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We undertake the task of studying the nonlinear dynamics of quantum gravity motivated alternatives to
black holes that in the classical limit appear as ultracompact shells of matter. We develop a formalism that
should be amenable to numerical solution in generic situations. For a concrete model, we focus on the
spherically symmetric anti-de Sitter (AdS) black bubble—a shell of matter at the Buchdahl radius
separating a Schwarzschild exterior from an AdS interior. We construct a numerical code to study the radial
dynamics of and accretion onto AdS black bubbles, with exterior matter provided by scalar fields. In doing
so, we develop numerical methods that could be extended to future studies beyond spherical symmetry.
Regarding AdS black bubbles in particular, we find that the original prescription for the internal matter
fluxes needed to stabilize the black bubble is inadequate in dynamical settings, and we propose a two-
parameter generalization of the flux model to fix this. To allow for more efficient surveys of parameter
space, we develop a simpler numerical model adapted to spherically symmetric bubble dynamics. We
identify regions of parameter space that do allow for stable black bubbles and moreover allow control to a
desired end state after an accretion episode. Based on these results, and evolution of scalar fields on black
bubble backgrounds, we speculate on some observational consequences if what are currently presumed to
be black holes in the Universe were actually black bubbles.
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I. INTRODUCTION

Since the recognition of black hole entropy and formu-
lation of the black hole information paradox, many efforts
have focused on interpreting and reconciling such puzzling
aspects of black holes. These, and related attempts to tame
the singularities inside black holes, motivated consideration
of “extensions” to black holes, altering their structure in the
vicinity of the classical horizon and its interior. This has
resulted in proposals for objects like fuzzballs [1], grav-
astars [2], black bubbles [3], etc.—see Ref. [4] for a review,
which also describes many other exotic compact object
(ECO) alternatives to black holes not necessarily motivated
by quantum gravity considerations.
Recently, the ability to detect gravitational waves from

merging stellar-mass compact object binaries (e.g.,
Refs. [5,6]) as well as to observe horizon scale physics
of supermassive black holes (see Ref. [7]) has tremen-
dously energized this field, motivating the search for
observational consequences of ECO alternatives to Kerr
black holes. However, the majority of existing models of
ECOs has not been studied in dynamical, nonlinear set-
tings, and for some, it is even uncertain how that might be
done in theory. This is clearly an unfortunate state of affairs,
even beyond the obvious need for predicting waveforms in
mergers, as understanding the dynamical stability of iso-
lated objects, or lack thereof, could eliminate some models
and guide refinements to more viable ones.

Here, we focus on a subclass of ECO modeled as an
ultracompact thin shell: a 2-sphere surface layer of matter
close to the would-be horizon of the analogous black hole,
but still at a macroscopic distance outside, that separates a
nonsingular interior spacetime from the exterior, asymptoti-
cally flat spacetime. To realize the ultimate goal of studying
the merger of two such objects, one must resort to numerical
simulations. This requires the introduction of novel ideas and
methods to deal with the new ingredients such an ECO
would bring to a traditional numerical general relativity
code: singular surface layers, matter fields (including a
cosmological constant) confined to the surface and or
exterior/interior spacetimes, new interactions between tradi-
tional matter fields and the surface, etc.
Before such novel techniques can be investigated, it is

essential to begin with a viable ECO model. This requires
both a classically well-posed problem of the spacetime and
matter system at hand1 and that the ECO solutions are
dynamically stable. A promising candidate in this regard,
that we will adopt,2 is the anti-de Sitter (AdS) black bubbles
proposed by Danielsson et al. [3]. This model has so far

1Requiring mathematically sound equations together with
suitable initial and boundary conditions.

2This is a convenient choice, though lessons derived in our
studies are applicable to other models as well.
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only been developed for nonrotating or slowly rotating
spacetimes [8]. In the nonrotating case, a thin shell of
matter in equilibrium at the Buchdahl radius separates an
interior AdS spacetime from the exterior Schwarzschild
spacetime. The matter, inspired by string theory construc-
tions, consists of a relativistic gas attached to a membrane,
with internal interactions between the components
designed to react to external perturbations so as to keep
the bubble stable. Another goal of this work then is to
explore the stability of these bubbles beyond the quasista-
tionary, linear regime investigated in Ref. [3].
As a first step toward an ultimate goal of exploring black

bubble mergers, we will restrict attention to single, spheri-
cally symmetric black bubbles. In spherical symmetry, one
can adapt the problem to the symmetry, avoiding many
complications one would need to address in a generic
scenario. However, we have intentionally tried to not do
that as much as possible, often complicating the problem
simply for the sake of introducing a feature that would be
present in a nonsymmetric case. This includes not explicitly
imposing the Israel junction conditions [9] (that in spherical
symmetry by themselves can uniquely determine the shell
dynamics and map between interior/exterior spacetimes),
choosing a metric ansatz where we have gauge waves that
propagate at the speed of light, and using a scalar field as a
proxy for gravitational wave interactions with the shell.
In a sense, we have been successful in implementing

this Einstein-Klein-Gordon-hydrodynamic (EKGH) model.
However, when first applying it to AdS black bubbles, we
found it failed to address the question of physical stability
in the large-bubble limit, of interest for astrophysical
applications. This turns out in part to be due to some of
these “complicating” choices we made for the EKGH code
and also in part due to the physics of black bubbles in the
large mass limit. To answer the stability question, which
would be crucial to do before either improving the EKGH
code, or to go beyond spherical symmetry, we here also
introduce a simpler, spherically symmetric adapted model
that can investigate some aspects of the nonlinear, dynami-
cal stability of large black bubbles.
The rest of the Introduction outlines the remainder of the

paper and summarizes the main results.
In Sec. II, we review aspects of AdS black bubbles and

give a general formalism to describe such 2þ 1-dimensional
(2þ 1D) matter embedded in a dynamical 3þ 1D space-
time. For surface matter, we consider the combination of
fluids proposed in Ref. [3], though we allow for the
possibility of viscosity to be present. For external matter,
we consider two scalar fields: the first does not directly
interact with the matter intrinsic to the shell, and can freely
propagate across its surface (i.e., the proxy for gravitational
waves), while the second can be absorbed by the shell to
model accretion.
In Sec. III, we specialize to spherical symmetry. First, in

Sec. III A, we describe the full EKHG version of the

equations, including our ansatz for the metric, the resultant
evolution equations, constraint equations, initial condi-
tions, and boundary conditions. In Sec. III E, we describe
the simplified model that can explore the dynamics of an
AdS black bubble perturbed by an unspecified external
source (i.e., it does not include the gravitational wave proxy
scalar field and cannot relate the perturbing source to a
particular external scalar field profile).
Stability in the AdS black bubble model is achieved via

an internal flux between the gas and brane components. In
Sec. IV, we discuss this in more detail, including the
extensions beyond that of the original model we introduce
here. As outlined there, with more details and analysis
given in Appendixes A and B, the flux prescription of
Ref. [3] does not result in stable bubbles if the full
dynamical problem is considered, and one demands the
internal flux can only react to local changes in the
environment. The modifications we have introduced here
are somewhat ad hoc, though our reasoning is if we can
identify flux prescriptions that lead to stable bubbles it will
help guide searches for more fundamental physical mecha-
nisms that can achieve similar effects.
In Sec. V, we discuss numerical implementation details

of the spherically symmetric equations given in Sec. III. We
focus on novel aspects pertaining to this problem, including
a weak-form integration procedure to deal with the singular
surface and a dual coordinate scheme to keep the bubble at
a fixed location within the computational grid. More
technical details of this are relegated to Appendixes C
and D.
In Sec. VI, we give results from evolution of perturbed

black bubbles. In Sec. VI A, we focus on the physics of
AdS black bubble dynamics, giving examples using flux
parameters (guided by the linear analysis presented in
Appendix B) that allow for stable, large black bubbles. In
Sec. VI B, we discuss the limitations of the EKGH code
in this regard; in particular, the two (likely related)
problems are the challenge to achieve sufficient accuracy
over multiple light-crossing times and a “mass amplifica-
tion” effect that occurs due to the purely gravitational
interaction of scalar field energy crossing from the exterior
to interior spacetimes. However, the EKGH code is capable
of modeling the long term interactions of the scalar field on
a fixed black bubble background; in this section, then, we
also present some results for the case of the gravitational
wave proxy field that can freely cross the bubble surface.
This suggests some remarkable potential observational
consequences following black bubble formation, in par-
ticular a slow, nearly monochromatic release of the energy
at the fundamental oscillation frequency of the interior AdS
spacetime, redshifted to near the characteristic frequency of
the exterior black bubble spacetime. However, as estimated
in Appendix E, if the AdS length scale is set by Planck
scale physics, the energy release will be much too slow
to be of relevance for astrophysical sized (stellar and
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supermassive) black holes. Discriminating between black
bubble and black hole mergers would then seem to require
understanding the prompt signal following a collision, or
unusual interior physics/anomalously large length scales;
we speculate on these topics as well as give directions for
future work in Sec. VII.

II. ADS BLACK BUBBLES AND GENERAL
CONSIDERATIONS

Among suggested alternatives to black holes resulting
from gravitational collapse are black bubbles, first pro-
posed in Ref. [3]. Though their creation is argued to come
from a quantum tunneling process and their surface
structure is argued to be composed of string-theory inspired
matter and higher-dimensional geometric constructions,
once formed, astrophysically large black bubbles can to
good approximation be described by classical physics. In
this limit, they are solutions to four-dimensional Einstein
gravity coupled to matter—an electromagnetic gas, a
membrane, and a subleading stiff gas—confined to a thin
shell. For the nonrotating case, the interior is AdS space-
time with a cosmological constant Λ≡ −l2, and the
exterior is Schwarzschild with a gravitational mass m.
For both stability and to possess an equation of state that
“naturally” follows from the string theory construction, the
shell is required to be at the Buchdahl radius r ¼ 9m=4.
Of particular interest is to assess whether a black bubble

can be regarded as a viable candidate for an “exotic”
alternative to a black hole. Notably, this would mean
confronting the behavior of merging black bubbles with
gravitational wave observations of what are currently
interpreted as merging black holes [10,11] and whether
accretion onto supermassive black bubbles is distinguish-
able from that onto supermassive black holes as observed
by the Event Horizon Telescope (EHT) [12].
Here, we focus on working toward the goal of using

gravitational wave observations to study the viability of
black bubbles. This requires that the classical system
admits a well-posed initial value problem outside of the
static, spherically symmetric spacetime ansatz where they
were first analyzed and that single black bubbles are
dynamically stable to generic perturbations. From the
classical perspective, this would include nonlinear pertur-
bations, at least as long as the energy of the perturbation is
not large enough to require considering it a “creation
event,” rather than a perturbation.3 In Ref. [3], a first step
toward addressing the stability question was taken, and it
was argued that several ingredients are necessary for black

bubbles to be stable under radial perturbations. The primary
ones are that the gas comprising the bubble must be at the
local Unruh (acceleration) temperature as measured by a
comoving observer just outside the shell and that an
internal flux between the relativistic gas and membrane
components of the shell operates to react to perturbations to
instantaneously maintain this temperature.
In this work, we take a couple of additional steps toward

the goal of assessing the ultimate (classical) viability of
black bubbles. The first is to study the stability of spheri-
cally symmetric bubbles undergoing dynamical radial
perturbations, not necessarily small, excited by some
external agent. As we show in Appendixes A and B, the
original kinematic stability analysis of Ref. [3] missed a
dynamical component of the 4-acceleration that feeds into
the flux, the latter part of which has a destabilizing effect on
the black bubble. Thus, the original flux prescription does
not lead to stability, and in Sec. IV, we offer extensions to it
that can lead to radially stable bubbles.
The second step is to formulate the problem in a manner

that does not rely on spherical symmetry, even though our
example implementation is restricted to it. The technical
issue here is how to deal with singular (delta function)
distributions of matter coupled to the Einstein equations in
a situation without symmetries. In particular, in general, the
shell world tube cannot be considered a spacetime boun-
dary in a mathematical (or physical) sense where boundary
conditions need to be applied; for example, gravitational
waves can freely cross this location, and any influence the
matter might exert on the gravitational waves is governed
by the Einstein equations, not any “boundary condition”
one places there. Of course, this is exactly where the Israel
(sometimes also referred to as the Lanczos-Darmois-Israel-
Sen) junction conditions come from, but in spherical
symmetry, one can effectively employ them as boundary
conditions for the spacetime on either side of the world tube
(essentially because there are no gravitational waves in
spherical symmetry). However, it is difficult to envision
how such an approach could be extended to spacetimes
without symmetries, in particular where the surface layer
might not be the dominant source of curvature (for
example, it would have to work in the limit of a “fictitious
surface” where the stress energy of the surface goes to
zero). Instead, as described next, we adopt a first principles
approach, adding a distributional source for the shell matter
to the Einstein equations, arriving at the junction conditions
as a consequence rather than a condition put in a priori.

A. Formulation

For our target model, there are three distinct regions. An
interior region, with a nonzero (negative) cosmological
constant, an exterior region with Λ ¼ 0, and a shell
that separates them. The shell, with a nontrivial stress
energy tensor composed of several matter components
outlined below, provides the physical mechanism that

3That also begs the question of whether classical physics can
even approximately address the coalescence phase of bubble
mergers, especially in the comparable mass case where there
would be a significant change in the mass of the final bubble
compared to either progenitor. We leave that to future work to
contemplate.
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can, in principle, stabilize the shell. In addition, we add
bulk scalar fields to model dynamical scenarios, both to
perturb the black bubble via a gravitational interaction, and
a direct interaction where the black bubble accretes scalar
field energy. To account for all these ingredients, on a rather
general footing, we proceed as follows. We consider the
Einstein equations in the full spacetime (using units where
Newton’s constant G ¼ 1 and the speed of light c ¼ 1)

Gab ¼ 8πTab; ð1Þ

with a stress-energy tensor of the form

Tab ¼ ðρÞTabδðsÞ þ ðψÞTab þ ðξÞTabΘðsÞ −
Λ
8π

gabΘð−sÞ:
ð2Þ

The net stress-energy tensor of the material comprising the
shell is ðρÞTab, ðψÞTab is that of a bulk scalar field that does
not directly interact with shell material (but can cross the
shell location from the outside to inside and vice versa),
while ðξÞTab is that of an exterior-only scalar field that
interacts with the shell via appropriately chosen boundary
conditions, discussed below. The shell world tube is
described by the level set scalar function sðxaÞ ¼ 0, with
δðsÞ the Dirac delta distribution, and ΘðsÞ is the Heaviside
step function. Immediately adjacent to any point on the
shell, we will normalize s to measure proper distance
orthogonal to the shell at that point, with s > 0 (s < 0) on
the outside (inside). The gradient sa ≡ s;a, dual to the
vector sa ¼ gabsb normal to the world tube, will thus be
unit (sasa ¼ 1) and defines the projection tensor hab ¼
gab − sasb onto the shell, as well as the extrinsic curvature

Kab ¼ −hcahdb∇csd ð3Þ

evaluated on either side of the shell as used in the Israel
junction conditions.

B. Scalar field and shell material

The stress-energy tensors for the scalar fields are

ðψÞTab ¼ ∇aψ∇bψ −
1

2
gabj∇ψ j2; ð4Þ

ðξÞTab ¼ ∇aξ∇bξ −
1

2
gabj∇ξj2: ð5Þ

Following Ref. [3], we will build the shell from three fluid
components: a relativistic gas, a brane, and a subleading
stiff gas. There, all the fluids were modeled as perfect
(ideal) fluids; here, we allow for viscosity to model
dissipative effects. The latter is important to account for
the entropy growth of the bubble as it interacts with its
environment. Since the gas dominates the entropy of the

bubble, for simplicity, then, we only add dissipation to that
component of the shell. To do so, we employ the formu-
lation of viscous relativistic hydrodynamics, which only
modifies the fluid description to first order in a gradient
expansion [13–15]. Under certain conditions (including
spherical symmetry), we can consider a single 4-velocity ua

to characterize the flow of all fluid elements, and for
simplicity of notation, we will do that here. The resulting
stress-energy tensor for the shell is

ðρÞTab ≡ ðρgÞTab þ ðρsÞTab þ ðρτÞTab; ð6Þ
ðρgÞTab ¼ðρg þAÞuaub þ ðpg þ ΠÞΔab; ð7Þ
ðρsÞTab ¼ ρsuaub þ psΔab; ð8Þ
ðρτÞTab ¼ ρτuaub þ pτΔab; ð9Þ

whereΔab ¼ hab þ uaub, ρg, ρs and ρτ are the (equilibrium)
rest-frame energy densities of the gas, string and brane
components, with corresponding pressures pg ¼ ρg=2;
ps ¼ ρs, and pτ ¼ −ρτ, respectively. The viscous modifi-
cations to the gas stress energy are captured by A and Π,
defined as

A ¼ τe½uaDaρg þ ðρg þ pgÞDaua�; ð10Þ

Π ¼ −ζDaua þ τp½uaDaρg þ ðρg þ pgÞDaua�; ð11Þ

where τe, τp, and ζ are transport coefficients that are
functions of ρg and Da ≡ hba∇b. In general, there are
additional terms proportional to the shear tensor πab and
heat flux Qa, but these vanish in spherical symmetry, so we
drop them here for simplicity. ζ is the bulk viscosity
coefficient; (τe, τp) are often ignored in relativistic hydro-
dynamics, though are required in the first order theory for
causality and to allow for defining (locally at least) well-
posed problems4 [13–15].

C. Matter equations of motion

For the scalar fields, we impose the usual massless wave
equations

□ψ ¼ 0; ð12Þ

□ξ ¼ 0: ð13Þ

For the shell, the equations of motion stem from net stress-
energy conservation. We will further demand that each

4Though this well-posed-ness result is obtained in a somewhat
weaker sense than the traditional Sobolev criteria and with a
nonunique entropy current, it has shown promising results in
incipient applications [16].
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component of the shell individually satisfies conservation
of its respective stress-energy tensor, except for an external
source term Ja to the gas component to allow for energy
exchange with the scalar field ξ and an internal flux ja

between the gas and brane components (discussed more in
Sec. IV):

Db
ðρgÞTab ¼ Ja − ja; ð14Þ

Db
ðρsÞTab ¼ 0; ð15Þ

Db
ðρτÞTab ¼ ja: ð16Þ

Note that we do not explicitly add a source term to ξ0s
equation of motion (13), as at the location of the shell we do
not impose (13), but rather must specify boundary conditions
for ξ there, and this will effectively compensate for Ja.
In spherical symmetry, the only gradients that will be
relevant for these boundary conditions are those in the
ua and sa directions, and Ja, being intrinsic to the shell, can
then only have a component in the ua direction. So, to
simplify the expressions below, we define

JU ≡ ucJc; ð17Þ

ξS ≡ sa∇aξ; ð18Þ

ξU ≡ ua∇aξ: ð19Þ

For consistency with the Einstein equations, the net
stress-energy tensor must satisfy

Tab
;b ¼ 0: ð20Þ

Evaluating this at the shell, substituting in the equations of
motion wherever possible, and averaging ∇asb;∇aub
related terms that are discontinuous across the shell,5 we
can split the result into a piece tangent to the shell,

Tab
;bua ¼ ξUξS þ JU ¼ 0; ð21Þ

and one orthogonal to the shell,

Tab
;bsa ¼

ξ2U þ ξ2S
2

þ ½ðρþ PÞãþ PK̃� þ Λ
8π

¼ 0: ð22Þ

In the above, a tilde ð̃ Þ denotes the averaging; we have
defined

ρ≡ ρg þAþ ρτ þ ρs; ð23Þ

P≡ pg þ Πþ pτ þ ps; ð24Þ

K is the trace of the extrinsic curvature (3); and a is the
radial acceleration of ua:

a≡∇aubuasb: ð25Þ

The orthogonal piece (22) gives the equation of motion for
the shell, while the tangential piece (21) constrains the
interaction between the gas and scalar field:

JU ¼ −ξUξS: ð26Þ

With this relation in hand, one immediately sees that a pure
Dirichlet (ξU ¼ 0) or Neumann (ξS ¼ 0) boundary con-
dition forces JU ¼ 0. These options effectively implement
a reflection with no direct energy exchange to the gas
[though kinetic energy will still be exchanged via (22)]. To
have the black bubble mimic a black hole and always
absorb energy, one can demand JU < 0 [see (34) below].
An obvious choice for this, that we will use in the results
presented later, is

ξU ¼ ξS: ð27Þ

This is the analog of an ingoing radiation condition at the
shell, assuming ξ takes the form ξ ∼ ξðtþ rÞ there. Note
that in this case, the energy associated to the field ξ is
absorbed by the gas.

III. RESTRICTING TO SPHERICAL SYMMETRY

So far, we have kept the presentation general, discussing
in broad strokes the governing equations from a global
spacetime point of view. To simplify the form of the
equations, in a couple of instances, we already imposed
restrictions consistent with spherical symmetry, though this
did not change the basic structure of the equations (in
particular using a single 4-velocity ua to describe the shell
trajectory and all local fluid velocities, and only consid-
ering energy exchange with the scalar field in this same
direction). Here, we do specialize the equations to spherical
symmetry.
First, in Sec. III A, we consider the full EKGH system of

equations in spherical symmetry, giving a set of 1þ 1D
partial differential equations (PDEs) to solve for the
spacetime metric and scalar fields, and a set of ordinary
differential equations (ODEs) for the position and fluid
properties of the shell. However, as discussed in Sec. VI B,
in the large mass limit of relevance for astrophysical black
holes, the corresponding code for this system of equations
is not adequate to study black bubble evolutions for the
time needed to ascertain their stability. This is in part due to
the large disparity of scales in the problem in that limit, as
well as decisions we made toward the longer term goal of
extending the code beyond spherical symmetry (i.e., if
going beyond spherical symmetry was not of interest,
choices better adapted to the problem could be made, in

5The averaging can be justified by integrating the equations in
a small volume about the shell and taking the limit of the volume
to zero; see Ref. [9].

DYNAMICS AND OBSERVATIONAL SIGNATURES OF SHELL- … PHYS. REV. D 104, 124011 (2021)

124011-5



particular with regard to the interior and exterior coordinate
charts).
Though, just as crucial as having the correct tools to go

beyond spherical symmetry is knowing that this is a
sensible endeavor in the first place. Early cases examined
with the EKGH code indicated that the original black
bubble prescription is not dynamically stable, leading us
to consider the additional ingredients added to the
model described in this paper. However, a linear stability
analysis including the new flux options and dissipation
(Appendix B) shows that the stability properties can be very
different for small bubbles (relative to the AdS length scale
1=l) versus large bubbles. Thus, it would be suspect to use
any conclusions of nonlinear stability obtained with the
EKGH code in the small bubble case to decide whether it
would be worth the considerable effort needed to first
resolve its problems with large bubbles and then extend
beyond spherical symmetry. Therefore, we implemented a
simplified ODE model, described in Sec. III E, that allows
us to explore nonlinear stability in the large mass limit,
albeit without completely general scalar-field interactions
as allowed by the EKGH system.

A. Einstein-Klein-Gordon-hydrodynamic system

The formalism described above does not require a
coordinate chart that gives a continuous metric across
the shell. Discontinuous charts are convenient in certain
respects and would be simple to implement in a code in
spherical symmetry. Though, again, we want to use
methods that could be extended beyond spherical sym-
metry in a straightforward manner; to that end, we will use
a metric ansatz which is continuous across the shell.
Moreover, we will adopt the following “lightlike” ansatz
for the metric so that the equations of motion bear close
resemblance to the typical structure encountered in 3þ 1D
scenarios:

ds2 ¼ e2Bðr;tÞð−dt2 þ dr2Þ þ r2e2Cðr;tÞdΩ2: ð28Þ

Beyond the obvious structure of the r − t sector of the
metric, what this lightlike ansatz does is allow one to write
the Einstein evolution equations for B and C so that the
principal parts of each are wave equations.

B. Evolution equations

Let fðxaÞ ¼ r − RðtÞ, so the shell is at f ¼ 0, i.e., at
r ¼ RðtÞ. Then, sa ¼ ∇af=j∇fj, the coordinate velocity
of the shell is V ≡ dR=dt, ua ¼ γð1; V; 0; 0Þ, and
sa ¼ γðV; 1; 0; 0Þ, with γ ¼ e−B=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
. To deal with

the distributional matter of the shell in the numerical code,
we will integrate the equations at the location of the shell in
“weak form,” as described in more detail in Sec. VA 1. This
involves integrating over a volume in the coordinate r. In
the covariant form of the stress tensor (2), the shell is a

distribution in s, and to adapt to the integration in r, we useR
δðsÞdr ¼ R

δðsÞðdr=dsÞds ¼ dr=dsjs¼0. So, in anticipa-
tion of that, in the equations below, δðsÞ has been replaced
with δðfÞdr=ds, where dr=ds ¼ e−B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
, and defin-

ing
R
δðfÞdr ¼ 1. We will write the Einstein and scalar

field equations in first order form, defining zt ≡ z;t and
zr ≡ z;r for a variable zðt; rÞ. Then, evolution equations for
B,C from the Einstein equations (1), the wave equations for
ψ (31) and ξ (32), conservation equations (14)–(16) for
the shell fluids, and the evolution equation for the shell
location (22) are

_Ct − C0
r ¼ 4πρe2BδðfÞ dr

ds
− e2Bl2Θð−fÞ

þ 2ðC2
r − C2

t Þ þ
4Cr

r
þ 1 − e2ðB−CÞ

r2
; ð29Þ

_Bt − B0
r ¼ −4πðρþ 2PÞe2BδðfÞ dr

ds
þ 4π½ψ2

r − ψ2
t þ ðξ2r − ξ2t ÞΘðfÞ�

þ C2
t − C2

r −
2Cr

r
−
1 − e2ðB−CÞ

r2
; ð30Þ

_ψ t − ψ 0
r ¼ 2ðψ tCr − ψ tCtÞ þ

2ψ r

r
; ð31Þ

_ξt − ξ0r ¼ 2ðξtCr − ξtCtÞ þ
2ξr
r

; ð32Þ

ρ̈g¼−ð _ρgþFðρgþpgÞÞ ·
�
Fð1þτp=τeÞ− _̂Bþ V _V

1−V2
þ _τe
τe

�

−Fð _ρgþ _pgÞ−ðρgþpgÞ _̂FþζF2

τe

−
eB

ffiffiffiffiffiffiffiffiffiffiffiffi
1−V2

p

τe
·
h
_ρgþFðρgþpgÞþJUeB

ffiffiffiffiffiffiffiffiffiffiffiffi
1−V2

p
−j

i
ð33Þ

¼ −
�

_ρg þ
3Fρg
2

��
3F
2

− _̂Bþ V _V
1 − V2

þ _τe
τe

�

−
3

2
ðF _ρg þ _̂FρgÞ þ

ζF2

τe

−
eB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p

τe
·

�
_ρg þ

3Fρg
2

þ JUeB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
− j

�
;

ð34Þ

_ρs ¼ −ðρs þ psÞF
¼ −2ρsF; ð35Þ

DANIELSSON, LEHNER, and PRETORIUS PHYS. REV. D 104, 124011 (2021)

124011-6



_ρτ ¼ −ðρτ þ pτÞF − j

¼ −j; ð36Þ

_V ¼ ð1 − V2Þ
�
2PðV eCt þfCr þ 1=rÞ

ρ
− ðV eBt þfBrÞ

þ eB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
ðl2 − 4π½ξ2U þ ξ2S�Þ
8πρ

�
: ð37Þ

In the above, an overdot ð_Þ denotes the derivative with
respect to t, and prime ð 0Þ denotes the derivative with respect
to r. These equations are supplemented with “trivial”
evolution equations for first order gradient variables, i.e.,
_zr ¼ z0t and _z ¼ zt. For each of the fluid evolution equations,
a second expression is given where the relevant equation of
state has been substituted in, and in the second expression for
the viscous fluid τp has been replaced with τe=2. The
variable j denotes the component of the internal flux ja in
the direction of ua. The fluid evolution requires derivatives
of the metric intrinsic to the shell (which in spherical
symmetry will only be along the ua direction); for simplicity,
we denote such gradients with hatted dots, and they can be
computed with the 4D metric using appropriate combina-

tions of r, t gradients, e.g., _̂B ¼ Bt þ VBr (and the
combination is continuous across the shell despite the
individual terms having jumps). We also introduced

F≡ _A=A ¼ 2ð _̂Cþ V=rÞ; ð38Þ

representing the fractional change in proper area AðtÞ along
the shell. Note that in first order hydrodynamics, the
evolution equation for ρg is a second order PDE (second
order ODE in spherical symmetry). If all the viscous
transport coefficients are zero, it reduces to the first order,
ideal equations [the term in the square brackets on the last
line of (34)], and in that case, we directly integrate the latter
for ρg. Recall that ρ and P in the metric and shell evolution
equations are given by (23) and (24), respectively, and here

A ¼ τe
Fðρg þ pgÞ þ _ρg

eB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p

¼ τe
3Fρg=2þ _ρg

eB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ; ð39Þ

Π ¼ τp
Fðρg þ pg − ζ=τpÞ þ _ρg

eB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p

¼ τe
Fð3ρg=2 − 2ζ=τeÞ þ _ρg

2eB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ; ð40Þ

where after the second equalities we have again substituted
in pg ¼ ρg=2; τp ¼ τe=2.
Note that (29) and (30) essentially contain the Israel

junction conditions, but directly in terms of our metric

variables. In other words, demanding a coordinate system
where the variables are continuous at the shell, but can have
discontinuities in gradients, then it is only the latter terms
above that can balance the delta function terms. These
conditions give

ΔCr ¼ −4πρeB=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
; ð41Þ

ΔCt ¼ −VΔCr; ð42Þ

ΔBr ¼ 4πðρþ 2PÞeB=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
; ð43Þ

ΔBt ¼ −VΔBr; ð44Þ

where Δ refers to the jump in the respective quantity at the
shell (one can be check that the above expressions do
coincide with the results computed directly using the Israel
formalism.)

C. Constraint equations and initial data

Initial data for the metric evolution are subject to the
usual constraint equations of general relativity. The tt
component of the Einstein equations can be considered a
constraint equation for C:

C0
r þ

3

2
C2
r þ Cr

�
3

r
− Br

�
−
Br

r

þ 2π

�
ψ2
r þ ξ2r þ

2ρeBδðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
�
þ 1 − l2r2e2B − e2ðB−CÞ

2r2

¼ C2
t

2
þ BtCt − 2πðψ2

t þ ξ2t Þ: ð45Þ

We have placed time-dependent terms on the right-hand
side, which for simplicity we will choose to be zero at the
initial time (i.e., a moment of time symmetry). The tr
component of the Einstein equations can then be consid-
ered a constraint equation for B:

_Cr þ Ct

�
Cr − Br þ

1

r

�
− Bt

�
Cr þ

1

r

�

þ 4π

�
ξΠ −

VρeBδðfÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p
�

¼ 0: ð46Þ

Interestingly, at a moment of time symmetry, this is trivially
satisfied, and B is arbitrary. At first glance, then, a simple
choice is B ¼ const. (with an appropriate jump at the shell
location); however, then the evolution equation implies
there will be dynamics in B, even for a static shell. Instead
then, we will use the evolution equation with all time
derivatives set to zero to define our choice for Bðr; t ¼ 0Þ,
as then the static case will be reflected as such in the
solution. Specifically, we will solve the following for
Bðr; t ¼ 0Þ:
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B0
r − 4πðρþ 2PÞe2BδðfÞ dr

ds
þ 4πðξ2r þ ψ2

rÞ

− C2
r −

2Cr

r
−
1 − e2ðB−CÞ

r2
¼ 0: ð47Þ

For the shell, a moment of time symmetry requires
Vðt ¼ 0Þ ¼ 0, but the initial position and matter energy
densities are arbitrary. For the latter, we will choose initial
conditions to give a static shell when unperturbed, initial-
izing the matter components following Ref. [3]. For the
scalar fields, we set ψ tðr; t ¼ 0Þ ¼ 0 ¼ ξtðr; t ¼ 0Þ and
freely choose ψ rðr; t ¼ 0Þ; ξrðr; t ¼ 0Þ, with the particular
profiles discussed in Sec. VA 3.

D. Boundary conditions

For the inner boundary (origin of the AdS region), one
can impose regularity through l’Hôpital’s rule and requiring
C ¼ C0ðtÞ þ C2ðtÞr2, and similarly for B and ψ (ξ does not
extend into the interior). With this, the Einstein equations
require B0ðtÞ ¼ C0ðtÞ, together with the following con-
ditions at r ¼ 0:

_Ct − 6C0
r þ B0

r ¼ −e2Bl2 − 2C2
t ; ð48Þ

_Bt − 2B0
r þ 3C0

r ¼ −4πψ2
t þ C2

t ; ð49Þ

_ψ t − 3ψ 0
r ¼ −2ψ tCt: ð50Þ

For the outer boundary (in the AF region), one can use
maximally dissipative boundary conditions (e.g.,
Ref. [17]). For instance, for the scalar field Ψ, its equation
of motion when written in first order form (with Π≡Ψ;t,
Φ ¼ Ψ;r) is given by

_Π ¼ Φ0 þ RΠ; ð51Þ

_Φ ¼ Π0 þ RΦ; ð52Þ

with RΠ; RΦ the remaining terms of the corresponding
equations not belonging to the principal part. The incoming
(outgoing mode) at r ¼ Rout is ΠþΦ (Π −Φ). Maximally
dissipative boundary conditions define incoming mode(s)
as related to (and bounded by) the outgoing ones. For
simplicity, we can do this at the level of the time derivatives
of the modes; that is,

_Πþ _Φ ¼ að−ðΠ0 −Φ0Þ þ RΠ − RΦÞ; ð53Þ

_Π − _Φ ¼ −ðΠ0 −Φ0Þ þ RΠ − RΦ: ð54Þ

The first line states that the incoming mode is proportional
(with proportionality constant a) to the outgoing mode. If
jaj < 1, the condition is said to be maximally dissipative,

with a ¼ 0 describing purely outgoing modes. The special
case jaj ¼ 1 corresponds to the reflecting case.
Now, solving for the time derivatives in (53) and (54), we

derive what we should impose at the outer boundary point
r ¼ Rout:

_Π ¼ ðaþ 1Þ
2

ð−ðΠ0 −Φ0Þ þ RΠ − RΦÞ; ð55Þ

_Φ ¼ ð1 − aÞ
2

ððΠ0 −Φ0Þ − RΠ þ RΦÞ: ð56Þ

In the code, we implement the abovewitha ¼ 0 for the scalar
field. For simplicity, we do the samewith themetric variables,
as they also obey wave equations. However, such maximally
dissipative conditions are not fully consistent with the con-
straints, introducing an error that scales as 1=Rout. Tomitigate
this problem, as described in Appendix C, we control the
mapping between radial and code coordinates to push the
outer boundary to be out of causal contact with the bubble for
the duration of a given simulation.

E. Simplified shell dynamics with an external source

As discussed above, one of our goals motivating the
particular choice of metric, coordinate conditions, etc., is
to have a scheme that could eventually be generalized
beyond spherical symmetry. Also, before taking on such an
endeavor, we want to get some indication on how a
gravitational wave might interact with the bubble, using
a scalar field that can freely propagate across the bubble as
a proxy for a gravitational wave. However, even in
spherical symmetry, with these particular choices, there
are various complications that arise, discussed in the
Sec. VI B, that make it challenging to extract useful results
on the physics of black bubbles in the large mass limit of
interest. Here, then, we introduce a simplified model that
allows us to explore black bubble stability in this regime,
but it is only applicable to spherically symmetric systems
and cannot model interaction with a bulk scalar field.
For this simplified model of the black bubble, consider a

shell enclosing an AdS spacetime, with a Schwarzschild
exterior that can contain unspecified matter. Here, we
parametrize all shell quantities with proper time τ on the
shell. We will model interaction with the exterior matter via
a flux function JUðτÞ. We also only consider a vacuum AdS
interior, though in the linear analysis in Appendix B, we
will allow a small internal mass to model some prior
interaction that led to interior energy.
Thanks to spherical symmetry, we can solve such a

model by integrating the Einstein and shell fluid equations
purely at the shell location, making sure we self-consis-
tently incorporate the backreaction of the external flux on
the gravitational mass of the bubble. A straightforward way
to compute the latter is to assume the external flux is
coming from the scalar field ξ as in the full spacetime
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model, and imposing the Einstein equations for this system
just exterior to the shell, then taking the limit onto the shell
(again, keeping the interior spacetime fixed). The effect of
the scalar field can then simply be modeled as some freely
specifiable JUðτÞ ¼ −ξSðτÞξUðτÞ; i.e., we do not need to
know what particular external scalar field profile would be
needed to lead to such a flux at the shell.
We impose the following ansatz for the spacetime:

ds2 ¼ −gðt; rÞdt2 þ dr2

fðr; tÞ þ r2dΩ2: ð57Þ

Exterior to the shell, we set fðr; tÞ ¼ 1–2mðt; rÞ=r, so
mðt; r ¼ RÞ will represent the exterior Schwarzschild mass
of the spacetime. We still have coordinate freedom with this
ansatz to rescale t by an arbitrary function of itself and do
so to impose gðt; r ¼ RÞ ¼ fðt; r ¼ RÞ; i.e., evaluated at
the shell, the exterior metric looks exactly like the
Schwarzschild solution but with a time-dependent mass.
Interior to the shell, we use the following static form for the
AdS spacetime: fðrÞ ¼ gðrÞ ¼ 1þ r2l2=3. Below, metric
quantities that are discontinuous across the shell are labeled
with a subscript L when evaluated just to the left (interior)
of the shell and with a subscript R just to the right (exterior)
of the shell.
In this section, we will use the overdot to denote change

with respect to proper time, e.g., _f ≡ dfðτÞ=dτ. With that
notation, the evolution equations for the shell, its internal
energy components, and mðτÞ are

_R ¼ V; ð58Þ

_V ¼ QLQR

�
2P
ρR

þ 1

QL þQR

�
l2

�
1

4πρ
−

R
2QL

�

− ðξ2S þ ξ2UÞ
�
2πR
QR

þ 1

ρ

���

þQLQR − 1 − V2

2R
;

¼ Rl2QR − 4πQL½Rðξ2S þ ξ2UÞ − 4PQR�
2ðQL −QRÞ

ð59Þ

þQLQR − 1 − V2

2R
; ð60Þ

ρ̈g ¼ −
3ρgðR _V þ V2Þ

R2
−
5V
R

_ρg −
τp
τe

�
2V
R2

ð3Vρg þ _ρgRÞ
�

−
1

τe

�
ð _τe þ 1Þ

�
3V
R

ρg þ _ρg

�
−
4ζV2

R2
− j − ξUξS

�
;

ð61Þ

_ρs ¼ −
4Vρs
R

; ð62Þ

_ρτ ¼ −j; ð63Þ

_m ¼ 4πR2QRðQRξU − VξSÞðQRξS − VξUÞ
fR

; ð64Þ

where fR ≡ 1 − 2mðτÞ=RðτÞ; fL ≡ 1þ RðτÞ2l2=3; QR≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fR þ V2

p
, QL ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

fL þ V2
p

, and

P ¼ pg þ pτ þ ps þ τp

�
_ρg þ

2Vðρg þ pgÞ
R

�

−
2Vζ
R

; ð65Þ

ρ ¼ ρg þ ρτ þ ρs þ τe

�
_ρg þ

2Vðρg þ pgÞ
R

�
: ð66Þ

The first equation for _V (59) stems from (22), and for
reference below that in (60), we also include a form coming
directly from the junction condition proportional to the net
pressure (or equivalently eliminating ρ from the previous
equation using the junction condition proportional to ρ).
Again, the external source functions ξUðτÞ and ξSðτÞ can be
considered freely specifiable; setting ξUðτÞ ¼ ξSðτÞmodels
the perfectly absorbing conditions.
For reference, as this will be needed for the flux j as

described in Sec. IV, the exterior proper acceleration is

aR ¼ 4πR2ðξ2U þ ξ2SÞ þ 2 _VRþ 1 − fR
2QRR

; ð67Þ

where gradients of f and g appearing in its definition (25)
have been eliminated using the Einstein equations.

F. Simplified dissipation

In the above equation, for ρg (61), we have included all the
three relevant transport coefficients, τe, τp, and ζ, which in
general are all dependent on ρg (hence, τ) and need to be
nonzero to give a well-defined, hyperbolic theory. However,
experimentation suggested τe, τp have little effect on the
dynamics of the bubble. This can be understood by rewriting
(61) as follows. Let I ≡ 2Vðρg þ pgÞ=Rþ _ρg; i.e., I ¼ 0 is
just the flux-free perfect fluid equation of motion. Then, in
terms of I , Eq. (61) becomes

_I ¼ −I
�
_τe þ 1

τe
þ 2V

R

�
1þ τp

τe

��
þ 4ζV2

τeR2
þ jþ ξUξS

τe
:

ð68Þ

This suggests that in spherical symmetry the parameters τe,
τp essentially only control return to hydrodynamic evolution
when starting from beyond-ideal conditions, i.e., ignoring
the fluxes, if ζ ¼ 0 aswith a conformal fluid, andwebegin in
equilibrium where I ¼ 0, then I will remain zero for all
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time, and ρg will always behave like an ideal fluid. The ζ
term, being proportional to V2, becomes important with
nonlinear perturbations, and since it is always positive, it is
consistent with the intuition that this must come from
dissipation removing kinetic energy from the motion of
the bubble and depositing it in the gas. This is likewise
consistent with the equation of motion for the bubble (59): if
I ¼ 0, the τe, τp terms drop out from the expressions for the
net pressure and energy density (65)–(66), and ζ controls the
damping of the shell

_V ≈ −V
4ζQLQR

R2ρ
þ � � � ; ð69Þ

where … denotes terms that do not depend on any of the
dissipation parameters.
Motivated by these observations, we set τe ¼ τP ¼ 0

[starting from (61), one needs to first multiply by τe, then
take the limit]. With that, Eq. (61) becomes

_ρg ¼ −
3V
R

ρg þ
4ζV2

R2
þ jþ ξUξS; ð70Þ

with

P ¼ ρg
2
− ρτ þ ρs −

2Vζ
R

; ð71Þ

ρ ¼ ρg þ ρτ þ ρs: ð72Þ

Note that it would be trivial to add ζ-dissipation to the other
shell components (with their sum then appearing in the
expression for P above), or to split the energy flux ξUξS in
some prescribed manner to the other matter components.

IV. AdS BLACK BUBBLE MATTER

In the preceding sections, we have described all of the
components of the black bubble we study here, with the
exception of the key property essential for it to be an
astrophysically viable compact object candidate: stability.
This, in principle, is achieved via an appropriate choice of
internal flux j between the gas and brane components. We
begin by reviewing the original suggestion for this given
in Ref. [3], then describe its shortcoming and novel
suggestions to overcome it.
As already mentioned, the shell is composed of three

constituents, a brane with EOS pτ ¼ −ρτ, a gas of massless
particles with EOS pg ¼ ρg=2, and a stiff fluid with EOS
ps ¼ ρs, which are required based on physical and kin-
ematic grounds. Let us review how this can be motivated
from string theory. Inside of the shell, there is an AdS space
with a negative cosmological constant. The main idea
behind this scenario is that spacetime is unstable against
decay to an AdS space. Usually, such a decay is heavily
suppressed, but when matter threatens to collapse and form

a black hole, the nucleation is enhanced for entropic
reasons. If a bubble forms, the infalling matter can turn
into massless open strings, attached to the shell, carrying an
entropy close to the one carried by a genuine black hole.
This is similar to what is argued to happen in the case of
fuzzballs. From string theory, it is expected that the scales
associated with the negative cosmological constant, as well
as the tension of the brane, are high energy, certainly
beyond what is presently accessible through accelerator
experiments and possibly close to the Planck scale.
The positive energy of the brane is supposed to closely

match the negative energy of the vacuum inside of the shell.
The mass of the system is then carried by the matter on top
of the shell. If the shell has a radius given by 9Rs

8
, where Rs is

the Schwarzschild radius, then the Israel-Darmois junction
conditions force matter to have the equation of state (EoS)
of a gas of massless particles. This special radius is often
referred to as the Buchdahl radius. Such a matter compo-
nent, composed of massless open strings attached to the
brane, is natural from a string theoretical point of view. In
order for the gas to be able to carry an entropy comparable
to the one of a black hole, the number of degrees of freedom
needs to be large. This can be accomplished if the end
points of the strings are supported, not by the 2þ 1-
dimensional brane itself but by a huge number of lower-
dimensional branes dissolved in it. The need for such
dissolved branes can also be seen by examining the
junction conditions. This is where the stiff gas enters.
In string theory, 4D supersymmetric black holes can be

constructed using 3-branes wrapping internal 3-cycles.
Such branes will be point like from the 4D spacetime
point of view. As suggested in Ref. [3], black bubbles in 4D
can be obtained as 3-branes polarized into a 5-brane, still
wrapping the internal 3-cycles. This 5-brane can still carry
3-brane charges represented by magnetic fluxes inside of
the 5-brane. Ignoring the internal three dimensions, this is
captured by the Dirac-Born-Infeld (DBI) action given by

S ¼
Z

d3σT2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðhμν þ F μνÞ

q
; ð73Þ

where T2 ¼ ρτ is the tension of the shell and F μν is the
magnetic flux inside of the brane. The flux is quantized,
and the energy density is schematically given by
4πT2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ N2

p
, where N is an integer counting the number

of dissolved branes. Note that if we formally take the radius
of the shell to zero, the contribution of the shell goes away,
and the energy is dominated by the mass of the D-particles.
For a large shell, the contribution from the magnetic flux
will be suppressed and, as explained in Ref. [3], have an
energy density of order N2=r4 with the equation of state of
a stiff gas. On top of this, there are massless fluctuations of
the gauge fields. The number of such modes is order N2,
and they give rise to the ρg that will carry the entropy.
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In this way, one can solve the junction conditions, at the
Buchdahl radius, using components motivated from string
theory. For this setup to be a viable alternative to an
ordinary black hole, it is not enough to find a critical point;
it must also be stable. Unfortunately, this is not the case
unless there is nontrivial dynamics involving energy
exchange between the various components. The challenge
is to find out what kind of dynamics is necessary, and
whether this is what to expect from string theory. An
argument for how stability could be obtained, based on
thermalization at the local Unruh temperature, is given
in Ref. [3]. Let us elaborate a bit on the argument
presented there.
The shell will be heated through a nonzero Unruh

temperature from the outside due to its nonzero proper
acceleration sitting at a constant radius in the
Schwarzschild metric.6 (There will be no such heating
from the inside AdS region since there is a threshold for the
acceleration [18]). If the temperature of the shell is a bit
lower than the Unruh temperature, the gas will absorb
Unruh quanta. Each mode will act as a little antenna. Thus,
the shell will absorb at a rate of N2 × R2 × T4. Since N ∼ R
and T ∼ 1=R, the total power of absorption will be of
order 1. That is, the gas can absorb a mass of order M in
light crossing time R. This suggests a term _T

T ρg, with no
further suppression, contributing to the source term j. The
Unruh quanta are not real, so energy needs to be supplied
from the system itself for them to be created. In our model,
it is the tension of the brane that is reduced in order to
power the increased energy density of the gas. Note that the
probability for energy to radiate off the system into the
surrounding space, reducing the total energy, is heavily
suppressed. Heuristically, the rate would not be order 1 but
reduced by a factor 1=N2 due to self-absorption into the
other modes. The resulting loss of energy is therefore of the
same order as Hawking radiation and can be ignored in our
analysis. The fact that the large number of degrees of
freedom make it so entropically favorable for energy to get
stuck to the brane is the reason why the system can so
closely mimic a black hole, i.e., appearing to external
observers as a near perfect black body of similar size and
temperature to that of the equivalent mass black hole.
When the area of the shell changes, the number of

dissolved branes, N, needs to change. Their energies are
subleading, but when N changes, one would expect that the
massless perturbations of the gauge field need to change,
too. These carry important amounts of energy, and there-
fore one expects a contribution of the form Fρg to j.

We have thus argued, from a microscopic point of view,
for the presence of the two terms in our ansatz for j: one
proportional to changes in the temperature T and the other
proporational to changes in the area F. In the specific
model described next, these terms are parametrized by
constants α and β, respectively. In Ref. [3], values for α and β
consistent with a quasistatic approximation were considered.
However, such an approximation is not relevant for any real
physical process where the shell is perturbed by infalling
matter. In the discussion that follows, wewill perform amore
careful analysis, constraining the parameters so that we
obtain a self-stabilizing shell. We will also verify the results
using numerical methods. Interestingly, the constraint we
find has a very simple and suggestive form.

A. Specific flux model

The total energy density ρ and pressure P sourcing
Einstein’s equations at the bubble location are the sum of
the distributional matter terms

ρ ¼ ρg þ ρs þ ρτ; ð74Þ

P ¼ pg þ ps þ pτ ¼
1

2
ρg þ ρs − ρτ; ð75Þ

where we ignore here any viscous corrections A and Π to
these quantities. As mentioned, we will require that the gas
has a thermal component at the instantaneous local Unruh
temperature of an observer on, but outside the shell,

T ¼ aR
2π

; ð76Þ

where the subscript ðÞR denotes the quantity is evaluated to
the right (outside) of the shell. The vectors ua and sa are the
same vectors on either side of the shell, as are their
coordinate representations in our coordinate system; how-
ever, their gradients orthogonal to the shell are generally
discontinuous across it. and in particular, the magnitude of
the 4-acceleration evaluated using the EKGH metric is

a≡∇aubuasb ¼
Br þ VBt þ _V=ð1 − V2Þ

eB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − V2

p ; ð77Þ

and from (44), one can see how awill jump across the shell.
The continuity equation (20) is only required to be

satisfied by the net fluid quantities ρ and P, and it is up to us
to specify any internal interactions between the fluid
constituents. As discussed in the previous section, the
brane will provide the energy for heating/cooling and
any response to changes in the area of the shell. Since
the stiff fluid component is subleading, we only consider a
flux j between the brane and gas, leading to the individual
continuity equations given in (34)–(36) and (61)–(63),
which we repeat here for convenience (without dissipative
terms),

6Note that if the shell were brought towards the horizon, the
Unruh temperature would increase toward infinity. As observed
from infinity, the temperature will, when the redshift is taken into
account, approach the Hawking temperature TH. The temperature
of the Buchdahl shell will be slightly lower and given by 64

81
TH.
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_ρg ¼ −ðρg þ pgÞF þ j ¼ −
3

2
ρgF þ j; ð78Þ

_ρτ ¼ −ðρτ þ pτÞF − j ¼ −j; ð79Þ

_ρs ¼ −ðρs þ psÞF ¼ −2ρsF; ð80Þ

and recall F represents the fractional change in proper area
along the shell trajectory (38).

1. Internal energy exchange and stability

To obtain guidance leading to a concrete prescription for
the internal flux, we begin by assuming the gas component
ρg is purely thermal, namely,

ρg ∝ N2T3; ð81Þ

pg ¼ ρg=2; ð82Þ

where again N is the number of particles. With the
assumption that N is fixed,

_ρg ¼ 3ρg _T=T: ð83Þ

The continuity equation (78) gives an evolution equation
for ρg; therefore, if there was no source j, then (83) would
simply tell us how the temperature evolves. On the other
hand, as discussed above, it is assumed that locally the
brane can interact with the gas on timescales much smaller
than any macroscopic dynamical timescale to always keep
the temperature fixed at the Unruh temperature (76). In that
case, the continuity equation can be viewed as the defi-
nition of the flux of energy j coming from the brane
required to enforce this; i.e., we want

_aR=aR ¼ _T=T; ð84Þ
which requires the flux to be

j≡ 3ρgð _aR=aR þ F=2Þ: ð85Þ
The appearance of the term F, representing the fractional
change in area as the shell moves (38), exactly cancels the
“usual” response of energy density to such a change in area
(78). This comes from us assuming that the internal
interaction in the shell is entirely driven by changes in
the local proper acceleration and moreover that the inter-
action forces (81) to always be satisfied. The quasista-
tionary analysis given in Ref. [3] suggested this was
adequate for stability of the black bubble. However, as
we show in Appendixes A and B, Ref. [3] ignored a
dynamical component to changes in the 4-acceleration that
has a destabilizing effect. Motivated by this observation,
and the string theory considerations discussed above, we
propose the following modification of (85) to model a
broader class of internal interaction,

j≡ 3ρgðα _aR=aR þ βF=2Þ: ð86Þ

Here, α is a constant controlling changes to the internal
state of the shell in response to changes in the Unruh
temperature, while β is a constant controlling correspond-
ing changes when the material compresses (F < 0) or
expands (F > 0). This model is clearly ad hoc, though at
least can be used to illustrate what kind of internal flux may
be needed to stabilize the black bubbles and serve as a
guidepost for future investigation of bubble constructions
within a self-consistent theory.

2. Alternative flux model

We can also consider the gas temperature does not
instantaneously adjust to the local Unruh temperature Tu ¼
aR=2π but instead relaxes to it on a characteristic timescale
τu via

_T ¼ 1

τu

�
aR
2π

− T
�
: ð87Þ

Carrying this through a similar calculation as above, and
again generalizing with parameters α and β, defines an
alternative flux option given by

j≡ 3ρg

�
α

τu

�
aR
2πT

− 1

�
þ βF=2

�
: ð88Þ

With this prescription for the flux, T is evolved as an
independent variable.

V. IMPLEMENTATION SPECIFICS

With the goal of studying the dynamical behavior of the
AdS black bubble and potential observable consequences,
we wrote two different codes for an efficient exploration.
These implement the EKGH system in Sec. VA, which we
employ to assess the full spacetime dynamics, and the shell
model in Sec. V B to efficiently scrutinize the bubble’s
behavior.

A. Einstein-Klein-Gordon-hydrodynamic system

For the most part, our discretization and solution of the
EKGH system outlined in Sec. III A is straightforward and
follows standard finite difference techniques. Especially,
for the PDEs away from the shell location, we use second
order accurate stencils for spatial gradients, add Kreiss-
Oliger style dissipation [19], and for the time integration
use a second order accurate explicit Runge-Kutta (method
of lines) scheme.
Special treatment is needed at the location of the shell,

where, even with our choice of a continuous metric across
it, there are discontinuities in gradients there; hence, finite
difference methods are not applicable. As discussed before,
in spherical symmetry, where there are no propagating
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gravitational wave degrees of freedom, one can treat the
shell location as a “boundary” of both the interior and
exterior spacetime, connecting them via the Israel junction
conditions. However, this is not possible in general, as the
shell location is not a boundary of the spacetime, and
gravitational waves can freely propagate across it. We
therefore want to implement a scheme that can integrate the
field equations self-consistently across singular surface
layers. Here, we do so via a weak-form, finite volumed
inspired strategy, described in Sec. VA 1. In spherical
symmetry in our chosen coordinates, this allows the gauge
waves present in the metric variables B and C to freely
propagate across the shell location, as well as our ψ scalar
field proxy for gravitational waves, without imposing any
boundary conditions. For simplicity, we have only imple-
mented this to first order accuracy at present; hence, even
though everywhere else the discretization is second order
accurate, we only expect global first order convergence in
the continuum limit.
It would be complicated to perform these weak-form

integrations over a layer that moved on the coordinate grid.
Therefore, as described in Sec. VA 2, we define a separate
spatial code coordinate x and dynamically adjust the
mapping to the metric coordinate r so that the bubble
location is always at a fixed x coordinate. Of course, this is
easy to do in spherical symmetry, and one might worry that
generalizing this would be very challenging. However, we
note that much more sophisticated “dual frame” schemes
have already been successfully implemented in binary
black hole merger simulations in full 3þ 1 dimensions
[20] (see also Ref. [21]). There, the black hole excision
surfaces are kept at fixed code locations, and it should be
possible to adapt those techniques to bubble spacetimes, at
least prior to any bubble collisions.
Note that in spherical symmetry, one can also solve the

constraint equations in lieu of one or both of the evolution
equations during evolution, as effectively the scalar field
drives all the nontrivial dynamics then. Empirically, we
have found solving (46) for C instead of the evolution
equation (29) makes it easier to achieve stable evolution
near the origin. Solving constraints instead of evolution
equations is not easy to generalize to spacetimes without
any symmetry; however, here, the origin difficulties are
entirely because of spherical symmetry and would not be
present in, for example, a Cartesian based coordinate
system.
In Sec. VA 3, we list particular initial conditions we use

for the shell matter and scalar fields.

1. Weak form integration

Here, we outline the idea behind a weak-form integra-
tion, leaving the description of the particular stencil used in
our implementation in the code to Appendix D.
Equations (29)–(32) are all quasilinear wave equations of

the form

_fðt; rÞ − g0ðt; rÞ þ hðt; rÞ þ δðr − RÞSðt; rÞ ¼ 0; ð89Þ

as would the full 3þ 1D Einstein equations in harmonic
form be. As mentioned, we discretize this using standard
finite difference methods everywhere except at the shell. At
that surface, here the point r ¼ R (which for now we
consider to be constant), we apply the following finite
volume, weak-form discretization. First, multiply the equa-
tion by a test function vðrÞ that only has support within a
cell of width 2Δr about the shell (vðrÞ ¼ 0 for
jr − Rj ≥ Δr), and integrate over the spatial volume of
the cell: Z

ð _f − g0 þ hþ δðr − RÞSÞvdr ¼ 0: ð90Þ

For simplicity, let vðRÞ ¼ 1, and integrate the gradient term
by parts, g0v ¼ ðgvÞ0 − gv0, givingZ

ð½ _f þ h�vþ gv0Þdr ¼ −Sðt; RÞ: ð91Þ

This is an improvement to before, because we have both
been able to evaluate the delta function and have shuffled
the spatial gradient from g to v, the former of which has a
step at r ¼ R (as it must so that its gradient can compensate
for the delta function in the equation of motion). In other
words, we are free to choose vðrÞ to be sufficiently regular
so that v0 is finite within the cell; hence, gv0 is well defined
and simple to evaluate, whereas, before, g0v was not.
If the shell moves, i.e., R ¼ RðtÞ, the above equation

becomes more complicated to regulate, since the time
derivative _fðt; rÞ in (89) is the partial of fðt; rÞ with
respect to t at constant r, not constant R. Hence, in a
typical wave equation where g and f are related, even if
there is no singular behavior in time variation tangent to the
shell, discontinuities in gradients orthogonal to the shell get
spread into both ð_Þ and ð0Þ discontinuities, as the t and r
coordinates are not aligned with the τ and s coordinates
tangent and orthogonal to the shell, respectively. There are
several conceivable ways to deal with such a situation. One
is to extend (90) to an integration over a spacetime volume.
Another is to choose coordinates that reduce to ðτ; sÞ along
the world line of the shell. A third, that we have chosen to
use, described in the next section, and detailing its conse-
quences for the weak-form integration in Appendix D, is to
introduce a map xðtÞ ↔ rðtÞ between the metric r and code
x coordinates such that the shell is always at a constant x and
then perform the spatial integration (90) over a cell of
width 2Δx.

2. Mapping between radial metric and code coordinates

We represent the various fields in our EKGH system on a
uniform mesh in a coordinate x ∈ ½0.:xout�, with the
following key properties:
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(i) xðr ¼ RðtÞ; tÞ ¼ Rð0Þ≡ x0 (the shell stays at a
constant x ¼ x0)

(ii) xðr ¼ 0; tÞ ¼ 0 (x ¼ 0 maps to r ¼ 0)
(iii) xðr ¼ Rout; tÞ ¼ xout (the outer boundary is at a fixed

r and x)
(iv) ∂xðr; tÞ=∂rjr¼RðtÞ ¼ 1 (the map is at least once

differentiable at the shell location, and dx and dr
have the same scale there).

We use polynomial functions for the map; the particular
expressions are not too enlightening, so we list them in
Appendix C. Note that this is not a coordinate trans-
formation; we still evolve the metric functions B and C (28)
and their partials Br, Cr and Bt, Ct with respect to r and t,
respectively. Another way then to think of this map is as a
nonuniform, time-dependent discretization of r. The map
will break down if the shell moves too far from its initial
position, though this is only a problem for unstable
bubbles.

3. Initial data

Our typical initial conditions consist of a static blackbubble
enclosing empty AdS spacetime, and then some prescribed
external pulse for either of ψðr; t ¼ 0Þ or ξðr; t ¼ 0Þ (with
ψ tðr; t ¼ 0Þ ¼ ξtðr; tÞ ¼ 0) that will subsequently interact
with the shell to perturb it (for unstable bubbles numerical
truncation error by itself will “perturb” the shell, causing it to
either accelerate outward or collapse to a black hole, but this is
not controllable in that the “perturbation” converges away
with resolution). Specifically, given a desired initial R0 ¼
9m0=4 for the bubble, we set the shell components following
Ref. [3] as7

ρgðt ¼ 0Þ ¼ lR0 þ ðlR0 −
ffiffiffi
3

p Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2R2

0=3
p

12πlR2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2R2

0=3
p ; ð92Þ

ρsðt ¼ 0Þ ¼
ffiffiffi
3

p

16πlR2
0

; ð93Þ

ρτðt ¼ 0Þ ¼ 4l3R3
0 þ 8lR0 þ ð ffiffiffi

3
p

− 8lR0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2R2

0=3
p

48πlR2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2R2

0=3
p :

ð94Þ
We set

ξðr; t ¼ 0Þ ¼ Aξ

ðΔξÞ8
ðr − ðRξ − ΔξÞÞ4ðr − ðRξ þ ΔξÞÞ4;

Rξ − Δξ < r < Rξ þ Δξ; ð95Þ
¼ 0 elsewhere; ð96Þ

whereAξ,Rξ,Δξ are constants, and similarly for ψðr; t ¼ 0Þ.

B. Simplified shell model

The ODE equations governing the shell model,
Eqs. (58), (60), (62), (63), (64), and (70), can be integrated
straightforwardly with the flux j (86) for the instantaneous
adjustment to the Unruh’s temperature of the gas. If, on the
other hand, we employ the alternative flux prescription, we
augment the evolution equations with (87) and the flux
given instead by (88). The resulting equations are inte-
grated with a standard fourth order Runge-Kutta scheme.
Initial data are given by the static black bubble described in
Sec. VA 3, and we consider its interaction with a pertur-
bation given by ξSðτÞ; ξUðτÞ. We define these sources via
superposition of functions of the form

ξSðτÞ ¼ ξUðτÞ ¼ Aξðe−ððτ−τ
a
ξ Þ=σξÞ2 þ e−ððτ−τ

b
ξ Þ=σξÞ2Þ: ð97Þ

Setting ξS ¼ ξU corresponds to the maximum rate of
absorption of energy by the gas (70). Finally, as we employ
this code to explore the large m regime, given the disparate
length scales involved (bubble mass, perturbation value,
and timescale of interest), we adopt quadruple precision.

VI. APPLICATIONS/DYNAMICS

To explore the stability of black bubbles in the large mass
limit, we use the simplified model described in Secs. III E
and V B. These results are presented in Sec. VI A. In
Sec. VI B, we show some results from the full model
described in Secs. III A and VA, focusing on issues that
would need to be overcome going beyond spherical
symmetry and results from scalar field evolution on a
fixed bubble background.

A. Numerical results from the shell model

We now focus on the simplified model described in
Sec. III E and investigate a couple of interesting cases with
parameters guided by a linear stability analysis of the
system (Appendix B).
We impart a perturbation of the form (97) to the shell,

which effectively implies “hitting” it twice: the first at τ ¼
τaξ to take it away from the static solution and a second one
at τ ¼ τbξ ¼ 15τaξ to further perturb the intermediate state
before it achieves equilibrium (if stable). For each pertur-
bation, we evolve with two choices for the parameters
fα; βg. The first (case A) uses the constants α ¼ 0.4 and
β ¼ 0.1. As we show, this yields stable bubbles, but their
final equilibrium states are not at a new Buchdahl radius.
For the second (case B) then, we also keep β ¼ −1=3, but
now set α via the mass dependent relationship (B29) that
the linear analysis identified as being necessary to keep the
asymptotic bubble’s radius at its Buchdahl value. We adopt
the simpler viscous equations (70) with τe ¼ τp ¼ 0 and
ζ ¼ 0.1, and when employing the alternative flux option,
we adopt τu ¼ 2 × 10−6m. These values of ζ; τu are not

7Note that their analysis only gives a unique decomposition in
the large mass (radius) limit, and there are several conceivable
ways of extrapolating that to m ¼ 0; Eqs. (92)–(94) are one
particular possibility.
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special; the former are sufficiently small to play only a
secondary role in the dynamics, and the latter imply a short
time for the gas temperature to approach its corresponding
Unruh value and can be chosen up to 100 times larger and
still give essentially the same qualitative behavior.8

Before illustrating the bubble’s behavior when perturbed,
we note that there is a maximum amplitude of the
perturbing pulse (for reasonable choices of parameters
fτaξ ; σξg) that if exceeded (some of) the equations become
singular. This singular behavior takes place when ξS ≈m−1,
which induces aR → 0 and _m → 1, suggesting the bubble’s
growth approaches the speed of light and the effectively
classical description of the bubble’s internal dynamics
ceases to make sense. As reference, for a perturbation with
σξ ≃m, the largest mass change one can achieve is of
≈12% after the two interactions. In what follows, we
restrict to slightly lower values to avoid this situation.
We consider a bubble with initial mass m ¼ 5000 and
choose the amplitude of the perturbation such that, after
two perturbing episodes, the net relative change of the mass
is Δm=m ¼ 0.2 × 10−n with n ¼ 3::5. To more clearly
illustrate the asymptotic state of the solution and its
agreement (or lack thereof) with a Buchdahl state, we
normalize each plotted quantity either by the (instanta-
neous) value expected for a Buchdahl solution or by the
initial value of that quantity. Further, we also normalize by
the inverse of the relative change in mass to more clearly
compare with different chosen amplitudes.
First, Fig. 1 shows the behavior of radius and gas density

vs (τ=m). For both curves, we normalize them with respect
to the corresponding quantities evaluated for the equilib-
rium solution with mass corresponding to the bubble’s
instantaneous mass and also by the inverse of the relative
mass change (Δm=mÞ. As can be appreciated from the
figure, while the late-time solution for both cases is
stationary, for case A, this does not correspond to a
Buchdahl state. On the other hand, case B shows both
quantities converging to zero (the Buchdahl state) linearly
with Δm.
Further insights into the dynamical behavior can

be observed in Fig. 2, which shows the gas entropy and the
temperature (normalized by the initial temperature). The
entropy shows a net increase from the initial state to the final
stationary solution, but as the interactionwith theperturbation
takes place, it shows a transient nonmonotonic behavior.
Comparing the net entropy change (which can be consistently
defined as the initial and final states are stationary) indicates
case B has a larger final entropy than case A. Quantitatively,
we find the net change of entropy from the initial state to
the final equilibrium one is ΔS ≈ CSiSg0ðΔm=mÞ with

CSA ≈ 0.85; CSB ≈ 2. Recalling the gas entropy is Sg ¼
ρgR2T−1 and that for a state consistent with Buchdahl
ρg ∝ R−1 for large masses, the value obtained for CSB is
the expected one for a Buchdahl state.We note in passing that
one can choose values for fα; βg that guarantee a monotonic
growth of gas entropy, but unreasonably large values of the
dissipation parameter ζ would be required for stability.
Finally, the temperature indeed shows the expected reduction
invalue as the bubblegrows, exhibiting a transient behavior as
the interactions take place. Its asymptotic value denotes a
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FIG. 1. Normalized radius (top panel) and gas density (bottom
panel) from evolutions of a black bubble undergoing two distinct
accretion episodes using the relaxation approach (88) (with
m ¼ 5000, l ¼ 1, τu ¼ 0.01, and ζ ¼ 0.1). In the top panel,
four solutions are presented, corresponding to relative mass
changes of Δm=m ¼ 0.2; 0.002% for each case. Case A asymp-
totes to a non-Buchdahl yet stationary solution, while case B
converges to a Buchdahl state with a subleading correction that
goes to zero with Δm. In the bottom panel, results corresponding
to a mass change of Δm=m ¼ 0.2% for case A and Δm=m ¼
0.2; 0.02; 0.002% for case B are shown. Case A asymptotes to a
stationary solution distinct from the Buchdahl one, while case B
converges to a Buchdahl state in a similar manner with Δm as the
radius. (Note that both accretion episodes are of the same
duration; that the second looks so abrupt is due to the logarithmic
scale used for the time axis).

8Even larger values produce a solution which is quite sensitive
to this choice; lower ones give the same behavior, but if
significantly smaller lead to a stiff equation, requiring a more
delicate numerical treatment.
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change that can be approximated by ΔT ≈ CTi
T0ðΔm=mÞ,

with CTA
≈ −7.5; CTB

≈ −1; the latter value corresponds to
the expected one for a Buchdahl final state.

B. Numerical results from the
Einstein-Klein-Gordon-hydrodynamic system

Since the ODE model can quickly and accurately study
the stability of large black bubbles, we have, as demon-
strated with some examples in the previous section, used
that to map out black bubble matter properties that lead to
stable configurations in spherical symmetry. Here, then, in
the next two subsections, we show a couple of results from
the EKGH system to illustrate some issues that would need
to be addressed in future studies exploring black bubbles
beyond spherical symmetry. In the last subsection, we
explored evolution of scalar fields on a fixed black bubble
background, which is possible with the EKGH code for

long timescales and up to modest values of the internal
cosmological scale l.

1. Accuracy and convergence

One of the issues limiting the EKGH code is related to
accuracy: in this first attempt to model singular layers in a
PDE code, we have sacrificed higher order convergence for
the sake of simplicity. That would not have been much of
an issue if the stability of black bubbles did not depend so
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FIG. 2. Entropy (top panel) and temperature (bottom panel),
normalized with respect to their initial values, from evolutions of
a black bubble undergoing two distinct accretion episodes. Four
runs are shown using the relaxation approach (88) (with
m ¼ 5000, l ¼ 1, τu ¼ 0.01, and ζ ¼ 0.1) for case A (with a
relative change of mass Δm=m ¼ 0.2%) and case B (with a
relative change of mass Δm=m ¼ 0.2%; 0.02%; 0.002%).
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FIG. 3. The residual of (45) at τ=m ¼ 0.01 (top panel) and
τ=m ¼ 1.0 (bottom panel), for an ml ¼ 0.1 black bubble
perturbed with a noninteracting scalar field ψ (using
l ¼ 1; α ¼ 0.35; β ¼ 0; τu ¼ 0.1; ζ0 ¼ 1.0; τe ¼ τp ¼ 0), where
τ is proper time measured at the shell location. The finest
resolution mesh spacing is Δx ¼ h ¼ 0.5=32768. The shell is
at x ∼ 0.23, corresponding (initially) to a proper radius
r̄ ¼ 0.225m, while the outer boundary x ¼ 0.5 corresponds to
a proper radius 126m. At τ ¼ 0, the scalar field pulse is centered
at x ¼ 0.27 and has a coordinate width of 0.04 (95) and an
amplitude so that it adds ∼0.002m to the mass of the spacetime
(98). The initial data are time symmetric, so half falls into the
bubble (corresponds to the second set of peaks out from the origin
on the bottom panel—the smaller first peak is a transient
emanating from the shell location at t ¼ 0). The “noise” in the
interior seems to be associated with the calculation reaching
double-precision round-off error there.
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sensitively on the scales in the problem. With a 1þ 1D
code on a modern, single CPUmachine we can evolve grids
of up to 105 points for a similar number of time steps in
about an hour of wall time. For small black bubbles, i.e.,
ml ≤ 1, even with a code that is only first order con-
vergent, we can achieve good accuracy over many shell
light-crossing times. However, for reasons not entirely
clear, though likely related to the mass amplification issue
discussed in the following subsection, for ml ≥ 1, the

truncation error at a given resolution rapidly increases with
ml, so much so that byml ∼ 10we cannot evolve for more
than of order a light-crossing time at the highest resolutions
before Oð1Þ errors are reached (in mass conservation, for
example). Moreover, with certain flux parameters, there is a
numerical instability that seems to set in for large ml (or at
least the growth rate depends on ml, and if present for
smaller values is sufficiently mild that we have not noticed
any lack of convergence then).
Figures 3 and 4 show examples of convergence for two

different mass black bubbles, ml ¼ 0.1 and ml ¼ 10,
respectively, perturbed with a noninteracting scalar field ψ
(these are also the two outlier cases shown in Fig. 5). In
both cases, after the ingoing component of the scalar field
propagates across the shell, this perturbation results in a
change of the mass aspectmðr; tÞ, defined via the following
generalization of the Misner-Sharp mass [22],

1 − 2m=r̄þ ΘðR − rÞl2r̄2=3≡∇br̄∇br̄; ð98Þ

of ∼0.1% evaluated just exterior to the bubble location RðtÞ
(the net initial energy of the scalar field is roughly twice
this, with the other half propagating outward). In the above,
r̄ðr; tÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Aðr; tÞ=4πp
is an areal radius.

What is shown in Figs. 3 and 4 is residuals of the
constraint C11 (45) (i.e., the left-hand side minus right-hand
side of it) evaluated pointwise across the grid using
centered, second order accurate finite difference stencils,
at two times during the evolution. With our mapping of the
shell to a constant location in x ¼ x0, we have also fixed
that location to be at a vertex of the grid. Therefore, a
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FIG. 4. The residual of (45) at τ=m ¼ 0.01 (top panel) and
τ=m ¼ 1.0 (bottom panel), similar to the case shown in Fig. 3, but
here for an ml ¼ 10 black bubble, and the finest resolution mesh
spacing is Δx ¼ h ¼ 5.0=32768. The shell is at x ∼ 2.5, corre-
sponding (initially) to a proper radius r̄ ¼ 22.5m, while the outer
boundary x ¼ 5.0 corresponds to a proper radius 161m. At τ ¼ 0,
the scalar field pulse is centered at x ¼ 2.8 and has a coordinate
width of 0.4 (95) and an amplitude so that it adds ∼0.002m to the
mass of the spacetime (98). In comparison to Fig. 3, notice the
different magnitudes of the residuals. In particular, in this case,
there is rapid growth of the residual exterior to the bubble with
time, and moreover, it oscillates on a timescale of order τ=m—
that the three higher resolutions seem to be the same at large radii
is mostly coincidence as the oscillations happen to overlap at
τ=m ¼ 1.0 (though there is also some deterioration of the rate of
convergence, which does happen on such short timescales for
these large mass cases).

0111.0
m

0
 l

10

20
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40

δm
i /δ

 m
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FIG. 5. The change in interior mass δmi relative to the change
measured exterior to the shell δme as a function of initial shell
mass m0l (using l ¼ 1; α ¼ 0.35; β ¼ 0; τu ¼ 0.1; ζ0 ¼ 1.0;
τe ¼ τp ¼ 0). From convergence studies, estimated uncertainties
in δmi=δme are less than 1% for all points (the dashed line
between the points is simply to guide the eye). For all cases, the
parameters of the perturbing scalar field were adjusted to give
δme ∼ 0.001m0. For larger masses, δmi=δme grows linearly as a
function of m0l (note that the figure has a logarithmic scale for
the x axis).
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consistent representation of the delta function appearing in
(45) is to use the piecewise linear function that goes from 0
at x0 − Δx to 1=ð2ΔxÞ at x0 and back to zero at xþ Δx.
Then, having evolved with a first order accurate finite
volume integration about x0 (see Appendix D), one only
expects a consistent, convergent scheme to show conver-
gence of a residual to zero in an integrated sense;
specifically, C11ðx0; tÞ will evaluate to a finite function
of time irrespective of resolution, though adjacent points
around it should converge to zero first order inΔx. This can
be seen in Figs. 3 and 4, though we do initially have second
order convergence away from x0, and interestingly the
region around x ¼ x0 that drops to first order with time
grows quite slowly compared to the characteristic speed of
the system.
The main point we want to illustrate with those figures is

how much larger the truncation error is for large (ml ¼ 10
in Fig. 4) vs small (ml ¼ 0.1 in Fig. 3) mass bubbles. Note
in particular the interior region, which is empty AdS to
begin with, while in the exterior region by τ=m ∼ 1, the
truncation error has grown to be of comparable magnitude
for the ml ¼ 10 case, and we are beginning to lose
convergence there.

2. Interior energy

The second problem affecting the EKGH system evo-
lutions is related to a physical issue, in that in the ml ≫ 1
limit the bubble is very “close” to what would be the AdS
boundary from the interior spaces’ perspective. One con-
sequence of this is when we perturb the shell with a small,
exterior noninteracting scalar field pulse; as it crosses the
shell, it is very strongly “blueshifted.” So, in terms of a
geometric mass (98), one can end up with a lot inside the
shell. In fact, it is even possible to perturb the shell so that
the interior mass ends up being larger than the asymptotic
mass, and the shell acquires a negative gravitational mass.
Such (and more modest cases) typically form black holes in
the interior; considering quantum effects, presumably such
states will eventually tunnel to a larger, encompassing black
bubble.
To illustrate this interior geometric-mass amplification,

in Fig. 5, we plot the change in interior mass (98) δmi,
measured just inside the shell, as a fraction of the change in
exterior mass δme, measured just outside the shell. The
m0l ¼ 0.1, 10 cases are from the same evolutions shown
above with the convergence tests; the intermediate points
are from similar runs with the perturbing scalar field
parameters adjusted to also give δme ∼ 0.001m0 on a
similar local timescale. Note that the linear analysis
shows that for these parameters (α ¼ 0.35; β ¼ 0; τu ¼ 0.1;
ζ0 ¼ 1.0) black bubbles with m0l≲ 0.5 are unstable, and
this is confirmed by the code, though for such relatively
short interactions, δmi=δme does not depend on the flux
parameters (we have not found a single set of parameters
that give stable bubbles for both small and large masses).

Also, since no energy is directly exchanged with the shell
matter, on these short timescales, ρg, ρτ, and ρs are roughly
constant. The trend from the figure on the large mass side is
that δmi=δme ≈m0 (e.g., for a similar 0.1% perturbation,
cases with m0l≳ 1000 will give negative gravitational
mass bubbles).

3. Gradual release of internal energy

For a rough estimate of the effect of internal energy,
assuming it is not sufficient to collapse to a black hole nor
trigger a quantum transition to a new black bubble
configuration, here we evolve a free, noninteracting scalar
field ψ on a black bubble background. With the PDE code,
we can run such cases for many dynamical times, and up to
modest values of l of O(10). The specific examples we
show here choose an initial scalar field pulse of the form
(95), though we use proper radius r̄ to define it to make for
more meaningful comparisons varying l (the relationship
between r and r̄ in the light-metric (28) coordinates
depends strongly on l); we set Rψ ¼ 3.5m, Δψ ¼ m
(and m ¼ 1 in all cases).
The primary results are summarized in Figs. 6 and 7.

First, as shown in Fig. 6, the scalar field that crosses into the
bubble is partially trapped there, and leaks with time out,
the more slowly the larger l. Specifically, what is plotted
there is the integrated energy density interior to the bubble

Einteriorðτ0Þ≡
Z

r̄¼9m=4

r̄¼0
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FIG. 6. Logarithm of the integrated energy (99) of the non-
interacting scalar field ψ interior to the bubble, as a function of
central (r̄ ¼ 0) proper time τ0. These are all from runs without
backreaction; i.e., the scalar field is simply propagating on the
black bubble background. Runs using four different values for the
cosmological constant scale l are shown, each with m ¼ 1, and
an initial perturbation of characteristic width Δr̄ ¼ 1 centered
outside the bubble at a radius 3.5m. The rate at which energy
escapes clearly decreases with increasing l.
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as a function of central proper time τ0, where Xa ¼ ð∂=∂tÞa
is the timelike Killing vector of the static background, na is
the unit vector normal to t ¼ const: hypersurfaces, and h is
the determinant of the corresponding spatial metric. On the
background, a similar quantity would be conserved if
the integral where carried out from r̄ ¼ 0 to r̄ ¼ ∞. The
“blocky” nature of the curves at early times is associated
with the light-crossing time of the pulse interior to the
bubble, which decreases like 1=lwith respect to the proper
time at the origin of AdS. Initially, the pulse can be
considered to be a superposition of many AdS scalar field
normal modes; the higher harmonics leak out more quickly,
gradually leaving behind the lower harmonics and a
smoother late-time decay.
The reduction of energy within the AdS region can be

understood straightforwardly following the analysis of,
e.g., Ref. [23], and in Appendix E, we outline such a
calculation. This shows that at late times when the
fundamental mode dominates, and for large l, one expects
the interior energy to leak out via logE ∼ −2π

m2l τ0; this
scaling with l is consistent with the late-time slopes of
the l ≥ 10 curves shown in Fig. 6.

In Fig. 7, we show the imprint of this on the measured
scalar radiation some distance outside the bubble. A few
interesting features are apparent. Note the redshift between
the oscillations with respect to central proper time depicted
in Fig. 6 and the (near) asymptotic proper time in Fig. 7 (the
same run time of τ0 ¼ 54m translates to τ90 ∼
2120m; 4160m; 6150m for the l ¼ 10, 20, 30 cases,
respectively, though the corresponding curves stop below
the lower y axis limits of the figures). This means the
observed rate of energy loss scales like 1=l2, as opposed to
the 1=l measured with respect to interior central proper
time (see Appendix E for more details). In terms of the
externally observed frequency, the redshift also almost
exactly compensates for the increasing internal oscillation
frequency with l, and the frequency observed at late times
in the exterior is roughly independent of l (see the insets on
the bottom panel). Specifically, the late-time fundamental
harmonic mode of a scalar field in AdS with frequency
(relative to central proper time) ω0 ∼

ffiffiffi
3

p
l is observed at

large radii redshifted to ω∞ ∼ 4=9=m.
Finally, in Fig. 8, for comparison, we show two similar

nonbackreacting runs, but now using the accreting scalar
with perfectly absorbing boundary conditions. The first is
the usual black bubble case at the Buchdahl radius, while
for the second, the radius has been set to r̄ ¼ 2.001 to
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FIG. 7. The amplitude of the scalar field measured at r̄ ¼
90m (m ¼ 1) as a function of proper time τ90 for a static observer
at this location, for the same cases shown in Fig. 6.

0 50 100 150 200 250
τ10R

-5

0

lo
g 10

|ψ
|

R=2.25m
R=2.001m

FIG. 8. The amplitude of the scalar field measured at r̄ ¼
10R (m ¼ 1) as a function of proper time there (τ10R), for similar
initial data as depicted for the runs in Fig. 7, but here with
perfectly absorbing boundary conditions so that no scalar field
enters the bubble (hence, l is irrelevant). For the black curve, the
bubble is at the canonical Buchdalh radius, while for the green, it
is at r̄ ¼ 2.001m, to mimic a black hole (and of course, such a
bubble will be unstable if backreaction were included). Since the
measurement radii are at slightly different locations, one curve
was shifted in time to align the profiles at peak amplitude for ease
of comparison. This would likewise affect the relative amplitudes,
which has not been corrected for, though here we more want to
emphasize the slight shift in frequency and number of quasi-
normal oscillations visible before essentially the same power-law
decay sets in.
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mimic a black hole (we cannot set the boundary at exactly
r̄ ¼ 2, as the lightlike coordinates become singular then).
The results are qualitatively similar, though they do differ in
detail, suggesting that the early-time gravitational wave
signal from black bubble formation will be similar to the
black hole case, yet distinguishable with a precise enough
measurement.
We discuss some of the potential observational conse-

quences of this in the next section.

VII. CONCLUSIONS

In this work, we have taken first steps toward seriously
considering the nonlinear classical dynamics of shell-like
black hole mimickers (exotic compact objects). We for-
mulated the problem within a fairly general framework that
does not rely on symmetries of a single, isolated exotic
compact object, though for simplicity in a concrete exam-
ple, we restricted to spherically symmetry. Similarly, the
novel techniques we introduced to implement this in a code
were designed with application beyond spherical symmetry
in mind.
The particularmodel exotic compact objectswe studied are

theAdS black bubbles ofRef. [3]. Thismodel ismotivated by
string theory, and the initial investigations in Ref. [3] sug-
gested they are stable—a crucial requirement for any astro-
physically viable exotic compact object. An important
physical ingredient for stable black bubbles is an internal
interaction between the matter components of the bubble that
causally reacts to external perturbations (such as accretion),
keeping the bubble in an equilibriumconfiguration.We found
here that the original quasistationary flux prescription of
Ref. [3] was inadequate to maintain stability in dynamical
situations and developed a two-parameter generalization of it.
We identified regions of parameter space that do result in
stable black bubbles, at least for sufficiently slow accretion.
Moreover, within the space of stable bubbles, wewere able to
find parameters that guarantee (at the linear level for large
black bubbles) that after a dynamical episode, the bubble
relaxes to a new equilibrium black bubble; i.e., it sits at the
Buchdahl radius corresponding to its new mass. Though we
argued that the new parameters can be considered “natural,”
we did not derive the new flux prescription from fundamental
considerations,whichwould be an avenue for future research.
For rapid accretion, namely, when a sizeable fraction of

the mass of the bubble accretes within of order the light-
crossing time, we do find that otherwise stable bubbles can
collapse to black holes. However, then, the internal fluxes
take on values that suggest the evolution is outside the
realm well described by the classical analysis. Likewise,
anticipating what might happen when two black bubbles
merge (assuming our stability results carry to nonspherical
perturbations), a classical analysis should be valid during
the inspiral up to a moment just before the actual merger.
For the analog black hole case, in terms of local physics, a
global apparent horizon suddenly forms that replaces the

apparent horizons of the two separate black holes.
Similarly, there could be a quantum transition from one
to two bubbles occurring before the two bubbles actually
touch. Classically, one could attempt to model this in the
same way by replacing the two bubbles with an encom-
passing single bubble. On the other hand, taking guidance
from the way event horizons fuse together, one may be able
to engineer the interaction between two bubbles so that at
the instant of contact they similarly fuse into a single
bubble. In the extreme mass ratio limit where no trapped
surfaces would form as the two bubbles get close and fuse,
the latter approach by itself could be an accurate approxi-
mation of the full quantum system (i.e., it may be that
tunneling only occurs with high probability if a trapped
surface would have otherwise formed).
Based on our results of scalar fields propagating on black

bubble backgrounds, we can make some very speculative
comments on observational consequences of black bubble
formation or mergers (for a similar analysis related to
gravastars, see [24,25]). First, regarding the gravitational
wave analog where the scalar field is not absorbed by the
bubble, this is unlikely to have observable consequences if
1=l is close to the Planck length Lp, or a similarly small
microscopic scale. For then, as estimated in Appendix E,
the internal energy is effectively trapped. On the other
hand, one can take the perspective that we do not know
what this scale is, and one can use black hole merger data to
constrain it, or detect an unexpectedly large scale. This
would be similar to the recent analysis in Ref. [26], in
which the authors assumed there was an exotic compact
object with purely reflecting boundary conditions some
distance ϵ from the would-be Schwarzschild radius, and the
absence of a long-lived, nearly monochromatic postmerger
ringdown signal from GW150914 could constrain ϵ as a
function of the ringdown timescale. Note that they do not
propose that their exotic compact object can actually reflect
gravitational waves (which would require matter that is
bizarre even by the lax standards applied to exotic compact
objects) but propose that, on long timescales, the passage
through some interior geometry effectively looks like a
reflection. A black bubble with a large 1=l would similarly
produce a monochromatic late-time ringdown as illustrated
in Sec. VI B, however at a frequency related to the
Buchdahl radius as opposed to the Schwarzschild radius
(and appropriately modified for rotation, as is necessary for
GW150914 and was done in Ref. [26]). This suggests that
black bubbles could offer an interesting counterexample to
the conclusions given in Ref. [26], namely, that the absence
of such a signal can be used to infer that the geometry
outside the remnant of GW150914 must be close to that of
Kerr down to some microscopic distance ϵ close to the
horizon. In other words, for black bubbles, the absence of
such a signal constrains the interior AdS scale but not
macroscopic differences from Kerr in the exterior geo-
metry. To constrain the latter would require understanding
the prompt emission at the time of merger.
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The comments about a late-time postmerger signal in the
previous paragraph assumed external gravitational waves
with wavelength of order the bubble radius propagate into
the interior, and these essentially excite the lowest wave-
length modes of the AdS interior. Such modes are very
efficiently trapped there. However, as suggested by
Eq. (E10), if there are internal quantum gravity processes
that produce gravitational waves on small scales 1=j ∼ 1=l,
they would leak out on observationally interesting time-
scales even for 1=l ∼ Lp. Also, if the mass-amplification
effect illustrated in Fig. 5 would classically cause a black
hole to form in the interior, this will instead induce a
tunneling event (or interior energy may induce tunneling to
a new bubble regardless of classical black hole formation),
and the arguments for the rate at which energy leaks out
given in Appendix E would be invalid.
On another observational front, to explore how EHT

images of supermassive black holes would change if they
were supermassive black bubbles, it would be interesting to
understand magnetohydrodynamic accretion from realistic
models of accretion disks onto black bubbles. Backreaction
is likely unimportant, and though black bubble spin would
be, a good indication of whether the EHT could discrimi-
nate between black bubbles and black holes could be made
using an exterior Schwarzschild background to begin with,
assuming sufficient control of gastrophysical processes are
at hand. For the black bubble/magnetohydrodynamic inter-
action, a conservative approach would be to model it as
perfectly absorbing, as with the scalar field case stud-
ied here.
There are many directions for future numerical studies of

black bubbles. The most crucial would be to relax spherical
symmetry to explore stability to nonradial perturbations
and, if stable, accretion of angular momentum to uncover
the rotating solutions. The fact that the bubble surface is
within the photon sphere of the spacetime suggests there
may be long timescale secular instabilities [27–29].
Classically, this might be analogous to the so-called weakly
turbulent instability of AdS spacetime [30], which certainly
is also relevant for the black bubble interior. If so, the
consequence of the instability might “merely” be that
trapped energy could eventually form small black bubbles
that merge with the larger one. For rotating black bubbles,
similar instabilities could be associated with the presence of
an exterior ergoregion [31–33]. Also, it would be interest-
ing to investigate whether in such cases there could be
superradiant extraction of rotational energy, which may
lead to similar observational signatures as the presence of
ultralight particles around rotating black holes (see, e.g.,
Ref. [34]). Rotational energy may also be extracted if a
Chandrasekhar-Friedmann-Schutz instability operates in
fluid shells [35,36] (it is generic for rotating fluid stars
in general relativity).
Regarding the physics of black bubbles, a next step

would be to investigate whether the ad hoc flux model

prescribed here can be justified with more rigor. To fully
capture the physics of the bubbles when they tunnel and
merge will be challenging. It would require a significantly
new conceptual understanding of tunneling in a time-
dependent background, as well as the construction of
methods capable of implementing this numerically. This
would also be pertinent to understanding how soon after a
merger the current model can be applied, which should
adequately describe the late-time ringdown.
Last, we note that the AdS black bubbles we focused on

are but one of many potential exotic compact object
models. In that context, we hope our study, both in terms
of the methods we have introduced and how we solved
issues particular to black bubbles, can serve as a guide to
further develop related exotic compact object models.
Likewise, since the potential observable features indicated
in this work can be traced back to key aspects of the
model’s fundamental building blocks, other exotic compact
objects with similar structure should exhibit the same
qualitative observational characteristics. For instance, relat-
ing the late-time quasimonochromatic radiation frequency
to a redshifted fundamental mode of the interior region, as
well as connecting the amplitude of decay to interior energy
loss, should be broadly applicable to any shell-like exotic
compact object with a compact, leaky interior.
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APPENDIX A: DYNAMICAL EFFECTS ON
PROPER ACCELERATION

The analysis of Ref. [3] found that a black bubble is
stable to what are effectively quasistationary perturbations.
Specifically, the authors considered the proper acceleration
of an exterior, stationary observer,

as ¼
f0

2
ffiffiffi
f

p ; ðA1Þ

with f ¼ 1–2m=r̄ in Schwarzschild coordinates and r̄ the
areal radius, and here we use 0 ≡ d=dr̄. The fractional
change in acceleration that goes into the expression for the
flux (85) was then defined to be _as=as ¼ Va0s=as, where
V ¼ _RðτÞ is the shell velocity and _≡ d=dτ, with τ proper
time along the shell trajectory.
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However, in a dynamical situation, there are additional
terms that appear in the expression for the 4-acceleration aR,
and it turns out these can counter the effect of the quasista-
tionary term, in fact, so much so that adding the correspond-
ing flux j can make the bubbles more unstable than without a
flux. To see this, we evaluate (77) in Schwarzschild
coordinates for a moving observer with unit 4-velocity
ua ¼ dxaðτÞ=dτ,

aR ¼ 1

2

f0 þ 2Affiffiffiffiffiffiffiffiffiffiffiffiffiffi
f þ V2

p ; ðA2Þ

with AðτÞ ¼ _VðτÞ. This already hints at problems, as
the acceleration can have an arbitrary sign irrespective of
the motion of the shell, and the “wrong” sign will hinder the
ability of a flux j based on (85) to return a perturbed shell to
equilibrium. To see this more clearly, and that the general
flux expression (86) with appropriate parameters could
mitigate this problem, we compute (86) using (A2). The
full expression is lengthy and somewhat obscure; to simplify,
we evaluate it to leading order in V at the Buchdahl radius:

jm
ρg

����
R̄¼9m=4

¼ 243αJ̄
81Āþ 16

− V

�
64ð6α − βÞ þ 81ð4½8α − β� þ 81αĀÞĀ

3ð81Āþ 16Þ
�

þOðV2Þ; ðA3Þ

where we introduced the jerk JðτÞ ¼ _AðτÞ and rescaled the
jerk and acceleration to given dimensionless quantities via
J̄ ≡m2J and Ā≡mA. The quasistationary case js is this
expression with Ā ¼ J̄ ¼ 0 and α ¼ β ¼ 1,

jsm
ρg

����
r̄¼9m=4

¼ −
20V
3

: ðA4Þ

Thus, for initial data where V is small, but A and J are zero,
the analysis in Ref. [3] should hold, and the flux (A3) should
start to counter the motion of the shell. However, this is not a
generic perturbation, and perhaps a more “realistic” pertur-
bation for a presumed stable shell would be the opposite
case; i.e., we imagine a black bubble has formed and settled
down to a stationary spacetime, and then we throw in an
external perturbation. In that case, the first term in (A3) will
dominate the flux, and this does not generically have the
correct sign. Equation (A3) also suggests that a simple
alternative stable prescription for triggering the internal
fluxes is one based entirely on local changes to the area
(β ≠ 0) and not the Unruh temperature (α ¼ 0), if β is
sufficiently negative.

APPENDIX B: LINEAR
PERTURBATION ANALYSIS

In lieu of a full stability analysis, we will check whether
stability is at least possible by seeking periodic solutions of
the linearized equations for the simplified shell model
presented in Sec. III E. We start with the following ansatz,

RðτÞ ¼ R0 þ δR · eiωτ;

ρiðτÞ ¼ ρi0 þ δi · eiωτ; ðB1Þ

where R0 ¼ 9m=4, ρi0 are the equilibrium matter param-
eters for i ∈ ðg; s; τÞ and δR, δi are the magnitudes of a
small perturbation. Here, we do not include any external
fluxes but assume they were responsible for creating these
perturbations.
Consider four options for the flux term j: j ¼ j0 ¼ 0,

j ¼ js from (85) with aR given by the quasistationary case
(A1), j ¼ jd from the dynamical flux (86) with aR given by
the full expression (67), and j ¼ ju using the alternative
prescription for the dynamical flux (88) that explicitly
introduces the temperate T and a corresponding relaxation
to the Unruh temperate via (87). For the latter, we also
adopt a similar ansatz for the temperature perturbation,

TðτÞ ¼ T0 þ δT · eiωτ; ðB2Þ

with T0 ¼ 8=ð27πmÞ. For dissipation, we assume ζ is a
constant ζ0. Plugging the above ansatz and flux options into
the equations of motion, and expanding to linear order in
(δR, δi), a solution consists of constraints on the amplitudes
of the matter (and temperature) perturbations δi (δT) in
terms of the radial perturbation δR and a relation ωðm;lÞ.
These are more conveniently expressed in terms of dimen-
sionless variables m̄ ¼ ml; ω̄ ¼ ω=l; τ̄u ¼ τul. We obtain
for j ¼ 0

δg;j0 ¼−δR
4l2

81πm̄3

�
ðm̄− 4

ffiffiffi
3

p
=9Þþ 4m̄ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16þ 27m̄2
p

�
; ðB3Þ

δs;j0 ¼ −δR
16

ffiffiffi
3

p
l2

729πm̄3
; ðB4Þ

δτ;j0 ¼ 0; ðB5Þ

for j ¼ js

δg;js ¼ 6δg;j0 ; ðB6Þ

δs;js ¼ δs;j0 ; ðB7Þ

δτ;js ¼ −5δg;j0 ; ðB8Þ

for j ¼ jd
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δg;jd ¼
�
1þ 6α − β þ 729αω̄2m̄2

64

�
δg;j0 ; ðB9Þ

δs;jd ¼ δs;j0 ; ðB10Þ

δτ;jd ¼ −
�
6α − β þ 729αω̄2m̄2

64

�
δg;j0 ; ðB11Þ

and for j ¼ ju

δg;ju ¼
δg;jd − iτ̄uω̄ðβ − 1Þδg;j0

1þ iτ̄uω̄
; ðB12Þ

δs;ju ¼ δs;j0 ; ðB13Þ

δτ;ju ¼
δτ;jd þ iτ̄uω̄βδg;j0

1þ iτ̄uω̄
; ðB14Þ

δT ¼ −δR
ð128þ 243m̄2ω̄2Þl2

162πm̄2ð1þ iτ̄uω̄Þ
: ðB15Þ

The expressions for ω̄ are lengthy and not too illuminat-
ing by themselves, so for simplicity, we only show the more
relevant large m̄ limit:

j ¼ 0∶ ω̄ ≈
32πζ0
27m̄

�
i� i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9=32=ðπζ0Þ2

q �
; ðB16Þ

j ¼ js∶ ω̄ ≈
32πζ0
27m̄

�
i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 27=ð8πζ0Þ2

q �
; ðB17Þ

j ¼ jd; ju∶ ω̄ ≈
128πζ0

27ð4 − 9αÞm̄

·

�
i�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ 9ð4 − 9αÞð6α − β − 2Þ=ð16πζ0Þ2

q �
:

ðB18Þ
For j ¼ ju, there are three solutions if α ≠ 0; the first two
are identical in the large mass limit to that of jd (B18), with
the third given by

j ¼ ju∶ ω̄≈
ið4− 9αÞ

4τ̄u
−
iα
m̄

�
1ffiffiffi
3

p
τ̄u

þ 64πζ0
3ð4− 9αÞ

�
ðα ≠ 0Þ:

ðB19Þ

The zero flux (j ¼ 0) and canonical ðα ¼ 1; β ¼ 1Þ
dynamical flux jd;u cases always have at least one growing
mode, while the quasistationary flux js is always damped.9

Various parameters can be found for the dynamical fluxes

jd;u to give damped systems. The third solution existing for
the relaxation-based dynamical flux ju is always stable for
α < 4=9, and m̄ sufficiently large that the second term in
(B19) is subdominant.

1. Particular solution

In the analysis above, we did not include any external
flux, assuming it was active prior to (say) τ ¼ 0 to set up
the perturbation, after which one expects the solution to be
given by some superposition of the above modes. In this
regard, one thing missing from the above ansatz (B1) is the
arbitrary small perturbations of the initial conditions that
depend on the details of the prior external flux interaction.
It is straightforward to show that including such general
initial conditions requires adding a particular solution that
simply shifts the final radius and temperature (for damped,
stable cases) by constants dependent on these initial
parameters but otherwise does not affect any of the linear
modes.
Similarly, if the perturbation caused somematter to flow to

the interior, and we model this as a small change δmi to the
interiormass, i.e., lettingfL ≡ 1þ RðτÞ2l2=3 − 2δmi=RðτÞ,
we can solve the linear equations if we add the following
constant correction to R0 in (B1)

R0 → R0 þ
8

81m̄2
δmi þOð1=m̄4Þ: ðB20Þ

[A corresponding correction to T0 scales like Oð1=m̄4Þ].
This is a tiny correction to R0; however, reversing the
perspective, a perturbation that leaks energy into the interior
resulting in a small change δR to the position of the bubble
leads to a comparatively huge interior mass parameter
∝ m̄2δR. It is not clear that we can combine this with the
result shown in Fig. 5, in which the increase in interior mass
comes from a scalar field interaction and δmi ∝ m̄δme: for
small perturbations, thescalar fieldwill eventuallyescape, and
for larger perturbations where a black hole forms to trap the
scalar field, a linear analysis might not be warranted.
Nevertheless, combining them for the case where an interior
black hole does form, this suggests a change in radius (again
for stable, damped cases) δR ∝ δme=m̄. In other words, this
kind of perturbation, regardless of the flux parameters, will
lead toanew(classical) equilibriumposition that is not exactly
at the new Buchdahl radius.

2. Impulse response

For stable black bubbles, to determine what (if any)
internal matter fluxes are capable of maintaining the bubble
at the Buchdahl radius after an accretion episode
ξUðτÞ ¼ ξSðτÞ≡ ξðτÞ, we consider the response of a bubble
to an impulsive accretion event ξðτÞ ¼ AδðτÞ, with A a
constant amplitude parameter. If flux parameters can be
chosen to maintain such a condition for the impulsive
response, then it should likewise be maintained at the linear

9One could use the original quasistationary flux js and achieve
linearly stable black bubbles, at least in spherical symmetry.
However, this is a nonlocal flux; i.e., a fluid element on the
bubble needing to respond to a perturbation cannot, using any
local measurements of matter or spacetime properties, “know”
what js should be. Moreover, it is unclear how (A1) could be
extended beyond spherical symmetry even were one eager to
adopt nonlocal physics.
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level for arbitrary accretion profiles ξðτÞ. Mathematically,
we can only make sense of a delta function source using the
alternative flux model (87)–(88); for simplicity, we also
only consider the simplified dissipation model (70).
The first step is to integrate Eqs. (58)–(60), (62)–(67), (70),

and (87)–(88) about τ ¼ 0, with ξðτÞ ¼ AδðτÞ, to obtain
the change in bubble properties from the prior static
state [R0 ¼ 9m0=4; V0 ¼ 0; T0 ¼ 8=ð27πm0Þ; ρg0; ρs0; ρτ0�
(92)–(94), to the “initial” conditions ðRi;mi; Vi; Ti; ρgi; ρsi;
ρτiÞ for the subsequent relaxation to the final equilibrium state
ðRf;mf; Vf ¼ 0; Tf; ρgf; ρsf; ρτfÞ as τ → ∞. We find

Ri ¼ R0; ðB21Þ

Vi ¼ −
9πQL0

QL0 −QR0
Ā; ðB22Þ

m̄i ¼ m̄0 þ
27πm̄
4

Ā; ðB23Þ

T̄i ¼ T̄0 −
9

2ðQL0 −QR0Þτ̄u
Ā; ðB24Þ

ρgi ¼ ρg0 þ
�
l
m̄
−

27αρg0
2T̄0τ̄uðQL0 −QR0Þ

�
Ā; ðB25Þ

ρτi ¼ ρτ0 þ
27αρg0

2T̄0τ̄uðQL0 −QR0Þ
Ā; ðB26Þ

ρsi ¼ ρs0; ðB27Þ

where Ā≡ Am̄=l and T̄ ≡ T=l. Next, we assume the
solution for τ > 0 can be written as a superposition of the
three linear modes found in Appendix B, plus a relevant
constant particular solution to fully (in addition to the
amplitudes of the modes) account for the initial conditions.
Assuming we choose parameters (α; β; τu) to give a stable
bubble, plus somedissipationζ0 to give a static state at τ ¼ ∞,
we can then straightforwardly read off the final state by
evaluating this solution at τ ¼ ∞. Of particular relevance here
is Rf=mf, which in the large mass limit we find to be

Rf

mf
¼ 3ð15α − 4Þ=4 − 4

ffiffiffi
3

p
=ð9m̄Þ

6α − β − 2
þOðm̄−2Þ: ðB28Þ

The linearmode analysisassumedwhatwewant, namely, that
Rf=mf ¼ 9=4, so for consistency here, this becomes a
constraint:

α ¼ 2=3þ β −
16

ffiffiffi
3

p

81m̄
þOðm̄−2Þ: ðB29Þ

Intriguingly, this can be expressed as

α ¼ β þ ρτ0
8π

l
ffiffiffi
3

p þOðm̄−2Þ: ðB30Þ

APPENDIX C: xðr;tÞ map

We define the map between the metric r and code x
coordinate as follows. First, define a quadratic map
between x and an intermediate coordinate r̂ via

xðr̂; tÞ ¼ aðtÞr̂þ bðtÞr̂2; r̂ ≤ RðtÞ ðC1Þ

¼ cðtÞ þ dðtÞr̂þ eðtÞr̂2; r̂ ≥ RðtÞ: ðC2Þ

The functions aðtÞ, bðtÞ, cðtÞ, dðtÞ, and eðtÞ are easily
solved for by imposing the list of conditions given in
Sec. VA 2 and that xðr̂; t ¼ 0Þ ¼ r̂. We then stretch the
exterior part of the map to give rðr̂Þ,

rðr̂Þ ¼ r̂; r̂ ≤ RðtÞ ðC3Þ

¼ r̂þ r̂outðRs − 1Þ
�
r̂ − RðtÞ
r̂out − RðtÞ

�
3

;

r̂ ≥ RðtÞ; ðC4Þ

where the constant parameter Rs controls how far away in r
we want the outer boundary location r̂out ¼ xout to be. For
the backreacting examples presented in Sec. VI B, we used
Rs ¼ 10, and we used Rs ¼ 40 for the nonbackreact-
ing cases.

APPENDIX D: WEAK-FORM
INTEGRATION STENCIL

We integrate the evolution equations (29)–(31) about the
location of the singular surface layer using the method
outlined in Sec. VA 1. We use the map described in the
previous section to keep it at a constant coordinate location
x0 and if necessary adjust the initial position of the shell to
make sure x0 coincides exactly with a vertex i0 of the mesh.
We use a two-cell-wide piecewise linear test function,

vðxÞ ¼ 1þ ðx − x0Þ
Δx

; x0 − Δx ≤ x ≤ x0; ðD1Þ

¼ 1þ ðx0 − xÞ
Δx

; x0 ≤ x ≤ x0 þ Δx; ðD2Þ

¼ 0; elsewhere; ðD3Þ

where Δx is the mesh spacing. Similarly, we decompose all
metric and scalar field functions in a basis of piecewise
linear functions in x, assuming the exact values are stored at
grid vertices. For example,
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fðxÞ ¼ fi−1
xi − x
Δx

þ fi
x − xi−1
Δx

xi−1 ≤ x ≤ xi; ðD4Þ

where the notation fi means fðx ¼ xiÞ, with xi ≡ iΔx. For
a quantity f that is discontinuous, hence multivalued at i0,
we will use the notation fL (fR) to denote its value just to
the left (right) of i0. We can then analytically integrate (91),
arriving at an algebraic equation that we can solve for the
time derivative of the quantity of interest at i0. Note that if
one wanted to increase the accuracy of the scheme at the
surface layer, one could do so by using higher degree
polynomials (or other, smoother basis functions) to re-
present the fields and test function.
Before writing down the resultant stencil, we note a

couple of technical complications to reach the equivalent of
the final integral given in (91), related to our dual r, x

coordinate scheme. The first is we are integrating in x, so
we need to include the Jacobian of the coordinate trans-
formation in the integral (90) and carry it through the
subsequent integration by parts. Second, our Runge-Kutta
integration scheme requires ∂fðx; tÞ=∂t at fixed x, though
all the time derivatives in (29)–(31) are at fixed r; hence, we
also need to transform between _f and ∂fðx; tÞ=∂t [recall
our notation _f ≡ ∂fðr; tÞ=∂t, f0 ≡ ∂fðr; tÞ=∂r].
With all that, our first order accurate finite volume form

of (89), which we repeat here for reference,

_fðt; rÞ − g0ðt; rÞ þ hðt; rÞ þ δðr − RÞSðt; rÞ ¼ 0; ðD5Þ

can be written as

d
dt

fi0 ¼ −
1

4
½g0 þ f0 · rt�i0þ1 þ

1

4
½g0 þ f0 · rt�i0−1 −

1

4
½f · rtr þ ðf · rt þ gÞx00 · rx�i0þ1

þ 1

4
½f · rtr þ ðf · rt þ gÞx00 · rx�i0−1 −

1

2
ðhL þ hRÞ −

1

2
ðfL þ fRÞ · rtr

−
1

2
½ðfL · rt;i0 þ gLÞ · x00L þ ðfR · rt;i0 þ gRÞ · x00R� · rx;i0

þ 3

4Δx
½ðgR − gL þ ðfR − fLÞ · rtÞ · x0i0 þ ½ðgþ f · rtÞ · x0�i0þ1

− ½ðgþ f · rtÞ · x0�i0−1 − 2Si0 · x0i0�; ðD6Þ

where rt ≡ ∂rðx; tÞ=∂t, rx ≡ ∂rðx; tÞ=∂x, rtr ≡ ½∂2rðx; tÞ=
ð∂t∂xÞ� · ∂xðr; tÞ=∂r. This elevates to a second order
accurate scheme when Si0 → 0, and all “L” values equal
their “R” value neighbors.

APPENDIX E: RATE OF ENERGY
LOSS FROM AdS INTERIOR

In lightlike coordinates, the line element for AdS is

ds2¼ cos−2ðlr=
ffiffiffi
3

p
Þð−dt2þdr2Þþ3=l2 tan2ðlr=

ffiffiffi
3

p
ÞdΩ2;

ðE1Þ

which we distinguish from the “standard coordinates”
(r, R), which give

ds2 ¼ −ð1þ R2l2=3Þdt2 þ ð1þ R2l2=3Þ−1dr2 þ R2dΩ2:

ðE2Þ

General solutions to scalar field propagation in AdS in
lightlike coordinates can be expressed as a superposition of
modes given by

Φjðt; xÞ ¼ dj cosðωjlt=
ffiffiffi
3

p
Þcos3ðlr=

ffiffiffi
3

p
Þ

× 2F1ð−j; 3þ j; 3=2; sin2ðlr=
ffiffiffi
3

p
ÞÞ; ðE3Þ

with ω2
j ¼ ð3þ 2jÞ2l2=3 and dj ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðjþ 1Þðjþ 2Þ=πp
(j ∈ 0; 1; ::). Such modes are orthonormal and complete as
l → ∞. For our regime of interest then, we can use this
(quasi)basis, for large l, to describe the exterior pulse once
it enters the AdS region. In particular, we are interested in
the reduction of (the interior) energy (E) within the AdS. To
this end, we can make use of the analysis presented in
Ref. [23] to reach the intuitive result of

E;t ¼ 4πðV2þ − V2
−ÞR2

o; ðE4Þ

with Vþ;− ¼ �αua∂aΦþ αD the incoming (outgoing)
modes of the solution at the outer boundary r ¼ Ro; ua

is the unit timelike normal at Ro, D ¼ γijni∂jΦ, and

α ¼ 1= cosðlr= ffiffiffi
3

p Þ. At such a boundary, the AdS region
loses energy through V− but does not gain energy through
Vþ as little “comes back” from the exterior region. We can
thus take it to zero, so energy is lost at a rate
E;t ¼ −4πV2

−R2
o. We can then replace Φ in terms of its

normal modes; it is clear higher modes will reduce the
energy more effectively than the lowest one ω0. Said
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differently, energy supported by higher frequency modes
leaks out at a faster rate out of the AdS region. The long-
term behavior is given by the lowest mode, and the energy
loss within one period of oscillation is, to leading order
in 1=l,

ΔE ∝ −A2
0π

2
1

m2l3
ðE5Þ

(with A0 the amplitude of the mode). We can then use a
“quasiadiabatic” argument to say an amount of energy

ΔE ∝ −A2
0π

2
1

m2l2
ΔT ðE6Þ

is lost in the interior region over the period ΔT ¼
ð2πÞ=ðl ffiffiffi

3
p Þ. Now, the energy within the AdS region is

∝ A2
0=l, so dE=dt ∝ 2A0=ldA0=dt, and we can use

ΔE=ΔT to approximate the left-hand side to arrive at

dA0

dt
∝ −

πA0

m2l2
l; ðE7Þ

and so, A0ðtÞ ≈ expð−ptlÞ with

p ≈ −
π

m2l2
: ðE8Þ

Thus, the energy decays as EðtÞ ∝ expð−2ptlÞ=l, and so
logE ≈ − 2π

m2l t. Notice the above expression is with respect
to time measured at the origin of AdS, which is related to
the asymptotic time ta by t ≈ ta=ðmlÞ. Consequently,
logE ≈ − 2π

m3l2 ta. This behavior is consistent with the
results shown in Figs. 6 and 7. For reference, we can

now explore the associated timescale for this energy to leak
out of AdS and become an “observable signature” in the
asymptotically flat (AF) region. The timescale is given by
τD ≃m3l2; taking l ¼ 1=L with L a lengthscale and
assuming m ¼ 10qM⊙, one has

τD ¼ 103qðm=LÞ2 s: ðE9Þ

For instance, for L ¼ LPlanck ≃ 10−35 m and q ¼ 1,
τD¼1053 s≈1056tHubble. Requiring instead that τD ≃ tHubble
or τD ≃ 1 yr, L should be ≃10−7; 10−4 m, respectively.
As a last remark, we can employ a similar argument to

explore what takes place at early times. When a pulse with a
given frequency ωAF in the AF region begins to fall in the
AdS region, its frequency would be blueshifted to ωi ≃
ωAFml and would be supported, in terms of the AdS
modes, by a spectra of (almost) normal frequencies given
by ωj ¼ �ð3þ 2jÞl= ffiffiffi

3
p

. Thus, the pulse would be
described by the same modes in a way that is largely
insensitive to the scale determined by l. For a mode with
index j, the above timescale estimate results in

τD ¼ 103qj−2ðm=LÞ2 s; ðE10Þ

indicating the AdS could help potentially render micro-
scopic j scales into significantly longer ones for higher
values of j. Of course, this depends on the content of the
pulse in the AF region. Rough estimates, however, imply
not very high j’s are encountered with significant strength
for the relatively simple frequency content of waves driven
by a quasicircular merger.
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