ψup;1

as solutions of a system of ordinary differential equations
obtained by expanding Eq. (51) and the related boundary
conditions in σ.
For the solutions ψ in;0;ψ in;1, the system of differential

equations is

d2ψ in;0

dr̂2
þ p0

Hðr̂Þ
r̂ − r̂þ

dψ in;0

dr̂
þ q0Hðr̂Þ
ðr̂ − r̂þÞ2

ψ in;0 ¼ 0; ðB36Þ

d2ψ in;1

dr̂2
þ p0

Hðr̂Þ
r̂ − r̂þ

dψ in;1

dr̂
þ p1

Hðr̂Þ
r̂ − r̂þ

dψ in;0

dr̂

þ q0Hðr̂Þ
ðr̂ − r̂þÞ2

ψ in;1 þ q1Hðr̂Þ
ðr̂ − r̂þÞ2

ψ in;0 ¼ 0; ðB37Þ

where

p1
Hðr̂Þ ¼ −

2G̃1ðr̂;−1Þ
ðr̂ − r̂−Þðr̂2 þ â2Þ q1Hðr̂Þ ¼

Ũ1ðr̂;−1Þ
ðr̂ − r̂−Þ2

;

ðB38Þ
G̃1ðr̂;−1Þ ¼ iðr̂2 þ â2Þ2ω̂1; ðB39Þ

Ũ1ðr̂;−1Þ ¼ Δ
�
−λ1lm þ 2iω̂1

�
â2

r̂
þ 2r̂s

��
ðB40Þ

and the boundary conditions for ψ in;1 are

ψ in;1ðr̂Þ ¼ r̂þeiδHðr̂þÞ
X∞
n¼0

a1nðr̂ − r̂þÞn: ðB41Þ

The recursion relation for the coefficients a1n is (setting
a10 ¼ 0)

a1n ¼ −
Xn−1
k¼0

ðkpðn−kÞ;1
H ðr̂þÞ þ qðn−kÞ;1H ðr̂þÞÞ

a0k
IðnÞ

þ −
Xn−1
k¼0

ðkpðn−kÞ;0
H ðr̂þÞ þ qðn−kÞ;0H ðr̂þÞÞ

a1k
IðnÞ −

c1Ha
0
n

n − c0H

ðB42Þ

where c1H ¼ 4ir̂þ
r̂þ−r̂−

ω̂1 and
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pðnÞ;1
H ðr̂þÞ ¼

8<
:

−c1H n ¼ 0;

−2iðr̂2þ − 3â2Þω̂1ρ−2H n ¼ 1;

2iðâ2 þ r̂2−Þρ−1−nH ω̂1 n > 1;

ðB43Þ

qðnÞ;1H ðr̂þÞ ¼

8>>>>>><
>>>>>>:

0 n ¼ 0;
r̂þðλ1lm−4ir̂þsω̂1Þ−2iâ2ω̂1

r̂þρH
n ¼ 1;

ρ−nH
r̂þ

h
r̂þλ1lm − 4iâ2ω̂1sþ

−n2iâ2ω̂1
2F1

�
1; 1 − n; 2; r̂−r̂þ

	i
n > 1:

ðB44Þ

The coefficients q0Hðr̂Þ; p0
Hðr̂Þ; a0n and the boundary con-

ditions for ψ in;0 are given in Appendix A 1 with ω ↔ ω0;
λlmω̂ ↔ λ0lm.
For the solutions ψup;0;ψup;1, the system of differential

equations is

d2ψup;0

dr̂2
þ p0

∞ðr̂Þ
dψup;0

dr̂
þ q0∞ðr̂Þψup;0 ¼ 0; ðB45Þ

d2ψup;1

dr̂2
þ p0

∞ðr̂Þ
dψup;1

dr̂
þ p1

∞ðr̂Þ
dψ in;0

dr̂
þ q0∞ðr̂Þψup;1 þ q1∞ðr̂Þψup;0 ¼ 0; ðB46Þ

where

p1
∞ðr̂Þ ¼ −

2G̃1ðr̂; 1Þ
Δðr̂2 þ â2Þ q1∞ðr̂Þ ¼

Ũ1ðr̂; 1Þ
Δ2

; ðB47Þ

G̃1ðr̂; 1Þ ¼ −iðr̂2 þ â2Þ2ω̂1; ðB48Þ

Ũ1ðr̂; 1Þ ¼ −4ω̂1½mâðr̂2 þ â2Þ þ iðr̂2 − â2Þs�þ ðB49Þ

−Δ
�
λ1lm þ 2iω̂1

â2

r̂

�
; ðB50Þ

and the boundary conditions for ψup;1 are

ψup;1ðr̂Þ ¼
X∞
n¼0

b1n
r̂n

: ðB51Þ

The recursion relation for the coefficients b1n is [setting
b10 ¼ 0]

b1n ¼
n− 1

2iω̂0
b1n−1 þ

Xn
k¼1

½qðkþ1Þ;0
∞ − ðn− kÞpðkÞ;0

∞ � b1k
2iω̂0n

þ
Xn
k¼1

½qðkþ1Þ;1
∞ − ðn− kÞpðkÞ;1

∞ � b1k
2iω̂0n

−
ω̂1

ω̂0
b0n; ðB52Þ

where

pðnÞ;1
∞ ¼

8<
:

2iω̂1 n ¼ 0;

4iω̂1 n ¼ 1;

ð4iðr̂n− − r̂nþÞω̂1ρ−1H n > 1;

ðB53Þ

qðnÞ;1∞ ¼

8>><
>>:

0 n ¼ 0; 1;

−λ1lm − 4ðâ m̂þisÞω̂1 n ¼ 1;
2
ρH
Q1

1 þ 4ω̂1

ρ3H
Q2 n > 2;

ðB54Þ

with

Q1
1 ¼ −

1

2
ðr̂n−1− − r̂n−1þ Þλ1lm: ðB55Þ

The coefficients q0∞ðr̂Þ; p0
∞ðr̂Þ; b0n and the boundary

conditions for ψup;0 are given in Appendix A 1 with
ω ↔ ω0; λlmω̂ ↔ λ0lm.

3. Linearization of the source

In order to write the linearized amplitudes ZH;∞
lmω̂ in the

parameter σ, it is convenient first to recast Eq. (37) as a
function of only Rin;up

lmω̂ and its first derivative. Taking
advantage of the analyticity of the radial solutions in the
positive real axis (except at the inner and outer horizons),
second and higher order derivatives can be written solely in
terms of Rin;up

lmω̂ and its first derivative. Thus, we can write
Eq. (37) as

ZH;∞
lmω̂ ¼ 2π

Wr̂

�
Xðr̂ÞRin;up

lmω̂ þ Yðr̂Þ dR
in;up
lmω̂

dr̂

�
; ðB56Þ

where Vðr̂Þ is the Teukolsky potential of Eq. (32), while

Xðr̂Þ≡ A0 þ
Vðr̂Þ
Δ

C2 −
B3

Δ
dVðr̂Þ
dr̂

; ðB57Þ

Yðr̂Þ≡ −C1 þ
2ðr̂ − 1Þ

Δ
C2 −

B3

Δ
ð2þ Vðr̂ÞÞ; ðB58Þ

C1 ≡ A1 þ B1; C2 ≡ A2 þ B2: ðB59Þ

After expanding Eq. (B56) in the parameter σ, we can write
the zeroth order term as

Zβ;0
lm ¼ 2π

W0
r̂

�
X0ðr̂ÞRα;0

lm þ Y0ðr̂Þ dR
α;0
lm

dr̂

�
; ðB60Þ

where β ¼ Hð∞Þ when α ¼ inðupÞ, while

X0ðr̂Þ≡ A0
0 þ

Vðr̂Þ
Δ

C0
2; ðB61Þ

Y0ðr̂Þ≡ −C0
1 þ

2ðr̂ − 1Þ
Δ

C0
2; ðB62Þ
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Vðr̂Þ ¼ −
ðK0Þ2 þ 4iðr̂ − 1ÞK0

Δ
þ 8iω̂0r̂þ λ0lm; ðB63Þ

K0 ¼ ðr̂2 þ â2Þω̂0 − âm; ðB64Þ

W0
r̂ ≡ 1

Δ

�
Rin;0
lm

dRup;0
lm

dr̂
− Rup;0

lm
dRin;0

lm

dr̂

�
: ðB65Þ

Before writing the zeroth order source terms A0
0, C

0
1, C

0
2, we

need to define the following auxiliary quantities:

S0 ≡ −2S
0
lmðπ=2; c0Þ; ðB66Þ

S̃0 ¼ dS0

dθ
−mS0 þ c0S0; ðB67Þ

S0 ¼ −
1

2
S0λ0lm þ S̃0

�
c0 −m −

iâ
r̂

�
; ðB68Þ

and

J 0
z ¼ J̃0z − Ẽ0â; ðB69Þ

P0
σ ¼ −J0z âþ Ẽ0ðr̂2 þ â2Þ; ðB70Þ

Γ0 ≡ P0
σðr̂2 þ â2Þ þ âΔJ 0

z : ðB71Þ

The zeroth order source terms can then be written as

A0
0 ¼ −

1

2r̂Γ0Δ
½1A0

0 þ 2A
0
0 þ ðJ 0

zÞ2S0ð3A0
0 þ 4A

0
0Þ�; ðB72Þ

C0
1 ¼

J 0
z

r̂Γ0
½ir̂P0

σS̃
0 þ S0J 0

zðΔþ ir̂3ω0 þ iâ r̂ðc0 −mÞÞ�;
ðB73Þ

C0
2 ¼

S0ðJ 0
zÞ2Δ

2Γ0
; ðB74Þ

where

1A
0
0 ¼ 2r̂ðP0

σÞ2S0; ðB75Þ

2A
0
0 ¼ 2P0

σS0J 0
z ½ð4i −mâÞr̂þ ðr̂2 þ â2Þðr̂ω̂0 − 2iÞ�;

ðB76Þ

3A
0
0 ¼ 2ið3â2r̂þ r̂3Þω̂0þðr̂2þ â2Þ2ðr̂ω̂0− 2iÞω̂0; ðB77Þ

4A
0
0 ¼ mâ2r̂ − 2mâ½â2ðr̂ω̂0 − iÞ þ r̂ð3i − 2ir̂þ ω̂0r̂2Þ�:

ðB78Þ

The first-order correction Zβ;0
lm is given by

Zβ;1
lm ¼ 2π

W0
r̂

�
X1ðr̂ÞRα;0

lm þ Y1ðr̂Þ dR
α;0
lm

dr̂

þ X0ðr̂ÞRα;1
lm þ Y0ðr̂Þ dR

α;1
lm

dr̂

�
−
W1

r̂

W0
r̂

Zβ;0
lm; ðB79Þ

where again β ¼ Hð∞Þ when α ¼ inðupÞ, while

X1ðr̂Þ≡ A1
0 þ

1

Δ

�
V1ðr̂ÞC0

2 þ V0ðr̂ÞC1
2 −

dV0ðr̂Þ
dr̂

B1
3

�
;

ðB80Þ

Y1ðr̂Þ≡ −C1
1 þ

2ðr̂ − 1Þ
Δ

C1
2 −

2þ V0ðr̂Þ
Δ

B1
3; ðB81Þ

V1ðr̂Þ ¼ −
2K0 þ 4iðr̂ − 1Þ

Δ
K1 þ 8iω̂1r̂þ λ1lm; ðB82Þ

K1 ¼ ðr̂2 þ â2Þω̂1; ðB83Þ

W1
r̂ ≡ 1

Δ

�
Rin;0
lm

dRup;1
lm

dr̂
þ Rin;1

lm
dRup;0

lm

dr̂

�

þ −
1

Δ

�
Rup;0
lm

dRin;1
lm

dr̂
þ Rup;1

lm
dRin;0

lm

dr̂

�
: ðB84Þ

The first-order source terms A1
0, C1

1, C1
2, A1

3 are quite
cumbersome, and they are provided in a supplemental
Mathematica notebook [71].
Once the amplitudes Zβ;0

lm, Z
β;1
lm with β ¼ ðH;∞Þ are

known, it is possible to compute the corrections to the
fluxes of Eqs. (54) and (55) as follows:

I0lmðr̂; ω̂0Þ ¼ jZH;0
lm j2

2πðω̂0Þ2 ; ðB85Þ

I1lmðr̂; ω̂0; ω̂1Þ ¼
�
ZH;0
lm Z̄H;1

lm

2πðω̂0Þ2 þ c:c: − 2
ω̂1

ω̂0
I0lmðr̂; ω̂0Þ

�
;

ðB86Þ

H0
lmðr̂; ω̂0Þ ¼ α̃0lm

2π
jZ∞;0

lm j2; ðB87Þ

H1
lmðr̂; ω̂0; ω̂1Þ ¼ α̃0lm

2π
ðZ∞;0

lm Z̄∞;1
lm þ c:c:Þ þ α̃1lm

2π
jZ∞;0

lm j2;
ðB88Þ

where c.c. stands for complex conjugation, and

α̃0lm ¼ 1

D0
½256ð2r̂þÞ5κ̂0ððκ̂0Þ2 þ 4ϵ2Þððκ̂0Þ2 þ 16ϵ2Þω̂0�;

ðB89Þ
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α̃1lm ¼ −
D1

D0
α̃0lm þ 256ð2r̂þÞ5

C0lm
ω̂1½64ϵ4ðκ0 þ ω0Þ

þ 20ðϵκ0Þ2ðκ0 þ 3ω0Þ þ ðκ0Þ4ðκ0 þ 5ω0Þ�; ðB90Þ

with ϵ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − â2

p
=ð4r̂þÞ, κ̂0 ¼ ω̂0 − âm=ð2r̂þÞ and

D0 ¼ ½ðλ0lm þ 2Þ2 þ 4c0ðm − c0Þ�½ðλ0lmÞ2 þ 36c0ðm − c0Þ�
þ ð2λ0lm þ 3Þ½96ðc0Þ2 − 48mc0� þ 144ðω̂0Þ2ð1 − â2Þ;

ðB91Þ

D1 ¼ 4fðλ0lmÞ3λ1lm þ ðλ0lmÞ2½3λ1lm þ 10ðm − 2c0Þc1�
þ 2λ0lm½λ1lm þ 10λ1lmc

0ðm − c0Þ þ 6c1ðmþ 2c0Þ�
þ 72ω̂0ω̂1½1þ â2ðm − 2c0Þðm − c0Þ�
þ 12c0λ1lmðmþ c0Þg: ðB92Þ

APPENDIX C: ASSESSMENT OF THE
STABILITY AND CONVERGENCE OF THE
FISHER AND COVARIANCE MATRICES

In this Appendix we provide some details on our
procedure to assess the stability and numerical convergence
of the Fisher and covariant matrices.
This task is particularly delicate for EMRI waveforms,

since the Fisher matrix is known to be ill conditioned [66].
In the best configuration, the condition number was
κ ∼ 1012, while in the worst scenario (typically occurring
in the presence of a spinning secondary), the condition
number was as large as κ ∼ 1020. Moreover, all waveform
derivatives were computed numerically, which is an ill-
conditioned operation.
To ameliorate the ill-condition issues, we performed our

computation with arbitrary-precision arithmetic, obtaining
Fisher matrices with precision no less than 38-digit in all
elements and for all configurations.
We validated our Fisher analysis by
(i) testing the stability of the Fisher and covariance

matrices under random perturbations;

(ii) testing the convergence of the Fisher and covariance
matrices under a change in the finite-difference
parameter ϵ that regulates the accuracy of the
numerical derivatives.

We check the stability of the Fisher and covariance
matrices by perturbing each element with a deviation
matrix Fij. All elements of Fij are drawn from a uniform
distribution U, which depends on the configuration under
exam. Then, we compute

δstability ≡max
ij

�ððΓþ FÞ−1 − Γ−1Þij
ðΓ−1Þij

�
: ðC1Þ

By performing a case-by-case careful analysis and
boosting the numerical precision of our codes, we find
that for the worst cases in all configurations:

(i) the Fisher matrices converges within two orders of
magnitude in the ϵ parameters with relative devia-
tions at the level of 0.03% (another worst case is a
convergence within three orders of magnitude in ϵ
with deviations at 0.2%);

(ii) the inverse matrix without priors converges in two
orders of magnitude in ϵ with deviations at 14%,
while the diagonal elements converge with devia-
tions at 0.1%;

(iii) the inverse with priors converges in two orders of
magnitude in ϵ with deviations at 3.8%;

(iv) the inverse without priors is stable with δstability ¼
7.5% and perturbations U½−10−7; 10−7�;

(v) the inverse with priors is stable with δstability ¼ 4.1%
and perturbations U½−10−6; 10−6�.

Moreover, we noticed that, in order to achieve a convergent
inverse with an accuracy of order Oð1%Þ, it was necessary
to compute a convergent Fisher matrices accurate at a the
level of Oð0.01%Þ.
Finally, it is worth noticing that, for some configurations

in the presence of the secondary spin, we were unable to
obtain a fully convergent covariance matrix: only the
diagonal terms were convergent. Nonetheless, for all
configurations presented in the main text the covariance
matrix was found to be fully convergent.
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