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Herein, we extend Joule-Thomson expansion to the low-dimensional regime by considering the rotating
Bañados-Teitelboim-Zanelli (BTZ) metric in the (2þ 1)-dimensional space-time. Specifically, the proper-
ties of three important aspects of the Joule-Thomson expansion, including the Joule-Thomson coefficient,
inversion curve, and isenthalpic curve were studied. The divergence point of the Joule-Thomson coefficient
and the zero point of the Hawking temperature were investigated. The inversion temperature and
isenthalpic curves in the T–P plane were obtained, and the cooling-heating regions were determined.
Furthermore, the minimum inversion temperature was found to be zero, and the black hole becomes an
extremal black hole. The ratio of the minimum inversion and critical temperatures for BTZ black holes does
not exist, since the BTZ black hole does not exhibit the critical behavior in the critical pressure Pc, critical
temperature Tc, and critical volume Vc.
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I. INTRODUCTION

Since Hawking discovered that black holes can thermo-
dynamically emit particles, black holes have attracted
significant attention. Various thermodynamic properties
of black holes have been extensively investigated [1–6].
Notably, black holes, as thermodynamic systems, have many
similarities with universal thermodynamic systems. These
similarities are more obvious and precise for black holes in
anti–de Sitter(AdS) space. Hawking and Page first presented
the thermodynamics of AdS black holes, in which a phase
transition was found between a Schwarzschild-AdS black
hole and a thermal AdS space [7]. Subsequently, Hawking
radiation and phase transition in various black holes attracted
more attention [8–15].
Recently, studies on the thermodynamics of black

holes in AdS space have focused on extended phase space,
where the cosmological constant and its conjugate quan-
tities are considered as thermodynamic pressure and
volume, respectively:

P ¼ −
Λ
8π

¼ ðD − 1ÞðD − 2Þ
16πl2

; V ¼
�∂M
∂P

�
S;Q

; ð1Þ

where l is the AdS space radius and the black hole massM
is considered as the enthalpy [16,17]. Many studies have

explored various thermodynamics aspects of black holes
in an extended phase space, such as the phase transition
[18–20], critical phenomenon [21–23], compressibility
[24,25], heat engine efficiency [26–28], and weak cosmic
censorship conjecture [29–46].
Hawking and Page studied the phase transition between

Schwarzschild-AdS black holes and thermal AdS space [7].
They found that black holes in AdS space have similar
properties as general thermodynamic systems. This relation-
ship is further enhanced in the extended phase space [47].
Joule-Thomson expansion of black holes was first reported
in Ref. [48], and it was subsequently extended to other
kinds of black holes, such as d-dimensional charged AdS
black holes [49], Kerr-AdS black holes [50], regular
(Bardeen)-AdS black holes [51], Reissner-Nordström
(RN-)AdS black holes in fðRÞ gravity [52], quintessence
RN-AdS black holes [53], Bardeen-AdS black holes [54],
and others [55–74]. In these studies, the inversion curves,
isenthalpic curves, and heating-cooling regions in the T–P
plane for different black holes were given, and the inversion
curves for different black hole systems were similar.
Until now, all studies have focused on space-times with

dimensionD ≥ 4, whereas the case ofD < 4 remains to be
explored. The case of D < 4 is well worth studying
for several reasons. The growing interest in the low-
dimensional gravity theory in the past decade is attributed
to the confluence of evidence suggesting an effective
two-dimensional Planck regime. Recently, a black hole
model based on the generalized uncertainty principle was
developed, and it showed reduced dimensional properties
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within the sub-Planckian mass limit [75]. This suggests
that the physics of quantum black holes is low dimensional
(a similarly emergent two-dimensional space-time was
reported in Ref. [76]). Since then, the expansion of the
thermodynamic phase space of low-dimensional black
holes has attracted remarkable attention.
Three-dimensional Einstein gravity is topological,

implying that all geometries sourced by the same matter
are locally identical. Their difference lies in the topology.
To be specific, herein, we address the (rotating) Bañados-
Teitelboim-Zanelli (BTZ) black hole. This study clarifies
the role of topology in Joule-Thomson expansion.
Perhaps the most interesting reason is from AdS=CFT

[77], where (dþ 1)-dimensional bulk (AdS) gravity cor-
responds to d-dimensional boundary CFT. The (rotating)
BTZ geometry studied herein precisely fits the framework
and should have corresponding partners in dual CFT. Since
high-dimensional CFTs are usually hard to attack, most of
the progress in this subject was achieved in d ¼ 2.
Therefore, our studies on Joule-Thomson expansion of
(rotating) BTZ can pave the way for further investigation of
dual quantity in CFT2.
The (rotating) BTZ black hole is a solution of the

Einstein field equation in the (2þ 1)-dimensional space-
time with a negative cosmological constant [78,79]. In
Ref. [80], the thermodynamic quantities of BTZ black
holes were discussed. The first law of thermodynamics is
satisfied, and the Smarr formula for the BTZ black hole was
found. On this basis, other thermodynamic properties of
this black hole were investigated [81–101]. However, to
date, Joule-Thomson expansion of the rotating BTZ black
hole in the extended phase space has not been reported. In
this study, we investigated the Joule-Thomson expansion of
rotating BTZ black holes.
This paper is organized as follows: The thermodynamics

of rotating BTZ black holes is reviewed in Sec. II; the
Joule-Thomson expansion of a rotating BTZ black hole,
including the Joule-Thomson coefficient, inversion curves,
and isenthalpic curves, is discussed in Sec. III; the results
are discussed in Sec. IV.

II. ROTATING BTZ BLACK HOLES

The BTZ black hole is a solution of the Einstein field
equation in (2þ 1)-dimensional space-time with a negative
cosmological constantΛ ¼ −l2, and l is the AdS radius. The
corresponding action with a negative term Λ is expressed as

S ¼ 1

2π

Z ffiffiffiffiffiffi
−g

p ½Rþ 2Λ�: ð2Þ

The rotating BTZ black hole solution to Eq. (2) is given
by [78,79]

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2ðdφþ NϕðrÞdtÞ2; ð3Þ

where

fðrÞ ¼ −2mþ r2

l2
þ J2

4r2
; ð4Þ

NϕðrÞ ¼ −
J
2r2

: ð5Þ

When the black hole is nonextremal, the equation fðrÞ ¼ 0
has two positive real roots, rþ and r−, where the largest root
rþ denotes the radius of the event horizon. When the black
hole is extremal, fðrÞ ¼ 0 has only one root, rþ. The metric
parameter m is related to the black hole mass M and can be
expressed in terms of rþ as

M ¼ m
4
¼ J2

32r2þ
þ r2þ
8l2

: ð6Þ

The mass of the black hole in terms of entropy S, angular
momentum J, and pressure P is given by

M ¼ π2J2

128S2
þ 4PS2

π
: ð7Þ

The corresponding thermodynamic quantities are then [80]

S ¼ πrþ
2

; T ¼ rþ
2πl2

−
J2

8πr3þ
; ð8Þ

P ¼ 1

8πl2
; V ¼ πr2; Ω ¼ J

16r2þ
: ð9Þ

A black hole, as a stable thermodynamic system, can be
discussed in two phase spaces. In the normal phase space,
the cosmological constant is considered as a constant, and
the state parameters of the black hole satisfy the first law
of thermodynamics

dM ¼ TdSþ ΩdJ: ð10Þ

However, compared to the usual first law of thermody-
namics, the VdP term is missing in Eq. (10). Based on this,
the cosmological constant is considered as the pressure of
the black hole, and their relationship is expressed in Eq. (1).
Therefore, in the extended phase space, the first law of
thermodynamics is given by [102]

dM ¼ TdSþ VdPþΩdJ; ð11Þ

and the Smarr formula is

0 ¼ TS − 2PV þ ΩJ: ð12Þ
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The mass of the black hole M is defined as its enthalpy

M ¼ U þ PV: ð13Þ

Moreover, combining equations of the thermodynamic
pressure, entropy, and temperature, the equation of state for
the black hole is obtained as

P ¼ J2 þ 8πr3þT
32πr4þ

: ð14Þ

The corresponding images are shown in Fig. 1. Unlike the
van der Waals fluids and charged AdS black holes, there is
no inflection point in the diagram of the rotating BTZ black
hole. Therefore, the rotating BTZ black hole does not
have P–V critical behavior in the critical pressure Pc,
critical temperature Tc, and critical volume Vc. Thus, the
rotating BTZ hole is always thermodynamically stable.

III. JOULE-THOMSON EXPANSION

In Joule-Thomson expansion, gas is passed at high
pressure through a porous plug or small valve in the
low-pressure section of an adiabatic tube, and the enthalpy
remains constant during the expansion. The expansion is
characterized by a change in temperature relative to
pressure. The Joule-Thomson coefficient μ, which charac-
terizes the expansion process, is given by

μ ¼
�∂T
∂P

�
H
: ð15Þ

From Eqs. (8), (9), (11), and (12), the heat capacity at
constant pressure is

CP ¼ T

�∂S
∂T

�
P;J

¼ 1

2
πrþ

�
1 −

4J2

3J2 þ 32πPr4þ

�
; ð16Þ

and we can obtain

μ¼
�∂T
∂P

�
H
¼ 1

CP

�
T

�∂V
∂T

�
P
−V

�
¼ 2rð5J2 − 32πPr4þÞ

J2 − 32πPr4þ
:

ð17Þ

Figure 2 shows the Joule-Thomson coefficient and
Hawking temperature versus the horizon. We fix the
pressure P ¼ 1 and the angular momentum J as 0.5, 1,
and 2. Both divergence and zero points exist for different J.
Comparing these two figures, it is found that the divergence
point of the Joule-Thomson coefficient is consistent with
the zero point of Hawking temperature. The divergence
point reveals the Hawking temperature and corresponds to
extremal black holes.
Next, we focus on the ratio of the minimum inversion

temperature to the Tc. The black hole equation of state is
given by

T ¼ 4Prþ −
J2

8πr3þ
: ð18Þ

Then, the inversion temperature takes the form

Ti ¼ V

�∂V
∂T

�
P
¼ 3J2

16πr3þ
þ 2Prþ: ð19Þ

Subtracting Eq. (19) from Eq. (18) yields

5J2

16πr3þ
− 2Pirþ ¼ 0: ð20Þ

FIG. 1. P–V diagram of van der Waals fluids, charged AdS black holes, and rotating BTZ black holes.
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Solving this equation for rþ yields four roots, of which only
one is physically meaningful; others are complex or
negative. The positive and real root is

rþ ¼
�

5J2

32πPi

�1
4

: ð21Þ

Substituting this root into Eq. (18) at P ¼ Pi, the inversion
temperature is given by

Ti ¼
4ð2

5
Þ3=4 ffiffiffi

J
p

P3=4
iffiffiffi

4
p

π
: ð22Þ

By setting Pi ¼ 0 in the above equation, the minimum of
the inversion temperature is given by

Tmin
i ¼ 0; ð23Þ

which means the black hole becomes an extremal black
hole. In different black holes, the expression for Tmin

i

differs. For example, in the van der Waals fluid, Tmin
i ¼ 2a

9bk;
in the charged AdS black hole, Tmin

i ¼ 1

6
ffiffi
6

p
πQ
; and in the

Kerr-AdS black hole, Tmin
i ¼

ffiffi
3

p

4ð916þ374
ffiffi
6

p Þ14π ffiffi
J

p .

A rotating BTZ black hole does not have P–V critical
behavior Pc, Tc, and Vc. Thus, the black hole is always
thermodynamically stable, and there is no ratio between the
minimum inversion temperature and Tc. This ratio differs
from that of other black holes. To better investigate the
Joule-Thomson expansion in a rotating BTZ black hole, the
isoenthalpy and inversion curves of the black hole are
depicted in Figs. 3 and 4.

The inversion temperature increases monotonically with
increasing inversion pressure, but the slope of the inversion
curve decreases with increasing inversion pressure (Fig. 3).
In addition, in contrast to van der Waals fluids, there is only
a lower inversion curve, which does not terminate at any
point. This is similar to the results of charged AdS and
Kerr-AdS black holes. Joule-Thomson expansion occurs in
an isenthalpic process. For a black hole, the enthalpy is the
mass M. The isenthalpic curve can be obtained using
Eqs. (6) and (9). As shown in Fig. 4, the inversion curve
divides the plane into two regions. The region above the
inversion curve corresponds to the cooling region, whereas
the region below the inversion curve corresponds to the
heating region. The heating and cooling regions have been
determined from the sign of the slope of the isoenthalpy
curve. The slope is positive in the cooling region, whereas it
varies in the heating region. On the other hand, cooling
(heating) does not occur on the inversion curve, which acts
as a boundary between the two regions.

FIG. 2. Joule-Thomson coefficient and Hawking temperature T versus event horizon. Here, P ¼ 1.

FIG. 3. Inversion curves for a BTZ black hole.
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IV. CONCLUSION

The Joule-Thomson expansion of a rotating BTZ black
hole in the extended phase space was investigated herein,
where the cosmological constant is considered as pressure

and the black hole mass is treated as enthalpy. First, we
obtained the metric of the rotating BTZ black hole in three-
dimensional space-time and derived the expressions for
mass, entropy, Hawking temperature, pressure, volume,

FIG. 4. Inversion and isenthalpic curves for a BTZ black hole. From bottom to top, the value of M corresponding to the isenthalpic
curve increases. The purple lines are the inversion curves.

Cooling
Region

Heating
Region

P

T

Cooling
Region

Heating
Region

P

T

FIG. 5. Inversion curves for van der Waals fluids, charged AdS, Kerr-AdS, and rotating BTZ black holes.

JOULE-THOMSON EXPANSION OF LOWER-DIMENSIONAL … PHYS. REV. D 104, 124003 (2021)

124003-5



etc., of the black hole. The rotating BTZ black hole showed
no P–V critical behavior Pc, Tc, and Vc, which is different
from van der Waals fluids [103]. The minimum inversion
temperature is zero, and the black hole becomes an
extremal black hole. Moreover, there is no ratio between
the minimum inversion temperature and Tc. Then, we
investigated whether there is a Joule-Thomson expansion in
a rotating BTZ black hole. We found that Joule-Thomson
expansion is possible in rotating BTZ black holes. Joule-
Thomson coefficient μ and Hawking temperature T versus
the event horizon are shown in Fig. 2. The divergence point
of the Joule-Thomson coefficient is consistent with the zero
point of the Hawking temperature, which corresponds to an
extremal black hole. Figure 3 shows the inversion curves
for a black hole. Rotating BTZ black holes have only lower
inversion curves. The isenthalpic and inversion curves are
shown in Fig. 4. The regions above and below the inversion
curve correspond to the cooling and heating regions,
respectively. The inversion curve can be used to distinguish
different values of the cooling and heating regions.
The BTZ black hole is very similar to the (3þ 1)-

dimensional Kerr black hole in that there are two horizons,
internal and external horizons, fully inscribed by the
Arnowitt-Deser-Misner mass, angular momentum, and
charge. However, it differs from the (3þ 1)-dimensional
Kerr black hole in that it is not asymptotically flat but an
asymptotically AdS black hole, and the origin is a coor-
dinate singularity with no intrinsic singularity. In Ref. [50],
the Joule-Thomson expansion was studied for Kerr-AdS
black holes in the extended phase space. Kerr-AdS black
holes have only lower reversal curves, and the minimum

inversion temperature Tmin
i ¼

ffiffi
3

p

4ð916þ374
ffiffi
6

p Þ14π ffiffi
J

p . Because of

the presence of P–V critical behavior in Kerr-AdS black
holes, the ratio of the minimum inversion temperature to Tc
exists (0.504622). To compare charged AdS, Kerr-AdS,
and rotating BTZ black holes with van der Waals fluids, the
inversion curves of van der Waals fluids and charged AdS,
Kerr AdS, and rotating BTZ black holes are shown in
Fig. 5. In contrast to charged AdS, Kerr-AdS, and rotating
BTZ black holes, the van der Waals fluid has upper and
lower inversion curves. The cooling region is closed, and

we consider both the minimum inversion temperature Tmin
i

and maximum version temperature Tmax
i for this system. In

charged AdS, Kerr-AdS, and rotating BTZ black holes,
cooling always occurs above the inversion curve, whereas
in van der Waals fluids, cooling occurs only in the region
enclosed by the upper and lower inversion curves.
Although charged AdS, Kerr-AdS, and rotating BTZ black
holes have the same trend of inversion curves and the same
cooling-heating regions, they do not all show P–V critical
behavior. Charged AdS and Kerr-AdS black holes exhibit
P–V critical behavior, whereas rotating BTZ black holes
do not. Table I lists the critical behavior and ratio of the
minimum inversion temperature to Tc for van der Waals
fluids and various black holes. The presence or absence of
Joule-Thomson expansion in a black hole is not related to
the presence or absence of the ratio of the minimum
inversion temperature to Tc. Furthermore, Joule-
Thomson expansion does not exist in the charged BTZ
black holes. This is attributed to the topology of the
black holes. In future studies, we shall further discuss
the deep relationship between topology and black hole
thermodynamics.
Herein, we focused on the Joule-Thomson expansion of

BTZ black holes in low-dimensional black holes. The
results are related to many other interesting problems that
deserve further investigation. For future studies, it is
reasonable to study the thermodynamics of the extended
phase space of low-dimensional black holes. Based on this,
we shall further discuss the effect of dimensionality on the
thermodynamic properties of black holes.
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TABLE I. Existence of critical behavior and the ratio of the minimum inversion temperature to the critical
temperature in van der Waals and various black holes.

Type Critical behavior Tmin
i Tc Ratio Literature

Van der Waals fluid Exist Exist Exist 0.75 [48]
RN-AdS BH Exist Exist Exist 0.5 [53]
d-dimensional AdS BH Exist Exist Exist < 0.5 [49]
Gauss-Bonnet BH Exist Exist Exist 0.4765 [58]
Toruslike BH Not exist Exist Not exist Not exist [104]
Kerr-AdS BH Exist Exist Exist 0.504622 [50]
Rotating BTZ BH Not exist Exist Not exist Not exist
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