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To ensure that the light (emitted far away from the source of gravity) can arrive at the null infinity of an
asymptotically flat spacetime, it is shown that the rate of Bondi mass aspect has to satisfy some conditions.
In Einstein gravity theory, we find the sufficient condition implies a bound on the Bondi mass loss, i.e.,
j _mj ≤ 0.3820 c3=G. This provides a new perspective on Dyson’s maximum luminosity. However, in Brans-
Dicke theory, the sufficient condition depends on the behavior of the radiation field of the scalar.
Specifically, the photons can escape to the null infinity when the scalar gravitational radiation is not too
large and the mass loss is not too fast.
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I. INTRODUCTION

Gravitational radiation has attracted wide attention since
LIGO found gravitational waves from the merger of a
binary black hole in 2016 [1]. At present, we detect the
gravitational waves far away from the source. So it is
important to study the asymptotic structure of the space-
times which are endowed with gravitational waves.
Actually, in 1960s, Bondi et al. and Sachs have established
a suitable formalism to study the behavior of asymptoti-
cally flat spacetimes in general relativity (GR) [2–4]. By
using the metric assumed by Bondi et al. and Sachs, it is
known that the gravitational radiation of an asymptotically
flat spacetime results in mass loss [2–4], see also a
pedagogical review [5]. This of course implies that gravi-
tational waves really carry energy.
In vacuum, gravitational waves affect the behavior of

electromagnetic waves. The amplitudes of electromagnetic
waves and gravitational waves both propagating in the
same direction are oscillating in the Minkowski back-
ground, which means the conversion between photons and
gravitons [6]. If the initial directions of gravitational waves
and electromagnetic waves are perpendicular, then electro-
magnetic waves change direction and flow at an angle to
the initial waves [7]. So it is vital to explore the impacts of
gravitational waves on electromagnetic waves. In some
realistic models, comparing to the gravitational waves, the
electromagnetic waves have a very large frequency. This
implies that the geometric optics approximation is suitable
for the electromagnetic waves, and one can consider a

simpler model in which light propagates (or the null
geodesics) on the spacetime with gravitational waves.
Recently, Amo, Izumi, Tomikawa, Yoshino, and

Shiromizu have investigated the behavior of the null
geodesics near future null infinity in an asymptotically flat
spacetime [8]. They solved the geodesic equations and
found the dependence of the coordinate u, r with respect to
an affine parameter λ. By this, they got a sufficient
condition that the photons emitted outwards at large r
can arrive at the null infinity, and it is found that in four
dimension there is some possibility that the photons cannot
reach the null infinity. However, the physical meaning of
the sufficient condition is not clear up to date. Based on the
analysis in [8], we further study the sufficient condition and
find that condition naturally imposes a constraint on the
rate of the Bondi mass loss, i.e., _m. Actually, it gives a
range on _m, whose absolute value has a upper bound
0.3820c3=G. In a word, the photons can escape to the
infinity implies that the mass loss is slower than the
absolute value of this bound. After multiplying the abstract
value of the bound by c2, we get a luminosity for the
asymptotically flat system. This provides a clue of the
existence of the maximum luminosity proposed by Dyson
long time ago [9,10].
In GR, the lower bound of _m is independent of any

features of the asymptotically flat spacetime. So it is
reasonable to ask a question whether the lower bound of
the rate of the mass loss shares the same property in other
gravity theories, especially for the gravity theories with
nontrivial scalar degrees of freedom. To answer the ques-
tion, we investigate the behavior of the null geodesics in
Brans-Dicke theory (BD). Brans-Dicke theory is one
typical example of a scalar-tensor theory, a class of theories
in which there is a scalar field coupling to gravity
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nonminimally. It can be found from fðRÞ theory by an
appropriate conformal transformation [11,12]. In recent
years, the mass loss and memory effect in BD are
investigated in [13,14]. The coordinate r chosen by
Tahura and her collaborators corresponds to the determi-
nant of the metric of angular part [14]. This selection on r is
the same as the one in GR. In this case, the components of
Riemann tensor approach to zero when r becomes large, so
the spacetime is asymptotically flat. The coordinate r
chosen by Hou and Zhu is different from the one in [14]
by a factor given by the scalar field [13]. Although the
spacetimes are asymptotically flat both in Einstein frame
and Jordan frame, the guu approaching to −1 at infinity will
bring a lot of convenience in calculation, so we will discuss
the null geodesics in the coordinates used by Hou and Zhu.
Based on this procedure, we find the bound of _m in BD
depends on the radiation field of the scalar.
This paper is organized as follows. We will give a brief

review on the Bondi-Sachs formalism of Brans-Dicke
theory in asymptotically flat spacetime in Sec. II. In
Sec. III, we study the asymptotic behavior of null geodesics
and study whether the photons can arrive at the null infinity.
The condition that r increases with the affine parameter λ is
given in Sec. III A. In Sec. III B, we get the sufficient
condition that the photons can arrive at the null infinity. The
result is discussed in Sec. III C, and we find it implies that
the rate of the Bondi mass loss has a lower bound.
Section III D is devoted to the case in GR. This subsection
will account for the reason why the upper bound of j _mj is
0.3820 c3=G in GR. In Sec. III E, spherically symmetric
spacetimes are discussed, and one can clearly find the effect
of the scalar field on the photons. In Sec. IV, we give a
conclusion and discussion. The relation between our bound
and the Dyson’s maximum luminosity is discussed there.

II. BRANS-DICKE THEORY

In this section, we will give a brief review on the Bondi-
Sachs formalism of the asymptotically flat spacetime in
BD. The action of BD in the Jordan frame without matter
field is given by [15]

S ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p �
φR −

ω

φ
∇aφ∇aφ

�
; ð2:1Þ

where R is the Ricci scalar, g is the determinant of the
metric, G is the gravitational constant, φ is a scalar field,
and ω is a positive constant. The equations of motion are
given by

Rab −
1

2
gabR ¼ 8πG

φ
T ab; ð2:2Þ

and

∇c∇cφ ¼ 0: ð2:3Þ

Here, Rab is the Ricci tensor, and T ab is the effective stress-
energy tensor which is given by

T ab ¼
1

8πG

�
ω

φ

�
∇aφ∇bφ −

1

2
gab∇cφ∇cφ

�

þ∇a∇bφ − gab∇c∇cφ

�
: ð2:4Þ

In the following discussion, we set G ¼ c ¼ 1, and will
restore them when necessary. In the Bondi-Sachs formal-
ism [16], the metric has a form

ds2 ¼ e2β
V
r
du2 − 2e2βdudr

þ hABðdxA −UAduÞðdxB −UBduÞ; ð2:5Þ

where A ¼ 2, 3, x2 ¼ θ, x3 ¼ ϕ, and β, V, UA, and hAB are
six metric functions which depend on all of the coordinates.
In asymptotically flat spacetime, the determinant condition
is [13]

detðhABÞ ¼ r4
�
φ0

φ

�
2

sin2 θ; ð2:6Þ

and the coordinate r is defined by this condition in some
sense. The expansions of φ and hAB can be written as

φ ¼ φ0 þ
φ1

r
þ φ2

r2
þO

�
1

r3

�
; ð2:7Þ

and

hAB ¼ r2qAB þ rcAB þ dAB þO
�
1

r

�
; ð2:8Þ

where qAB is the standard metric of the two-dimensional
unit sphere and its determinant is given by q ¼ sin2 θ.
Based on the condition (2.6), one can define two traceless
symmetric tensors ĉAB and d̂AB as

cAB ¼ ĉAB − qAB
φ1

φ0

ð2:9Þ

and

dAB ¼ d̂AB þ qAB

�
1

4
ĉCDĉCD þ φ2

1

φ2
0

−
φ2

φ0

�
: ð2:10Þ

From Eqs. (2.6)–(2.8), it is not hard to show that

ĉAA ¼ qABĉAB ¼ 0; d̂AA ¼ qABd̂AB ¼ 0: ð2:11Þ

The tensor ĉAB also satisfies the identity for tensors on the
2D sphere [17], i.e.,
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ĉACĉBC ¼ 1

2
ĉCDĉCDqAB: ð2:12Þ

By using the equations of motion (2.2) and (2.3), we can
get the fall-off behaviors of the functions β, V, and UA.
They can be expanded as

V ¼ −rþ 2M þO
�
1

r

�
;

β ¼ −
φ1

2φ0

1

r
þ
�
−
ĉABĉAB

32
þ 1− 2ω

16

�
φ1

φ0

�
2

−
φ2

2φ0

�
1

r2

þO
�
1

r3

�
;

UA ¼ −
ðBĉAB

2

1

r2
þ
�
−
2

3
NA þ 1

3
ĉABðCĉCB

�
1

r3
þO

�
1

r4

�
;

ð2:13Þ

where the function M is the aspect of the Bondi mass, and

NAB ¼ −∂uĉAB

is the so-called Bondi news tensor [18], and
NA

B ¼ qACNBC. NA is the angular momentum aspect,
and the symbol ð is the covariant derivative which is
compatible with the metric qAB. By using the equations of
motion, the evolution of the function M is given by

_M ¼ −
1

4
ðAðBNAB −

1

8
NABNAB −

2ωþ 3

4

�
_φ1

φ0

�
2

; ð2:14Þ

where “·” denotes the derivative with respect to the
coordinate u, and _φ1 corresponds to the scalar aspect of
gravitational wave [13]. From Eq. (2.13), it is easy to find
the nontrivial components of the metric

guu ¼ −1þ 2M þ φ1=φ0

r
þO

�
1

r2

�
;

gur ¼ −1þ φ1

φ0r
þO

�
1

r2

�
;

guA ¼ ðBĉBA
2

þO
�
1

r

�
;

gAB ¼ r2qAB þ rcAB þOð1Þ: ð2:15Þ

These will be used in the calculation of the null geodesics.

III. ASYMPTOTIC BEHAVIOR OF NULL
GEODESICS

In Ref. [8], the authors have studied the asymptotic
behavior of the null geodesics in GR. They study the
photons emitted outwards at large r. Then they get the
sufficient condition that the photons can be received by

the observers at infinity. If the gravitational radiation is
strong enough, then this condition would be broken. Then
the photons might not arrive at infinity. In this section, we
will study the same thing in BD theory.

A. The geodesic equations

Here, we study the null geodesics in BD theory. The
geodesic equations can be transformed into the following
two equations:

r00 ¼ −Γr
uuu0u0 − 2Γr

uru0r0 − 2Γr
uAu

0ðxAÞ0 − Γr
rrr0r0

− 2Γr
rAr

0ðxAÞ0 − Γr
ABðxAÞ0ðxBÞ0 ð3:1Þ

and

u00 ¼ −Γu
uuu0u0 − 2Γu

uAu
0ðxAÞ0 − Γu

ABðxAÞ0ðxBÞ0; ð3:2Þ

where “ 0” denotes the derivative with respect to the affine
parameter λ of the null geodesic. The related components of
the Christoffel symbols are (ignore the lower order terms)
[16]

Γr
uu ¼

_φ1

2φ0r
−

_M
r
þO

�
1

r2

�
;

Γr
ur ¼

M
r2

þ φ1

2φ0r2
þO

�
1

r3

�
;

Γr
uA ¼ −

∂AM
r

þ 1

4r
_cABðCĉBC þO

�
1

r2

�
;

Γr
rr ¼

φ1

φ0r2
þO

�
1

r3

�
;

Γr
rA ¼ −

∂Aφ1

2φ0r
þ ðBĉBA

2r
þO

�
1

r2

�
;

Γr
AB ¼ 1

2
r_cAB − rqAB þOð1Þ;

Γu
uu ¼ −

1

r
_φ1

φ0

þO
�
1

r2

�
;

Γu
uA ¼ −

1

r
∂Aφ1

2φ0

þO
�
1

r2

�
;

Γu
AB ¼ rqAB þOð1Þ: ð3:3Þ

Since a future directed null geodesic is considered, we
choose u0 > 0. By these, the geodesic equations become
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r00 ¼
�
−

_φ1

2φor
þ

_M
r

�
ðu0Þ2 − 2

�
M
r2

þ φ1

2φ0r2

�
u0r0

− 2

�
−
∂AM
r

þ 1

4r
_cABðCĉBC

�
u0ðxAÞ0

−
φ1

φ0r2
ðr0Þ2 − 2

�
−
∂Aφ1

2φ0r
þ ðBĉBA

2r

�
r0ðxAÞ0

−
�
1

2
r_cAB − rqAB

�
ðxAÞ0ðxBÞ0; ð3:4Þ

and

u00 ¼ 1

r
_φ1

φ0

ðu0Þ2 þ 1

r
∂Aφ1

φ0

u0ðxAÞ0 − rqABðxAÞ0ðxBÞ0: ð3:5Þ

Here and below, we ignore the lower order terms. From the
null condition of the tangent vector of null geodesics, i.e.,

ds2

dλ2
¼ 0 ¼ e2β

V
r
ðu0Þ2 − 2e2βu0r0

þ hAB½ðxAÞ0 −UAu0�½ðxBÞ0 −UBu0�; ð3:6Þ

we get

ðu0Þ2 ¼ −2
�
1þ 2M

r

�
u0r0 þ ððBĉBAÞu0ðxAÞ0

þ ½r2qAB þ rðĉAB þ 2MqABÞ�ðxAÞ0ðxBÞ0; ð3:7Þ

or

qABðxAÞ0ðxBÞ0 ¼
1

r2
ðu0Þ2 þ 2

r2
u0r0 −

ðBĉBA
r2

u0ðxAÞ0: ð3:8Þ

So, from Eq. (3.8), one gets the relation between u0 and
jðxAÞ0j in leading order [8]:

u0 ¼ ½rþOð1Þ�jðxAÞ0j; ð3:9Þ

where jðxAÞ0j is defined as

jðxAÞ0j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qABðxAÞ0ðxBÞ0

q
:

With the initial condition r0 ¼ 0, the second derivative
of r is

r00 ¼ r

�
qAB −

1

2
_̂cAB þ _MqAB

�
ðxAÞ0ðxBÞ0

≡ rΩABðxAÞ0ðxBÞ0: ð3:10Þ

Therefore, the tensor components

ΩAB¼qAB−
1

2
_̂cABþ _MqAB¼qABð1þ _MÞþ1

2
NAB ð3:11Þ

will determine the behavior of photons at infinity.
Obviously, if

ΩABðxAÞ0ðxBÞ0 ≥ 0; ð3:12Þ

then r00 ≥ 0 at λ ¼ 0, and then r0 ≥ 0 for all λ > 0. In fact,
this conclusion holds for any null geodesics with r0ð0Þ ≥ 0.
The proof with the initial condition r0 > 0 is given as
follows and the proof with r0 ¼ 0 is similar to it. If there
is a λc > 0 satisfying r0ðλcÞ ¼ 0, then r00ðλcÞ ¼
rΩABðxAÞ0ðxBÞ0 ≥ 0. However, with the initial condition
r0ð0Þ > 0, if λc is the first zero point of r0ðλÞ, then the slope
of r0ðλÞ at λc is negative, i.e., r00ðλcÞ < 0. Obviously, this
result is contradicted with (3.12). So there is no λc for
r0ðλÞ ¼ 0. In other words, r0ðλÞ > 0 for all λ > 0 with the
initial condition r0ð0Þ > 0.
Therefore, r is increasing along the geodesic. It is not

hard to find that the condition (3.12) is equivalent to that of
the two eigenvalues of ΩAB, k1 and k2, which are non-
negative.

B. Behavior of rðλÞ and uðλÞ
In this subsection, we will study the asymptotic behavior

of rðλÞ and uðλÞ. Substituting Eq. (3.7) into (3.4), and
considering Eq. (3.9), we obtain

r00 ¼ 1

r

�
−2 _Mþ _φ1

φ0

�
u0r0 þ rΩABðxAÞ0ðxBÞ0

þ1

r

�∂Aφ1

φ0

−ðBĉBA

�
r0ðxAÞ0− 1

r2
φ1

φ0

ðr0Þ2

þ1

r

�
2∂AM−

1

2
_cABðCĉBCþ

�
_M−

_φ1

2φ0

�
ðBĉBA

�
u0ðxAÞ0;

¼ 1

r

�
−2 _Mþ _φ1

φ0

�
u0r0 þ rΩABðxAÞ0ðxBÞ0− C̃1

1

r2
ðr0Þ2;

ð3:13Þ

where C̃1 is a constant, and lower order terms have been
omitted. So if

−2 _M þ _φ1

φ0

≥ 0;

ΩABðxAÞ0ðxBÞ0 ≥ 0; ð3:14Þ

then r00 ≥ −C̃1ðr0Þ2=r2. Solving this inequality, we get

r ≥ C̃2λþ C̃3; ð3:15Þ

where C̃2, C̃3 are constants, and C̃2 is positive. This means
that r approaches to infinity as λ becomes infinity. So the
photons can escape to the infinity.
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In order to know whether the photons can escape to the
infinity in a finite time, we have to calculate u00.
Substituting Eq. (3.8) into (3.5), and using (3.9), we get

u00 ¼
�
_φ1

φ0

− 1

�
1

r
ðu0Þ2 − 2

r
u0r0: ð3:16Þ

If _φ1=φ0 − 1 ≤ 0, then u00 ≤ −2u0r0=r. This implies
0 ≤ u0 ≤ C̃4r−2, where C̃4 is a positive constant.
Because r has the order OðλÞ, u is finite as λ approaches
to infinity [8]. So the photons can be received by the
observers at infinity in a finite time.
In conclusion, the photons could arrive at the future null

infinity if the following conditions are satisfied, i.e.,

ΩABðxAÞ0ðxBÞ0 ≥ 0;

2 _M ≤
_φ1

φ0

≤ 1: ð3:17Þ

The second condition above is obviously absent in GR. Of
course, the details of the tensor ΩAB are also different from
the one in GR.

C. The sufficient condition

We now turn to look for the meaning of Eq. (3.12). This
condition is equivalent to that the two eigenvalues of ΩAB
are non-negative. This suggests

_M þ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

8
NABNAB

r
≥ 0;

or

_M þ 1 ≥ 0;

ð _M þ 1Þ2 ≥ 1

8
NABNAB: ð3:18Þ

From Eq. (2.14), we know

1

8
NABNAB ¼ − _M −

1

4
ðAðBNAB −

2ωþ 3

4

�
_φ1

φ0

�
2

: ð3:19Þ

So inequalities (3.18) becomes

_M ≥max

�
−1;−

3

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5− ðAðBNAB − ð2ωþ 3Þ

�
_φ1

φ0

�
2

s �
:

ð3:20Þ

Combining inequalities (3.17), the sufficient condition that
the photons emitted at large r with r0 ≥ 0 can arrive at the
future null infinity is

max

�
−1;−

3

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − ðAðBNAB − ð2ωþ 3Þ

�
_φ1

φ0

�
2

s �

≤ _M ≤
_φ1

2φ0

≤
1

2
: ð3:21Þ

The term ðAðBNAB does not vanish in general. Actually, it
will be vanished if and only if the news tensor is vanished
(see the detailed proof by Ashtekar et al. in [18,19]).
The geometric meaning of the term ðAðBNAB can be

understood as follows: assuming there exists a manifold M̃
with a boundary I equipped with a metric g̃ab ¼ Ω2gab and
a conformal transformation from M onto M̃nI , where
ðM; gabÞ is the physical spacetime, and considering the null
normal vector

na ≡∇aΩ ¼ ∇a

�
1

r

�
¼ −

1

r2
ðdrÞa; ð3:22Þ

the leading order of Weyl tensor C̃abc
d on M̃ is given by

Kabc
d ¼ Ω−1C̃abc

d; ð3:23Þ

and the magnetic part of Kabc
d has the form of

�Kac ¼ �Kabcdnbnd; ð3:24Þ

where �Kabcd is the dual of Kabcd. It is not hard to find the
divergence of news tensor is proportional to the leading
order magnetic part of the Weyl tensor of the spacetime. By
defining the current jA ¼ �K0

A, the relation of jA and
ðAðBNAB is given by

ðAðBNAB ¼ −2ϵABðAjB; ð3:25Þ

where ϵAB is the component of the Levi-Civita tensor on the
standard two-dimensional sphere. So the term ðAðBNAB has
a clear geometric meaning and does not vanish in general.
To get detailed information from the inequalities in the

above, for example, inequalities (3.21), we have to know
the details of ðAðBNAB. This cannot be achieved without
the information on the magnetic part the leading order
of the Weyl tensor. However, by considering an inequality

ffiffiffiffiffiffiffiffiffiffiffi
5 − x

p
≤ −

ffiffiffi
5

p

10
xþ

ffiffiffi
5

p
; ð3:26Þ

the contribution of ðAðBNAB does not appear in the
inequality after integrating on the sphere. This point can
be found as follows. Inequality (3.26) implies that inequal-
ities (3.21) can be replaced by
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max

�
−1;

ffiffiffi
5

p
− 3

2
−

ffiffiffi
5

p

20

�
ðAðBNAB þ ð2ωþ 3Þ

�
_φ1

φ0

�
2
��

≤ _M ≤
_φ1

2φ0

≤
1

2
: ð3:27Þ

Integrating the above inequality on the sphere, and multi-
plying the result with φ0=4π, we get

max

�
−φ0;

ffiffiffi
5

p
− 3

2
φ0 −

2ωþ 3

16
ffiffiffi
5

p
π
φ0

Z ffiffiffi
q

p �
_φ1

φ0

�
2

dΩ
�

≤ _m ≤
1

8π

Z ffiffiffi
q

p
_φ1dΩ ≤

1

2
φ0; ð3:28Þ

where

m ¼ φ0

4π

Z
M

ffiffiffi
q

p
dΩ ð3:29Þ

is the Bondi mass of the asymptotically flat system [13].
From Eq. (2.14), we know _m cannot be positive.
Remarkably, the term in the inequalities (3.28), i.e.,

Jφ ≡ 2ωþ 3

16π
φ0

Z ffiffiffi
q

p �
_φ1

φ0

�
2

dΩ ð3:30Þ

represents the energy flux of the scalar gravitational
waves [13]. From the inequalities (3.21), we know
−2 ≤ _φ1=φ0 ≤ 1. This gives

Jφ ≤ ð2ωþ 3Þφ0: ð3:31Þ

Here, ω is assumed to be positive. Therefore, when

Jφ < ð5 −
ffiffiffi
5

p
Þφ0=2;

i.e., the scalar gravitational radiation is weak, we have

ffiffiffi
5

p
− 3

2
φ0 −

1ffiffiffi
5

p Jφ ≤ _m ≤
1

2
_Q ≤

1

2
φ0; ð3:32Þ

where

Q ¼ 1

4π

Z ffiffiffi
q

p
φ1dΩ: ð3:33Þ

However, when

ð5 −
ffiffiffi
5

p
Þφ0=2 ≤ Jφ ≤ ð2ωþ 3Þφ0;

i.e., the scalar gravitational radiation is strong enough, we
obtain

−φ0 ≤ _m ≤
1

2
_Q ≤

1

2
φ0: ð3:34Þ

Therefore, the range of _m has a closed relation to the value
of the scalar at infinity and the scalar gravitational
radiation.
The upper bound is decided by _Q. When _Q < 0, the

upper bound is proportional to _Q. However, the lower
bound is decided by Jφ. When Jφ is small, the lower bound
decreases as Jφ increases. But when Jφ is large, the lower
bound is a constant. The relation between the lower bound
and Jφ can be found in Fig. 1, while the relation between
upper bound and _Q is depicted in Fig. 2. Besides, to ensure
the photons to arrive at infinity, the scalar gravitational
radiation cannot be too large.

D. The case in GR

When φ1 ¼ 0, φ0 ¼ 1, the results in Sec. III C reduce to
the case in GR. The sufficient condition (3.21) becomes

max

�
−1;−

3

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − ðAðBNAB

q �
≤ _M ≤ 0; ð3:35Þ

and the condition (3.28) reduces to

FIG. 1. The lower bound with respect to J ¼ Jφ=φ0.

FIG. 2. The upper bound with respect to _Q.
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ffiffiffi
5

p
− 3

2
≤ _m ≤ 0: ð3:36Þ

In GR, _m ≤ 0 is satisfied automatically. So this means the
mass loss of the system cannot be too large. If the
gravitational radiation is strong enough, one may not
receive the photons with r0 ≥ 0 at infinity. The lower
bound of _m is given by

b ¼
ffiffiffi
5

p
− 3

2

c3

G
¼ −0.3820

c3

G
¼ −0.3820

mp

tp
; ð3:37Þ

where the Newtonian gravitational constant G and the
speed of light c in vacuum have been restored, and

mp ¼
ffiffiffiffiffiffi
ℏc
G

r
; tp ¼

ffiffiffiffiffiffiffi
ℏG
c5

r

are Planck mass and Planck time, respectively. The value of
b in Eq. (3.37) is −1.546 × 1035 kg=s. This is a very loose
bound. Intuitively, if the bound is saturated, the system will
lose a solar mass M⊙ in 1.28 × 10−5 s. With this rate of
mass loss, a super massive black hole with mass 108 M⊙
will lose all of its mass within half an hour.
Comparing with GR, we can find the scalar field φ

decreases the lower bound in BD when φ0 is on the order of
one (for example, φ0 ¼ 1). When Jφ ¼ 0, i.e., the scalar
gravitational radiation is absent, the range of _m in BD
reduces to that in GR. But as Jφ increases, the lower bound

in BD decreases. When Jφ ≥ ð5 − ffiffiffi
5

p Þφ0=2, the lower
bound is 2.62b. The upper bound in BD is different from
the one in GR. When _Q > 0, the upper bound in BD is
zero. This is the same as the upper bound in GR. However,
when _Q < 0, the upper bound in BD is less than zero, and it
is proportional to _Q. This tells us the mass loss cannot be
too slow and too fast if _Q < 0.
If φ0 ≠ 1, then the behavior of the upper bound is the

same as the case with φ0 ¼ 1. But the lower bound is
different, even when Jφ is vanished. Besides Jφ, the lower
bound is also affected by the effective gravitational constant
in the infinity, i.e.,

G0 ¼
G
φ0

: ð3:38Þ

So the role of φ0 is nothing but the effective Newtonian
constant.

E. The case in spherically symmetric spacetime

In GR, the metric of a spherically symmetric spacetime
in the Bondi-Sachs coordinates has a form

ds2 ¼ e2β
V
r
du2 − 2e2βdudrþ qABdxAdxB: ð3:39Þ

Solving the equations of motion (2.2)–(2.4), we get the
solution in vacuum:

β ¼ 0;

V ¼ 2M − r;

_M ¼ 0: ð3:40Þ

This is nothing but the Schwarzchild spacetime. The result
is consistent with the well-known Birkhoff theorem. Now,
Eqs. (3.13) and (3.16) become

r00 ¼ rqABðxAÞ0ðxBÞ0 − C̃5

1

r2
ðr0Þ2; ð3:41Þ

u00 ¼ −
1

r
ðu0Þ2 − 2

r
u0r0; ð3:42Þ

where C̃5 is a constant. After repeating the calculation in
Secs. III A and III B, we know the photons with r0 ≥ 0 can
escape to the infinity without any constraints.
However, in BD, things are different. By considering the

determinant condition (2.6), the metric can be written as

ds2 ¼ e2β
V
r
du2 − 2e2βdudrþ r2

φ0

φ
qABdxAdxB: ð3:43Þ

So the solution of the equations of motion are

β ¼ −
φ1

2φ0

1

r
þO

�
1

r2

�
;

V ¼ −rþ 2M þO
�
1

r

�
;

_M ¼ −
2ωþ 3

4

�
_φ1

φ0

�
2

þO
�
1

r

�
: ð3:44Þ

Repeating the calculation in Secs. III A, III B, and III C, we
get the sufficient condition

−1 ≤ −
2ωþ 3

4

�
_φ1

φ0

�
2

≤
_φ1

2φ0

≤
1

2
: ð3:45Þ

This result is consistent with inequality (3.21), and can be
transformed into a form

0 ≤
_φ1

φ0

≤ min

�
1;

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωþ 3

p
�
; ð3:46Þ

or

−
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ωþ 3
p ≤

_φ1

φ0

≤ −
2

2ωþ 3
: ð3:47Þ

In spherically symmetric spacetime of BD theory, Jφ is
equal to the rate of the mass loss of the system [13], i.e.,
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_m ¼ −Jφ: ð3:48Þ

Integrating the inequalities (3.46) and (3.47) over the two-
dimensional sphere, then we find the sufficient condition

_φ1 ≥ 0; max

�
−φ0;−

2ωþ 3

4
φ0

�
≤ _m ≤ 0; ð3:49Þ

or

_φ1 < 0; −φ0 ≤ _m ≤ −
φ0

2ωþ 3
: ð3:50Þ

Therefore, in the spherically symmetric spacetimes, due to
the scalar field, the situation in BD is very different from
the one in GR. In GR, the photons can escape to the infinity
without any conditions. However, there is a sufficient
condition of _m to ensure the photons to arrive at infinity
in spherically symmetric spacetime in BD. This is because
the scalar gravitational radiation affects the behavior of the
photons in some sense, whereas there is no gravitational
radiation in any spherically symmetric spacetime in GR.

IV. CONCLUSIONS AND DISCUSSION

In this paper, by using the Bondi-Sachs formalism, we
have studied the asymptotic behavior of the future null
geodesics in BD. We get the sufficient condition that the
photons emitted at large r with r0 ≥ 0 can arrive at infinity.
In GR, the arrival of the photons to the infinity suggests that
the Bondi mass loss cannot be too fast. The upper bound of
j _mj is 0.3820c3=G. In BD, due to the existence of the scalar
field φ, the lower bound is decreased with respect to the
flux of the scalar gravitational radiation. In addition, _m
cannot be arbitrary and has an upper bound when _φ1 is
negative. So there is also a possibility that the photons
cannot arrive at infinity. The situation is similar to the case
in GR.
As we know, the photons can escape to the infinity in the

flat spacetime. Therefore, the photons emitted outwards at
large r are expected to have the same behavior because the
metric there is nearly flat. However, the work in [8]
indicates the asymptotically flat spacetime is not as simple
as we thought. When the gravitational radiation is intense
enough, the photons may not reach infinity. This suggests
there may be a maximum luminosity in the spacetime to
make sure the photons to arrive at infinity. It should be
pointed out here that the statement in this paper does not
provide a proof of the Dyson’s maximum luminosity. We
just provide a clue for the existence of Dyson’s maximum
luminosity.
In GR, from the bound of the rate of the mass loss, we

can find that the luminosity, P, of the asymptotically flat
spacetime has a maximum value Pm, i.e.,

P ¼ j _mjc2 ≤ Pm ¼ 0.3820P�; ð4:1Þ

where P� ¼ c5=G is the so-called one Dyson unit. This
maximum luminosity is first proposed by Dyson long time
ago [9,10]. By considering the radiation of a binary star
system, he got a maximum luminosity Pm ¼ ð125=8ÞP�. In
fact, a lot of works have suggested that there is really a
maximum luminosity for any kinds of radiation. For
example, numerical relativity simulations of critical col-
lapse yield a tighter bound, i.e., Pm ≈ 0.2P�. However, to
get this value, a spherical symmetry has been assumed in
the simulations [20]. Recently, Jowsey and Visser have
studied the bound in Vaidya spacetime and an evaporating
version of Schwarzschild’s constant density star [21]. Then
they found some additional conditions are necessary to get
a bounded luminosity. Otherwise, the luminosity can be
arbitrarily large. Some related discussion on this topic can
be found in [22–24]. All of these analyses are based on
some specific physical processes, and most of them are in
spherically symmetric spacetimes. Obviously, the bound in
present paper does not contradict to all of bounds founded
in these literatures. However, the logic of this paper is
different from theirs. The starting point of our discussion is
the light influenced under the gravitational radiation or
gravitational wave. To ensure the photons, emitted out-
wards in the region where the metric is nearly flat, can
arrive at infinity, the luminosity cannot be too large. The
analysis is performed near the infinity of the spacetime, so
the details of the physical processes deep inside the
spacetime are not necessary. For this reason, our result
is model independent in framework of GR. Finally, in BD,
we have to consider the contribution from the scalar
radiation, and the maximal luminosity has to be enlarged
to one Dyson unit P�.
The lower bound of _m is roughly equal to lose a Planck

mass mp in a Planck time tp. It is so large that such violent
astronomical phenomena cannot happen. In the case of
weak field and low velocity, the energy loss of the binary
star systems is given by

dE
dt

∼ −ðMωÞ103 · G
7
3

c5
; ð4:2Þ

where M is the chirp mass of the binary system and ω is
the frequency of the gravitational waves. So, for a binary
star system, assuming the formula (4.2) can be naively
extrapolated to very high frequency (it is not suitable
because the low velocity condition is broken, and post
Newtonian approximation has to be considered), when
the photons emitted at large r with r0 ≥ 0 cannot escape to
the infinity, the orbit frequency and the frequency of the
gravitational waves are very high. Actually, when the
bound b is saturated, i.e., dE=dt ∼ bc2, we have

ω ∼
1

tp
·

�
mp

M

�
∼ 105

�
M⊙

M

�
Hz:
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This simple investigation implies that the geometrical
optics approximation is still valid for the binary gravita-
tional system with an astronomical chirp mass. So the
model of null geodesics can be used despite of the huge
gravitational radiation of the system. Certainly, in the case
M is less than 10−9 M⊙, the frequency of the gravitational
waves is larger than ω ∼ 1014 Hz, i.e., the frequency of
visible light. In this case, we have to consider the full
Bondi-Sachs formalism in GR or BD with the electromag-
netic field, and find the condition that electromagnetic
waves can arrive at the null infinity. This kind of study may
reveal the influence of the gravitational waves to the
electromagnetic waves in a global way. These need further
study.
Although the phenomenon of this kind of fast mass loss

may not be observed astronomically, it might occur when a
tiny black hole was created in a very high energy experi-
ment in laboratory. If the system can be treated in a classical
way, our results suggest that we may not receive some
photons emitted far away from this tiny black hole if its
mass loss is too fast. Needless to say, the quantum effect
will be dominant in this case. So this classical model will

be failed in this extreme gravitational system, especially,
in the cases where the effect of quantum gravity is
involved.
It has been shown that the range of _m in BD is very

different from the one in GR, especially in the case with a
spherical symmetry. Probably, the lower bound of the mass
loss could impose some restrictions on a given gravity
theory. So, in other gravity theories, it is interesting to study
whether there is a realistic lower bound of _m which could
has some astronomically observable effect.
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