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We show how Einstein-Cartan gravity can accommodate both global scale and local scale (Weyl)
invariance. To this end, we construct a wide class of models with nonpropagating torsion and a
nonminimally coupled scalar field. In phenomenological applications the scalar field is associated with the
Higgs boson. For global scale invariance, an additional field—dilaton—is needed to make the theory
phenomenologically viable. In the case of the Weyl symmetry, the dilaton is spurious and the theory
reduces to a subclass of one-field models. In both scenarios of scale invariance, we derive an equivalent
metric theory and discuss possible implications for phenomenology.
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I. INTRODUCTION AND MOTIVATION

Einstein’s theory of general relativity (GR) exists in
different versions. Along with the most commonly used
metric approach, these include the Palatini, affine, and
teleparallel formulations, as well as Einstein-Cartan grav-
ity. All these theories are equivalent in the absence of
matter. A priori, this puts all of them on the same footing.
Generically, however, this degeneracy disappears once
mater is included. Then the various versions of gravity
no longer lead to identical predictions, and, consequently,
phenomenology depends on the choice of formulation.
Recently, we have undertaken an effort to quantify these
differences between the distinct incarnations of GR [1].
There, our focus was on the Einstein-Cartan (EC) formu-
lation, which encompasses the metric and Palatini gravity
as special cases. We first proposed a set of criteria for
systematically constructing a theory of matter coupled to
EC gravity and then we included in the action all terms
that fulfill these criteria. Our results generalize numerous
previous studies [2–12].

In the metric formulation of GR, one assumes a priori
that torsion is absent. By allowing for nonvanishing torsion,
one arrives at EC gravity. As said, the two theories are
equivalent in the absence of matter. In particular, this
implies that the gravitational spectrum is identical in both
cases, and only consists of two degrees of freedom of the
massless graviton. Hence, torsion does not propagate in the
EC gravity, and the theory can be solved for it. By plugging
the solution back into the action, one derives an equivalent
theory in the metric formulation in which torsion is
replaced by a specific set of higher-dimensional operators.
The suppression scale of these operators can, in principle,
be (much) lower than the Planck scale. In this case, the
effects of torsion may become visible at energies relevant
for cosmology or even in particle physics experiments. This
in turn can put constraints on the parameters of the theory.
Possible implications of EC gravity for phenomenology
have been studied, e.g., in [13] with regard to the
production of fermionic dark matter and in [11,14] in
the context of Higgs inflation.
The goal of the present paper is to liberate from explicit

mass scales the graviscalar part of the ECmodel constructed
in [1]. Wewill do so in two different ways. On the one hand,
we will make the theory invariant under global dilatations,
and on the other hand under local scale transformations.
We will refer to the latter case as Weyl symmetry. In the
following, we shall discuss why generalizing the theory in
these distinct, nevertheless interconnected, ways may be
potentially interesting. Note that here we will restrict
ourselves to the classical aspects of the theory, leaving
the discussion of quantum effects to future work.
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Let us begin with the case of global dilatations. That this
symmetry (as well as the closely related conformal invari-
ance in flat spacetime) can have rich ramifications for both
cosmology and particle physics was realized many years
ago [15–22] and since then there has been an increasingly
rising interest in this direction. For a nonexhaustive list of
references see [23–84]. In the setup we have in mind, the
Higgs field, in addition to its significance for the Standard
Model (SM), plays a central part in cosmology. Namely, it
is responsible for the inflationary stage of the Universe. In
the metrical setup, this can be achieved in the context of the
Higgs-dilaton model [25]. To achieve global scale invari-
ance and to yield an acceptable cosmological and particle
physics phenomenology, the model necessitates the pres-
ence of yet another scalar field, the dilaton, a singlet under
the SM symmetries. This has two roles. On the one hand,
being the order parameter for dilatations, it induces all
scales at the classical level. On the other hand, it can act
as dynamical dark energy accounting for the present-day
accelerated expansion of the Universe.1 This comes into
fruition by restricting the spacetime symmetry to the
volume-preserving subgroup of diffeomorphisms [85,86].
In the prototype Higgs-dilaton model, unimodular gravity
[87,88] was employed—a special case of the restricted
general coordinate transformations. Interestingly, being the
scale-donor, the dilaton leaves its imprints in the infla-
tionary observables, implying nontrivial links between
the very early and late Universe. Vaguely speaking, the
deviation of the inflationary spectrum from exact scale
invariance is closely tied with the deviation of the dark
energy from a (cosmological) constant [29].
In addition to its vast applications to cosmological

physics, scale invariance could also be of relevance for
the SM finetuning issues [16,22]. This requires that the
symmetry, in addition to being spontaneously broken, must
also be exact at the quantum level. When the no-scale
approach is combined with the assumption of no new
particle states between the electroweak and Planck energies
[89], the Higgs mass is insensitive to loop effects [26].
Although this takes care of the stability part of the hierarchy
puzzle, it does not explain the 34 orders of magnitude
difference between the value of the electroweak and Planck
scales. This may well be attributed to the nonperturbative
scale-splitting mechanism introduced in [68] and further
studied in [70,79,83,90]; scalefree models constitute a
natural playground for generating hierarchies this way.
Notice also that when symmetry breaking vacua (flat
directions) exist and the system evolves along them, the
vacuum energy is zero; see, e.g., [26,81,91–93]. This is
irrespective of the fact that mass scales are present. In turn,
spontaneous scale (or conformal) symmetry breaking may

have implications for the cosmological constant problem
as well.
We now move to the Weyl symmetry. Although Weyl’s

original theory has been around since 1918 [94], the various
implications of Weyl invariance for cosmological model
building have only been investigated fairly recently; see,
e.g., [95–103]. Interestingly, there is more than one way to
gauge scale symmetry. It is obvious that one can localize it
at the expense of a new dynamical compensating gauge
field. This, however, would add extra degrees of freedom in
the theory. Here we wish to refrain from doing so, but rather
follow a more minimalistic approach on which we elabo-
rate now. Weyl transformations affect nontrivially the
Riemannian curvatures and torsion, and the latter transform
in an inhomogeneous manner. This implies that, at least in
principle, it is possible to make the theory invariant under
gauged scale transformations without introducing new
degrees of freedom,2 but rather by employing quantities
of geometric origin that in any case are already present.
Particularly in the EC framework, the torsion vector mimics
the behavior of a Weyl gauge field, thus it can be employed
to compensate for the noninvariance of the Ricci scalar and
the derivatives of the fields in the action. To the best of our
knowledge, the fact that the Weyl vector may be torsion in
disguise was pointed out for the first time by Nieh and Yan
[107], Dereli and Tucker [108], and Yu. Obukhov [109];
see also the closely related work [110].
Let us briefly note that going beyond the EC formulation

of GR, one can construct a vector out of nonmetricity—
with the appropriate transformation properties—to play the
role of the Weyl field [111]. The logic in these approaches
is different from ours, in that although nonmetricity is of
geometrical origin it is taken to be dynamical from the
onset. As expected, this can only be achieved by working
with an action that contains curvature-squared terms. This
actually serves as a perfect example for what we discussed
in [1]. The admissible terms have to be chosen carefully to
avoid pathologies: for instance, a term proportional to the
ðWeyl tensorÞ2 is not included, since it introduces a ghostly
massive spin-2 field in the spectrum.
It should be made clear that in our approach, torsion is

always nonpropagating, so Weyl invariance is actually
nothing more than a “bookkeeping” device: it allows us
to restrict the number of admissible terms in the action. This
point was also stressed in [112]. Let us also mention that in
the Weyl-invariant embedding, the gauge freedom elimi-
nates completely one scalar degree of freedom. This means
that since our starting point is the EC counterpart of the

1Of course, this can instead be attributed to a cosmological
constant. In the scale-invariant approach it is associated with the
quartic self-interaction of the dilaton [29].

2We are aware of only a handful of cases where this happens:
(i) Einstein-Cartan gravity, where the full Poincaré group is
gauged with the connection not being independent of the
vielbein; (ii) the conformally coupled scalar field [104] and its
higher-derivative generalizations [43]; (iii) Galilean- and Lif-
shitz- invariant theories [105]; (iv) the three-form gauging of the
shift symmetry of axionlike fields [106].
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Higgs-dilaton model, there will be 2þ 1 dynamical degrees
of freedom in the graviscalar spectrum.
The paper is organized as follows. In Sec. II, we recap

the results of [1] concerning the graviscalar piece of the
nonminimally coupled EC theory. In Sec. III, we construct
the globally scale invariant generalization of the theory. We
explicitly demonstrate why it is necessary to introduce the
dilaton. We obtain the EC counterpart of the metrical
Higgs-dilaton theory. We diagonalize the Einstein-frame
kinetic sector of the theory and identify the physical
dilaton, i.e., the Nambu-Goldstone field of the nonlinearly
realized dilatations. In Sec. IV, we construct the Weyl
invariant version of the theory and discuss in details the
resulting constraints on the action. For completeness we
also briefly comment on the inclusion of fermionic matter
in both the scale- and Weyl- invariant settings. Our
conclusions are presented in Sec. V.

A. Conventions

We work exclusively in four spacetime dimensions.
Greek and capital Latin letters are used for spacetime
and Lorentz indices, respectively. The signature of both the
spacetime gαβ and Minkowski ηAB metrics is mostly plus.
As usual, the tetrad/vierbein is denoted with eAμ and the spin
connection by ωAB

μ . We set c ¼ ℏ ¼ 1.

II. EC GRAVITY WITH NONMINIMALLY
COUPLED SCALAR FIELD

A. Criteria for constructing the action

In this section, we review the criteria developed in [1] for
constructing an action of the SM coupled to gravity in the
EC formulation. Our basic requirement is that in the flat
limit the SM is recovered, while in the absence of matter
one obtains a theory of gravity that is equivalent to GR in
the metric formulation. In particular, there should be no
additional propagating degrees of freedom as compared to
the ones of the SM plus the massless graviton. In order to

ensure that these conditions are fulfilled, we put forward
the following criteria in [1]

(i) The purely gravitational part of the action should
solely contain operators of mass dimension not
greater than 2.

(ii) In the flat spacetime limit, i.e., for eAμ ¼ δAμ ,
ωAB
μ ¼ 0, the matter Lagrangian should be renorma-

lizable.
(iii) The coupling of matter to gravity should only

happen through operators of mass dimension not
greater than 4.

As explained in [1], condition (i) is sufficient, although not
necessary, to make sure that the two polarizations of a
massless spin-2 field are the only propagating degrees of
freedom in gravity. Furthermore, criterion (ii) is crucial for
the predictiveness of our setup. After solving for torsion
and plugging the result back in the action, one can obtain an
equivalent theory in the metric formulation that features a
specific set of higher-dimensional operators. Without
criterion (ii), one could have added from the beginning
all kinds of higher-dimensional operators, and our pro-
cedure would be meaningless. Finally, since both the pure
matter and pure gravity sectors only contain operators of
mass dimension not greater than 4, it is natural to impose
that all terms in the action exhibit this property, which leads
to condition (iii). However, it is possible to relax this last
criterion. The implications of imposing (or not imposing) it
will be made explicit shortly.

B. Equivalent metric theory

From now on we solely focus on EC gravity coupled
nonminimally to a real scalar field, which we denote
by h. The generalization to a complex field, as well as
the inclusion of gauge fields and fermions, are discussed
in [1]. At this point, we shall only impose the conditions
(i) and (ii) discussed above, and this leads to the
action3

Sgrþh ¼
Z

d4x
ffiffiffi
g

p �
M2

PΩ2F þM2
PΩ̃2F̃ −

ð∂μhÞ2
2

− U þ vμ∂μzv þ aμ∂μza

þM2
P

2
ðgvvvμvμ þ 2gvavμaμ þ gaaaμaμ þ gττταβγτ

αβγ þ g̃ττϵ
μνρστλμντ

λ
ρσÞ

�
; ð1Þ

where we defined g ¼ − detðgμνÞ. Let us explain the various
terms appearing in this expression. We denoted with F and
F̃ the parity-even Einstein-Hilbert and parity-odd Holst
scalars [113–116]. In terms of the curvature

FAB
μν ¼ ∂μω

AB
ν − ∂νω

AB
μ þ ωA

μCω
CB
ν − ωA

νCω
CB
μ ; ð2Þ

these respectively read

F≡ 1

8
ffiffiffi
g

p ϵABCDϵ
μνρσFAB

μν eCρ eDσ ; and

F̃≡ 1ffiffiffi
g

p ϵμνρσeρCeσDFCD
μν : ð3Þ3Unless otherwise stated, summation over repeated indices is

assumed.
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On the other hand,

vμ ¼ Tν
μν; aμ ¼ ϵμνρσTνρσ;

τμνρ ¼
2

3
ðTμνρ − v½νgρ�μ − T ½νρ�μÞ; ð4Þ

are the irreducible components of the torsion tensor, with
the latter given by

Tμνρ ¼ eμATA
νρ; TA

μν ¼ ∂μeAν − ∂νeAμ þωA
μBe

B
ν −ωA

νBe
B
μ :

ð5Þ

Finally, Ω2, Ω̃2, U, zi (which can stand for zv and za) as
well as gij (which can stand for gvv, gva, gaa, gττ and g̃ττ)
are various coefficient functions of the field h. The first two
of them represent the nonminimal couplings of h to the
Ricci curvature and to the Holst term, the third is the scalar
field’s potential, and the rest are couplings to the torsion
components.
A priori, the functions Ω2, Ω̃2, U, zi and gij can be

arbitrary. If criterion (iii) is imposed, however, this restricts

them to be at most quadratic in the field h. Additionally
requiring invariance under h ↦ −h, we can then write

Ω2 ¼ 1þ ξhh2

M2
P
; Ω̃2 ¼ 1

4γ̄

�
1þ ζhh2

M2
P

�
; zi ¼ ζih2;

gij ¼ cij

�
1þ ξijh2

M2
P

�
; ð6Þ

where no summation over repeated indices is implied. Now
ξh, γ̄, ζh, ζi, cij and ξij are real numbers; in the first of them
we recognize the standard nonminimal coupling of h to
curvature, and in the second one the so-called Barbero-
Immirzi parameter [117,118].
It is important to note that the connection and, hence, the

Einstein-Hilbert and Holst terms can be split into torsion-
free and torsionful pieces. Moreover, the former are zero for
the Holst term. The torsionful part has a form which is
already accounted for in Eq. (1). Hence, the graviscalar
action can be expressed in the following form

Sgrþh ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
Ω2R

∘
−
ð∂μhÞ2

2
− U þ vμ∂μZv þ aμ∂μZa

þM2
P

2
ðGvvvμvμ þ 2Gvavμaμ þ Gaaaμaμ þ Gττταβγτ

αβγ þ G̃ττϵ
μνρστλμντ

λ
ρσÞ

�
; ð7Þ

with R
∘
the Ricci scalar, and the coefficient functions in Eqs. (1) and (7) are related via

zv ¼ Zv þM2
PΩ2; za ¼ Za −M2

PΩ̃2; gvv ¼ Gvv þ
2Ω2

3
; ð8Þ

gva ¼ Gva −
2Ω̃2

3
; gaa ¼ Gaa −

Ω2

24
; gττ ¼ Gττ −

Ω2

2
; g̃ττ ¼ G̃ττ þ Ω̃2: ð9Þ

We notice that there is a degeneracy in the coefficient
functions in Eq. (1); in particular, Ω̃2 can be absorbed by
redefining the other functions. If condition (iii) is imposed,
and, consequently, the coefficient functions are of the form
(6), the theory (1) [or, equivalently, (7)] contains a finite
number of free independent parameters. In addition to the
Planck scale MP, these are 9 dimensionless coupling
constants. Here we did not count the parameters contained
in the two functions gττ and g̃ττ. The reason is that the
tensorial part of torsion τμνρ vanishes on the equations of
motion (see [1]), and therefore all results are independent of
gττ and g̃ττ.
Finally, we would like to bring the theory (1) (or (7)) to a

form in which no reference to torsion is made. As explained
in [1], we can proceed as follows. First we derive the
equations of motion for the irreducible components vμ, aμ

and τμνρ, then we solve them and finally we plug the result
back into the action. It is also convenient to rewrite the
model in the Einstein frame in which the nonminimal
coupling of the scalar field to gravity is absent. This can be
achieved by rescaling the metric as

gμν ↦ Ω−2g̃μν; ð10Þ

where we omit the tilde in the following. When these
steps are effectuated (not necessarily with this order), we
obtain [1]

Sgrþh ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
R
∘
−
KðhÞ
2

ð∂μhÞ2 −
UðhÞ
Ω4

�
; ð11Þ

with
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KðhÞ ¼ 1

Ω2
þ 4h2

M2
PΩ2

GaaðZ0
vÞ2 þ GvvðZ0

aÞ2 − 2GvaZ0
vZ0

a

GvvGaa − G2
va

þ 24M2
Ph

2Ω02

Ω2
: ð12Þ

Here prime denotes a derivative with respect to h2. The first
term in the kinetic function (12) is the original kinetic term
in Eq. (7) to which the rescaling (10) is applied. The second
term is of purely torsional origin, and the third contribution
stems from applying the transformation (10) to the Ricci
scalar. In summary, we have brought our model to a form in
which torsion is replaced by a specific set of higher-
dimensional operators that modify the kinetic term of the
field. Therefore, we call Eq. (11) the equivalent metric
theory.

III. SCALE INVARIANCE

Our goal is to make the theory of Sec. II invariant
under global scale transformations. The latter act on the
fields as

eAμ ↦ q−1eAμ ; ωAB
μ ↦ ωAB

μ ; h ↦ qh; ð13Þ

with q a constant. This leads to the following trans-
formation laws for the Ricci scalar and the irreducible
components of torsion

R
∘
↦q2R

∘
; vμ↦vμ; aμ↦aμ; τμνρ↦q−2τμνρ: ð14Þ

Equations (13), (14) reveal that the scale-invariant gener-
alization of the theory in the previous section follows from
dimensional analysis: one simply needs to replace the
Planck mass by a scalar operator of mass dimension 1.

A. The need for an additional dilaton

The most straightforward way to proceed is to use the
field h that is already present in the theory. This translates
into considering the following action, the EC version of
induced gravity

Sh ¼
Z

d4x
ffiffiffi
g

p �
ξhh2

2
R
∘
−
ð∂μhÞ2

2
−
λ

4
h4 þ ζvh∂μh2vμ þ ζah∂μh2aμ

þ ξhh2

2
ðcvvvμvμ þ 2cvavμaμ þ caaaμaμ þ cττταβγταβγ þ c̃ττϵμνρστλμντλρσÞ

�
: ð15Þ

Note that there is no longer any functional freedom in the
coefficients, i.e., cvv, cva, caa, cττ and c̃ττ are real numbers.
As before, we solve for the nondynamical torsion and

move to the Einstein frame via the metric redefinition (10),
but the conformal factor now reads

Ω ¼
ffiffiffiffiffi
ξh

p
h

MP
: ð16Þ

The result is given by

Sh ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
R
∘
−
1

2

M2
P

κ

ð∂μhÞ2
h2

−
λM4

P

4ξ2h

�
; ð17Þ

with the coefficient κ in the kinetic function reading

κ ¼ ξh

�
1þ 4

ξh

�
caaζv2h þ cvvζa2h − 2cvaζvhζ

a
h

cvvcaa − c2va

�
þ 6ξh

�
−1
:

ð18Þ

The form of (17) is highly suggestive: we ended up
with GR with a cosmological constant term plus a
minimally coupled massless field. This corresponds to

the Nambu-Goldstone (NG) mode associated with the
spontaneous breaking of dilatations when passing from
the original to the Einstein frame. That this is the case
becomes even more clear once we realize that the kinetic
term can be canonically normalized by introducing a new
field ρ related to h via

h ¼ MPe
ffiffi
κ

p
ρ

MP ; ð19Þ

which is the exponential representation of the NG boson for
the noncompact scale symmetry (see also the discussion
in [39]).
Exactly like the induced gravity scenario in the metric

formulation [19], the above construction is not satisfactory
for phenomenology. As far as inflationary dynamics is
concerned, it gives rise to an exact de Sitter stage that does
not end, i.e., there cannot be a graceful exit. The situation is
even worse once we take into account that the “scale-
donor” is the (radial mode of the) SM Higgs, for there is
tension from the particle physics point of view as well.
Being a genuine NG boson, h has a shift symmetry which
means that it is massless and may couple only derivatively
both to itself as well as to matter. It can be easily shown that
when it comes to fermions and gauge bosons h decouples
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completely from them, the only imprint being a rescaling
by powers of ξh in the respective couplings.
A possible way out is to allow for a small explicit

breaking of the scale symmetry. This is exactly what
happens in Higgs [119], and in Starobinsky [120] infla-
tionary models [39]. In both cases, it is necessary to tilt
slightly the inflationary potential by allowing for the
standard Einstein-Hilbert term ∝ M2

PR. For field values
relevant for inflation this is a subdominant, nevertheless
essential, contribution that modifies nontrivially the
dynamics. Although what we just described is perfectly
acceptable and well motivated, in what follows we will take
another direction. Namely, we will refrain from introducing
an explicit breaking of the scale symmetry, but rather have
it nonlinearly realized.

B. The Higgs-dilaton model in EC gravity

It turns out that the simplest and at the same time
phenomenologically viable option requires that the theory
is extended by another dynamical scalar degree of freedom,
the dilaton χ,4 which is a singlet under the SM symmetries
and which transforms under dilatations in the same way as
h. It is now this field that induces the scales in the theory;
practically, we replace MP ↦

ffiffiffiffiffi
ξχ

p
χ in Eq. (7).

To construct the action, we first employ criteria (i) and
(ii) from Sec. II A. Additionally, since we would like to
think of h as the Higgs field, we do not include mixing
terms like ∂μχ∂μh and χh. With these restrictions, the most
general biscalar action invariant under global dilatations
reads

SSI ¼
Z

d4x
ffiffiffi
g

p �
Ω2

2
R
∘
−
ð∂μχÞ2

2
−
ð∂μhÞ2

2
−Uðh; χÞ þ Jvμvμ þ Jaμaμ

þ ξχχ
2

2
ðGvvvμvμ þ 2Gvavμaμ þ Gaaaμaμ þGττταβγτ

αβγ þ G̃ττϵ
μνρστλμντ

λ
ρσÞ

�
; ð20Þ

with

Uðh; χÞ ¼ λ

4

�
h2 −

α

λ
χ2
�

2

þ βχ4: ð21Þ

Phenomenologically speaking, the parameter α in the
above expression is responsible for generating the tree-
level Higgs mass, while β is responsible for the cosmo-
logical constant.
Although the subsequent analysis can be performed

without any assumptions about the form of the coefficient
functions appearing in Eq. (20), at this point we impose
criterion (iii) from Sec. II A. This will improve the clarity of
the presentation and make it easier to compare with the
previous studies of the Higgs-dilaton models. We find that

Ω2 ¼ ξχχ
2 þ ξhh2

M2
P

; ð22Þ

as well as

Jv=aμ ¼ ζv=aχ ∂μχ
2 þ ζv=ah ∂μh2: ð23Þ

We remark that both ξχ and α, β are constrained to be much
smaller than 1 [29]. Furthermore, scale invariance dictates
that the various functions appearing in (20) depend on
ratios of the fields, i.e.,

Gij ≡Gij

�
h2

χ2

�
¼ cij

�
1þ ξijh2

ξχχ
2

�
; ð24Þ

where no summation over the repeated indices is implied.
This is the direct generalization of the expressions (6) for
the coefficient functions in the one-field case. The inverse
ratio χ2=h2 cannot appear as it would lead to an incon-
sistency near the bottom of the Higgs potential.
As before, we solve for torsion, plug the result back into

the action and finally move to the Einstein frame by means
of the transformation (10), where the conformal factor is
now given by Eq. (22). After a straightforward computa-
tion, we find

SSI ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
R
∘
−

1

2Ω2
γ̃abgμν∂μφa∂νφb −

Uðh;χÞ
Ω4

�
;

ð25Þ

where γ̃ab a, b ¼ 1, 2, is the metric of the two-dimensional
kinetic manifold spanned by φa ¼ ðχ; hÞ; it reads

γ̃ab ¼ Iab þ
4

ξχχ
2ðGvvGaa −G2

vaÞ
γab

þ 6

ξχχ
2 þ ξhh2

�
ξ2χχ

2 ξχξhχh

ξχξhχh ξ2hh
2

�
; ð26Þ

with Iab the 2 × 2 identity matrix, and

4In an abuse of language wewill call χ the dilaton, although the
physical dilaton, i.e., the NG boson associated with the breaking
of the scale symmetry is a function of both h and χ.
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γ11 ¼ ðGaaζ
v2
χ þ Gvvζ

a 2
χ − 2Gvaζ

v
χζ

a
χÞχ2;

γ12 ¼ ðGaaζ
v
hζ

v
χ þ Gvvζ

a
hζ

a
χ −Gvaðζvhζaχ þ ζvχζ

a
hÞÞhχ;

γ22 ¼ ðGaaζ
v 2
h þ Gvvζ

a 2
h − 2Gvaζ

v
hζ

a
hÞh2: ð27Þ

When written in terms of χ and h, the kinetic sector of the
theory appears to be rather involved. It is also difficult to
explicitly identify the physical dilaton when the theory is
written this way. Nevertheless, owing to the fact that the
kinetic manifold is two-dimensional, we can always diag-
onalize it (but not necessarily make it canonical). Note that
the above construction bears resemblance to theories
built on the basis of scale invariance and transverse

diffeomorphisms introduced in [30], generalizing the ideas
of [25] in an attempt to have the dilaton be of gravitational
origin. These have been further studied, e.g., in [48,51,78].
We will therefore proceed in the analysis by using the
results of the aforementioned works.
To rid of the kinetic mixing, we first introduce

Φ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξχχ

2 þ ξhh2
q

; Z ¼ h2

ξχχ
2
; ð28Þ

in terms of which the action (25) becomes

SSI ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
R
∘
−
M2

P

2
ðGZZðZÞgμν∂μZ∂νZ þ 2GZΦðZÞgμν∂μZ∂ν logðΦ=MPÞ

þ GΦΦðZÞgμν∂μ logðΦ=MPÞ∂ν logðΦ=MPÞÞ − ŨðZÞ
�
: ð29Þ

The various functions appearing in the above depend only on Z and are given by

GZZðZÞ ¼
1

4ξχZð1þ ξhZÞ3
ðξ2hZγ̃11 − 2

ffiffiffiffiffi
ξχ

q
ξh

ffiffiffiffi
Z

p
γ̃12 þ ξχγ̃22Þ;

GZΦðZÞ ¼
1

ξχð1þ ξhZÞ2
ðξhγ̃11 þ ð

ffiffiffiffiffiffiffiffiffiffi
ξχ=Z

q
−

ffiffiffiffiffi
ξχ

q
ξh

ffiffiffiffi
Z

p
Þγ̃12 þ ξχγ̃22Þ;

GΦΦðZÞ ¼
1

ξχð1þ ξhZÞ
ðγ̃11 þ 2

ffiffiffiffiffiffiffiffi
ξχZ

q
γ̃12 þ ξχZγ̃22Þ;

ŨðZÞ ¼ λM4
P

4ξ2χ

� α
λ − ξχZ

1þ ξhZ

�
2

þ βM4
P

ξ2χ

�
1

1þ ξhZ

�
2

: ð30Þ

Next, we redefine

Φ ¼ MPe
Φ̃
MP

−fðZÞ; with f0ðZÞ ¼ GZΦðZÞ
GΦΦðZÞ

; ð31Þ

to obtain

SSI ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
R
∘
−
1

2
ðM2

PKðZÞð∂ZÞ2

þ GΦΦðZÞð∂Φ̃Þ2Þ − ŨðZÞ
�
; ð32Þ

with

KðZÞ ¼ GZZðZÞGΦΦðZÞ − G2
ZΦðZÞ

GΦΦðZÞ
: ð33Þ

Let us pause for a moment and point out that in terms of
the noncanonically normalized Z-field, the form of the

action can be convenient when studying inflationary
physics. The properties of KðZÞ and, in particular, its pole
structure at field values relevant for inflation determine the
observable quantities. In turn, this was shown to be related
to the geometry of the field space and, more specifically, to
its curvature [51]. After all, we have a two-dimensional
manifold, meaning that its scalar curvature fully character-
izes the geometry.
It is clear from the action that Φ̃ appears only via its

kinetic term so it is manifestly shift-symmetric. This is
exactly the NGmode of the nonlinearly realized dilatations.
In terms of the original fields the physical dilaton reads

Φ̃ ¼ MP

�
1

2
log

�
ξχχ

2 þ ξhh2

M2
P

�
þ f

�
h
χ

��
; ð34Þ

so that the scale transformations (13) accompanied by
χ ↦ qχ are realized as shifts,
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Φ̃ ↦ Φ̃þMP log q: ð35Þ

Before closing this section, we note that there is no
difficulty in making the kinetic term for Z canonical; this is
achieved in terms of

Z̃ ¼ MP

Z
dZ

ffiffiffiffiffiffiffiffiffiffiffi
KðZÞ

p
; ð36Þ

meaning that

SSI ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
R
∘
−
1

2
ðsð∂Z̃Þ2

þ GΦΦðZ̃Þð∂Φ̃Þ2Þ − ŨðZ̃Þ
�
; ð37Þ

with

s ¼ signðKðZÞÞ: ð38Þ

The theory we constructed here generalizes the metrical
Higgs-dilaton model [25] (see also [51]) to which it boils
down in the limit of vanishing torsion. As mentioned
earlier, the Higgs-dilaton model contains many salient
features. It connects the early inflationary stage of the
Universe to its late-time accelerated expansion [29].
Besides, the dilaton field χ may actually be of gravitational
origin, if the general covariance of the theory is restricted to
transverse coordinate transformations [48]. This line of
thought is appealing since it again brings us to a situation
where there are no new particles of nongravitational
origin, and we saw that at least one new propagating
degree of freedom is necessary to realize scale invariance
in a phenomenologically viable way. It would be interesting
to pursue further these ideas in the EC framework.

C. Inclusion of fermions

The inclusion of fermions in the scale invariant setting
can be done in a straightforward manner, where we employ
the same procedure as in [1]. The action SfSI of a massless
four-component spinorΨ comprises its kinetic term for and
all possible interactions with torsion. It reads [9]

SfSI ¼
Z

d4x
ffiffiffi
g

p �
i
2
ðΨ̄γμD∘ μΨ −D

∘
μΨγμΨÞ

þ ðζvVVμ þ ζvAAμÞvμ þ ðζaVVμ þ ζaAAμÞaμ
�
; ð39Þ

where γμ ¼ eμAγ
A, and

D
∘
μ ¼ ∂μ þ

1

8
ω
∘ AB
μ ½γA; γB� ð40Þ

is the torsionfree fermionic covariant derivative. In the
above ζvV , ζ

a
V , ζ

v
A and ζaA are arbitrary coefficients, while

Vμ ¼ Ψ̄γμΨ; Aμ ¼ Ψ̄γ5γμΨ ð41Þ

are the vector and axial fermionic currents, respectively.
In terms of the equivalent metric theory, the action now

includes a set of specific higher-dimensional operators that
capture various interactions between and among both
scalars and fermions. More specifically,

S ¼ SSI þ
Z

d4x
ffiffiffi
g

p �
i
2
ðΨ̄γμD∘ μΨ −D

∘
μΨγμΨÞ

þ 1

ξχχ
2
ðL SI

χV þL SI
hV þL SI

χA þL SI
hA

þL SI
VV þL SI

AA þL SI
VAÞ

�
; ð42Þ

where SSI is given above in Eq. (25), while

L SI
χV ¼ Gaaζ

v
χζ

v
V þ Gvvζ

a
χζ

a
V − GvaðζvVζaχ þ ζvχζ

a
VÞ

G2
va −GvvGaa

∂μχ
2Vμ;

ð43Þ

L SI
hV ¼ Gaaζ

v
hζ

v
V þGvvζ

a
hζ

a
V −GvaðζvVζah þ ζvhζ

a
VÞ

G2
va −GvvGaa

∂μh2Vμ;

ð44Þ

L SI
χA ¼ Gaaζ

v
χζ

v
A þ Gvvζ

a
χζ

a
A −GvaðζaAζvχ þ ζaχζ

v
AÞ

G2
va −GvvGaa

∂μχ
2Aμ;

ð45Þ

L SI
hA ¼ Gaaζ

v
hζ

v
A þ Gvvζ

a
hζ

a
A − GvaðζaAζvh þ ζahζ

v
AÞ

G2
va −GvvGaa

∂μh2Aμ;

ð46Þ

L SI
VV ¼Ω2

GaaðζvVÞ2þGvvðζaVÞ2−2Gvaζ
v
Vζ

a
V

2ðG2
va−GvvGaaÞ

VμVμ; ð47Þ

L SI
AA¼Ω2

GaaðζvAÞ2þGvvðζaAÞ2−2Gvaζ
v
Aζ

a
A

2ðG2
va−GvvGaaÞ

AμAμ; ð48Þ

L SI
VA¼Ω2

Gaaζ
v
Vζ

v
AþGvvζ

a
Vζ

a
A−GvaðζaVζvAþζvVζ

a
AÞ

G2
va−GvvGaa

VμAμ:

ð49Þ

We observe that our result is fully analogous to the findings
of [1]. The only difference is that the presence of two scalar
fields leads to two copies of the coupling between a scalar
and a fermionic current. Moreover, we note that there is no
difficulty in writing the above in terms of the kinetically-
decoupled fields Z̃ and Φ̃—this is achieved by using
Eqs. (28), (31) and (36). Since the resulting expressions
do not offer any new information, we leave this

KARANANAS, SHAPOSHNIKOV, SHKERIN, and ZELL PHYS. REV. D 104, 124014 (2021)

124014-8



computation to the invested reader. In summary, Eqs. (43)–
(49) show that in principle the fermionic terms can
influence the dynamics of the scalar fields as described
in Sec. III B, provided the couplings ζvV , ζ

a
V , ζ

v
A and ζaA are

large enough (see e.g., [14]). If the couplings are suffi-
ciently small, however, the previous analysis remains valid
even in the presence of fermions.

IV. WEYL INVARIANCE

A. General action

We now attempt to couple the Higgs field to EC gravity
in a Weyl-symmetric manner. In other words, we require
the theory should be invariant under gauged dilatations. Let
us briefly outline the procedure of gauging the theory as we
would for a nonspacetime symmetry. Our starting point
obviously is the globally scale-invariant action (20). To
account for the inhomogeneous pieces that now appear in
the derivatives of the fields with nontrivial scaling dimen-
sions di, we would promote the partial derivatives to
covariant ones

∂μ ↦ Dμ ¼ ∂μ − diWμ; ð50Þ

by introducing the Weyl vector Wμ, transforming as

Wμ ↦ Wμ þ q−1∂μq; ð51Þ

where now q ¼ qðxÞ. We would also supplement the action
with the appropriate kinetic term for the Weyl gauge field,
ð∂μWν − ∂νWμÞ2, which is manifestly gauge-invariant and
moreover satisfies the requirement of being of mass
dimension 4. The resulting theory would exhibit Weyl
invariance by construction, but at the expense of having
new propagating degrees of freedom.
Although what we just presented is of course an

acceptable thing to do, it is neither unique and certainly
not the most economic. When it comes to localizing
spacetime symmetries, the introduction of compensating
gauge fields may turn out to be unnecessary, in the sense
that their role can be played by curvature and/or torsion. Let
us explain why this can be the case to start with. The
transformation properties of the fields are still given
by Eq. (13), but since now q ¼ qðxÞ, certain geometric
objects—composed out of e and ω—do not transform
covariantly but rather pick up inhomogeneous pieces under
a Weyl rescaling. For our purposes here we note that the
Ricci scalar and the torsion vector shift by derivatives of the
scale function as

R
∘
↦ q2R

∘ þ 6q□q − 12ð∂μqÞ2; ð52Þ

vμ ↦ vμ þ 3q−1∂μq; ð53Þ

with □ ¼ gμν∇μ∇ν the covariant d’Alembertian.

In other words, a theory may be made invariant under
Weyl transformations without introducing new degrees of
freedom, simply by coupling it appropriately to gravity.5 In
the EC formulation we can construct covariant derivatives
for the fields by letting the torsion vector play the role of an
effective Weyl gauge field, as is clear from Eqs. (51) and
(53). We shall employ this approach, and consequently set

Wμ ¼
1

3
vμ: ð54Þ

Since torsion is not propagating, vμ will eventually be
related to the derivatives of the fields. In addition, due to the
Weyl redundancy, one scalar degree of freedom is spurious,
meaning that the spectrum of the theory comprises the
massless graviton plus a single scalar field. As stated in the
Introduction, in this context Weyl symmetry is merely a
means toward further constraining the action.
It is a straightforward exercise to write down the scalar-

gravity part of the most general Weyl-invariant action
involving the Higgs h and another scalar field χ, which
satisfies conditions(i)—(iii) from Sec. II A. By virtue of the
transformation properties of the various quantities, we find
that this reads

SWI ¼
Z

d4x
ffiffiffi
g

p �
ðξχχ2 þ ξhh2ÞF þ ðζχχ2 þ ζhh2ÞF̃

−
ðDW

μ χÞ2
2

−
ðDW

μ hÞ2
2

−Uðh; χÞ

þ ξχχ
2

2
ðgaaaμaμ þ gττταβγτ

αβγ

þ g̃ττϵ
μνρστλμντ

λ
ρσÞ þ J̃aμaμ

�
; ð55Þ

where we introduced the Weyl covariant derivative

DW
μ ¼ ∂μ þ

1

3
vμ; ð56Þ

and the potential Uðh; χÞ was defined in Eq. (21). The
difference as compared to the scale-invariant action (20) is
that now the couplings to vμ no longer appear on their own,
but only as part of the curvature and covariant derivatives.
The same remains true if we include a complex scalar field
or fermions in the theory. In the Weyl-invariant case, the
couplings of their currents to vμ are no longer independent:
only the interactions with the axial vector aμ remain free,
and, consequently, the number of a priori undetermined
parameters is cut in half.

5For more details we refer the interested reader to [104]. This
procedure has been systematized both in the absence and the
presence of torsion in [43].
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As before, dimensional analysis dictates that the coef-
ficient functions depend on the ratio of the fields, i.e.,
gij ¼ gijðh=χÞ, while the current that couples to the
pseudovector torsion reads

J̃aμ ¼ ζ̃aχDW
μ χ

2 þ ζ̃ahD
W
μ h2: ð57Þ

We find it convenient to recast the action in the follow-
ing form

SWI ¼
Z

d4x
ffiffiffi
g

p �
ξhh2 þ ξχχ

2

2
R
∘
−
ð∂μhÞ2

2
−
ð∂μχÞ2

2
−Uðh;χÞ− 1

6
½ð1þ 6ξhÞ∂μh2 þ ð1þ 6ξχÞ∂μχ

2�vμ

−
1

18
½ð1þ 6ξhÞh2 þ ð1þ 6ξχÞχ2�vμvμ þ ½ðζh þ ζ̃ahÞ∂μh2 þ ðζχ þ ζ̃aχÞ∂μχ

2�aμ þ 1

3
½ð2ζh þ ζ̃ahÞh2 þ ð2ζχ þ ζ̃aχÞχ2�aμvμ

þ ξχχ
2

2
ðGaaaμaμ þGττταβγτ

αβγ þ G̃ττϵ
μνρστλμντ

λ
ρσÞ

�
; ð58Þ

where the shifted functions Gaa, Gττ, G̃ττ can be read from
Eqs. (6) and (9) upon replacing the Planck mass with ξχχ

2:

gaa ¼ Gaa −
ξhh2 þ ξχχ

2

24ξχχ
2

; gττ ¼ Gττ −
ξhh2 þ ξχχ

2

2ξχχ
2

;

g̃ττ ¼ G̃ττ þ
ζhh2 þ ζχχ

2

ξχχ
2

: ð59Þ

The analysis of the theory (58) can be greatly simplified
once we note that only one scalar degree of freedom is
dynamical—as we said before, this is an aftermath of the
Weyl redundancy of SWI. Hence, without loss of generality
one can set ξχχ2 ¼ M2

P. Dropping also τ that in any case
vanishes [1], we find

SWI ¼
Z

d4x
ffiffiffi
g

p �
M2

P þ ξhh2

2
R
∘
−
ð∂μhÞ2

2
− UðhÞ

þM2
P

2
ðGvvvμvμ þ 2Gvaaμvμ þ GaaaμaμÞ

þ ζvh∂μh2vμ þ ζah∂μh2aμ
�
; ð60Þ

where now

Gvv ¼ cvv

�
1þ ξvvh2

M2
P

�
; Gva ¼ cva

�
1þ ξvah2

M2
P

�
;

Gaa ¼ caa

�
1þ ξaah2

M2
P

�
ð61Þ

with

cvv ¼ −
1þ 6ξχ
9ξχ

; ξvv ¼
ξχð1þ 6ξhÞ
1þ 6ξχ

;

cva ¼
ð2ζχ þ ζ̃aχÞ

3ξχ
; ξva ¼

ξχð2ζh þ ζ̃ahÞ
2ζχ þ ζ̃aχ

; ð62Þ

and

ζvh ¼ −
1þ 6ξh

6
; ζah ¼ ζh þ ζ̃ah: ð63Þ

The function Gaa is unchanged as compared to Eq. (58).
Let us count the number of free parameters in the action

(60). We find 7 independent combinations, namely ξh, ξχ ,
ζh, ζ̃

a
h, the sum 2ζχ þ ζ̃aχ as well as the two constants caa

and ξaa. Thus, we have reduced the number of free
parameters by 2 as compared to the model (7).
For completeness we present here the equivalent metric

theory in the Einstein frame. It reads

SWI ¼
Z

d4x
ffiffiffi
g

p �
M2

P

2
R
∘
−
KðhÞ
2

ð∂μhÞ2 −
UðhÞ
Ω4

�
; ð64Þ

where Ω is given in Eq. (6) and KðhÞ is given by
[cf. Eq. (12)]

KðhÞ ¼ 1

Ω2

�
1þ 4h2

M2
P

�
Gaaζ

v2
h þ Gvvζ

a2
h − 2Gvaζ

v
hζ

a
h

GvvGaa − G2
va

�

þ 6ξ2hh
2

M2
PΩ2

�
: ð65Þ

Instead of eliminating the spurious field by brute force, we
could have followed the procedure of the previous section.
Once we move to the Einstein frame, it is straightforward to
write down the kinetic matrix. As it turns out, it only has
one nonzero eigenvalue; clearly, this is a manifestation of
the fact that one field is nondynamical.
For a general choice of the couplings, the kinetic term

(65) may not be positive definite at all field values.
Nevertheless, since KðhÞ → 1 for h → 0, there always is
a range of sufficiently small h for which the theory is
consistent. This situation is fully analogous to our findings
in the more general model (7) (see [1]). We would also like
to remark that it is possible to choose the opposite sign for
the kinetic term of χ in Eq. (55). Since the dilaton does not
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propagate, this also results in a consistent theory. As for the
equivalent metric theory, it leads to the replacement 1þ
6ξχ ↦ −1þ 6ξχ in the kinetic term (65) [see Eq. (62)].

B. A limiting case: “Weyl-Palatini” gravity

The EC theory with the nonminimally coupled scalar
field reviewed in Sec. II contains the Palatini limit. As
discussed in [1], it is achieved by including in the
gravitational action only the Ricci scalar and a nonminimal
coupling to it. In Eq. (1), it corresponds to setting

Ω̃ ¼ zv ¼ za ¼ gvv ¼ gva ¼ gaa ¼ gττ ¼ g̃ττ ¼ 0: ð66Þ

For this choice of parameters, the second and third terms in
Eq. (12) cancel each other out. Now one can ask what the
analog of the Palatini limit is for the Weyl-invariant theory
(55), which is a constrained version of the one-field model
(1). As in the general case, we remove all terms from the
gravitational action apart from the Ricci scalar and non-
minimal couplings to it. This leads to

ζh ¼ ζχ ¼ ζ̃ah ¼ ζ̃aχ ¼ gaa ¼ gττ ¼ g̃ττ ¼ 0: ð67Þ

Plugging the above into Eq. (58), we obtain the following
action

SWP ¼
Z

d4x
ffiffiffi
g

p �
ξhh2 þ ξχχ

2

2
R
∘
−
ð∂μhÞ2

2
−
ð∂μχÞ2

2
−Uðh; χÞ − 1

6
½ð1þ 6ξhÞ∂μh2 þ ð1þ 6ξχÞ∂μχ

2�vμ

−
1

18
½ð1þ 6ξhÞh2 þ ð1þ 6ξχÞχ2�vμvμ þ ðξhh2 þ ξχχ

2Þ
�
1

48
aμaμ þ

1

4
ταβγτ

αβγ −
1

2
ϵμνρστλμντ

λ
ρσ

��
: ð68Þ

As the original Higgs-dilaton model, the scalar-gravity
sector of the Weyl-Palatini theory (68) contains 2 inde-
pendent parameters—the nonminimal couplings ξh and ξχ
of the Higgs and dilaton fields. In the Einstein frame and in
the gauge ξχχ2 ¼ M2

P, the action becomes of the form (64),
where the kinetic function is given by

KðhÞ¼ 1

Ω2

�
1−

ξχð1þ6ξhÞ2h2
ð1þ6ξχÞM2

Pþξχð1þ6ξhÞh2
þ 6ξ2hh

2

M2
PΩ2

�
:

ð69Þ

Let us comment on one interesting choice of parameters
in the Weyl-Palatini theory, namely, ξh ¼ −1=6. As is
evident from Eq. (68), torsion is not sourced in this case.
Hence, the theory becomes identical to its counterpart in the
metric formulation, where one assumes a priori vanishing
torsion. Correspondingly, the dependence on ξχ drops out,
and the kinetic term reads

KðhÞ ¼ 1

ð1 − h2

6M2
P
Þ2 : ð70Þ

We observe that the kinetic sector of the theory is identical
to the one of the α-attractors (see, e.g., [121]). Thus, one
can wonder whether inflation can be realized in this model.
The answer turns out to be negative: due to the presence of
the conformal factor in the potential part in Eq. (64), it
cannot support slow roll.
Notwithstanding the above, the Weyl-Palatini theory

generically represents an economic and phenomenologi-
cally viable generalization of the textbook example of a
scalar field conformally coupled to gravity. Indeed, many

choices of parameters are known to lead to successful
inflation in agreement with measurements [11,14]. We
leave a study of observational consequences of the theory
for future work.

C. Inclusion of fermions

Coupling fermionic matter in the Weyl invariant theory
can be done in almost the same way as in the scale invariant
theory. The only difference is that now the fermionic action
cannot contain a mixing term between the torsion vector vμ
and the axial current Aμ. The reason is that the latter may
not be conserved, even classically, and so a term Aμvμ

would break the gauge invariance (53). Consequently, the
Weyl-invariant fermionic action reads

SfWI ¼
Z

d4x
ffiffiffi
g

p �
i
2
ðΨ̄γμD∘ μΨ −D

∘
μΨγμΨÞ þ ζvVVμvμ

þ ðζaVVμ þ ζaAAμÞaμ
�
; ð71Þ

i.e., it is the same as Eq. (39) for ζvA ¼ 0.
Once torsion is rid of and we set ξχχ2 ¼ M2

P, the action
boils down to

S ¼ SWI þ
Z

d4x
ffiffiffi
g

p �
i
2
ðΨ̄γμD∘ μΨ −D

∘
μΨγμΨÞ

þ 1

M2
P
ðLWI

hV þLWI
hA þLWI

VV þLWI
AA þLWI

VAÞ
�
; ð72Þ

where SWI was presented in (64), and
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LWI
hV ¼ Gaaζ

v
hζ

v
V þ Gvvζ

a
hζ

a
V − GvaðζvVζah þ ζvhζ

a
VÞ

G2
va −GvvGaa

∂μh2Vμ;

ð73Þ

LWI
hA ¼ Gvvζ

a
hζ

a
A −Gvaζ

a
Aζ

v
h

G2
va −GvvGaa

∂μh2Aμ; ð74Þ

LWI
VV ¼Ω2

GaaðζvVÞ2þGvvðζaVÞ2−2Gvaζ
v
Vζ

a
V

2ðG2
va−GvvGaaÞ

VμVμ; ð75Þ

LWI
AA ¼ Ω2

GvvðζaAÞ2
2ðG2

va −GvvGaaÞ
AμAμ; ð76Þ

LWI
VA ¼ Ω2

Gvvζ
a
Vζ

a
A − Gvaζ

v
Vζ

a
A

G2
va − GvvGaa

VμAμ: ð77Þ

Equations (73)–(77) correspond to our findings of [1] for
the special case ζvA ¼ 0. Note, however, that the various
coefficients and functions are not free in the Weyl-invariant
setting, see Eqs. (61)–(63). Regarding the physical impli-
cations of fermions, the same conclusions hold as in
Sec. III C. If the couplings ζvV , ζ

a
V and ζaA are chosen to

be small enough, they do not influence the dynamics of the
scalar fields.
At this point we can go a step further and also discuss

what is the dynamics of fermions in the Weyl-Palatini limit.
This corresponds to considering the action (72) with the
choice of parameters (67), supplemented by

ζvV ¼ ζaV ¼ 0; ζaA ¼ −
1

8
; ð78Þ

such that torsion-fermion interactions emerge only from the
(fermionic) covariant derivative (see also [1]). We find that
the only interaction that survives is the one between the
axial fermionic current:

LWP
hV ¼LWP

hA ¼LWP
VV ¼LWP

VA ¼0; LWP
AA ¼−

3

16
AμAμ:

ð79Þ

In the Einstein-Cartan theory without Weyl-invariance, one
finds the same result in the Palatini limit.

V. CONCLUSIONS

Scale symmetry has interesting applications in both
cosmology and particle physics. In the present paper, we
considered a scalar field coupled to gravity in the Einstein-
Cartan formulation and constructed actions that are invari-
ant under either global or local scale transformations. The
resulting models feature nonpropagating torsion and are, in
general, phenomenologically viable.
In both cases of scale invariance, in addition to themassless

graviton and Higgs boson, there is also an extra scalar degree

of freedom, the dilaton. By acquiring a nonvanishing expect-
ation value, this field generates mass scales in the theory. If
scale invariance is global, the dilaton is dynamical. Being
the Nambu-Goldstone mode of the spontaneously broken
symmetry, it couples only derivatively to the rest of the fields.
If the spacetime symmetry group of the theory is taken to be
volume-preserving coordinate transformations, the scale
symmetry is broken in a specific manner: it generates a
runaway exponential potential for the dilaton, making it a
prime candidate for dynamical dark energy [29]. As was
mentioned in Sec. III, this allows to accommodate both the
inflationary and dark energy dominated epochs of the
Universe within a single model, and relate inflationary
predictions to the late-time cosmological observations.
On the other hand, when considering the Weyl invariant

generalization, the dilaton is spurious—the gauge redun-
dancy eliminates the field completely. Thus, in the con-
struction that we put forward, the role of Weyl symmetry is
to reduce the arbitrariness of the action. By coupling the
theory to Einstein-Cartan gravity in a locally scale invariant
way, one obtains nontrivial relations between the various
coefficient functions. This is a direct generalization of what
happens with a conformally coupled scalar in the metric
formulation of gravity.
Fig. 1 summarizes our study of Einstein-Cartan gravity

with a nonminimally coupled scalar field. The most general
theory contains all terms compatible with the conditions
listed in Sec. II A. One way to reduce the freedom was
explored in [12] where a subclass containing only the Holst
and Nieh-Yan terms was studied. Further limits of the latter
theory are the models of Palatini gravity and general
relativity in the commonly-used metric formulation. As
discussed, Weyl invariance provides another way of con-
straining the action. On this route, one can obtain other
interesting limiting cases, including the Weyl-invariant
analog of the Palatini model.
Finally,we saw that the inclusion of fermions results in the

metric version of the theory containing a number of higher-
dimensional operators describing interactions between the
fields and the vector and axial fermionic currents. In large
parameter ranges, these additional terms do not influence the
dynamics of scalar fields.

FIG. 1. The subclasses of the general Einstein-Cartan theory
with the nonminimally coupled scalar field; see the text for
details.
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