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We consider isotropic and monochromatic photon emissions from equatorial emitters moving along
future-directed timelike geodesics in the near-horizon extremal Kerr (NHEK) and near-horizon near-
extremal Kerr (near-NHEK) regions, to asymptotic infinity. We obtain numerical results for the photon
escaping probability (PEP) and derive analytical expressions for the maximum observable blueshift (MOB)
of the escaping photons, both depending on the emission radius and the emitter’s proper motion. In
particular, we find that for all antiplunging or deflecting emitters that can eventually reach to asymptotic
infinity, the PEP is greater than 50% while for all plunging emitters the PEP is less than 55%, and for the
bounded emitters in the (near-)NHEK region, the PEP is always less than 59%. In addition, for the emitters
on unstable circular orbits in the near-NHEK region, the PEP decreases from 55% to 50% as the orbital
radius decreases from the one of the innermost stable circular orbit to the one of the horizon. Furthermore,
we show how the orientation of the emitter’s motion along the radial or azimuthal direction affects the PEP
and the MOB of the emitted photons.
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I. INTRODUCTION

Since the release of the first image of the supermassive
black hole M87* by the Event Horizon Telescope
Collaboration [1] in 2019, there have been ongoing pro-
gresses in the community to explore physical information
of the black hole. This M87* image matches very well
with the simulation of a rotating Kerr black hole based
on Einstein’s theory of general relativity. Very recently,
an improved image with polarization information was
released, which would help us to explore the structure of
the magnetic fields near the black hole [2]. Understanding
these observations relies not only on the study of photon
emissions and propagations in the black hole backgrounds,
but also on the rich physics in the surroundings of the black
holes, such as the magnetohydrodynamics in plasmas, the
distribution of magnetic fields, and even the nature of dark
matter halo. Consequently the images of the black holes
may allow us to investigate various problems in the strong
gravitational field region.

Besides the silhouette of a black hole shadow, there are
other possible observational signatures with interesting
features; for example, the image of a hot spot surrounding
a black hole [3–6], light rings (LRs) [7–9], and photon rings
[10–15]. Theoretically, as the first step, one has to under-
stand clearly the photon emissions around the black hole,
especially near the black hole horizon. On the other hand,
studying the photon emissions from the near-horizon area
is important to exploring various high-energy processes
[16–26] happening in the near-horizon region (inside the
ergosphere).
Recently, the photon escaping probability (PEP) and

maximum observable blueshift (MOB)1 of photon emis-
sions from near-horizon sources around rotating black
holes has been studied by several groups. The PEP of a
zero-angular momentum source (ZAMS) near a Kerr-
Newmann black hole was first studied in [27], and later
the study was generalized to the Kerr-Sen spacetime in
[28]. The PEP of a ZAMS approaching the event horizon is
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1We use the term “MOB” for the reason that the photons with
maximum net blueshift can always reach at infinity and thus are
observable in principle. But, in practice, these escaping photons
may not be observed by a distant observer since the MOB could
be negative and the PEP could also be vanishingly small.
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zero for a nonextremal Kerr black hole and tends to ∼29%
for an extremal Kerr black hole. Moreover, the PEP and
MOB of photon emissions from equatorial (stable) circular
orbiters near a Kerr black hole was studied in [29] and
[30,31] with different methods clarifying the photon
escaping condition. The PEP for a circular orbiter increases
as the orbital radius increases from the innermost stable
circular orbit (ISCO), while it decreases as the black
hole spin parameter increases at a given orbital radius.
Remarkably, the value of PEP for an emitter sitting at the
ISCO of an extremal Kerr black hole is still about 55%, and
the proper motion of the emitter blueshifts the energy of the
escaped photons. Very recently, photon emissions from the
plunging orbiters2 starting from the ISCO of a black hole
with arbitrary spin was studied in [32], and it was found
that the PEP is always more than 50% for the emitter at
approximately halfway between the ISCO and the event
horizon. Moreover, the effects of the proper motion of a
plunging emitter on the PEP and the MOB were discussed
in [32]. While these studies applied to the emitter of
arbitrary radius and the black hole of arbitrary spin, special
attentions had been paid to the near-horizon and near-
extremal cases in [30] since such cases can be dealt with
analytically. In a previous paper [33], we reinvestigated the
photon emissions from a ZAMS near a Kerr black hole by
adapting the method proposed in [30], and we explored the
observability of the very deep region in the near-horizon
throat of a high-spin black hole. To that end, we analytically
computed the PEP and the MOB of the ZAMSs both in the
near-horizon extremal Kerr (NHEK) and the near-horizon
near-extremal Kerr (near-NHEK) geometries, and found
that the PEP tends to ∼13% at the radius of the innermost
photon shell.
In this paper, we would like to study the effects of the

emitter’s proper motion on the PEP and the MOB of the
escaping photons, with the ZAMS as a “static” refer-
ence [27,33]. We will focus on the equatorial emitters that
follow timelike geodesics in the (near-)NHEK3 geometries.
We will consider not only the marginally plunging emitters
starting from the ISCO [32], but also other possible
plunging emitters. Moreover, we will consider the emitters
with other geodesic motions as well, including the anti-
plunging, the deflecting, and the bounded motions. In [32],
only the marginally plunging emitters which have the
critical angular momentum ls ¼ lISCO and critical energy
ωs ¼ ωISCO have been studied, while the black holes were
allowed to have arbitrary spin. Here, instead, we will only
focus on the high-spin black hole but consider the emitters
with more possible values of ls and ωs. Note that in the
high-spin case the energy ωs of the emitter is constrained to
be near the superradiant bound ω� ¼ ls=2M with the

corrections appearing at order OðϵqÞ [see Eqs. (2.10)
and (2.11)]. The timelike geodesics in the (near-)NHEK
regions were well classified in [34–37] based on the
conserved quantities (2.18) in the (near-)NHEK geom-
etries. As we restrict the emitters on the equatorial plane,
the Carter constant for these emitters is set to zero, Qs ¼ 0;
thus each orbit of an emitter is specifically labeled by its
(near-)NHEK energy Es, angular momentum Ls, and radial
orientation sr. We will consider the behaviors of the PEP
and the MOB of the escaping photons emitted from the
orbit labeled by ðLs; Es; srÞ and study how they are affected
when each of these parameters varies. Our main results are
summarized in Eqs. (4.18)–(4.20) and in Fig. 2. In addition,
we provide detailed illustrations and discussions for the
results in Figs. 3–6.
The remaining part of this paper is organized as follows.

In Sec. II, we briefly introduce the Kerr geometry and the
geodesics in it, as well as its near-horizon and (near-)
extremal limits. In Sec. III, we define the problem of photon
emissions from an arbitrary near-horizon equatorial emitter,
and find the equations to read the PEP and the MOB. In
Sec. IV, we perform the computations for the (near-)NHEK
emitters. In Secs. V and VI, we display our main results
with plots and discuss them in detail. In Sec. VII, we
summarize and conclude this work.

II. GEOMETRY AND GEODESICS

In this section, we review the timelike and the null
geodesics in the Kerr, NHEK, and near-NHEK geometries
[34–38]. In particular, we review the classifications of
the (near-)NHEK geodesics based on their constants of
motions. The timelike geodesics provide the orbits for the
photon emitters with various motions. For the null geo-
desics, we focus on the unstable spherical photon orbits,
which correspond to the threshold between the escaping
photons and the captured ones.

A. Kerr geometry and geodesics

The Kerr metric in the Boyer-Lindquist coordinates
ðt; r; θ;ϕÞ is given by

ds2¼−
ΣΔ
Ξ

dt2þΣ
Δ
dr2þΣdθ2þΞsin2θ

Σ

�
dϕ−

2Mar
Ξ

dt

�
2

;

ð2:1Þ

where

Δ ¼ r2 − 2Mrþ a2; Σ ¼ r2 þ a2cos2θ;

Ξ ¼ ðr2 þ a2Þ2 − a2Δsin2θ: ð2:2Þ

This metric describes a rotating black hole with a mass M
and a spin parameter a≡ J=M. The event horizons of the
black hole are located at r� ¼ M �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − a2

p
.

2The appearance of a bright hot spot falling into a nonspinning
black hole and its relation with LRs were studied in Ref. [9].

3We use “(near-)NHEK” for both NHEK and near-NHEK.
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A free particle possesses four conserved quantities
of motion: the mass μ, the energy ω, the axial angular
momentum l, and the Carter constant Q. Using the
Hamilton-Jacobi method, one can derive the four-momen-
tum pμ of this particle [38]:

pr ¼ 1

Σ
�r

ffiffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ð2:3Þ

pθ ¼ 1

Σ
�θ

ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ð2:4Þ

pϕ ¼ 1

Σ

�
a
Δ
½ωðr2 þ a2Þ − al� þ l

sin2θ
− aω

�
; ð2:5Þ

pt ¼ 1

Σ

�
r2 þ a2

Δ
½ωðr2 þ a2Þ − al� þ aðl − aωsin2θÞ

�
;

ð2:6Þ

where

RðrÞ ¼ ½ωðr2 þ a2Þ − al�2 − Δ½Qþ ðl − aωÞ2 þ μ2r2�;
ð2:7Þ

ΘðθÞ ¼ Qþ a2ðω2 − μ2Þ cos2 θ − l2 cot2 θ ð2:8Þ

are the radial and angular potentials, respectively,
and �r and �θ denote the radial and polar orientations,
respectively.
For a massive particle, we have μ > 0 and pμ ¼ μ ∂xμ

∂τ
with τ being the proper time. For a massless particle
(photon), we have μ ¼ 0 and pμ ¼ ∂xμ

∂τ with τ being an
affine parameter. For null geodesics, the energy ω may be
scaled out from the expressions of pμ under a reparamet-
rization and it is convenient to introduce a pair of impact
parameters for the null geodesics:

λ ¼ l
ω
; η ¼ Q

ω2
: ð2:9Þ

B. (Near-)NHEK geometry and geodesics

In order to study the near-horizon geometry of a (near-)
extremal Kerr black hole, it is convenient to consider the
near-extremal limit [34,39,40],

a ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðϵκÞ2

q
; 0 < ϵ ≪ 1; κ finite; ð2:10Þ

andworkwith theBardeen-Horowitz coordinates [34,39–41],

T ¼ ϵq
t

2M
; R ¼ r −M

ϵqM
; Φ ¼ ϕ −

t
2M

; 0 < q ≤ 1:

ð2:11Þ

Under the transformations (2.11), and taking the limit
ϵ → 0 for 0 < q < 1, the Kerr metric (2.1) yields the
NHEK metric [41]

ds2 ¼ 2M2Γ
�
−R2dT2 þ dR2

R2
þ dθ2 þ Λ2ðdΦþ RdTÞ2

�
;

ð2:12Þ

ΓðθÞ ¼ 1þ cos2θ
2

; ΛðθÞ ¼ 2 sin θ
1þ cos2θ

: ð2:13Þ

In the NHEK geometry, the event horizon is mapped to
R ¼ 0 and the ISCO is mapped to R ¼ 21=3. However,
since the NHEK metric is invariant under a dilation
ðR; TÞ → ðεR; T=εÞ for an arbitrary constant ε, the ISCO
can actually stay anywhere in the intrinsic NHEK geometry
and R ¼ 21=3 gets meaningful only after the NHEK region
is glued onto the asymptotic far region [35,40].
Under the transformations (2.11) and taking the limit

ϵ → 0 for q ¼ 1, we find that the Kerr metric (2.1) yields
the near-NHEK metric4 [40,42]

ds2 ¼ 2M2Γ
�
−ðR2 þ κ2ÞdT2 þ dR2

ðR2 þ κ2Þ þ dθ2

þ Λ2ðdΦþ RdTÞ2
�
: ð2:14Þ

In the near-NHEK geometry, the event horizon is mapped
to R ¼ κ and the ISCO is mapped to R ¼ ∞ [35,40].
Note that the NHEK metric (2.12) is equivalent to the

near-NHEK metric (2.14) with zero near-horizon temper-
ature, κ ¼ 0 [34,42]. Therefore, in the following we will
work with Eq. (2.14) for both the NHEK case (0 < q < 1
and κ ¼ 0) and near-NHEK case (q ¼ 1 and κ ≠ 0), for
simplicity.
The four-momentum pμ of a free particle in the (near-)

NHEK limit becomes [34,36]

pR ¼ �r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
RnðRÞ

p
2M2Γ

; ð2:15aÞ

pθ ¼ �θ

ffiffiffiffiffiffiffiffiffiffiffiffi
ΘnðθÞ

p
2M2Γ

; ð2:15bÞ

pΦ ¼ 1

2M2Γ

�
−
RðEþ LRÞ
R2 − κ2

þ L
Λ2

�
; ð2:15cÞ

4We will use the same coordinates ðT; R; θ;ΦÞ [Eq. (2.11)] to
describe the near-NHEK geometry which has already been used
for the NHEK metric (2.12). In the following, we will also use the
same notations for the conserved quantities ðE;L; C; λ; ηÞ both in
the NHEK and near-NHEK geometries. However, these should
be distinguishable from the context.
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pT ¼ 1

2M2Γ

�
Eþ LR
R2 − κ2

�
; ð2:15dÞ

where

RnðRÞ ¼ −CR2 þ 2ELRþ E2 þ ðCþ L2Þκ2; ð2:16Þ

ΘnðθÞ ¼ Cþ
�
1 −

1

Λ2

�
L2 − 2M2Γμ2 ð2:17Þ

are, respectively, the radial and angular potentials in the
NHEK region, with C, E, and L being the (near-)NHEK
conserved quantities: the Casimir, the energy, and the
angular momentum, respectively. The (near-)NHEK con-
served quantities are related to the Kerr conserved quan-
tities by [34,36]

l ¼ L; ω ¼ L
2M

�
1þ ϵq

E
L

�
; Q ¼ Cþ 3

4
L2 − μ2M2:

ð2:18Þ

For the null geodesics we have μ ¼ 0, and then we may
define a pair of shifted impact parameters,

λ0 ¼
E
L
; η0 ¼

C
L2

; ð2:19Þ

which are related to the Kerr impact parameters (2.9) by5

λ ¼ 2Mð1 − ϵqλ0Þ η ¼ M2ð3þ 4η0Þ: ð2:20Þ

It is convenient to introduce a critical angular momentum
[35,36]

L� ¼ l� ¼ 2ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2μ2 þQ

q
; ð2:21Þ

which is for the geodesic at the innermost stable spherical
orbit (ISSO). In terms of this critical angular momentum,
the Casimir C can be rewritten as

C ¼ −
3

4
½L2 − ðL�Þ2�: ð2:22Þ

We will restrict to the future-directed geodesics, which
require pT > 0 [Eq. (2.15d)], i.e.,

Eþ LR > 0: ð2:23Þ

Next, by analyzing the root structures of the radial
potential (2.16), the equatorial orbits are classified in the
phase space ðL;EÞ regarding their radial motions [34,36].

The classifications6 for the NHEK orbits and for the near-
NHEK orbits are collected in Tables I and II, respectively,
where R� and R0 are the root(s) for the corresponding
cases:

R� ¼ E
C
L� 1

jCj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL2 þ CÞðE2 þ κ2CÞ

q
;

R0 ¼ −
E2 þ κ2L2

2EL
: ð2:24Þ

The meaning of these distinct orbits are as follows [35,36].
Each ISSO orbits at a constant radius. A plunging orbit
enters the NHEK geometry from the (near-)NHEK boun-
dary and eventually crosses the horizon in finite affine time.
An antiplunging orbit emerges out of the horizon and
eventually leaves the (near-)NHEK boundary in finite
affine time. A deflecting orbit falls in from the (near-)
NHEK boundary, bounces off at the radial turning point,
and returns to the boundary in finite affine time. Marginal
(plunging/antiplunging/deflecting) orbits exist only in the
NHEK geometry and leave the NHEK geometry in infinite

TABLE II. Future-directed geodesics in near-NHEK [34,36].

Classification L E �r Range

Spherical L > L� E ¼ −κ
ffiffiffiffiffiffiffi
−C

p �1 R ¼ κLffiffiffiffiffi
−C

p

Plunging L ¼ L� E ≥ 0 −1 κ ≤ R ≤ ∞
L > L� E > −κ

ffiffiffiffiffiffiffi
−C

p
−1 κ ≤ R ≤ ∞

Antiplunging L ¼ L� E ≥ 0 þ1 κ ≤ R ≤ ∞
L > L� E > −κ

ffiffiffiffiffiffiffi
−C

p þ1 κ ≤ R ≤ ∞

Deflecting L > L� E < −κ
ffiffiffiffiffiffiffi
−C

p �1 Rþ ≤ R ≤ ∞

Bounded −L� < L < L� E > −κL �1 κ ≤ R ≤ Rþ
L ¼ L� −κL < E < 0 �1 κ ≤ R ≤ R0

L ¼ −L� E > −κL �1 κ ≤ R ≤ R0

L < −L� E > −κL �1 κ ≤ R ≤ R−

TABLE I. Future-directed geodesics in NHEK [34,36].

Classification L E �r Range

ISSO L ¼ L� E ¼ 0 �1 0 ≤ R ≤ ∞
Marginal L > L� E ¼ 0 �1 0 ≤ R ≤ ∞
Plunging L ≥ L� E > 0 −1 0 ≤ R ≤ ∞
Antiplunging L ≥ L� E > 0 þ1 0 ≤ R ≤ ∞
Deflecting L > L� E < 0 �1 Rþ ≤ R ≤ ∞

Bounded −L� < L < L� E > 0 �1 0 ≤ R ≤ Rþ
L ¼ −L� E > 0 �1 0 ≤ R ≤ R0

L < −L� E > 0 �1 0 ≤ R ≤ R−

5This means that the photon emissions are near the superradiant
bound. Similar parameters have also been introduced in [3].

6Note that there was a forgotten region for the near-NHEK
deflecting orbits in [36], which was corrected in [37]. Note also
that we use “antiplunging” for the “outward” orbits in [36].
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affine time. A bounded orbit stays in the (near-)NHEK
region between the horizon and the radial turning point.
The antiplunging and deflecting orbits can escape from
the (near-)NHEK to infinity while the plunging and the
bounded ones can not. Note that all near-NHEK spherical
orbits are unstable while all NHEK spherical orbits are
ISSO [36].

III. GENERAL SETUP

In this section, we consider the photon emissions from an
equatorial source near a Kerr black hole and discuss the
near-horizon and near-extremal limits of this problem. In
the following, we use kμ and pμ for the four-momentums of
an emitter and a photon, respectively, and we use the
notation that the quantities with a subscript “s” are for
an emitter (source) while the quantities without subscript
are for the photons. In addition, we let sr=θ ¼ �r=θ ¼ �1

denote the orientations of the emitters and let σr=θ ¼
�r=θ ¼ �1 denote the orientations of the photons.
We consider photon emissions from the equatorial

emitters that move along timelike geodesics. For such
emitters we have θs ¼ π=2, thus Qs ¼ 0 and

L�
s ¼ l�s ¼

2ffiffiffi
3

p Mμ: ð3:1Þ

The photon emissions are described by null geodesics,
which have

L� ¼ l� ¼ 2ffiffiffi
3

p ffiffiffiffi
Q

p
: ð3:2Þ

We will first introduce a pair of local emission angles of
the photons in the emitter’s local rest frame (LRF), which
are expressed in terms of the impact parameters of the
photons. Next, we consider the unstable spherical photon
orbits, which make up the photon shell and correspond to
critical emission angles on the emitter’s sky. The critical
emission angles will line up into a closed critical curve on
the emitter’s sky, which allows us to distinguish the photons
captured by the central black hole from those escaping to
asymptotic infinity [30]. We then define the PEP, whose
computation is based on integrating over the interior region
of the critical curve, and we find the expression for
the MOB.

A. Local emission angles on the emitter’s sky

We use xμ with μ ¼ 0, 1, 2, 3 to represent both the Boyer-
Lindquist coordinates ðt; r; θ;ϕÞ for the Kerr metric (2.1)
and the Bardeen-Horowitz coordinates ðT; R; θ;ΦÞ for the
NHEK (2.12) and near-NHEK (2.14) metrics.
In terms of the components of the spacetime metric gμν,

the locally nonrotating frame (LNRF) is given by [43]

eð0Þ ¼ ζð∂0 þ ς∂3Þ; eð1Þ ¼ ξ1∂1;

eð2Þ ¼ ξ2∂2; eð3Þ ¼ ξ3∂3; ð3:3Þ

where

ζ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g33
g203 − g00g33

r
; ς ¼ −

g03
g33

; ξ1 ¼
1ffiffiffiffiffiffi
g11

p ;

ξ2 ¼
1ffiffiffiffiffiffi
g22

p ; ξ3 ¼
1ffiffiffiffiffiffi
g33

p : ð3:4Þ

The LRF of an equatorial emitter can be obtained by
performing a Lorentz transformation on the LNRF, which
is given by

σ½0� ¼ γ½eð0Þ þ vð1Þeð1Þ þ vð3Þeð3Þ�jxi¼xis ; ð3:5aÞ

σ½1� ¼
1

v
½vð3Þeð1Þ − vð1Þeð3Þ�jxi¼xis ð3:5bÞ

σ½2� ¼ eð2Þjxi¼xis ; ð3:5cÞ

σ½3� ¼ γ

�
veð0Þ þ

1

v
ðvð1Þeð1Þ þ vð3Þeð3ÞÞ

�
jxi¼xis ; ð3:5dÞ

where v and vðiÞ are the 3-velocity and its components of
the emitter relative to the LNRF, and γ is the boost factor.
For an emitter at xμs with momentum kμ, these are given by

vðiÞ ¼ kμeðiÞμ
kμeð0Þμ

����
xi¼xis

; ði ¼ 1; 2; 3Þ;

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvð1ÞÞ2 þ ðvð3ÞÞ2

q
; γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2
p : ð3:6Þ

In order to study photon emissions from an equatorial
emitter, we can define a pair of local emission angles ðα; βÞ
on the emitter’s sky (see Fig. 1) [27,30],

α≡ arccos

"
p½3�
s

p½0�
s

#
∈ ½0; π�;

β≡ arcsin

2
64 p½1�

sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp½1�

s Þ2 þ ðp½2�
s Þ2

q
3
75 ∈

�
−
π

2
;
π

2

�
; ð3:7Þ

where p½a�
s ¼ pμσ½a�μ jxi¼xis are the components of the pho-

ton’s f in its LRF. Note that the setup is symmetric about
the equatorial plane and only σ2θ appears in the local
angles, therefore we may only focus on a half-sphere of
the emitter’s sky by choosing either σθ ¼ 1 or σθ ¼ −1
in p½2�

s . Then the half-sphere is uniquely parametrized
by ðα; βÞ.
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B. Photon shell and critical emission angles

The photon shell consists of unstable spherical photon
orbits in the Kerr spacetime, which satisfy

Rðr̃Þ ¼ R0ðr̃Þ ¼ 0: ð3:8Þ

By solving these equations, we can obtain the critical
photon impact parameters [38],

λ̃ðr̃Þ ¼ aþ r̃
a

�
r̃ −

2ðr̃2 − 2Mr̃þ a2Þðr̃Þ
r̃ −M

�
; ð3:9aÞ

η̃ðr̃Þ ¼ r̃3

a2

�
4Mðr̃2 − 2Mr̃þ a2Þðr̃Þ

ðr̃ −MÞ2 − r̃
�
: ð3:9bÞ

We have η̃ðr̃Þ ≥ 0 for the photons crossing the equatorial
plane, then these orbits lie in the range r̃1 ≤ r̃ ≤ r̃2, where

r̃1 ¼ 2M

�
1þ cos

�
2

3
arccos

�
−

a
M

���
; ð3:10Þ

r̃2 ¼ 2M

�
1þ cos

�
2

3
arccos

�
a
M

���
: ð3:11Þ

Hereafter, the quantities adorned with a tilde are evaluated
for the critical photon emissions.
Plugging (3.9) into (3.7) gives the critical emission

angles, which line up into a closed critical curve on an
emitter’s sky [30],

C ¼ fðα̃ðr̃Þ; β̃ðr̃ÞÞjr̃1 < r̃ < r̃2g: ð3:12Þ

This critical curve separates the emitter’s sky into two
distinct regions. To distinguish these regions, it is useful to
introduce the “direction to the black hole center” on the
emitter sky [Eq. (3.7)], which corresponds to [30]

λ ¼ η ¼ 0; σr ¼ −1: ð3:13Þ

Then we call the region containing the “direction to the
black hole center” the captured region, and call the other
complementary one the escaping region.
In the extremal limits (2.10), the intrinsic (near-)NHEK

calculations for unstable spherical photon orbits, obtained
by solving RnðR̃Þ ¼ R0

nðR̃Þ ¼ 0, are not sufficient to
resolve the whole photon shell described by (3.9). The
reason is that the whole photon shell stretches over various
near-horizon limits for a near-extremal black hole [30]. In
the extremal limit ϵ → 0, the radii of the innermost photon
shell (3.10) and the outermost photon shell (3.11) become

r̃1 ¼ M½1þ ϵR̃1 þOðϵ2Þ�; ð3:14Þ

r̃2 ¼ 4M½1þOðϵ2Þ�; ð3:15Þ

where R̃1 ¼ 2κ=
ffiffiffi
3

p
. We can see that the radius r̃1 is in the

near-NHEK p ¼ 1 region while the radius r̃2 is in the
Extreme Kerr “p ¼ 0” region [see Eq. (2.11)] [30,34].
Therefore, one must rely on the calculations in the Kerr
geometry to obtain the whole photon shell. By expanding
the critical impact parameters of the Kerr photon shell
[Eqs. (3.9)] in ϵ under the transformations [30]

a¼M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ðϵκÞ2

q
; rs ¼Mð1þ ϵqRsÞ; r̃¼Mð1þ ϵpR̃Þ;

ð3:16Þ

we can obtain the shifted critical impact parameters
ðλ̃0; η̃0Þ. For the NHEK case we choose q ¼ 2=3 and for
the near-NHEK case we have q ¼ 1. We will discuss the
expansions for the (near-)NHEK cases in Sec. IV.

C. Photon escaping probabilities and net blueshift

We assume that the emitter emits monochromatic pho-
tons isotropically in its LRF (3.5). The redshift factor g and
net blueshift z of a photon that reaches to asymptotic
infinity are defined by

g≡ ω

p½0�
s

; z≡ g − 1

g
: ð3:17Þ

Let Ae=Ac be the area of the photon escaping/captured
region in the emitter’s sky of unit radius, respectively. The
photon escaping probability is defined by [27,30]

Pe ≡Ae

4π
¼ 1 −Ac

4π
: ð3:18Þ

In order to compute the PEP, we introduce a pair of planar
polar coordinates [31],

FIG. 1. Emitter’s sky parametrized by local emission angles
α and β.
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ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð− cos αþ 1Þ

p
; φ ¼ π

2
þ β; ð3:19Þ

such that the area element dA on the ðρ;φÞ-plane is equal to
the area element on the sphere of the emitter’s sky dΩ,

dA ¼ ρdρ ∧ dφ ¼ sin αdα ∧ dβ ¼ dΩ: ð3:20Þ

Regarding the position of the direction to the black hole
center on the emitter’s sky, the area of the interior region of
the closed critical curve (3.12) may correspond to eitherAe
or Ac, which can be computed by [30]

Ain ¼
Z
in
ρ̃dρ̃dφ̃ ¼

Z
in

1

2
ρ̃2dφ̃: ð3:21Þ

IV. PHOTON EMISSIONS FROM
(NEAR-)NHEK EMITTERS

In Sec. II B, we have reviewed the (near-)NHEK
geometries and the geodesics for the massive particles
and for the photons. In this section, we compute the PEP
and the MOB for the photon emissions from the emitters at
(near-)NHEK radius Rs, whose motions are characterized
by ðLs; Es; srÞ. The relevant formulae are just defined in
Sec. III. We have q ¼ 2=3 in the Bardeen-Horowitz

coordinates [Eq. (2.11)] for the NHEK geometry, and
we have q ¼ 1 in the Bardeen-Horowitz coordinates for
the near-NHEK geometry.

A. Critical emission angles and critical curve

In the last section, we obtained the LRF [Eq. (3.5)] and
the local emission angles [Eq. (3.7)] of an equatorial emitter
at arbitrary radius around a black hole of arbitrary spin.
Now we compute the LRF and the local emission angles
for a (near-)NHEK emitter. At the emitter’s position, the
LNRF (3.3) in the (near-)NHEK geometry is given by

eðTÞ ¼
∂T − Rs∂Φ

M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s − κ2

p ; eðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s − κ2

p
M

∂R;

eðθÞ ¼
1

M
∂θ; eðΦÞ ¼

1

2
∂Φ: ð4:1Þ

The components of 3-velocity [Eq. (3.6)] of an emitter
relative to the LNRF are

vðRÞ ¼ sr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RnðRsÞ

p
Es þ LsRs

; vðΦÞ ¼ Ls

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s − κ2

p
2ðEs þ LsRsÞ

; ð4:2Þ

where Rn is defined in (2.16). Then the local emission
angles [Eq. (3.7)] of an emitter are given by

αðλ0; η0Þ ¼ arccos

"
−2v2ðλ0 þ RsÞ þ 2σr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rn0ðRsÞ

p
vðRÞ þ vðΦÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
s − κ2

p
v½2ðλ0 þ RsÞ − 2σrvðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rn0ðRsÞ

p
− vðΦÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
s − κ2

p
�

#
; ð4:3aÞ

βðλ0; η0Þ ¼ arcsin

2
64 2σrvðΦÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rn0ðRsÞ
p

− vðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s − κ2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2ðR2

s − κ2ÞΘn0ðπ2Þ þ ½vðRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s − κ2

p
− 2σrvðΦÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rn0ðRsÞ
p �2

q
3
75; ð4:3bÞ

where

Rn0ðRÞ ¼
RnðRÞ
L2

¼ −η0ðR2 − κ2Þ þ 2λ0Rþ λ20 þ κ2;

ð4:4Þ

Θn0

�
π

2

�
¼ ΘnðθÞ

L2

����
θ¼π

2

¼ η0 þ
3

4
: ð4:5Þ

As discussed in Sec. III B, the (near-)NHEK critical
parameters ðλ̃0; η̃0Þ [Eq. (2.20)] can be obtained by expand-
ing the Kerr critical impact parameters ðλ̃; η̃Þ [Eq. (3.9)]. To
be specific, let us consider the expansions (3.16) for the
emitter’s radius rs with q ¼ 2=3 or 1, and for the photon
shell radii r̃ with 0 < p ≤ 1. Then, to the leading order as
ϵ → 0, we obtain

λ̃þ0 ¼ 1

2
R̃2; η̃þ0 ¼ 0; for p ¼ pþ ¼ q

2
; ð4:6aÞ

λ̃−0 ¼ −
κ2

R̃
; η̃−0 ¼ −

κ2

R̃2
; for p ¼ p− ¼ 1; ð4:6bÞ

λ̃mþ
0 ¼∞; λ̃mþ

0 ¼0; forp¼pmþ∈
�
0;
q
2

�
; ð4:6cÞ

λ̃m−
0 ¼0; λ̃m−

0 ¼0; for p¼pm− ∈
�
q
2
;1

�
; ð4:6dÞ

where R̃ðþÞ ∈ ð0;∞Þ and R̃ð−Þ ∈ ½R̃1;∞Þ. Here, the
superscripts “�” and “m” represent the outer/inner and
middle limits of the photon shell, respectively. The critical
emission angles and the critical curve (3.12) can be
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obtained by plugging the critical impact parameters (4.6)
into the local emissions angles (4.3) with σr ¼
signðr̃ − rsÞ. Note that the limits of p ¼ p� could complete
the critical curve, while those of p ¼ pm� only contribute
the points that connect the p� curves [30,33].
Note also that, if we take the transformation R̃2 → RsR̃2

for ðα̃þ; β̃þÞ, then a NHEK critical curve is independent of
Rs once the 3-velocity components (4.2) are fixed, and so
does the PEP. This is due to the dilational symmetry of
the NHEK geometry. In contrast, a nonzero near-horizon
temperature κ in the near-NHEK geometry breaks the
dilational symmetry. Therefore, in contrast with the
NHEK case, a near-NHEK critical curve does depend on
Rs even when the 3-velocity components (4.2) are fixed,
and so does the PEP.

B. Photon escaping probability

Let us now compute the PEP (3.18) for the photon
emissions from a free (near-)NHEK emitter labeled by
ðLs; Es; srÞ [Eq. (2.18)] at radius Rs. To do so, we need to
compute the area inside the critical curve (3.12) in the
ðρ;φÞ-plane (3.19). From (2.20) and (3.13), the “direction
to the black hole center” is expressed in terms of the shifted
critical impact parameters as

λ0 ¼ ∞; η0 ¼ −
3

4
: ð4:7Þ

These parameters correspond to a point in the plane
which is contained in the photon captured region. Then
the interior area Ain [Eq. (3.21)] can be computed numeri-
cally as

Ain ¼
Z
in

1

2
ρ̃2dφ̃

¼
����
Z

∞

R̃1

ρ̃2ðα̃−Þ dφ̃ðβ̃
−Þ

dR̃
dR̃þ

Z
∞

0

ρ̃2ðα̃þÞ dφ̃ðβ̃
þÞ

dR̃
dR̃

����:
ð4:8Þ

Note that we need to integrate over both of the half-spheres
with σθ ¼ �1 on the emitter’s sky, thus the factor 1=2 in
front of ρ̃2 has been canceled out. We will present the
results in Secs. V and VI, and discuss them in detail there.

C. Maximum observable blueshift

As ϵ → 0, the redshift factor (3.17) for the photon
emissions from a (near-)NHEK emitter becomes

gðλ0; η0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s − κ2

p
γ½2ðRs þ λ0Þ − vðΦÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
s − κ2

p
− 2σrvðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rκ0ðRsÞ

p �
:

ð4:9Þ

The MOB zmob is obtained when the redshift factor
reaching its maximum value gmax. In order to find the
maximum value for the redshift, we analyze the ranges
of the impact parameters ðλ0; η0Þ for the photons that
can reach to infinity.7 We have reviewed the null
geodesics in the (near-)NHEK region in Sec. II B,
and summarized the classifications in Tables I and II
for the NHEK and near-NHEK cases, respectively. For
the future-directed photon emissions we have L� ¼
2ffiffi
3

p
ffiffiffiffi
Q

p
≥ 0 and λ0 > −R, and for the photons arrived

at infinity we have8 σr ¼ 1.
In the NHEK region we always have rs > r̃1. In the

near-NHEK region we may either have rs > r̃1 or
have rs ≤ r̃1. For rs > r̃1, both the reflecting and the
antiplunging photon trajectories can reach to infinity,
while for rs ≤ r̃1, only the antiplunging photon
trajectories can reach to infinity. Then from Tables I
and II we have −1 ≤ η0 ≤ 0 and λ0 > λ0−ðη0Þ for the
antiplunging orbits, and λ0 < λ0−ðη0Þ for the deflecting
orbits, where

λ0−ðη0Þ ¼ −κ
ffiffiffiffiffiffiffiffi
−η0

p
: ð4:10Þ

Moreover, the positivity of the potentials (4.4) and (4.5)
requires

λ0 ≥ λ0tðη0Þ ¼ −Rs þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ η0ÞðR2

s − κ2Þ
q

; η0 ≥ −
3

4
:

ð4:11Þ

For the photon emissions from the infalling emitters with
sr ¼ −1 in Eq. (4.2), we have ∂η0g > 0 and ∂λ0g < 0. Note
also that we have λ0 > λ0t for rs > r̃1 and λ0 > λ0− for
rs ≤ r̃1. Then we obtain

gmax;i ¼
�
gi½λ0tð−3=4Þ;−3=4�; if rs > r̃1;

gi½λ0−ð−3=4Þ;−3=4�; if rs ≤ r̃1;
ð4:12Þ

where

gi½λ0tð−3=4Þ;−3=4�

¼ 1

γ½1 − vðΦÞ� ¼
ffiffiffi
3

p
L�
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s − κ2

p
ð2Rs −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s − κ2

p
ÞLs þ 2Es

; ð4:13Þ

7The MOB of the marginally plunging emitters from the ISCO
was discussed in [32] by analyzing the corresponding parameters
of the photon emissions.

8Note that σr will flip from −1 to þ1 at the turning point.

YAN, HU, GUO, and CHEN PHYS. REV. D 104, 124005 (2021)

124005-8



gi½λ0−ð−3=4Þ;−3=4� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s − κ2

p
γ

�
2Rs −

ffiffiffi
3

p
κ − vðΦÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
s − κ2

p
− vðRÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3R2

s − 4
ffiffiffi
3

p
Rsκ þ 4κ2

q � : ð4:14Þ

Hereafter, we use subscript “i=o” to represent sr ¼ ∓1 in
Eq. (4.2), respectively.
For the outgoing emitter with sr ¼ −1 in Eq. (4.2), we

also have ∂η0g < 0, and we have ∂λ0g≷ 0 for λ0 ≶ λ0c,
where

λ0cðη0Þ ¼ −Rs þ γR
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ η0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2
s − κ2

q
ð4:15Þ

with γR ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðvðRÞÞ2

q
. Then we obtain

gmax;o¼
�
go½λ0cð−3=4Þ;−3=4�; if λ0−< λ0c;

go½λ0−ð−3=4Þ;−3=4�; if λ0−> λ0c;ðrs≤ r̃1onlyÞ;
ð4:16Þ

where go½λ0−ð−3=4Þ;−3=4� has the same form as
gi½λ0−ð−3=4Þ;−3=4� [Eq. (4.14)] but with sr ¼ 1 in vðRÞ,
and

go½λ0cð−3=4Þ;−3=4� ¼
1

γ½1=γR − vðΦÞ�

¼
ffiffiffi
3

p
L�
s

−Ls þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðL�

sÞ2 þ L2
s

p : ð4:17Þ

From (4.13) we can see that, for an infalling emitter, an
inward radial motion and a retrograde angular motion will
redshift the energy of an escaping photon while a
prograde angular motion will blueshift the energy of
an escaping photon. From (4.17) we can see that, for an
outgoing emitter, the energy of an escaping photon is
affected by its velocity in a complex way but is deter-
mined only by its angular momentum with a simple
relation. We also find that gmax;o is always greater than
gmax;i with the same parameters ðLs; EsÞ, which means
that an outward radial motion will enhance the energy of
escaping photons.
In terms of zmob, the MOB for a (near-)NHEK emitter

with rs > r̃1 can be summarized as

zmob;o ¼ 1 −
1ffiffiffi
3

p
L�
s

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
s þ 3ðL�

sÞ2
q

− Ls



; ð4:18Þ

zmob;i ¼ 1 −
1ffiffiffi
3

p
L�
s

�
2ðLsRs þ EsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
s − κ2

p − Ls

�
; ð4:19Þ

while the MOB for a (near-)NHEK emitter with rs ≤ r̃1 can
be summarized as

zmob¼
8<
:
1− 1

g½λ0−ð−3=4Þ;−3=4�; if sr¼−1; or sr¼1&λ0−>λ0c;

1− 1
g½λ0cð−3=4Þ;−3=4�; if sr¼1&λ0−<λ0c:

ð4:20Þ

This is one of our main results and we will analyze the
expressions of the MOB for specific emitters in Sec. V and
plot them in Figs. 2 and 4–6.

V. MOB AND PEP FOR DIFFERENT EMITTERS

In Fig. 2, we display the results of zmobðRsÞ and PeðRsÞ
of the escaping photons emitted from different orbits
labeled by ðLs; Es; srÞ. We can see that the behaviors of
the PEP are closely related to that of the MOB. In addition,
we also present more examples of the PEPs in Fig. 3
for the emitters along the plunging, the antiplunging, the
bounded, and the deflecting orbits, respectively. We take a
ZAMS as the reference emitter which has vðRÞ ¼ 0 and
vðΦÞ ¼ 0. Note that the ZAMS does not follow a geodesic
and that we will use the term “orbits” only for the
geodesics. We take the emitters moving on circular orbits
as the references, as well. We use red and blue dotted curves
to show the results for ZAMSs and circular orbits,
respectively. The dotted curves with other colors are used
as additional reference emitters whose motions are
described in the plots. The dashed and solid curves
are, respectively, for the infalling (sr ¼ −1) and the out-
going (sr ¼ 1) emitters along several orbits labeled by
ðLs; EsÞ. We show these curves with the rescaled radial
coordinates

sNK ¼ logðRþ 1Þ; snNK ¼ log
h
Rþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 − κ2

p i
; ð5:1Þ

in terms of which, the proper radial distances in the NHEK
and near-NHEK regions are [34]

dsNKðR̄1; R̄2Þ ¼ sNK2 − sNK1;

dsnNKðR1; R2Þ ¼ snNK2 − snNK1; R̄ ¼ Rþ 1; ð5:2Þ

while the proper radial distance between the NHEK and
near-NHEK regions scales as log jϵj [34,43]. Note that from
the perspective of near-NHEK geometry, the RnNK → ∞
limit glues onto the NHEK region. Here the subscripts
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“NK” and “nNK” represent the quantities in the NHEK
and near-NHEK geometries, respectively. In practice, we
choose M ¼ 1, μ ¼ 1 for the emitter’s mass, and κ ¼ 1 for
the near-NHEK case.

Before describing the main results of this paper, we recall
the relevant results for photon emissions from a ZAMS
and from the emitters on circular geodesics. For photon
emissions from a ZAMS, we have

zmobðRsÞjZAMS ¼
(
0; if rs > r̃1;

1 − 2Rs−
ffiffi
3

p
κffiffiffiffiffiffiffiffiffi

R2
s−κ2

p ; if rs ≤ r̃1:
ð5:3Þ

It was found in [27,33] that the PEP for a NHEK ZAMS is about 29% and the PEP for a near-NHEK ZAMS decreases as the
source radius decreases from near-NHEK infinity towards horizon radius and reaches approximately 13% at r̃1. For photon
emissions from the emitters on circular orbits in the range rs > r̃1 (r̃1 is also the last allowed radius for a circular orbit [43],
at which Ls → ∞), we have

zmobðRsÞjcir ¼
8<
:

1 − 1ffiffi
3

p ; if rs ¼ Mð1þ ϵ
2
3RsÞ; ðISCOÞ;

1 − 1ffiffi
3

p
L�
s

	
2ðLsRs−κ

ffiffiffiffiffiffi
−Cs

p Þffiffiffiffiffiffiffiffiffi
R2
s−κ2

p − Ls



; if rs ¼ Mð1þ ϵRsÞ; Rs > R̃1:

ð5:4Þ

FIG. 2. The MOB zmobðRsÞ and the PEP PeðRsÞ for photon emissions from several representative emitters moving along (near-)
NHEK equatorial geodesics. The conserved quantities ðLs; EsÞ label the emitters. We show these with the rescaled radial coordinates,
representing the proper radial distance [34]. The dotted curves are used as the reference emitters: the red and blue dotted curves are for
ZAMS (which does not follow a geodesic) and the emitters at circular geodesics, respectively, the black and gray dotted curves are for
the emitters on the marginal (plunging/antiplunging/deflecting) orbits with sr ¼ �1. The dashed and solid curves are for the emitters on
the outgoing (sr ¼ þ1) and ingoing (sr ¼ −1) orbits, respectively. We have set M ¼ 1, μ ¼ 1, and κ ¼ 1 (for the near-NHEK case).

YAN, HU, GUO, and CHEN PHYS. REV. D 104, 124005 (2021)

124005-10



All circular orbits in the NHEK region are the ISCO while
the ones in the near-NHEK region are unstable. For a
given unstable circular orbit in the near-NHEK region, the
orbital radius is uniquely determined by Rc ¼ κLs=

ffiffiffiffiffiffiffiffiffi
−Cs

p
,

and then we obtain zcir;u ¼ zmobðRcÞjcir ¼ zmob;o. Here, the
subscript “u” represents “unstable.” For photon emissions
from the ISCO,9 the PEP is about 55% [29,30]. We
find that, for photon emission from unstable circular orbits,

the PEP decreases from ∼55% to ∼50% as the orbital
radius decreases from the one of the ISCO towards r̃1.
Let us first look at the MOB (see Fig. 2) for a (near-)

NHEK emitter labeled by ðLs; Es; srÞ. For photon emis-
sions from an outgoing emitter ðLs; Es;þ1Þ, the MOB is a
constant along a given orbit, i.e., the MOB does not depend
on Rs. For photon emissions from a marginal infalling
emitter which exists only in the NHEK region, the MOB
does not depend on Rs as well, and we have

zmar;i ¼ zmob;ijmarginal ¼ 1 −
Lsffiffiffi
3

p
L�
s

: ð5:5Þ

FIG. 3. Top to bottom: examples for the PEPs for the emitters along the plunging, the antiplunging, the bounded, and the deflecting
orbits, respectively. The conserved quantities ðLs; EsÞ [Eq. (2.18)] label the emitters. The dashed and solid curves are for the sources on
the outgoing (sr ¼ þ1) and infalling (sr ¼ −1) orbits, respectively. The dotted curves are displayed as the references.

9For photon emissions from stable circular orbits outside the
ISCO of an extremal Kerr black hole, the PEP decreases
monotonously as the orbital radius decreases and reaches
approximately 55% at the ISCO [29,30].
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For photon emissions from a bound/deflecting emitter
along the infalling part of its orbit, zmob;iðRsÞ decreases/
increases monotonously as the emitter moves from (near-)
NHEK infinity towards horizon. For photon emissions
from the plunging emitters, the behavior of zmob;iðRsÞ
between the NHEK and near-NHEK cases are different:
for photon emissions from a NHEK plunging emitter or
from a near-NHEK plunging emitter with Es ≥ 0,
zmob;iðRsÞ decreases monotonously as the emitter moves
from (near-)NHEK infinity towards horizon, while for
photon emissions from a near-NHEK plunging emitter
with −κ

ffiffiffiffiffiffiffiffiffi
−Cs

p
< Es < 0, zmob;iðRsÞ increases at the begin-

ning as the emitter leaves from the near-NHEK infinity
until reaching an extreme value at

Re ¼ −
κ2Ls

Es
: ð5:6Þ

Then zmob;iðRsÞ begins to decrease as the emitter falls
towards the horizon, and at Re we find zmob;i ¼ zmob;o ¼
zcir;u as Es → −κ

ffiffiffiffiffiffiffiffiffi
−Cs

p
. Moreover, at the (near-)NHEK

infinity, we have zmob;iðR∞Þ ¼ zmar;i for a plunging or a
deflecting emitter, and at the turning point of a bounded or a
deflecting orbit, we have zmob;i ¼ zmob;o. These are sum-
marized in Tables IV and VI.
Next, we turn to the PEP (see Figs. 2 and 3) for a (near-)

NHEK emitter labeled by ðLs; Es; srÞ. For photon emis-
sions from a plunging emitter, PeðRsÞ decreases monoto-
nously along its orbit as the emitter moves from (near-)
NHEK infinity towards the horizon. For photon emissions
from a bounded emitter, PeðRsÞ decreases monotonously
along its orbit as the emitter moves outward from the
horizon towards the turning point and then bounces off
back to the horizon. For photon emissions from a deflecting
emitter, PeðRsÞ increases monotonously along its orbit
as the emitter moves inward from (near-)NHEK infinity
towards the turning point and then bounces off back
towards (near-)NHEK infinity. For photon emissions from
the antiplunging emitters, there are differences between the
NHEK and near-NHEK cases: for a NHEK antiplunging
emitter and for a near-NHEK antiplunging emitter with
Es > κ

ffiffiffiffiffiffiffiffiffi
−Cs

p
, PeðRsÞ decreases monotonously along its

orbit from the horizon towards infinity; while for a near-
NHEK antiplunging emitter with Es < jκ ffiffiffiffiffiffiffiffiffi

−Cs
p j, PeðRsÞ

increases monotonously along its orbit from the horizon
towards infinity. Furthermore, we find that for all (anti-
plunging and deflecting) emitters that can eventually leave
from the NHEK infinity we always have Pe > 50%, while
for all plunging emitters that fall into the black hole we
always have Pe < 55%. In addition, for the bounded
emitters in the (near-)NHEK region, we always have
Pe < 59%. These are also summarized in Tables IVand VI.

VI. INFLUENCE OF THE EMITTER’S
PROPER MOTION

From Fig. 2, we can also see that the PEP and MOB are
clearly affected by the proper motion of an emitter. For an
emitter with proper motion labeled by ðLs; Es; srÞ, the
behaviors of the PEP and MOB along its orbit are clarified
in the previous section. Next, we consider the behaviors of
the PEP and MOB as the orbital constants ðLs; Es; srÞ vary.
To do so, we study the functions zmobðLs; Es; srÞ and
PeðLs; Es; srÞ at several representative points along each
emitter’s orbit.
In Sec. V, we have found that zmob;o [Eq. (4.18)] depends

only on Ls and tends to 1 (infinite blueshift) as Ls → ∞
while tends to −∞ (infinite redshift) as Ls → −∞.
Moreover, zmob;i [Eq. (4.19)] of an infalling emitter is
always less than that of an outgoing one with the same
parameters ðLs; EsÞ, and zmob;i depends on both Ls and Es.
We now consider only photon emissions with zmob ≥ 0 and
make a cutoff along a given orbit (if relevant) at Rz where
zmobðRzÞ ¼ 0. In other words, we focus on the prograde
orbits (Ls > 0) for the emitters, since no photon emissions
from the retrograde emitters (Ls < 0) are blueshifted.

A. NHEK emitters

Table III shows the components of the 3-velocities of the
NHEK emitters relative to the ZAMS at the endpoints of
these emitters’ orbits or at the cutoff point

Rz ¼
2Esffiffiffi

3
p

L�
s − Ls

: ð6:1Þ

We find that the velocities are independent of Es at these
points, and a change of Es will only extend or shrink the
range with zmob ≥ 0 by shifting the points Rz or Rþ. As jEsj
increases, Rþ and Rz increase as well. For a bounded orbit,
the radial range R ∈ ð0; RþÞ is extended while the entire
region R ∈ ðRz; RþÞ appears farther away from the hori-
zon. For a deflecting orbit, the radial range R ∈ ðRþ;∞Þ is
shrunk while the entire region R ∈ ðRþ; RzÞ appears closer
to the horizon. For a plunging emitter, the radial range
R ∈ ðRz;∞Þ is shrunk. We find that the PEP and MOB
are also independent of Es at the endpoints or at the
cutoff point.
In Table IV, we display distinct behaviors of

zmobðLs; Es; srÞ and PeðLs; Es; srÞ between the endpoints
of the part of an emitter’s orbit with zmob ≥ 0. Meanwhile,
we display in Fig. 4 the corresponding values of zmob and
Pe. From Fig. 4, we can see that the maximum PEP is
increased monotonously as Ls is increased from 0. For
Ls ¼ 0, the maximum PEP is about 33% and the PEP at Rz
is about 29%. For Ls ¼ L�

s, the maximum PEP for the
antiplunging emitters is about 59%, the minimum/maxi-
mum PEP for the antiplunging/plunging emitters is about
55%, and the PEP for the plunging emitters at Rz is about
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39%. For Ls ¼
ffiffiffi
3

p
L�
s, the PEP for the antiplunging

emitters is in a narrow range around 73% and the PEP
for the plunging emitters in ðRz; R∞Þ is about 50%.
However, as Ls →

ffiffiffi
3

p
L�
s , the cutoff point Rz tends to

infinity and thus the radial region with zmob ≥ 0 is actually
shrunk to zero. For Ls >

ffiffiffi
3

p
L�
s, photon emissions from the

antiplunging and deflecting orbits always have a PEP
greater than 50% while photon emissions from the plung-
ing orbits never have a PEP greater than 50%.
As expected, an antiplunging or deflecting emitter can

be observed (i.e., with considerable PEP and by carrying
enough energy at infinity) by a distant observer, since the
emitter itself can also reach to an asymptotic far region.

However, for a plunging emitter that eventually drops into
the central black hole, it is interesting to ask to what depth
in the near-horizon throat can the emitter still be observed.
We find that, among all plunging emitters, the one with
critical parameters ðL�

s ; 0Þ has a maximum PEP and the
range of ðRz; R∞Þ extends to the entire NHEK region.

B. Near-NHEK emitters

Unlike those for the NHEK emitters, the 3-velocity
components relative to the ZAMS for an near-NHEK
plunging emitter with −κ

ffiffiffiffiffiffiffiffiffi
−Cs

p
< Es < 0 are no longer

monotonous along its orbits, and neither does the MOB of
such an emitter. Instead, there is an extreme velocity along

TABLE III. The 3-velocity components at the endpoints (0, Rþ, or R∞) or the cutoff point (Rz) of a NHEK
equatorial orbit.

Rs 0 Rz Rþ R∞

vðRÞ �1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

p
L�
sLs

q
=ð ffiffiffi

3
p

L�
s þ LsÞ 0 � ffiffiffiffiffiffiffiffiffi

−Cs
p

=Ls

vðΦÞ 0 Ls=ð
ffiffiffi
3

p
L�
s þ LsÞ Ls=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðL�

sÞ2 þ L2
s

p
1=2

TABLE IV. Behaviors of zmobðLs; Es; srÞ and PeðLs; Es; srÞ between the endpoints of the part of each NHEK
equatorial orbit with zmob ≥ 0, where zmar;i and zmob;o are given in Eqs. (5.5) and (4.18), respectively.

Ls Es sr zmob Pe Motion

0 < Ls < L�
s Es > 0 þ zmob;o PeðRþÞ < Pe < Peð0Þ Bounded

0 < Ls < L�
s Es > 0 − ð0; zmob;oÞ PeðRzÞ < Pe < PeðRþÞ Bounded

Ls ¼ L�
s Es ¼ 0 j 1 − 1=

ffiffiffi
3

p
∼55% ISCO

Ls ≥ L�
s Es > 0 þ zmob;o PeðR∞Þ < Pe < Peð0Þ Antiplunging

Ls ≥ L�
s Es > 0 − ð0; zmar;iÞ PeðRzÞ < Pe < PeðR∞Þ Plunging

Ls > L�
s Es ¼ 0 � zmob;o=zmar;i Pmar;o=Pmar;i Marginal

Ls > L�
s Es < 0 þ zmob;o PeðRþÞ < Pe < PeðR∞Þ Deflecting

L�
s < Ls < 2 Es < 0 − ð0; zmob;oÞ PeðRzÞ < Pe < PeðRþÞ Deflecting

Ls > 2 Es < 0 − ðzmar;i; zmob;oÞ PeðR∞Þ < Pe < PeðRþÞ Deflecting

FIG. 4. Values of zmobðLsÞ and PeðLsÞ between the endpoints of the part of each NHEK equatorial orbit with zmob ≥ 0. The radial
ranges are illustrated explicitly in Table IV. The blue solid line on the left is for zmob;o and the red solid line has zmob ¼ 0. The light-
purple, light-green, and light-orange ranges are for photon emissions from the infalling (sr ¼ −1) bounded, plunging, and deflecting
emitters, respectively, while the purple, green, and orange ranges are for photon emissions from the outgoing (sr ¼ þ1) bounded,
antiplunging, and deflecting emitters, respectively.
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each of these orbits at the critical point Re [Eq. (5.6)].
Table V shows the components of an emitter’s 3-velocity at
the endpoints and the critical point of the emitter’s orbit, or
the cutoff point

Rz ¼
2EsLs � ð ffiffiffi

3
p

L�
s þ LsÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
s þ κ2ðCs þ

ffiffi
3

p
2
L�
sLsÞ

q
2Cs þ

ffiffiffi
3

p
L�
sLs

;

ð6:2Þ

where the plus/minus sign is taken as Ls ≶
ffiffiffi
3

p
L�
s , respec-

tively. In the table, the 3-velocity components at the critical
points are

vðRÞðReÞ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2

s þ κ2CsÞ=ðE2
s − κ2L2

sÞ
q

;

vðΦÞðReÞ ¼ κLs=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðE2

s − κ2L2
sÞ

q
: ð6:3Þ

Note that, as Es → −κ
ffiffiffiffiffiffiffiffiffi
−Cs

p
, the 3-velocity components

obtained at Re have the same forms as those obtained at the
turning point Rþ of a bounded or deflecting orbit. We find
that the velocities do not depend on Es at the endpoints
(κ, Rþ, or R∞) and at the cutoff point Rz, but do depend on
Es at the critical point Re. As in the NHEK cases, a change
of Es will extend or shrink the range with zmob ≥ 0 in a
similar way. However, for the near-NHEK case, the PEP
and MOB depend on Es at the endpoints, the cutoff point,
and the critical point. And in the limit jEsj → ∞, the PEP

and MOB tend to the values of the corresponding
NHEK cases.
Table VI displays distinct behaviors of zmob and Pe

between the endpoints of the part of an emitter’s orbit
with zmob ≥ 0. zmob;o is given in Eq. (4.18) if rs ≥ r̃1, or
in Eq. (4.20) if rs < r̃1. zmar;i is given in Eq. (5.5) and

zmob;iðReÞ ¼ 1þ Lsffiffi
3

p
L�
s
− 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
κ2L2

s−E2
s

p ffiffi
3

p
κL�

s
. The value of L0 is

obtained for zmob;o ¼ 0. Meanwhile, we display in Fig. 5
the corresponding values of zmob and Pe, in which Es is
chosen to be 0 for the bounded, the plunging, and the
antiplunging emitters, and Es is chosen to be −κLs for
the deflecting emitters. In order to see the effects of Es,
we display zmobðRsÞ and PeðRsÞ for the emitters with
Ls ¼

ffiffiffi
3

p
L�
s and

4
5
L�
s , and each with several values of Es in

Fig. 6. The effects of Es can also be seen from Fig. 3.
Figure 5 shows that, if Es is fixed, zmobðLsÞ and PeðLsÞ for
the near-NHEK emitters have similar behaviors as those
for the NHEK emitters. However, the values of PEP and
MOB do depend on Es and tend to the NHEK values as
jEsj → ∞. For Ls → L0 ¼ L�

sffiffi
5

p and Es ¼ 0, the turning point

Rþ approaches r̃1 and the maximum PEP is about 31%. For
Ls ≥ L�

s and Es → Ec ¼ −κ
ffiffiffiffiffiffiffiffiffi
−Cs

p
, the PEP for photon

emissions from unstable circular orbits at Rc ¼ κLs=
ffiffiffiffiffiffiffiffiffi
−Cs

p
can be formally written as Pcir;u ¼ PeðLsÞ. We find that
Pcir;u is the same as the PEP of the marginal infalling
emitters in the NHEK region, Pmar;i, that is Pcir;u ¼ Pmar;i

(see the dotted blue curve on the right in Fig. 5 and the
light-blue curve above the light-green region on the right in

TABLE V. The 3-velocity components at the endpoints (κ, Rþ, or R∞), the cutoff point (Rz), or the critical
point (Re) of a near-NHEK equatorial orbit.

Rs κ Rz Re Rþ R∞

vðRÞ �1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffi
3

p
L�
sLs

q
=ð ffiffiffi

3
p

L�
s þ LsÞ vðRÞðReÞ 0 � ffiffiffiffiffiffiffiffiffi

−Cs
p

=Ls

vðΦÞ 0 Ls=ð
ffiffiffi
3

p
L�
s þ LsÞ vðΦÞðReÞ Ls=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðL�

sÞ2 þ L2
s

p
1=2

TABLE VI. Behaviors of zmobðLs; Es; srÞ and PeðLs; Es; srÞ between the endpoints of the part of each near-
NHEK equatorial orbit with zmob ≥ 0.

Ls Es sr zmob Pe Motion

L0 < Ls < L�
s Es > −κLs þ zmob;o PeðRþÞ < Pe < PeðκÞ Bounded

L0 < Ls < L�
s Es > −κLs − ð0; zmob;oÞ PeðRzÞ < Pe < PeðRþÞ Bounded

Ls ¼ L�
s Es ≥ 0 þ zmob;o PeðR∞Þ < Pe < PeðκÞ Antiplunging

Ls > L�
s Es > κ

ffiffiffiffiffiffiffiffiffi
−Cs

p
Ls > L�

s Es < jκ ffiffiffiffiffiffiffiffiffi
−Cs

p j þ zmob;o PeðκÞ < Pe < PeðR∞Þ Antiplunging
Ls > L�

s −κ
ffiffiffiffiffiffiffiffiffi
−Cs

p
< Es < 0 − ð0; zmob;iðReÞÞ PeðRzÞ < Pe < PeðR∞Þ Plunging

Ls ≥ L�
s Es ≥ 0 − ð0; zmar;iÞ PeðRzÞ < Pe < PeðR∞Þ Plunging

Ls > L�
s Es ¼ −κ

ffiffiffiffiffiffiffiffiffi
−Cs

p j zmob;o Pcir;u Circular
Ls > L�

s Es < −κ
ffiffiffiffiffiffiffiffiffi
−Cs

p þ zmob;o PeðRþÞ < Pe < PeðR∞Þ Deflecting
L�
s < Ls < 2 Es < −κ

ffiffiffiffiffiffiffiffiffi
−Cs

p
− ð0; zmob;oÞ PeðRzÞ < Pe < PeðRþÞ Deflecting

Ls > 2 Es < −κ
ffiffiffiffiffiffiffiffiffi
−Cs

p
− ðzmar;i; zmob;oÞ PeðR∞Þ < Pe < PeðRþÞ Deflecting
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Fig. 4). As Es is perturbed from Ec for Ls ∈ ½L�
s ;

ffiffiffi
3

p
L�
sÞ, an

unstable circular orbit would become a deflecting/anti-
plunging/plunging orbit and PeðLsÞ would start to depart
from Pcir;u. Among all the plunging emitters with a given
Ls ∈ ½L�

s ;
ffiffiffi
3

p
L�
sÞ, the PEP takes a maximum value for

Es → Eþ
c , which corresponds to the marginal plunging

emitter starting from Rc. For the marginal plunging emitter
with Ls ¼ L�

s , the orbital radius Rc tends to the radius of the
ISCO, and we have Ec ¼ 0 and

PeðRISCOÞjðL�
s ;0;−1Þ ≈ 55%; PeðRzÞjðL�

s ;0;−1Þ ≈ 12%;

ð6:4Þ

where

Rz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ffiffiffi

3
p

s
κ: ð6:5Þ

Here we only give a few selected illustrations for several
representative features for photon emissions from the near-
horizon emitters, and a complete picture can be built up
from the figures in this paper.

VII. SUMMARY AND CONCLUSION

In this paper, we studied isotropic and monochromatic
photon emissions from equatorial emitters moving on
timelike geodesics in the (near-)NHEK regions [see
Eqs. (2.12) and (2.14)]. The orbits for these geodesics
were classified in Tables I and II, whose orbital radii were

FIG. 5. Values of zmobðLsÞ and PeðLsÞ between the endpoints of the part of each near-NHEK equatorial orbit with zmob ≥ 0. The
ranges are illustrated explicitly in Table VI. For the emitters with L0 < Ls <

L�
sffiffi
5

p and Es ¼ 0, the MOB zmob is obtained for photon

emissions from r̃ < r̃1; otherwise, it is given in Eqs. (4.18) and (4.19). We have chosen Es ¼ 0 for the bounded, the plunging and the
antiplunging emitters, and have chosen Es ¼ −κLs for the deflecting emitters. The solid blue line in the left is for zmob;o and the solid red
line has zmob ¼ 0, while the dotted red line in the right has zmob → −∞. The light-pink, light-blue, and light-magenta ranges are for
photon emissions from the infalling (sr ¼ −1) bounded, plunging, and deflecting emitters, respectively, while the pink and magenta
ranges are for photon emissions from the outgoing (sr ¼ þ1) bounded and deflecting emitters, respectively, and the blue range is the
overlap range for photon emissions from the antiplunging and outgoing deflecting emitters.

FIG. 6. zmobðRsÞ and PeðRsÞ for photon emissions from several near-NHEK emitters. The red dotted curve is for the ZMAS, and the
blue dotted curve is for the emitters on circular geodesic orbits. The dashed curves are for sr ¼ þ1 and the solid curves are for sr ¼ −1.
The dark-cyan, cyan, and light-cyan have Ls ¼

ffiffiffi
3

p
L�
s and Es ¼ −κ

ffiffiffiffiffiffiffiffiffi
−Cs

p
, 0, and 2

ffiffiffi
3

p
L�
s , respectively. The magenta curve has

Ls ¼
ffiffiffi
3

p
L�
s and Es ¼ −κLs. The dark-pink, pink, and light-pink curves have Ls ¼ 4

5
L�
s and Es ¼ − ð8− ffiffi

3
p Þ
10

L�
s , 0, and

ffiffi
3

p
2
L�
s , respectively.
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written as rs ¼ Mð1þ ϵqRsÞ. Along each emitter’s orbit,
we had the conserved quantities for the emitter: the angular
momentum ls and the energy ωs. For a (near-)NHEK
emitter, we introduced ls ¼ Ls and ωs ¼ ls

2M þ Es
2M ϵq. We

had q ¼ 2
3
for the NHEK case in the ISCO scale and q ¼ 1

for the near-NHEK case. In Sec. IV we computed the PEP
and MOB for photon emissions from these emitters. In
general, the results depend on the emitter radius Rs and
the constants of the emitter’s motion: Ls, Es, and sr, with
sr being the radial orientation. Then, in Sec. V we
analyzed the behaviors of the PEP and MOB along each
given orbit to see their dependence on Rs, and we
summarized the results in Tables IV and VI. After that,
we analyzed the effects of an emitter’s proper motion on
the MOB and PEP in Sec. VI. The main analytical result
for MOB was summarized in Eqs. (4.18)–(4.20).
Moreover, the numerical results for the MOB and PEP
were displayed in Figs. 2–6, from which we found that
the MOB and PEP had similar behaviors as the param-
eters of the emitters vary.
In Fig. 2, we showed that the PEP and MOB for the

emitters belonging to distinct classes of motions were
different. In addition, in Fig. 3 we displayed more examples
on the PEP for the emitters belonging to each class of
motion. Furthermore, from Figs. 4–6 we could see that the
overall observability of an emitter, which said the magni-
tudes of the PEP andMOB, were determined by the angular
momentum ls of the emitter. This is reasonable since the
energy ωs of a (near-)NHEK emitter is constrained to be
near the superradiant bound ω� ¼ ls

2M. And, as expected, the
photons from the outgoing emitters are brighter than those
from the infalling ones that have the same parameters
ðls;ωsÞ. As the angular momentum ls of an emitter
increases, the MOB and the maximum of the PEP for
the emitters with all allowed motions increase accordingly.
On the other hand, for the emitters with the same angular
momentum ls, the corrections of their energies to the
critical energy,10 Δω ¼ ωs − ω� ¼ Es

2M ϵq, distinguish their
motions and affect the MOB and PEP for these emitters as
well. Simply speaking, while ls plays a dominant role on
the overall feature of MOB and PEP,Δω starts to play a role
after ls being fixed.
We picked out several characteristic values of ls to

illustrate our results. If ls ¼ 0, then zmob;o ¼ 0 [see
Eqs. (4.18) and (4.20)] which means that no photon
emissions from retrograde emitters (ls < 0) were blue-
shifted. We focused on the case ls > 0, which has blue-
shifted photon emissions. Around ls ¼ l�s [see Eq. (3.1)],
the emitters start to appear with distinct motions and

different observational features. For 0 < ls < l�s, the emit-
ters are bounded and require Δω < −ϵqκω�, and the PEPs
for them are always less than 59%. In this case, the
maximum value is reached as ls → l�s and the emitter
is bounced outward at the inner boundary of its orbit.
For ls ¼ l�s and Δω ¼ 0, the emitters are on the ISCO in
the NHEK region and have the marginal (anti)plunging
motion in the near-NHEK region, while for ls ¼ l�s
and Δω≷ 0, the emitters have the (anti)plunging/
deflecting motions, respectively. And, for the emitter
at the ISCO, the PEP is about 55% and the MOB is
1 − 1=

ffiffiffi
3

p
≈ 0.42. Similarly, for ls > l�s, the emitters with

Δω ¼ −ϵκω�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Cs=l2s

p
are on unstable circular orbits

while the emitters with Δω≷ −ϵqκω�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Cs=l2s

p
take the

(anti)plunging/deflecting motions, respectively. The PEP
for the emitter on unstable circular orbits, Pcir;u,
decreases from 55% to 50% as the orbital radius
decreases from the ISCO radius towards the horizon
radius. The PEP for the deflecting and antiplunging
emitters are always greater than 50% and the MOB for
the outgoing parts of the orbits are always greater than
0.42, which implies that the emitters with ls > l�s and with
outward radial motions could be well observed by distant
observers. On the other hand, the PEPs for the plunging
emitters decrease as the emitters move from the NHEK
boundary towards the horizon and are always less than
55% (the value for the emitters at the ISCO). We found
that Pmar;i ¼ Pcir;u with Pmar;i being the PEP for the
plunging emitters at the NHEK boundary. Moreover, as a
plunging emitter moves from NHEK infinity towards the
horizon, the inward radial velocity for the emitter with
Δω > 0 increases monotonously, while that for the
emitter with Δω < 0 decreases at the beginning and then
increases to the end. The maximum value of MOB for a
plunging emitter with Δω > 0 is obtained at the NHEK
infinity, and this maximum value (zmar;i) decreases as ls is
increased and zmar;i ¼ 0 for ls ¼

ffiffiffi
3

p
l�s. In addition, as ls

increases for Δω → −ϵκω�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−Cs=l2s

p
, the maximum value

of MOB for a plunging emitter increases, and this
maximum value (zcir;u) is obtained at the corresponding
orbital radius of an unstable circular orbit, and actually
zcir;u ¼ zmob;o. Furthermore, we found that the PEP and
MOB decreased faster for the plunging emitters with
larger Δω, which means that for the plunging emitters, a
smaller Δω would extend the observable range towards
the deeper region in the near-horizon throat of a high-spin
black hole.
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10Note that, since in the NHEK region we have Δω at Oðϵ2=3Þ
while in the near-NHEK region we have Δω at OðϵÞ, the near-
NHEK emitters correspond to the NHEK emitters with Δω ¼ 0.
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