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Accurate waveform models are crucial for gravitational-wave data analysis, and since spin has a
significant effect on the binary dynamics, it is important to improve the spin description in these models.
In this paper, we derive the spin-orbit (SO) coupling at the fifth-and-a-half post-Newtonian (5.5PN) order.
The method we use splits the conservative dynamics into local and nonlocal-in-time parts, and then relates
the local-in-time part to gravitational self-force results by exploiting the simple mass-ratio dependence
of the post-Minkowskian expansion of the scattering angle. We calculate the nonlocal contribution to the
5.5PN SO dynamics to eighth order in the small-eccentricity expansion for bound orbits, and to leading
order in the large-eccentricity expansion for unbound orbits. For the local contribution, we obtain all of the
5.5PN SO coefficients from first-order self-force results for the redshift and spin-precession invariants,
except for one unknown that could be fixed in the future by second-order self-force results. However, by
incorporating our 5.5PN results in the effective-one-body formalism and comparing its binding energy to
numerical relativity, we find that the remaining unknown has a small effect on the SO dynamics,
demonstrating an improvement in accuracy at that order.
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I. INTRODUCTION

Gravitational-wave (GW) observations [1-3] have
improved our understanding of compact binary systems,
their properties, and their formation channels [4,5]. A
crucial component in searching for GW signals and
inferring their parameters is accurate analytical waveform
models, in which spin is an important ingredient given its
significant effect on the orbital dynamics.

Three main analytical approximation methods exist
for describing the dynamics during the inspiral phase:
the post-Newtonian (PN), the post-Minkowskian (PM),
and the small-mass-ratio [gravitational self-force (GSF)]
approximations.

The PN approximation is valid for small velocities and
weak gravitational potential v?/c?> ~ GM /rc* < 1, and is
most applicable for comparable-mass binaries in bound
orbits. Many studies have contributed to improving
the description of the conservative PN dynamics, for
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nonspinning binaries [6-20], at the spin-orbit (SO) level
[21-35], spin-spin [36-44], and higher orders in spin
[45-50]. For reviews, see Refs. [51-56].

The PM approximation is valid for arbitrary velocities
in the weak field GM/rc®> < 1, and is most applicable
for scattering motion since relativistic velocities can be
achieved. It was pioneered by the classic results of
Westpfahl [57,58], with rapid progress using classical
methods [59-65], scattering amplitudes [66—75], effective
field theory [76-80], and worldline quantum field theory
[81,82]. Spin effects were included in PM expansions using
all of these approaches in Refs. [83-96], and radiative
contributions in Refs. [97-101].

The small-mass-ratio approximation m; /m, < 1 is based
on GSF theory, and is most applicable for extreme-mass-
ratio inspirals (see, e.g., Refs. [102—-122] and the reviews
[123-126].) Analytic GSF calculations to high PN orders
were performed at first order in the mass ratio for the gauge-
invariant redshift [127-135] and the spin-precession fre-
quency [136—141]. There has also been recent important
work on numerically calculating the binding energy and
energy flux at second order in the mass ratio [142,143].

The effective-one-body (EOB) formalism [144,145]
combines information from different analytical approxi-
mations with numerical relativity (NR) results, while
recovering the strong-field test-body limit, thereby extend-
ing each approximation’s domain of validity and improving
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the inspiral-merger-ringdown waveforms. EOB models
have been constructed for nonspinning [10,146-150],
spinning [151-166], and eccentric binaries [167-170].
In addition, information from the post-Minkowskian
[62,63,171,172] and small mass-ratio approximations
[173-176] have been incorporated in EOB models.

Recently, a method [177] (sometimes dubbed the “Tutti
Frutti” method [98]) that combines all of these formalisms
has been used to derive PN results valid for arbitrary mass
ratios from GSF results at first order in the mass ratio. The
method relies on the simple mass-ratio dependence of the
PM-expanded scattering angle [64] (see also Ref. [86]),
making it possible to relate the local-in-time part of the
Hamiltonian, or radial action, to GSF invariants, such as the
redshift and precession frequency. The nonlocal-in-time
part of the conservative dynamics, due to backscattered
radiation emitted at earlier times, is derived separately,
since it is calculated in an eccentricity expansion that differs
between bound and unbound orbits. This approach has
been used to derive the SPN conservative dynamics for
nonspinning binaries except for two coefficients [177,178],
the 6PN dynamics except for four coefficients [179,180],
and the full 45PN SO and 5PN aligned spin;-spin,
dynamics [181,182].

In this paper, we determine the 5.5PN SO coupling for
the two-body dynamics, which is the fourth-subleading PN
order, except for one coefficient at second order in the mass
ratio. Throughout, we perform all calculations for spins
aligned, or antialigned, with the direction of the orbital
angular momentum. However, the results are valid for
precessing spins [181], since at the SO level the spin vector
only couples to the angular momentum vector.

The results of this paper and the procedure used can be
summarized as follows:

(1) In Sec. II, we calculate the nonlocal contribution to
the 5.5PN SO Hamiltonian for bound orbits, in a
small-eccentricity expansion up to eighth order in
eccentricity. We do this for a harmonic-coordinates
Hamiltonian, and then incorporate those results
into the gyro-gravitomagnetic factors in an EOB
Hamiltonian.

(2) In Sec. III, we determine the local contribution by
relating the coefficients of the local Hamiltonian to
those of the PM-expanded scattering angle. We then
calculate the redshift and spin-precession invariants
from the total Hamiltonian, and match their small-
mass-ratio expansion to first-order self-force (1SF)
results. This allows us to recover all of the coef-
ficients of the local part except for one unknown.
However, by computing the EOB binding energy
and comparing it to NR, we show that the effect of
the remaining unknown on the dynamics is small.

(3) In Sec. IV, we complement our results for unbound
orbits by calculating the nonlocal part of the gauge-
invariant scattering angle, to leading order in the
large-eccentricity expansion.

(4) In Sec. V, we provide two gauge-invariant quantities
that characterize bound orbits: the radial action
as a function of energy and angular momentum,
and the circular-orbit binding energy as a function of
frequency.

We conclude in Sec. VI with a discussion of the results, and
in the Appendix we provide a summary of the quasi-
Keplerian parametrization at leading SO order. The main
results of this paper are provided in the Supplemental
Material as a Mathematica file [183].

A. Notation

We use the metric signature (—, 4, +, +), and units in
which G = ¢ = 1, but sometimes write them explicitly in
PM and PN expansions for clarity.

For a binary with masses m; and m,, with m, > my, and
spins S; and S,, we define the following combinations of
the masses:

mym, H
M = = s = —,
my + my, 1z M V=0
mg my — niy
=—, 0=—"—7— 1.1
9= I (1.1)
We define the mass-rescaled spins
S S
alz—l, azz—z, (1.2)
my mp
the dimensionless spin magnitudes
|81 S|
){12725 ),/2:727 (13)
my m;
and the spin combinations
S=8,+5, s="2g Mg
my mp
1 1
xs=500+x)  xa=500-x0). (1.4)

We use several variables related to the total energy E of
the binary system: the binding energy E = E — Mc?, the
mass-rescaled energy I' = E/M, and the effective energy
E; defined by the energy map

E
E—M\/1+2u< °ff—1>.
Y2

We also define the asymptotic relative velocity v and
Lorentz factor y via

E s \/}’2 -1 1

7/: s V=—"—, <> 7/:
H /4

(1.5)
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and define the dimensionless energy variable

e=y*—1=y%?, (1.7)
(note that & used here is denoted as p2, in Ref. [178]).
The magnitude of the orbital angular momentum is
denoted by L, and is related to the relative position r,
radial momentum p,, and total linear momentum p via

2

p2=p3+;- (1.8)

We often use dimensionless rescaled quantities, such as

rphys Lphys [Jghys
r=r L= My pPr= v
Ephys thys
E="—  g="" (1.9)
H H

and similarly for related variables, e.g., E = EPYS/y, etc. It
should be clear from the context whether physical or
rescaled quantities are being used.

II. NONLOCAL 5.5PN SO HAMILTONIAN
FOR BOUND ORBITS

The total conservative action at a given PN order can be
split into local and nonlocal-in-time parts, such that

SnPN

nPN
tot S

nPN
loc S

nonloc’

(2.1)

where the nonlocal part is due to tail effects projected
on the conservative dynamics [9,184,185], i.e., radiation
emitted at earlier times and backscattered onto the binary.
The nonlocal contribution starts at 4PN order, and has
been derived for nonspinning binaries up to 6PN order
[10,178,179]. In this section, we derive the leading-order
spin contribution to the nonlocal part, which is at
5.5PN order.

The nonlocal part of the action can be calculated via the
following integral:

GM dr i
Sronioc = ?/dtpfzs/c/m}—sp (n.1). (22)

where the label “LO” here means that we include the
leading-order nonspinning and SO contributions, and
where the Hadamard partie finie (Pf) operation is used
since the integral is logarithmically divergent at # = ¢. The
time-split (or time-symmetric) GW energy flux F spht( 1)
is written in terms of the source multipole moments as [9]

spli G|l 3 3 16 3
Fio'(0.0) = 5 |1 O (1) + 5575 (0757 (1) .

(2.3)

The mass quadrupole 7%/ and the current quadrupole J% (in
harmonic coordinates and using the Newton-Wigner spin-
supplementary condition [186,187]) are given by [188,189]

3 .
Ij = m1x< le> +§X§ (’Ul X S1>/)

4 d
—ﬁzxi(xIXS) +1<—)2
3 i
T =mxt () xo)) + 2280 412, (24)

2¢

where the indices in angle brackets denote a symmetric
trace-free part.

As was shown in Refs. [9,10], the nonlocal part of the
action can be written in terms of t = ¢ — ¢ as

nonloc nonloc

SLO  — / dtSHO, (1),

GM dr
—3 Pst/c H

+ 2 = f‘Ph‘( t.1)1In <f> .
N

spli
SH oo (1) = = Fio (1,1 +7)

(2.5)

Following Ref. [178], we choose the arbitrary length scale s
entering the partie finie operation to be the radial distance r
between the two bodies in harmonic coordinates. This has
the advantage of simplifying the local part by removing its
dependence on In r.

A. Computation of the nonlocal Hamiltonian
in a small-eccentricity expansion

The integral for the nonlocal Hamiltonian in Eq. (2.5)
can be performed in a small-eccentricity expansion using
the quasi-Keplerian parametrization [190], which can be
expressed, up to 1.5PN order, by the following equations:

r=a,(l—e.cosu), (2.6)
£ =nt=u-—esinu, (2.7)
I+
¢ = 2K arctan l 1= ::: tan%} . (2.8)

where a, is the semimajor axis, u is the eccentric anomaly,
¢ is the mean anomaly, n is the mean motion (radial angular
frequency), K is the periastron advance, and (e,, e,, e(/,) are
the radial, time, and phase eccentricities.

The quasi-Keplerian parametrization was generalized
to 3PN order in Ref. [191], and including SO and spin-
spin contributions in Refs. [192,193]. In Appendix A 1 we
summarize the relations between the quantities used in
the quasi-Keplerian parametrization and the energy and
angular momentum at leading SO order. Using the
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quasi-Keplerian parametrization, we express the source
multipole moments in terms of the variables (a,, ¢,, 1), and
expand the moments in eccentricity.

In the center-of-mass frame, the position vectors of the
two bodies, x; and x,, are related to x = x; — x, via [194]

14 . .

— = — el Sk—S*k,
TR TErTA )
i _ M
Xy =——X

e pvi(Sk=8%),  (2.9)

v
M 2036M

where v = v; — v,, and hence the source moments from
Eq. (2.4) can be written as

1 .
1;; = Mux'ix/) +3 (40%(8; x x)7)

[

—5x%(8; xv))) +1 <—>2},

i ) LS M2 i) M i
Jij=Méux'(vxx)7 +o- [ﬁﬂ 7 —ﬁx< SQ] . (2.10)

In polar coordinates,

= r(cos ¢, sin¢),

= i(cos ¢, sin ) + rh(— sin b, cos ), (2.11)

32
F (1t +7) = u2a4n6{ 5 cos(2nt) +

812
15

with r and ¢ given by Egs. (2.6) and (2.8), e, and e, related
to e, via Egs. (A12) and (A13), and 7 and qﬁ are given by

e;sinu

Va,(1—e,cosu)’

a, —a,e’

i‘:

p=—vr L 2.12

¢ a*(1 — e, cosu)? (2.12)
which are only needed at leading order. We then write the
eccentric anomaly u in terms of time ¢ using Kepler’s
equation (2.7), which has a solution in terms of a Fourier-

Bessel series expansion,

u:nt—&—i%

k=1

Ji(ke,) sin(knt)

~nt + e, sin(nt) + % e? sin(2nt) + (2.13)

We perform the eccentricity expansion for the nonlocal
part up to O(e¥) since it corresponds to an expansion to
O(p?), which is the highest power of p, in the 5.5PN SO
local part. However, to simplify the presentation, we write
the intermediate steps only expanded to O(e,).

Plugging the expressions for (r,¢.7 ¢) in terms of
(a,, e, t) into the source moments used in the time-split
energy flux (2.3) and expanding in eccentricity yields

e;[9 cos(nt + 3nt) + 9 cos(nt — 2nt) — cos(nt — nt) — cos(nt + 2n1)]}

+ —n6af/2{48nf sin(2nt) (284 — vys + 2xs) — 32 cos(2nt)(98y4 — Svys + Yys)

3nt
—cos(nt)(Sys —4uys + xs) + e, cos (nt + %) [cos( > ) (352684 + 3525 — 157uys)

Sne 3 Sne
~27 cos( ] > (848y, — 4Tuys + 84y5) — 367 <sin (%) 9si n( ; )) (284 — vys + 2;45)] }

+0(e?).
the orbit average of which is given by

<j:-sp11t(t 41 / J,:»spht t I+T)

32 8
= ?V2n6a4 cos(2nz) +— 5 Vnba;?

—32cos(2n7) (984 — Svys + 9)55)] + O(e?).

(2.14)

[48m sin(2n7) (28y4 — vys + 2ys) — cos(nz)(Sya — dvys + xs)

(2.15)

In the limit 7 = 0O, this equation agrees with the eccentricity expansion of the energy flux from Eq. (64) of Ref. [193].
Then, we perform the partie finie operation with time scale 2s/c using Eq. (4.2) of Ref. [9], which reads

oty [“a0) = [Pl =90+ [T at0)

(2.16)
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The first line of Eq. (2.5) yields
szS/C/ ™ F(t 1+ 1))
_ 64 5 6 4 16 5 6 52
=g vna HIn(4ns) + yg] — Y {[2895;{A + (289 — 164v)x5| In(ns)
+[28975 + 48 + 5772|674 + [7£(289 — 1640) — 120(2 + 271n2) + 48 + 577 In 2];(5} +O@E),  (2.17)

while the second line yields

' 64 16
2<fi%t(t, 1)) 1In <K> = ?y2n6a‘,‘ In <&) T 21n%a) In <a )[2896){A + (289 — 164v)y5] + O(e?).  (2.18)

N N

Adding the two expressions removes the dependence on s.
When performing the calculation to O(e?), we obtain the following Delaunay-averaged nonlocal Hamiltonian:

2 2
(SHO, ) = Ia/_f [A%N(e,) + B*N(e,) Ina,] + 163)/(; {51854 a, 65—4 — 43ﬁln2 - 1128 YE
e 12908 ha, 3816 2172 3304 10206 3]
5 5 5 15 5
e 43843 o, 37686 114991 201362, 48843 3]
15 15 30 5 4
([55313 55313 961807 6896921 3236031 24296875
R e S L ¥ TR T m‘Wl“S]
Lo 134921 o 134921 135264620 04244416, 12145234375 o 1684497627 ]}
6 3 2880 135 27648 5120
Vs [ 64 320 (896 1168 5760 464 584 448y
W{‘?*? ( 5 ‘?)”* (? 3 )1“2 (F_ 5 )1
L {2172 et <4216u ~ 5816) . (@ ~ @) ot (6561v ~ @) 03
5 15 5 5 15 15 5 5
<2908 _ 21081/> " } " {114991 _ 38702 (621341/ ~ 87686) )
5 5 " 30 15 15 15
. (386414u _ 201362) 2 (@ _ 284311/) 34 (% ~ 31067u> e ]
15 5 4 4 15 15 ’
] {961807 _ 2157030 <1937181/ _ 55313) <6896921 _ 12343118v> -
"I 60 20 15 3 )0 45 135
N (3768201y ~ 3236031) 3 <92421875u ~ 24296875) s+ (@ _ 96859u> na ]
320 160 1728 288 6 15 "
o[135264629 454911770 (938500 134921 1189661230 94244416
f{ 2880 1440 ( 33 )75+( 270 135 )1112
(53783748% ~ 1684497627> (12145234375 ~ 3790703125y> 5
2560 5120 27648 13824
+ <1346921 - 469325”> In a,] } +0(el), (2.19)

where the functions A*N(e,) and B*N(e,) in the 4PN part are given in Table I of Ref. [178].
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B. Nonlocal part of the EOB Hamiltonian

The (dimensionless) EOB Hamiltonian is given by the
energy map

1
HEOB = ; 1 + 2D(Heff - 1), (220)

where the effective Hamiltonian is

Her = \/A()1

1
+ WL lgs(r, p,)S + gs-(r, p,)S*].

+ p>+ (A(r)D(r) = 1)p; + O(r, p,)]

(2.21)

The nonspinning potentials A, D, and Q were obtained
at 4PN order in Ref. [10]. The 4.5PN gyro-gravitomagnetic
factors, gg and gg:, are given by Eq. (5.6) of Ref. [182], and
are in a gauge such that they are independent of the angular
momentum. Note that the gyro-gravitomagnetic factors are
the same for both aligned and precessing spins, since the spin
vector only couples to the angular momentum vector at the
SO level. Hence, even though the calculations are specialized
to aligned spins, the final result for the gyro-gravitomagnetic
factors is valid for precessing spins.

Splitting the potentials A, D, Q into a local and a non-
local piece, and writing the gyro-gravitomagnetic factors as
|

gs = 24 ... +%(Q§SPNIOC _i_ggSPNnonIOC)’
3 1
Jg = 5 44 g (gfsx .5PN,loc + gg;SPN,nOI’IIOC) (2.22)

yields the following LO nonlocal part of the PN-expanded
effective Hamiltonian:

1
H. = H'S% + gHg;’fnlOC + O(5PN, 6.5PNSO),
nonloc 1 nonloc pnonloc ,,2 nonloc
H _E(A + DO pi 4 Qromec)
+ vL (83 5.5PN.nonloc S*g SSPN nonloc] (2.23)
}"

Then, we write the nonlocal piece of the potentials and
gyro-gravitomagnetic factors in terms of unknown coeffi-
cients, calculate the Delaunay average of H2" in terms of
the EOB coordinates (a,, ¢,), and match it to the harmonic-
coordinates Hamiltonian from Eq. (2.19). Since harmonic
and EOB coordinates agree at leading SO order, no canonical
transformation is needed between the two at that order.

This yields the results in Table IV of Ref. [178] for the
4PN nonspinning part, and the following SO part expanded
to O(p}):

5.5PN,nonloc
s
292 32 584 2 12782 32744 11664 p,
12503 635456 218943 8246 176799232 2517237 3015625 e
+ - In2 + - In3 — In5 | —
15 9 5 225 r
503099 898982848 6352671875 31129029
_ In2 1 8 10
( 350 180 2T TR M 400 n3> r +0(p; )}’
5.5PN,nonloc
o
3 32 2912 | /35024 1024y, 93952 10692 512\ p2
== 16Inr———32 ——1In2 — In2 — In3 —l
2”{( NS T T S ) ( 45 5 45 T 75 ) E
6
9232 3 2978624 n2 4 2060641 3 p, 33048 1497436672 a 1199934 n3— 12593750 ns Py
15 45 5 25 2025 r
651176 9076395968 2226734375 697653 g 10
( 555 2005 In2+ 1134 In5 7 1n3>p,+0(p, )¢ (2.24)

III. LOCAL 5.5PN SO HAMILTONIAN AND
SCATTERING ANGLE

In this section, we determine the local part of the
Hamiltonian and scattering angle from 1SF results by
making use of the simple mass dependence of the PM-
expanded scattering angle.

A. Mass dependence of the scattering angle

Based on the structure of the PM expansion, Poincaré
symmetry, and dimensional analysis, Ref. [64] (see also
Ref. [86]) showed that the magnitude of the impulse (net
change in momentum), for nonspinning systems in the
center-of-mass frame, has the following dependence on the
masses:
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Q= (Apy,Ap")'2
o 2Gm1m2

5 QIPM +—

(m QoM + m, QM
G2
—I-?(m%QiEM + mmy Qi +m Qi%M) +--,

(3.1)

where each PM order is a homogeneous polynomial in the
two masses. For nonspinning bodies, the Q’s on the right-
hand side are functions only of energy (or velocity v).
This mass dependence has been extended in Ref. [182] to
include spin, such that

QM = QM (4 a, ap
=L
S mymy, b b

_ nPM a1 ~npM
o Q:ln’lméa()(v) + b Q:ln’iméal (U)

a2 % qrem
b mj mza

(v) + O(a}), (3:2)

where b is the covariant impact parameter defined as
the orthogonal distance between the incoming world-
lines when using the covariant (Tulczyjew-Dixon) spin-
supplementary ~condition [195,196] p;,S;* =0. (See
Refs. [85,86,182,197] for more details.)

The scattering angle y by which the two bodies

are deflected in the center-of-mass frame is related to Q
via [64]

sin{: g ,
2 2P

(3.3)

where P, is the magnitude of the total linear momentum
in the center-of-mass frame and is given by

myn,

P.. = 21, 3.4
em =g \/7 (3.4)
where we recall that
E? = m? +m3 + 2m myy
=M?[1+2u(y —1)],
1
y = . 3.5
— (3.5)

Therefore, the scattering angle scaled by E/m;m, has the
same mass dependence as Q. (Equivalently, y/T" has the
same mass dependence as Q/u, where I'=E/M.)

For nonspinning binaries, and because of the sym-
metry under the exchange of the two bodies’ labels, the
mass dependence of y/I" can be written as a polynomial
in the symmetric mass ratio v. This is because any

homogeneous polynomial in the masses (m;,m,) of
degree n can be written as polynomial in v of degree
[n/2]. For example,

cym3 + cymimy + comym3 + ¢;m3

= M>3[c; + (¢; =3¢y, (3.6)
for some mass-independent factors c;. Hence, at each
nPM order, y/T" is a polynomial in v of degree
[(n—1)/2].

When including spin, we also obtain a dependence on
the antisymmetric mass ratio § = (m, — m,)/M, since

ai(cym3 + camimy + camym3 + cym3)
= M3a,(a; + 06 + asv + agLd), (3.7)
where a; are some linear combinations of c;.
Thus, we find that the scattering angle, up to 5SPM
order and to linear order in spin, has the following mass
dependence:

X =xo +xa+0(@?), (3.8)

Xo _GM o (GM\2yq , (GMYPro  sou
F_bx1+<b)x = X0 4 X2

+ <G;W ) X9 + X3
)

X2 + X% 4+ 2X0] + .,

(3.10)

where the X~ are functions only of energy/velocity.
Since v and v6 are of order ¢ when expanded in the
mass ratio, their coefficients can be recovered from 1SF
results.

This mass-ratio dependence holds for the fotal (local+
nonlocal) scattering angle. However, by choosing the split
between the local and nonlocal parts as we did in Sec. II,
i.e., by choosing the arbitrary length scale s to be the radial
distance r, we get the same mass-ratio dependence for the

124015-7



MOHAMMED KHALIL

PHYS. REV. D 104, 124015 (2021)

local part of the 5.5PN SO scattering angle. This is con-
firmed by the independent calculation of the nonlocal part
of the scattering angle in Eq. (4.23) below, which is linear
in v. (In Ref. [178], the authors introduced a “flexibility”
factor in the relation between s and r to ensure that this
mass-ratio dependence continues to hold at SPN order for
both the local and nonlocal contributions separately.)

Terms independent of v in the scattering angle can be
determined from the scattering angle of a spinning test
particle in a Kerr background, which was calculated in
Ref. [198]. For a test body with spin s in a Kerr background
with spin a, the SPM test-body scattering angle to all PN
orders and to linear order in spins can be obtained by
integrating Eq. (65) of Ref. [198], leading to

(3v? +2)(4a + 3s)

o = GM[ZU +2 4(a+s)}+ﬂ<G_M>2{3(vz+4)_

b 2 b 492

2bv? ]

v bv
N GM\3[2(50% + 45v* + 1502 — 1)
b 300

4(5v* +100% +1)(3a + 2S):| N <GM>4 [105(04 + 1622 + 16)
2=
bv®

b 64v*

21(50* + 2002 + 8)(8a + ssq N <G_M>5 {2(211110 + 52508 + 10500° 4 2100* — 152% + 1)

16bv° b

4(630% + 4200° + 378v* + 36v? — 1)(5a + 3s)

_ ] + O(G%) + O(a?, as, s?).

3b1°

5910

(3.11)

Plugging this into Eq. (3.9) determines all of the X;(v) and X?(v) functions. Hence, we can write the SPM SO part of the

local scattering angle, expanded to 5.5PN order, as follows:

e b{<G2A;1>( 4y>+ﬂ<%>2[<§_%)v+@5 21

GM
+ (Tb> [(26 = 10 + X¥,0)v + (205 — 100 + X4;0)v3
v

GM\* 63 273 315 1365
—I—7r<%) [(Xj”léu—FXZly)v + <75——+Xi’§51/+X53u) v+ <—5——+

4

3156 1365
32 32

)]
+ (108 = 50 + X45v)v° + Xy 00" + Xyov1°]

g 2 XLov + XZ51/> V3

+ X%ov + XY 71/) v’ + (X3ov + XZQU)09:|

GM\3[( 45 16 2
+<—> K —+ = +X‘§”15u+X11/—|—X§211/2>v+(485—192+X‘§§51/+Xg31/+xg'31/2)v3

v2b 3
+ (5048 — 2016 + X%y + X&sv + X4e1?) v + (5605 —

+ (846 — 336 + XEov + Xev + X412 v ]}+1<—>2,

where the Xl”.j and XfJ” coefficients are independent of the
masses, and can be determined (as explained below) from
1SF results. The coefficient ng9 could be determined from
future second-order self-force results.

B. Relating the local Hamiltonian
to the scattering angle

The scattering angle can be calculated from the
Hamiltonian by inverting the Hamiltonian and solving
for p,(E,L,r), and then evaluating the integral

2240 + X% 60 4+ X&v + X12)o”

(3.12)

Ip,(E.L.r)
OL

dr —r,

x=—2/m
ro

where r, is the turning point, obtained from the largest
root of p,.(E,L,r) =0. E and L represent the physical
center-of-mass energy and canonical angular momentum,
respectively.

As noted above, we express the scattering angle in terms
of the covariant impact parameter b, but use the canonical
angular momentum L in the Hamiltonian (corresponding to

(3.13)
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the Newton-Wigner spin-supplementary condition). The
two are related via [85,86]

L =Ly, +AL,
H
Loy = Pc.m.b = f}/l)b,
r-1
AL:M al—i-az—f(az—al) s (314)

which can be used to replace L with b in the scattering
angle. We can also replace E with v using Eq. (3.5).
Starting from the 4.5PN SO Hamiltonian, as given by
Eq. (5.6) of Ref. [182], determines all of the unknown
coefficients in the scattering angle in Eq. (3.12) up to that
|

order. Writing an ansatz for the local 5.5PN part in terms of
unknown coefficients, such as

4 6

5PN, Yos p; Pr 7]7 +
g e = A T3 3T g0 5t el GroP?-
SPN.I 9 p; r; P + g
55PN Joc 04 953 3’ + giy 2’ + 94 rr oD}

(3.15)

calculating the scattering angle, and matching to Eq. (3.12)
allows us to relate the ten unknowns in that ansatz to
the six unknowns in the scattering angle at that order. This
leads to

1 3X% 35Xy 3X% 309077 354497 235111 3X% 58372
5.5PN,loc 59 ov 39 v 59 2 59
=2 —OX% — X4, — - _200
s {r4 {”( 32 BT e T T T s T T a0m ) v ( 2304 32 192 )
4138 p2[3f 82590 /198133 10877r 35X, 1125
_Z 2r2” _ - 2X% + —2X4 +
64 512}+r3[8 128 +( 384 ) < R S AT )]
L PE[_10TF T3S47° 319132 (8597 35x
2| 64 512 256 128
L PE[ISTI 113970 25532 893 189 | 945, 99,2 27y
r | 320 512 356 26| TP 6 T sz T 256 128 )
sspwioe 3 [L[ISF LA (0L 3K asXy o, 3K 131519 9014927 1701
5 214 512 128 93 16 ¥ 3 576 12288 512
3xv2 12322 29081\] p2[171* 48%° (77201 123z 27
12 59 L Pr _ _ 2t
64 512 P 256 8 256 16 64
35x 86897 27697x° ST 1374 139053 121352 2525
G T ) N bpulecndd i Y L R SAL Ll -
768 2048 2| 512 128 512 512
0569 35x L PEI6077S 23917 8792, 7w, 3555
r | 2560 640 512 ' 32 512
9454 3155 10532 189y 693
8
= 1
[512 128 ' 512 8 +512H’ (3.16)

where we switched to dimensionless variables. We see that
the five unknowns (X%, XZQ, X3, Xk, X%) from the scat-
tering angle only appear in the linear-in-v coefficients of
the gyro-gravitomagnetic factors up to order p¥, while the
unknown Xg; only appears in the quadratic-in-v coeffi-
cients of the circular-orbit (1/74) part. All other coefficients
have been determined, due to the structure of the PM-
expanded scattering angle, and from lower-order and test-
body results.

C. Redshift and precession frequency

To determine the linear-in-v coefficients in the local
Hamiltonian from 1SF results, we calculate the redshift and

|
spin-precession invariants from the fotal (local + nonlocal)
Hamiltonian, since GSF calculations do not differentiate
between the two, and then match their small-mass-ratio
expansion to 1SF expressions known in the literature.

An important step in this calculation is the first law
of binary mechanics, which was derived for nonspinning
particles in circular orbits in Ref. [199], generalized to
spinning particles in circular orbits in Ref. [200], to non-
spinning particles in eccentric orbits in Refs. [201,202],
and to spinning particles in eccentric orbits in Ref. [182].
It reads

dE = Q,dI, + Q4dL + ) " (zidm; + QgdS;).  (3.17)
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where Q, and €, are the radial and azimuthal frequencies,
I, is the radial action, z; is the redshift, and QSi is the spin-
precession frequency.

The orbit-averaged redshift is a gauge-invariant quantity
that can be calculated from the Hamiltonian using

Z1—<8_H>—i a_Hdt

N
Gml Tr aml ’ (3 8)

where T, is the radial period. The spin-precession fre-
quency Qg and spin-precession invariant y are given by

OH 1 OH
%= (35,) =7, f o5,

(3.19)

In evaluating these integrals, we follow Refs. [134,141] in
using the Keplerian parametrization for the radial variable

1
r:up(1+ecos§)’ (3:20)

where u,, is the inverse of the semilatus rectum, e is the
eccentricity, and ¢ is the relativistic anomaly. The radial and
azimuthal periods are calculated from the Hamiltonian

using
= (OH\'dr
T.=¢dt=2 —d¢,
7{ /0 <3Pr> d& :

=OH (OH\~!dr
T, = =2 — —d¢.
o=fan=2 [ (5,) e

Performing the above steps yields the redshift and spin-
precession invariants in terms of the gauge-dependent u,,
and e, i.e., z;(u,,e) and y(u,, e). We then express them
in terms of the gauge-independent variables

(3.21)

(3.22)

3x

x=(MQy)*3, =, (3.23)

where k=T,/(2z)—1 is the fractional periastron
advance. The expressions we obtain for z;(x,:) and
w(x,1) agree up to 3.5PN order with those in Eq. (50)
of Ref. [134] and Eq. (83) of Ref. [141], respectively.

Note that the denominator of 1 in Eq. (3.23) is of order
1PN, which effectively scales down the PN ordering such
that, to obtain the spin-precession invariant at fourth-
subleading PN order, we need to include the SPN non-
spinning part of the Hamiltonian, which is given in
Refs. [177,178].

D. Comparison with self-force results

Next, we expand the redshift z; (x, 1) and spin-precession
invariant y| (x, 1) to first order in the mass ratio g, first order
in the massive body’s spin a, = a, and zeroth order in the
spin of the smaller companion a;. In doing so, we make use
of another set of variables (y, 1), defined by

2/3 _ X
(1+¢)**"
3y - 1
T, /2n) -1 (1+q77

y = (myQy)

=

(3.24)

where the mass ratio g = m;/m,.
Schematically, those expansions have the following
dependence on the scattering-angle unknowns:

21y A) =+ gl a{Xso. Xio — X5, X — XS},
w1 4) =+ g{ X5 Xig + X5 X5 + XS5} (3.25)

which can be seen from the structure of the scattering angle
in Eq. (3.12). In those expressions, the O(a) part of the
redshift depends on the unknown X%, and the difference of
the two pairs of unknowns (X4y, X34) and (X%, X%), while
the spin-precession invariant depends on X%y and the sum
of the two pairs of unknowns. This means that solving for
X, requires the 1SF result for either z; ory,, while solving
for the other unknowns requires both.

Hence, to solve for all five unknowns, we need at least
three (or two) orders in eccentricity in the redshift, at
first order in the Kerr spin, and two (or three) orders in
eccentricity in the spin-precession invariant, at zeroth
order in both spins. Equivalently, instead of the spin-
precession invariant, one could use the redshift at linear
order in the spin of the smaller body a;, but that is known
from 1SF results for circular orbits only [133]. Incidentally,
the available 1SF results are just enough to solve for
the five unknowns, since the redshift is known to O(e*)
[132,134,203] and the spin-precession invariant to
O(e?) [139].

The last unknown X’§29 in the 5.5PN scattering angle
appears in both the redshift and spin-precession invariants
at second order in the mass ratio, thus requiring second-
order self-force results for circular orbits.

To compare z;(y,4) and y(y, 4) with GSF results, we
write them in terms of the Kerr background values of the
variables (y, 1) expressed in terms of (u,,, e). The relations
between the two sets of variables are explained in detail in
Appendix B of Ref. [182], and we just need to append to
Egs. (B16)—(B20) there the following PN terms:
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Yy, €) = yo(up, €) + ay(u,, e) + O(a?),
Muy. e) = Ao(u,, e) + al,(u,, e) + O(a?),

4829¢*
ya(up’e) = ...+ ( 8136 —498462> u]lj3/27
4671  13959¢%*  19657¢*
Al €) = +( R ‘- 126 )u}al/z- (3.26)

We obtain the following 1SF part of the inverse redshift U; = 1/z; and spin-precession invariant y:

la

U, = U(O) + aU(l(L)z) + q(U{S(lf + aU'SF) + O(g%, a?),

v =y + a4+ O(¢2, a), (3.27)
ISF _ 5/2 2 11764 7/2 28762 627764 9/2
Uy, 3- uy "+ | 18 —4e )W 87 + TR
3800 241z (5876 56977\ , (20257 112
- —3547 ) e* | ul
+[9 9 +<3 64 )e+<128 )e}””
3X% 35Xy 3XY 179177% 2027413 2336y 9281n2 1168Inu
SX&/ _ 59 39 8XY 59 E p
+[ L vt T e TTs0 T 15 3 15
48321nu 21X% 175Xy 21X4,  1824112% 31389241 9664y
2 P oAX0v — 59 39 24X 59 E
¢ < 5w Tg Ty v g T T1s36 T 2880 15
1248 1In u 63X 175Xy 63X%, 2496y,
~17281n2 + 29161n3> + et <—T”—42x;§g + 3259 - AXy - 3259 -
2003937 137249131 782912In2  3287791n3\| 13/
_ _ - , 3.28
1024 7680 15 10 ﬂ”” (3.28)
9 739 1237 (341 12377
ISF _ _ 7 2\.2 ez - 21,3
Vi = ”F+<4+e>“"+[16 64 +<16 256 )e]“"
N 6281nu, N 316977> 587831 1256y L 296, 5 729In3
15 6144 2880 15 15 5
,(268Inu, 164123 23729z 536y, 11720In2  10206In3\] ,
e - - - u
5 480 4096 5 3 5 P
¢ Jaxa - 3X% 35Xy, 4, 3XY, | 679311 17> 22306y, 115984853 | 22058In2 _313471n3
16 8 16 24576 35 57600 105 28
11153 4248047 15X% 35XY 15XY, 48956077> 22682y
E— | 2 1 X(Sp 1 e ) 18XY. — 59 _ E
35 e ( P A TR S TR T 16384 15
| 44301331n3  9765625In5 _ 4836254In2 _ 113411nu,\ ] (3.29)
u,. .
320 1344 105 15 r

These results can be directly compared with those derived in GSF literature. In particular, for the redshift, we match to
Eq. (4.1) of Ref. [132], Eq. (23) of Ref. [203], and Eq. (20) of Ref. [134], while for the precession frequency, we match to
Eq. (3.33) of Ref. [139]." The matching to 1SF results leads to the following solution for the unknown coefficients in the
scattering angle:

'Note that the O(ezuf,) term in Eq. (3.33) of Ref. [139] has a typo, but the correct expression is provided in the Black Hole
Perturbation Toolkit [204].
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, 26571
39 —"TTEET’
o 533669 97585z
49774800 8192 °
wo _ 403129 N 8082372
49 4800 8192 °
wou _ 285673 24772
M 240 16
2
X, — 402277099 ~ 4113;? ' (330

Note that all of the logarithms and Euler constants, which are purely nonlocal, cancel between GSF results and those in
Egs. (3.28) and (3.29), thus providing a good check for our calculations.

Another check would be possible once 1SF results are computed at higher orders in eccentricity, since one could directly
compare them to our results for the redshift and spin-precession invariants that are provided in the Supplemental Material
[183] expanded to O(e).

E. Local scattering angle and Hamiltonian
Inserting the solution from Eq. (3.30) into the scattering angle in Eq. (3.12) yields

F-3{ (G D (-2

GM\3 77 177 26571
—— 26 —10 206 — 100 + 10v)23 106 — 50 + — S —w’ J
+<v2b> [( Jo+( + 10v)v +< +21/>v +we +11201/v}
GM 63 273 3 39 3 315 1365 45 777 5

L (3156 1365 (257 251\ (23717 7337 N\
2 3 96 256 )% 96 256 )°)"

(533669 9758572 - 8082372 403129 .
4800 8192 ) 8192 4800 )©)"
GM\5 46 16 3 2\, 5
7 —l— 7)Y + (486 — 192 — 46v + 32v)v° + (5045 — 2016 — 1096y + 10320 — 160°)v
21995 8072 150220 27557
5 — 224 e I - — 16812 |’
+(560 0+( 5 9 )l/—l—( 7 36 )1/ 68u)v
285673 24777 402799 413572 )
465 — - 5 - X212 ) 0° 1 < 2. 31
+(85 336+<240 16 >u+(270 44 >u+ 591/>v}}+ < (3.31)

For the gyro-gravitomagnetic factors, which are one of the main results of this paper, substituting the solution (3.30) into
Eq. (3.16) yields the following local part:

S SPNloc V4132 03Xy, 58322 235111 620417% 11646877 1
gy =248 = —— - - + - =
64 512 32192 2304 3072 57600

304 82590 (198133 10872%\ , . (3612403 2230122\ ] p?
+ | = - + - 2+ - v| 5
§ 128 384 128 6400 512 r

" 10704 7354703 n 319132 8337v p_‘,1 157704 1139707 255312 8931 p_6
| o4 512 256 256 2 320 512 256 256 | r
(18904 945,° 992 27u]
32
T Tes T2 256 128] } (3:32)
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gsmes _ §{ [_5_y4 L L (_x_g; Rt 29081) N (236637:2 ~ g)y ~ g] 14
21 128 32 8 16 = 384 3072 2 128] r
N 5704 16313 (77201 _41;;2)U2 N <M _48297r2>y_ 9 ] P}
64 2 192 4 160 384 16]
e 4590* 463503 +4045v2 107v 2525} pi {535%4 _ 197 2932 77w @} pe
128 32 128 12 384 2 640 160 128 ' 24 ' 128 r
31504 10503 3512 63v 231
Tl T2 T s 3_24“?8} p§}' (3:33)

F. Comparison with numerical relativity

To quantify the effect of the 5.5PN SO part on the
dynamics, and that of the remaining unknown coefficient
X’S’;, we compare the binding energy calculated from the
EOB Hamiltonian to NR. The binding energy provides a
good diagnostic for the conservative dynamics of the binary
system [174,205,206], and can be calculated from accurate
NR simulations by subtracting the radiated energy E 4
from the Arnowitt-Deser-Misner (ADM) energy Eapy at
the beginning of the simulation [207], i.e.,

Exg = Eapm — Erag — M. (334)

To isolate the SO contribution E5° to the binding energy,
we combine configurations with different spin orientations
(parallel or antiparallel to the orbital angular momentum),
as explained in Refs. [208,209]. One possibility is to use

1.

ESO(v.y.x) == [E(v.y.x) — E(v.—x. —x)).

: (3.35)

where y here is the magnitude of the dimensionless spin.
This relation subtracts the nonspinning and spin-spin parts,
with corrections remaining at order y*, which provides a
good approximation since the spin-cubed contribution to
the binding energy is about an order of magnitude smaller
than the SO contribution, as was shown in Ref. [209].
We calculate the binding energy for circular orbits from
the EOB Hamiltonian using Epop = Hpog — M while
neglecting radiation reaction effects, which implies that
Egop is not expected to agree well with Exg near the end of
the inspiral. We set p, = 0 in the Hamiltonian and numeri-
cally solve p, = 0 = —0H/0Or for the angular momentum
L at different orbital separations. Then, we plot E versus the
dimensionless parameter
vg = (MQ)'/3, (3.36)
where the orbital frequency Q = 0H/JL. Finally, we
compare the EOB binding energy to NR data for the
binding energy that were extracted in Ref. [209] from the
Simulating eXtreme Spacetimes (SXS) catalog [210,211].

In particular, we use the simulations with SXS ID 0228 and
0215 for g = 1, and 0291 and 0264 for ¢ = 1/3, all with
spin magnitudes y = 0.6 aligned and antialigned. The
numerical error in these simulations is significantly smaller
than the SO contribution to the binding energy.

In Fig. 1, we plot the relative difference in the SO
contribution ES© between EOB and NR for two mass
ratios, ¢ =1 and ¢ = 1/3, as a function of vg up to
vo = 0.38, which corresponds to about an orbit before
merger. We see that the inclusion of the 5.5PN SO part

(with the remaining unknown Xg’z9 =(0) provides an

improvement over 4.5PN, but the difference is smaller
than that between 3.5PN and 4.5PN. In addition, since the

remaining unknown X%, is expected to be about O(10?),
based on the other coefficients in the scattering angle, we

plot the energy for ng9 =500 and ng) = -500,

T T T 7T
o

0.10}
0.08f

WR)/ERR

0.06

-E

0.04}

SO
OB

Ey

0.02f

(

0.00

0.10}
0.08F

R/ ENR

0.06

-E

0.04F

SO
OB

Ex

0.02}

(

0.00
0.28

0.30 0.32 0.34 0.36 0.38

Vo

FIG. 1. Relative difference in the SO contribution to the binding
energy between EOB and NR, plotted versus the frequency
parameter vg. The 5.5PN curve corresponds to ng = 0, while the
upper and lower edges of the shaded region around it correspond

to xg; = —500 and X’gz9 = 500, respectively.
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demonstrating that the effect of that unknown is less than
the difference between 4.5PN and 5.5PN, with a decreasing
effect for small mass ratios.

IV. NONLOCAL 5.5PN SO SCATTERING ANGLE

The local part of the Hamiltonian and scattering angle
calculated in the previous section is valid for both bound
and unbound orbits. However, the nonlocal part of the
Hamiltonian from Sec. II is only valid for bound orbits
since it was calculated in a small-eccentricity expansion. In
this section, we complement these results by calculating the
nonlocal part for unbound orbits in a large-eccentricity (or
large-angular-momentum) expansion.

The nonlocal part of the 4PN scattering angle was first
computed in Ref. [212], in both the time and fre-
quency domains, at leading order in the large-eccentricity
expansion. This was extended in Ref. [178] at SPN at
leading order in eccentricity, and in Ref. [179] at 6PN to
next-to-next-to-leading order in eccentricity. In addition,
Refs. [213,214] recovered analytical expressions for the
nonlocal scattering angle by using high-precision arith-
metic methods.

It was shown in Ref. [212] that the nonlocal contribution
to the scattering angle is given by

10
X nonloc = ;8_L Wnonloc(E’ L)’ (41)
Wonloe = /dtéHnonlom (42)
with 6H on10c given by Eq. (2.5), leading to
Wnonloc — Wﬂux split + Wﬂux’ (43)

pyflux split.

GM
/ dtPfy. / i F(tt41), (4.4)

2GM
3 / dt Fio(t,t)In <K> .
C N

To evaluate the integral in the large-eccentricity limit, we
follow the steps used in Refs. [178,212]. We use the quasi-
Keplerian parametrization for hyperbolic motion [190,215]

vvﬂux —

(4.5)

r=a,(e,coshi—1), (4.6)
nt = e, sinh it — i1, (4.7)
1 _
¢ = 2K arctan l Z¢ i— 1 tanhg‘| , (4.8)

which is the analytic continuation of the parametrization for
elliptic orbits in Egs. (2.6)—(2.8). In Appendix. A2, we

summarize the relations for these quantities in terms of the
energy and angular momentum.

We begin by expressing the variables (r,¢, ), which
enter the multipole moments, in terms of (¢, L, ¢,), such
that

- L2 25){14 + (2 - I/)/}"S
" l+4e,cos¢p L(e,cosgp+1)?
X (2¢pe,sing + 4e,cos ¢ + e? + 3),
b (e;cosg+1)*  (e,cosp+1)(28p4 + (2= v)xs)

L’ 2L
X (—8¢e, singh + €7 cos(2¢h) — 12e, cos ¢p — 3e7 — 10),
_esing e,(28y4+ 2 =v)ys)
L 2L4
X (e,sin(2¢) —2sing +4¢pcos ).

(4.9)

We then use these relations to obtain an exact expression

for the flux-split function F %" (¢, ¢), with no eccentricity
expansion, which takes the form

412
15L10
x (Fo+ Fre, + Fae7)

2
BVAE
x (Fy + Fie, + -

Fiio' (. ¢') = (1+e,cosg)’(1+ e cosg')?

(1 4+e,cos¢)(1+e,cosg)

c+ Fieb), (4.10)
where the functions Fi(¢,¢’') are given by Eq. (92) of
Ref. [83], but the functions F; (¢, ¢') in the SO part are too
lengthy to write here. Instead, we expand F 20 (¢, @) to
leading order in a large-eccentricity expansion (in powers
of 1/e,). To do that, we define the rescaled mean motion
n=n/e, write Eq. (4.7) as

jit = sinh i — -, (4.11)
€
and solve for # in a 1/e, expansion,
sinh~! (1)
it = sinh™! (1) + ———2 + O(e?). 4.12
)t s O @)

Substituting this into Eq. (4.8) and expanding yields

¢(t) = tan~! (ti1) + O(e; )
_ tite,[28y4 + (2 — v)ys]
LV + 1

Defining 7= /it and 7 =ir, and then substituting into
Eq. (4.10) and expanding yields

+ O(e?).

(4.13)
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. 4128 fo(%.7)

spli _ t 6\t 5

P = 157 (P + 102221 +P + 7 +1)%2 +Oler)
wrey  ysf(E7) + rafi(E7)

ISLB3 (P 4+ 1)1+ + 72 + 1)7/?

+0(e]). (4.14)

with

fo(7,7) = 21° + 6P + (6% + 28)F* + 27(#* + 28)F + (397> + 50)7 + #(117% + 50)7 — 12(* - 2),
f5(7,7) = 4(9v = 5)B + 16(9v — 5)77" + 219[180(67> + 5) — 637> — 67| + 271 [18v(47% + 15) — 4972 — 201]
+ P18u(27* + 3572 + 18) — 2(19%* + 206%> + 141)] — 2783 [-36w(5%7% + 9) + 37* + 77%% + 282]
+ P[3v(35%* + 13072 + 84) — 2(8%* + 169%% + 121)] + 77 [Bu(57* + 227% + 84) — 2(37* + 287> + 121)]
+ 227 — 5272 — 74 — 120(3%* + 272 - 6),
fA(7,7) = =2(P + 1)[407P + (637> + 57)F* + T#(7%* + 23)P + (19%* + 14372 + 84)7 + #(3%* + 28% + 121)7
+ 107 — 117* + 267> + 37]. (4.15)

Then, we evaluate the partie finie integral in Eq. (4.4), after writing it in terms of T = 2iis/c, to obtain

dz spli
—PfT/mep(l)t([,l‘-f—T)

T

2,6 T
Sv ey [36 LR 422 +12)In (7)]

T ISLO@ £ 1)

1612e3 - - - T
+ m {){S |:(3l/ - 5)t4 + (361/ + 5)[2 - (2(5 — 91/)[2 - 36v + 37) In <m> + 60v — 53:|

N T I
—8a [(101,‘2 +37)In (2?27+2> + 57 — 57 + 53] } (4.16)

272 +2

Integrating over ¢, we obtain the flux-split potential

27[1/2 Ky ﬂUZ s
——— 1100 +371In + 3168 —137-46In( ——+—
15€?az/2 [ <4e,af/2>] 30eta> { X4 [ <4a3/2et>]

s {2774y — 4247 = 2(713 — 4570) In (4;/2>] } (4.17)
a

r €

Wﬂux split _

The second contribution W™ in Eq. (4.5) can be easily integrated to yield

2712 85 s L? s
wie — 27| _ = _37] Sy 12255 + 28521
15¢3a]/” [ “(Zarezﬂ " 60ela { “[ ’ “<2a,e,>}

4
+ s [2255 — 13650 + (2852 — 1828v) ln< u )} } (4.18)
a,e,
where we used
LVEZ+1 1
(1) = ==+ [ 200 + 2~ v)zs) (4.19)
t
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Adding the two contributions leads to

2

yynonloc — _ 302:31;7/2 [74 ]n(4ar) - 315]
tYr
2
+ % {54183 — 6239
t%r

+2(713 = 457v) In(4a, )]

+ 87,[-6239 + 14261In(4a,)]},  (4.20)

where we see that s cancels. In terms of the energy and
angular momentum, and expanding in 1/L to leading order,

2n2E? E
315 +741n| —
1507 { - “(2>}

2mPER
15L%

E
—2[7138y4 + (713 = 4570)y4] In <5> }

(4.21)

Wnonloc —

{(4183u —6239)y — 62395y,

and the nonlocal part of the scattering angle

2nvE? E
Inonloc — _ w |:3 15+ 741n <§>:|

5L*
8rvE?
1513

(7136, + (713 = 45T0)ys] In (g) } (4.22)

{(41831/ — 6239)y — 62395y,

In terms of b and v, using Egs. (3.14) and (3.5),

V1% v

- 148 In| — 315
1%4[ “Q>+ }
V%

R {4111 (%) (679 — 824)ys — 8245y 4]

nonloc __

X

T 156°

+ (60730 — 7184)y5 — 7184%}. (4.23)

V. GAUGE-INVARIANT QUANTITIES FOR
BOUND ORBITS

In this section, we obtain two gauge-invariant quantities
that characterize bound orbits: the radial action as a func-
tion of the energy and angular momentum, and the binding
energy for circular orbits as a function of the orbital
frequency.

A. Radial action

The radial action function contains the same gauge-
invariant information as the Hamiltonian, and from it

several other functions can be derived that describe bound
orbits, such as the periastron advance, which can be directly
related to the scattering angle via analytic continuation
[77,88]. This means that the entire calculation in Sec. III
could be performed using the radial action instead of the
Hamiltonian, as was done in Ref. [182].

The radial action is defined by the integral

1
I, :prrdr’

and we split it into a local contribution and a nonlocal one,
such that

(5.1)

I, = [19¢ 4 [uenloc, (5.2)
We calculate the local part from the local EOB
Hamiltonian, i.e., Eq. (2.20) with the nonlocal parts of
the potentials and gyro-gravitomagnetic factors set to zero.
We invert the local Hamiltonian iteratively to obtain
p,(e,L,r) in a PN expansion, where we recall that

1
Heog =,V 1+2u(y—1),

e=y>—1, (5.3)

with € < 0, y < 1 for bound orbits. Then, we integrate

1

I
I, ——/ p,(e,L,r)dr,

p (5.4)

where r,; are the zeros of the Newtonian-order

p\V = /e +2/r— L?/12, which are given by

—&

ry = (5.5)
It is convenient to express the radial action in terms of the
covariant angular momentum L., = L — AL, with AL
given by Eq. (3.14), since it can then be directly related to
the coefficients of the scattering angle, as discussed in
Ref. [182], and leads to slightly simpler coefficients for the
SO part.
We obtain for the local part

1 I3
19 = —L + Iy + =+ =2
FL cov (FLCOV ) 2

R B RN S
(IﬂLCOV)3 (FLCOV)4 (FLCOV)S (FLCOV)6
I I I K,
+ - + :
(FLCOV)7 (FLCO\')S (]‘—‘l'COV)9 (FLCOV)IO

(5.6)

+

where each term starts at a given PN order, with 0.5PN
order corresponding to each power in 1/L. Also, as noted
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in Ref. [178], when the radial action is written in this form,

in terms of I', the coefficients Ié‘” 41 become simple

polynomials in v of degree |n].

The coefficients I, for the nonspinning local radial
action up to SPN order are given by Eq. (13.20) of
Ref. [178]. The SO coefficients I3, were derived in
Ref. [182] to the 4.5PN order, but we list them here for
completeness. The coefficients Iy, I, I, are exact, and are
given by

|

21
o4

n 2759
32

2161;,

33e? + 36¢ + 8)(8ay, + 5a,) + yv{ g
156133 2230172

_ 3 _
)a’] ¢ K 3200 4096

I

12372
128

)

%
4

83817% 6527 )
%+ (16384 B 960)“’] 0l >}’

I — 1+ 2
0 — \/—_8 >
3
11 :Z(4+5€>,
1
I = —Zy(58+2)(4ab+3at), (5.7)

where a, = S/M, a, = S*/M. The other SO coefficients,
up to 5.5PN, read

219 | L[ (17423 2413
8 1\ 192 T 512 )

495ab
16

2502 17550 495 45,7
Ié: ——+ —T ab+ —

8 16 16
6457 | (36655 39715
1 s 256 24

2

165v 1155)

8
118512 184572

3465
+ ) a, +

8

10305) 8085} }
+ a,
8
121275

16 +< 128

ey 10640477 1767857
b 1920 2048

45X
2 59
)1/—1—1/ ( o3 +

27557 176815
512 384

2)

433715 174875572 , (45X,
¢ - vtv 128 +

Iy

55357° 26175
1024

282975 X
64 ) 128 )}HQ(E )

96 16384
)

45513
32 1152 1536

25025

1018502 (3755465 3 428757
)~

128
. 1050 1648502 | (437605 14357
32 64 192 64

8263591 99487852
180 12288

4935.°
+ & ap +

225225
128 | ¥

Jorer(

105X%, 1583995 2789572
64 192 256

225225}

)=

32
+a,[

115543 <4594121 2995716572
o= ap {_

2
144 49152 >”+” (

9040522 54585372
128 512

38115.°

8

6304
16

94504

88995311
1280

14456349

105X%, 209195 473557;2)

1163208972

2027025 ,
BT ]}+C’)(€ )s
1119461

)

32

64
189X2,

2 59
Y ( 128

512

1095157°
512

16789572

1322685
32

189X,

64 320 16384

i

T [_ 256
+ O(e).

The nonlocal part can be calculated similarly by starting
from the total Hamiltonian, expanding Eq. (5.1) in eccen-
tricity, and then subtracting the local part. Alternatively, it
can be calculated directly from the nonlocal Hamiltonian
via [179]

Hnonloc
Q 9

r

nonloc __
I} = —

(5.9)

where Q, = 27/T, is the radial frequency given by Eq. (A8).

Jorer(

|

The nonlocal Hamiltonian H,;,. in Eq. (2.19) is
expressed in terms of (e;, a,), but we can use Eqgs. (A6)
and (A12) to obtain I"™"¢(E, L), i.e., as a function of
energy and angular momentum. Then, we replace E with
(e,, L) using Eq. (A10), expand in eccentricity to O(e?),
and revert back to (E,L). This way, we obtain an
expression for I%°"°¢ in powers of 1/L that is valid to
eighth order in eccentricity, and in which each &” contrib-
utes up to order e>".

3292149)

2909907
256

128 1024 128

(5.8)
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The result for the 4PN and 5.5PN SO contributions reads

[nonloc 1 (170InL., 170y 18299 4777903 13671875In5  150813091n3
- + - In2 + -

v LL, 3 3 96 90 512 2560
e (244InL., 244y; 157823 10040414 1269531251n5  135421471n3
LT( R R V- Y T, )
&2 (74 In Lo, 747e 89881 5292281 . 130859375In5 350291791 3)
L3, \ 15 15 ' 240 15 768 1280
& (6187 _ 11186786 44921875In5 _18781471n 3)
Leoy \ 40 45 384 128
L (40253 _ 1185023 138671875In5 _ 6591861 In 3)
cov\ 1440 18 4608 2560
a, { RS <_ 1257910 Loy, 24068101 , 125797, | 398742736In2  2814963031n3 _40131484375In5
L, 5 2880 5 135 1024 27648
N Lg (_ 2499001, — 133;;250921 24900, 4 15489?(;45149 2 11329182488027 In3 382302?;11375 In5

N = (_ s371mL. _ 1268749 o 14978098312 | 25725484171n3 _ 36141484375 1n 5)
LS., v 480 E 9 2560 4608
N & (_ L. 4143337 3, 14392886471n2  1168122871n3 _ 33865234375 1n 5>
LA, V720 E 135 256 6912
N s (_ 2608213 | 34287771112 3185926831n3 _31401484375In 5)}
L2, 2880 135 5120 27648
ca [ 1 (_ 8673In Loy, _ 16708517 , 8673y,  582216271In2  980901819In3 291352343751n S
Lo 5 2880 5 270 5120 27648
e [ 5593InL., 1921829 5593y, 231474971In2 8066183311n3 28420234375In5
L3 <_ 3 T s T3 ° 27 * 1280 B 6912 )
2
N ST (_455 I, - 542;1(7)17 455 4+ 19153?224 In2 18772215067021 In3 92038125831625 In 5>
N & (_ 691n Ly, 3226241 697y 2277628691n2  87726159In3 26708984375 1n 5)
L4, 5 720 5 27 256 6912
N & (_ 2112181 5626654011n2  49433247In3 25712734375 In sﬂ
L2, 2880 270 1024 27648

B. Circular-orbit binding energy

Here, we calculate the gauge-invariant binding energy E analytically in a PN expansion, as opposed to the numerical

calculation in Sec. III F for the EOB binding energy.

For circular orbits and aligned spins, £ can be calculated from the Hamiltonian (2.20) by setting p, =0 and
perturbatively solving p, =0 = —9H/Or for the angular momentum L(r). Then, solving Q = 0H/JL for r(Q), and
substituting into the Hamiltonian yields E as a function of the orbital frequency. It is convenient to express E in terms of the

dimensionless frequency parameter vg = (MQ,)'/3.
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The nonspinning 4PN binding energy is given by Eq. (5.5) of Ref. [9], and the 4.5PN SO part is given by Eq. (5.11) of

Ref. [182]. We obtain for the 5.5PN SO part

_ 4725 (1411663 103252 352y, 208002\ 352 31079555 3504
ESSPNSO _ 13) gf _ E %0
”’Q{ { 32 ( 640 64 9 3 Vet e T asg
(% 2asm 1975415\ ] | ([ 2835 (126715 1023552 160  992In2
“\s T s64 5184 128 "\ 144 1536 3 9
160 SXL 20572 275245\ 467657 87504
— vl 2( =2 - - . 5.11
TVt ( § 576 3456 > 864 +31104H (5.11)

VI. CONCLUSIONS

Improving the spin description in waveform models is
crucial for GW observations with the continually increasing
sensitivities of the Advanced LIGO, Virgo, and KAGRA
detectors [216], and for future GW detectors, such as the
Laser Interferometer Space Antenna [217], the Einstein
Telescope [218], the DECi-hertz Interferometer Gravi-
tational wave Observatory [219], and Cosmic Explorer
[220]. More accurate waveform models can lead to better
estimates for the spins of binary systems, and for the
orthogonal component of spin in precessing systems, which
helps in identifying their formation channels [4,5]. For this
purpose, in this paper we extended the SO coupling to the
5.5PN level.

We employed an approach [177,182] that com-
bines several analytical approximation methods to obtain
arbitrary-mass-ratio PN results from first-order self-force
results. We computed the nonlocal-in-time contribution to
the dynamics for bound orbits in a small-eccentricity
expansion [Eq. (2.24)] and for unbound motion in a
large-eccentricity expansion [Eq. (4.23)]. To our knowl-
edge, this is the first time that nonlocal contributions to the
conservative dynamics have been computed in the spin
sector. For the local-in-time contribution, we exploited the
simple mass-ratio dependence of the PM-expanded scatter-
ing angle and related the Hamiltonian coefficients to those
of the scattering angle. This allowed us to determine all of
the unknowns at that order from first-order self-force
results, except for one unknown at second order in the
mass ratio; see Egs. (3.31)—(3.33). We also provided the
radial action (in Sec. VA) and the circular-orbit binding
energy [in Eq. (5.11)] as two important gauge-invariant
quantities for bound orbits. We stress again that, although
all calculations in this paper were performed for aligned
spins, the SO coupling is applicable for generic precess-
ing spins.

The local part of the 5.5PN SO coupling still has an
unknown coefficient, but as we showed in Fig. 1, its effect
on the dynamics is smaller than the difference between the
4.5 and 5.5PN orders. Determining that unknown could be
done through targeted PN calculations, as was illustrated in

Ref. [98], in which the authors related the two missing
coefficients at 5PN order to coefficients that can be
calculated from an effective field theory approach.
Alternatively, one could use analytical second-order self-
force results, which might become available in the near
future, given the recent work on numerically computing the
binding energy and energy flux [142,143]. Until then, one
could still use the partial 5.5PN SO results in EOB
waveform models complemented by NR calibration.
Such an implementation would be straightforward, since
we obtained the gyro-gravitomagnetic factors that enter
directly into the SEOBNR [162-164] and TEOBResumS
[150,166,169] waveform models, and less directly into
the IMRPhenom models [221-224], which are used in GW
analyses.
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APPENDIX: QUASI-KEPLERIAN
PARAMETRIZATION

1. Elliptic orbits

For a binary in a bound orbit in the orbital plane, and
using polar coordinates (r, ), the quasi-Keplerian para-
metrization [190], up to 1.5PN, reads

r=a,(l—e.cosu), (A1)
£=nt=u-—essinu, (A2)

1+ €y u
= 2K arct tan—|, A3
¢ arcanl,/l_e{/) anzl (A3)

where a, is the semimajor axis, u is the eccentric anomaly,
¢ is the mean anomaly, n is the mean motion (radial angular
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frequency), K is the periastron advance, and (¢, ¢,, ey) are
the radial, time, and phase eccentricities. Spin was included
in the quasi-Keplerian parametrization in Refs. [192,193].
(See Fig. 2 of Ref. [193] for a geometric picture for some of
these quantities.)
The (dimensionless) harmonic-coordinates Hamiltonian
with LO SO reads
2 2
H:C—+p——l+%[25)m — (v =2)ys].
v cr

> (A4)

By inserting r = a,(1 — e, cosu) into the Hamiltonian at
periastron (# = 0) and apastron (# = x), one can solve for
the energy and angular momentum (with p, =0) as a
function of a, and e,, i.e.,

-1 (v=2)ys —261a

2a, 2 /a)(1 - e€2)

(e7 +3) 2874 + (2 = v)xs]
Zar(e% - 1) ’

where E=E—1/v <0 is the dimensionless binding
energy, which is negative for bound orbits, and we only
include the LO nonspinning and SO terms. These expan-
sions can be inverted to obtain e,(E,L) and a,(E, L),
leading to

E:

s

L=1/a(l-¢e2)+ (AS)

4E(1 + EL?)[28y4 + (2 — v)ys]
LV1+2EL? ’

(A6)

e, =\ 1+2EL* +

-1 284+ (2—v)ys
2E L )

a, =

The radial period T, and periastron advance K can be
calculated from the integrals

dr Ta dr
T,=¢—=2
' f'r [p 0H/0p,’

k=L farb o [ a2

e Yooy A7)

where r,, and r, are the periastron and apastron separations
calculated from the solution of p, = 0, which yields the PN
expansion

n=2F  2A(-EP

1 32874 + (2 = v)ys]

=—5+ A8
al? 2a3\/1—e? (A8)
2(v = 2)xs — 49xa
K=1+ 3
40 2(2 -
- 1= )(A—’_ ( U)XS. (A9)

af/z(l —e2)3?

The three eccentricities (e, e,, e,/)) agree at LO, and can
be related to each other, and to the energy and angular
momentum, via

2E[2875 4 (2 = v)xs]

e, =\ 1+2EL* + _ , A10
! LV1+2EL? (A10)
_ 4E(1 + ELY)[26 2—
ey = /11 2EL% + (1+EL%) )m_+( V)J(s},
LV1+2EL?
(A11)
e, 2FE
— =1+ —[284 + (2 - v)xsl. (A12)
e; L
e 2F
e—‘ﬁ =1+ 20+ 2= v)zs). (A13)
t

2. Hyperbolic motion

The quasi-Keplerian parametrization for hyperbolic
motion [190,215] can be summarized, up to 1.5PN, by
the following equations:

r=a,(e,coshit — 1), (Al4)
it = e,;sinh i — 1, (A15)
+1 i
¢ = 2K arctan l ZZ 3 tanh %] . (Al6)

The equations for hyperbolic motion are related to
the elliptic-orbit equations via analytic continuation from
E <0toE > 0,and u — ii [190]. In particular, the energy
and angular momentum are given by

1 (v=2)ys =254
2a, 2 /@) (e2 - 1)
(€2 +3)[261a + (2 — v)xs]

E:

s

L=+/a(e:-1)— Al7

(e - 1) 1) (A17)
Inverting these expansions, we obtain

i_25)(A+(2_y))(S (Alg)

“T2F L
and e,(E, L) is the same as in Eq. (A6).
The mean motion 7 and periastron advance K are
given by

2 _
i = T—” =2V2E3?

al? 23\ -1
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2(v = 2)xs — 45xa

K=1+

L3
1 Ays +2(2 = v)ys

er/z(etz —1)32

(A20)

The eccentricities ¢, and e, are given in terms of energy and angular momentum by Egs. (A10) and (A11), respectively.
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