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The computational cost of inspiral and merger simulations for black hole binaries increases in inverse
proportion to the square of the mass ratio q ≔ m2=m1 ≤ 1. One factor of q comes from the number of
orbital cycles, which is proportional to 1=q, and another is associated with the required number of time
steps per orbit, constrained (via the Courant-Friedrichs-Lewy condition) by the need to resolve the two
disparate length scales. This problematic scaling makes simulations progressively less tractable at smaller
q. Here we propose and explore a method for alleviating the scale disparity in simulations with mass ratios
in the intermediate astrophysical range (10−4 ≲ q≲ 10−2), where purely perturbative methods may not be
adequate. A region of radius much larger than m2 around the smaller object is excised from the numerical
domain, and replaced with an analytical model approximating a tidally deformed black hole. The analytical
model involves certain a priori unknown parameters, associated with unknown bits of physics together with
gauge-adjustment terms; these are dynamically determined by matching them to the numerical solution
outside the excision region. In this paper we develop the basic idea and apply it to a toy model of a scalar
charge in a circular-geodesic orbit around a Schwarzschild black hole, solving for themasslessKlein-Gordon
field in a ð1þ 1ÞD framework. Our main goal here is to explore the utility and properties of different
matching strategies, and to this endwe develop two independent implementations, a finite-difference one and
a spectral one. We discuss the extension of our method to a full 3D numerical evolution and to gravity.
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I. INTRODUCTION

All gravitational-wave signals reported so far by theLIGO-
Virgo Collaboration [1,2] originated from compact-object
binaries in which the two components had fairly comparable
masses. The most extreme mass disparity to date was
observed in GW190814, whose likely source was the
coalescence of a 2.50 –2.67 M⊙ object (either an exception-
ally heavy neutron star or an exceptionally light black hole)
with a 22.2 –24.3 M⊙ black hole [3]. Upgrades and future
generations of ground-based detectors [4,5], and especially
the planned space-based detector LISA [6], will open up a
new window of observation in the low-frequency band of the
gravitational-wave spectrum, enabling the detection of sig-
nals from ever heavier binary systems, including ones
containing intermediate-mass and supermassive black holes.
In consequence, it is expected that the detection of high-mass
ratio events will become routine, and that the catalog of
detected binary sourceswill extend to includea broad rangeof
mass ratios—potentially down to ∼1∶106 with LISA [7–9].
In anticipation of this remarkable expansion in obser-

vational reach, it is important to develop accurate

theoretical waveform templates that reliably cover the
entire relevant range of mass ratios. Standard numerical
relativity (NR) methods [10] work well for mass ratios in
the range 0.1≲ q ≔ m2=m1 ≤ 1 (see e.g., [11]). However,
simulations become progressively less tractable at smaller
q, and few numerical simulations have been performed at
q < 0.1 so far. The root cause is a problematic scaling of
the required simulation time with q. Fundamentally, one
expects the required simulation time to grow in proportion
to q−2, where one factor of q−1 is associated with the
number of in-band orbital cycles, and the second factor q−1

comes from the Courant-Friedrichs-Lewy (CFL) stability
limit on the time step of the numerical simulation, con-
strained by the need to spatially resolve the small object.
The state of the art in small-q NR is represented by the
recent simulations performed at RIT of the last 13 orbital
cycles prior to merger of a black hole binary system with
q ¼ 1=128 [12,13]. Such simulations remain extremely
computationally expensive.
For extreme mass ratios (say, q≲ 10−4), it is more

natural to apply an alternative treatment based on black
hole perturbation theory. Here, the field equations are
formally expanded in powers of q, and the orbital dynamics*m.dhesi@soton.ac.uk
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are described in terms of a point-particle inspiral trajectory
on the fixed geometry of the large black hole. In the limit
q → 0, the trajectory is geodesic. Back reaction from the
small object’s self-field, which drives the slow inspiral, is
accounted for order by order in q, in what is known as the
gravitational self-force (GSF) approach [14,15]. GSF is
currently the only viable method for modelling astrophysi-
cal extreme-mass-ratio inspirals (EMRIs), in which a
compact object orbits a massive black hole in a galactic
nucleus. Development continues towards an accurate
model of EMRI waveforms suitable for signal identifica-
tion and interpretation with LISA [16–21].
The intermediate range of mass ratios, say 10−4≲

q≲ 10−1, poses a unique modeling challenge. A priori,
it is hard to ascertain whether GSF calculations can, in
practice, cover with sufficient accuracy the entire range of q
where the computational cost of full NR simulations is
prohibitive. An initial study [22] suggested that this may
well be the case for sufficiently simple binary systems (of
nonspinning black holes in a quasicircular inspiral), and
recent computations of so-called “post-adiabatic” GSF
waveforms [21] have borne out that prediction.
However, it remains unclear whether the two methods,
separately applied, can provide us with a reliable model of
intermediate-mass-ratio inspirals (IMRIs) over the full
parameter space of astrophysically plausible sources.
The relevance and pressing nature of this question became
self-evident with the first conclusive observation of an
intermediate-mass black hole (M ∼ 142þ28

−16 M⊙) as the
merger product in GW190521 [23].
In this work we explore a new, synergistic approach to

IMRI modeling, featuring a direct synthesis of black hole
perturbation and NR techniques. The central idea is simple,
and illustrated in Fig. 1 as applied to a compact-object
binary with masses m1 ≫ m2. An excision region is
introduced around the small object, of radial extent R
chosen such that m2 ≪ R ≪ R, where R is the character-
istic length scale associated with the tidal field of m1 at the
location of m2 (such that R ∼m1 near the end of the

inspiral). Inside this region—a “worldtube” in spacetime—
an approximate analytical solution is prescribed for the
spacetime metric, arising from the perturbation theory of
compact objects in a tidal environment. An NR simulation
is set up for the binary, in which the worldtube’s interior is
excised from the numerical domain, and replaced with the
analytical solution. At each time step of the numerical
evolution, the numerical solution (outside the tube) and
analytical solution (inside the tube) are matched across the
tube’s boundary, in a process that fixes a priori unknown
tidal coefficients in the analytical solution, as well as gauge
degrees of freedom. The intended effect of this construction
is to partially alleviate the scale disparity that thwarts the
efficiency of the numerical evolution at small q. An outline
of such a strategy was first (to our knowledge) put forward
by B. Schutz in a conference talk a few years ago [24].
To begin thinking about how such a strategy may work in

practice, we restrict attention to the simplest scenario,
where the smaller object is a black hole. The appropriate
analytical solution inside the worldtube is then that of a
tidally perturbed Kerr black hole, where the tidal pertur-
bation arises from the presence of the larger body. Such
geometries are examples of a broader class of spacetimes
studied extensively in recent literature [25–33], where the
tidal response of a compact object to an external perturba-
tive tidal field is derived analytically order by order in
s=R—the ratio of distance s from the smaller object and
the characteristic length scale R of the tidal field—under
the assumption s ≪ R. For a nonrotating black hole, the
perturbed metric has so far been constructed through order
ðs=RÞ4 [28]. For our excision method we would need the
perturbed metric near the worldtube’s boundary, where it
takes the form of an expansion in R=R ≪ 1.
Since the analytically prescribed metric on the world-

tube’s boundary is only an approximation, the spacetime
constructed in the numerical simulation is also approxi-
mate, even if numerical error could be reduced to zero. If
our analytical solution is correct only up to OððR=RÞnÞ—
what we later call an “nth-order model”—then, in general,
an error ofOððR=RÞnþ1Þ is fed from the tube’s boundary to
the numerical solution, and propagates to the bulk of the
numerical domain. One could then only hope to construct
the binary’s spacetime up to an error ofOððR=RÞnþ1Þ, even
in the continuum limit. This worldtube error can be reduced
either by increasing the order n of the analytical model, or
by decreasing the tube’s radius R. Of course, decreasing R
restores the original scale disparity and thus diminishes the
gain from the introduction of a tube. There is hence a
fundamental trade-off in our method between precision and
computational cost, with R serving as a control parameter.
At the end of this introduction we give a rough estimation
of the potential computational savings for an “optimal”
choice of R.
Our primary purpose in this initial study is to develop

and test a matching methodology for the field across the

FIG. 1. Our basic strategy: A region of radial extent m2 ≪
R ≪ R is excised from the computational domain (R being the
characteristic length scale associated with the tidal field of the
large mass m1 at the location of the small mass m2). An
approximate analytical solution is used inside the excised region.
The analytical and numerical solutions are dynamically matched
at each step of the numerical evolution.
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worldtube’s boundary. For that purpose we employ a linear
scalar-field toy model, in which the small black hole is
replaced with a pointlike scalar charge, and the large object
is a Schwarzschild black hole. Instead of tackling the full
Einstein’s equations, we thus solve themassless linear Klein-
Gordon equation for a scalar field on a fixed Schwarzschild
background. Furthermore, we decompose the field equation
into multipole modes on the Schwarzschild geometry, and
solve for each mode of the field individually as an evolution
problem in (1þ 1) dimensions (radiusþ time). Our world-
tube is then a two-dimensional “strip” confined between two
parallel timelike curves (cf. Fig. 3 below). As a final
simplification, we set the scalar charge to move on a fixed
circular geodesic orbit around the large black hole (ignoring
radiation reaction), meaning we can fix our worldtube in
advance of the evolution, and it has a simple geometry. All of
these simplifications take us very far, of course, from the
actual physical problem in question. However, our toy
problem retains enough relevant features to make it
useful as a development platform for worldtube matching
procedures.
We develop and explore two such procedures. The first is

based on matching the analytical and numerical solutions in
an open “buffer” region around the tube’s boundaries. At
each step of the time evolution, the matching determines a
set of unknown coefficients in the analytical solution. Once
the analytical solution has been fixed inside the tube, the
evolution can proceed to the next time step. This approach
is close in spirit to the standard method of matched
asymptotic expansions, which underlies most of the liter-
ature on tidally perturbed black hole spacetimes (as well as
GSF theory). But whereas in standard matched expansions
one matches together two asymptotic expansions, here one
matches an asymptotic expansion (the approximate ana-
lytical solution in the tube) to an “exact” numerical
solution. The second matching approach we explore is
conceptually different, reminiscent more of the standard
treatment of interfaces between media in hyperbolic sys-
tems using a junction condition. In this approach we regard
the worldtube boundary as a strict interface, where boun-
dary conditions are set for the numerical evolution outside
the tube. These boundary conditions are obtained (at each
time step) from solutions of a certain set of first-order
ordinary differential equations (ODEs) along the boundary,
formulated in a way that ensures well posedness of the
evolution scheme.
We formulate each of the two matching approaches quite

independently of any implementation details; indeed, each
approach can in principle be implemented using whichever
one’s favorite numerical evolution method happens to be
(finite difference or spectral, Cauchy or characteristic, etc.).
Here, to illustrate the applicability of our two approaches
and test their performance, we present two independent
numerical implementations, one for each approach. For the

first approach (matching in a buffer region) we present a
finite-difference implementation in characteristic coordi-
nates. For the second approach (matching on the boundary)
we present a spectral implementation with Cauchy evolu-
tion. For each approach we demonstrate the stability and
convergence of the numerical evolution, compare with
analytical solutions where possible, and explore the
dependence of the solutions on the worldtube radius R.
The paper is organized as follows. We begin in Sec. II by

setting up our scalar-field toy model, with a point scalar
charge on a circular geodesic sourcing a linear scalar field
on a Schwarzschild background. We introduce a multipole-
mode decomposition to reduce to problem to (1þ 1)
dimensions, and (at the single-mode level) prescribe a
suitable approximate analytical solution for the scalar field
near the scalar charge, later to populate the interior of the
worldtube around the charge.
Section III explains the general principles of our two

matching approaches, in a language that is divorced from
any implementation details. Our two particular numerical
implementations—henceforth referred to as “scheme I” and
“scheme II”—are described and explored in Secs. IV to
VII. Section IV begins with a detailed description of our
numerical method in scheme I, based on a finite-difference
formula in null coordinates and characteristic evolution.
Particular attention is paid to the development of matching
architectures in a buffer region around the worldtube
boundaries. In Sec. V we present various validation tests
to demonstrate the stability and numerical convergence of
our code and the correctness of the numerical results, and
then focus on exploring the dependence of the numerical
solution on R. Sections VI and VII do the same for scheme
II, beginning with a detailed description of our spectral
method and detailing the way boundary conditions are
imposed on the worldtube. Section VIII contains a recap of
our results, and a discussion of the next steps in the
development of our approach to IMRI modeling.
First, however, let us conclude this introduction with a

rough estimate of the runtime savings one might hope to
achieve with our method.

A. Potential runtime savings

As already mentioned, the approximation error of the
perturbative solution on the worldtube boundary is
expected to be

εWT ∼
�
R
R

�
nþ1

; ð1Þ

where n is the order of the analytic solution, and R is the
characteristic length scale associated with the tidal field of
m1 atm2. Optimally, the approximation error εWT should be
comparable to the error εNR of the NR simulation, i.e.,
εWT ∼ εNR. This gives an “optimal” worldtube radius
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R ∼ ε1=ðnþ1Þ
NR R: ð2Þ

For n ¼ 4 (as presently available for a tidally perturbed
Schwarzschild black hole [26]) the dependence on εNR is
quite weak. As an example, εNR ¼ 10−5 and n ¼ 4 yield
R ∼ 0.1R. As a measure ofRwe may use the Kretschmann
scalar K ¼ RαβγδRαβγδ associated with the Schwarzschild
field of m1, with Riemann tensor Rαβγδ. This gives
R ∼ K−1=4 ∼ 0.4ðD3=m1Þ1=2, where D is the separation
between the two black holes. For example, near the end of
the inspiral (D ∼ 6m1) we have R ∼ 6m1, and an optimal
choice of R ∼ 0.6m1.
The efficiency gain of the worldtube method arises from

the weakened CFL condition: The smallest scale on
the numerical grid with a worldtube is ∼R (as long as the
worldtube is smaller than the more massive black hole),
while the smallest scale for the traditional simulation is∼m2.
Therefore, the CFL condition allows a time step larger by a
factor ∼R=m2. Assuming a comparable computational cost
per time step betweenworldtube and traditional methods, the
speed-up will be

speedup ∼
R
m2

∼ ε1=ðnþ1Þ
NR

R
m2

¼ ε1=ðnþ1Þ
NR

R
m1

q−1: ð3Þ

Equation (3) suggests a potential speed-up proportional
to q−1 ≫ 1, with the constant of proportionality depending
on the target error εNR, the order of the analytical approxi-
mation n and the length scale R, itself depending on the
orbital radius D. For D in the relevant strong-field range
between ∼6m1 and ∼10m1, and with our sample values
n ¼ 4 and εNR ¼ 10−5, the constant of proportionality is
around unity. Therefore, for example, a speed-up by a
factor 100 seems feasible for mass ratio 1∶100. To phrase
this differently, the computational cost of evolving for one
orbit with the worldtube approach could be similar to
evolving one orbit of a comparable-mass binary black hole
with traditional NR methods at the same numerical
error εNR.
We caution that our estimate here is extremely crude. For

one, the error scaling in Eq. (1) turns out not to hold in that
precise form in our actual numerical implementations, as
described below. Moreover, Eq. (3) assumes that time-
stepping error is always subdominant, which may only hold
for high-order time-stepping schemes like those employed
by the SpEC code [11]. And even if the substantial speed-
up of Eq. (3) can be realized, high-mass-ratio simulations
will remain more challenging than comparable mass
simulations, because the duration of the inspiral increases
with more extreme mass ratios. A tighter εNR might also be
required at more extreme mass ratios, to resolve the smaller
amplitude of the gravitational waves and to preserve phase
accuracy over the longer inspiral.

II. SCALAR-FIELD TOY MODEL

Our toy model replaces the smaller black hole with a
pointlike test particle endowed with a scalar charge e. The
particle is in a circular geodesic orbit around the larger
object, taken to be a Schwarzschild black hole of mass M.
The orbiting charge sources a linear scalar field Φ, which
satisfies the Klein-Gordon equation

gαβ∇α∇βΦðxÞ ¼ −4πρðxÞ: ð4Þ

Here ∇α is the covariant derivative compatible with the
background Schwarzschild metric gαβ, and ρðxÞ is the
scalar charge density, represented by the distribution

ρðxÞ ¼ e
Z

∞

−∞

δ4½xμ − xμpðτÞ�ffiffiffiffiffiffi−gp dτ; ð5Þ

in which xμp denotes the coordinates of the particle’s
worldline, parametrized with proper time τ, and g is the
determinant of gαβ. In a Schwarzschild coordinate system
attached to the background Schwarzschild geometry we
have, for our circular orbit, rp ≔ xrp ¼ const, and, without
loss of generality, we set θp ≔ xθp ≡ π=2. The particle’s
geodesic orbit then has a tangent four-velocity given (in
Schwarzschild coordinates t, r, θ, ϕ) by

uα ≔ dxαp=dτ ¼ γð1; 0; 0;ΩÞ; ð6Þ

whereΩ ≔ ðdϕp=dτÞ=ðdtp=dτÞ ¼ ðM=r3pÞ1=2 is the orbital
angular velocity with respect to time t, and γ ≔
ð1 − 3M=rpÞ−1=2 is a gravitational redshift factor. In terms
of time t, the particle’s Schwarzschild coordinates are

xαp ¼
�
t; rp;

π

2
;Ωt

�
; ð7Þ

where, again without loss of generality, we have set ϕp ¼ 0

at t ¼ 0.
Our toy model makes a further simplification; rather than

tackling the field equation (4) in the (3þ 1)D spacetime,
we separate it into spherical-harmonic multipole modes
(taking advantage of the background’s spherical sym-
metry), and solve for each multipole of the field in ð1þ
1ÞD (timeþ radius). To achieve this, we write

Φ ¼ e
r

X∞
l¼0

Xl
m¼−l

Ψlmðr; tÞYlmðθ;ϕÞ; ð8Þ

where Ylmðθ;ϕÞ are standard spherical harmonics, defined
on two-spheres, r ¼ constant around the large black hole,
and the factor 1

r is introduced for later convenience. We
insert the expansion (8) into Eq. (4), and on the right-hand
side of the latter we substitute the completeness relation
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δðθ − θpÞδðϕ − ϕpÞ= sin θ ¼ P
lm Ylmðθ;ϕÞȲlmðθp;ϕpÞ,

where an overbar denotes complex conjugation. By virtue
of the orthogonality of the Ylm functions, one immediately
obtains a separate equation for each of the time-radial
functions Ψlmðr; tÞ. The equation reads

∂2Ψlm

∂t2 −
∂2Ψlm

∂r�2 þ VlðrÞΨlm ¼ SlmðtÞδðr� − r�pÞ; ð9Þ

where

VlðrÞ ¼
�
1 −

2M
r

��
lðlþ 1Þ

r2
þ 2M

r3

�
; ð10Þ

and

SlmðtÞ ¼
4π

γrp
Ȳlm

�
π

2
;Ωt

�
: ð11Þ

Here we have introduced the tortoise radial coordinate
r� ¼ rþ 2M ln½r=ð2MÞ − 1�, with r�p ≔ r�ðrpÞ.
Equation (9) is the basic field equation of our toy model,

and in the rest of this work we apply our excision method to
it in order to develop our strategy and test its performance.
We aim to construct a solution of (9) subject to “physical”
boundary conditions, namely that there is no radiation
coming in from past null infinity or out of the past event
horizon; we refer to that solution as the “physical” one. For
benchmarking, it is useful to have at hand the actual
physical solution of Eq. (9) (without a worldtube), and
for that purpose we have developed a simple time-domain
numerical code capable of accurately computingΦlmðrÞ ≔
ΨlmðrÞ=r for given mode numbers l, m and orbital radius
rp. The algorithm of our code, to be described in Sec. IV B,
is based on characteristic evolution with a second-order
convergent finite-difference formula, with the δ-function
source term incorporated by way of imposing suitable jump
conditions along the particle’s worldline (see Sec. IV B for
details). The typical form of the solution is illustrated in
Fig. 2, showing a t ¼ constant snapshot of the field Ψ22.
Notable features of the solution are (i) scalar-field waves
(of frequency mΩ) that emanate from the particle and show
in the outer “wave zone”, r� ≫ M; (ii) scalar-field waves
(again of frequency mΩ but typically of a lower amplitude)
going into the black hole, visible at r� ≪ −M; and (iii) the
cusp in the scalar field at the particle’s location, where Ψlm
is continuous but has a finite jump in its first radial
derivative. Similar features characterize the solution for
other l and m ≠ 0 modes.
For m ¼ 0 (axially symmetric) modes of the scalar-field

perturbation, the source Slm becomes time independent,
and the physical solution is static. The field equation (9)
then reduces to an ordinary differential equation, and
admits simple analytical solutions. Such solutions are
particularly useful for benchmarking purposes, and they

will serve us well in that capacity later in our analysis. For a
“physical” m ¼ 0 field we look for a static solution of
Eq. (9) for which the modal Klein-Gordon field Φl0ðrÞ ≔
Ψl0ðrÞ=r is bounded on the event horizon and falls off at
infinity. It is not hard to see that these conditions define a
unique solution for each l. The solution is given by

Ψl0ðrÞ ¼
rrp
M

Sl0ðQlðzpÞPlðzÞΘðrp − rÞ
þQlðzÞPlðzpÞΘðr − rpÞÞ; ð12Þ

where Pl and Ql are Legendre functions of the first and
second kind, respectively, with the arguments z ≔ r=M − 1
and zp ≔ rp=M − 1, and Θð·Þ is the Heaviside step
function. An example of such a static solution, with
l ¼ 2, is also shown in Fig. 2. The static modes, too,
are continuous at the location of particle, and display a
finite jump discontinuity in the first radial derivative there.

A. Local approximate solution

In our toy model we replace the actual solution in a
worldtube surrounding the particle’s worldline with an
analytical approximation ΨA

lm. The analytical solution
consists of two terms: a “puncture” field ΨP

lm, which
captures the local irregularity in (i.e., discontinuous deriv-
atives of) the field at the particle, and a “regular” field ΨR

lm,
which accounts for the remaining, smooth part of the local
field. Both these terms are expressed as a power series in
the distance to the worldline, truncated at a certain order (to

FIG. 2. Illustration of the form of physical solutions to the
modal scalar-field equation (9), with a source corresponding to a
scalar charge on a circular geodesic orbit of radius rp ¼ 7M
(r�p ≈ 8.83M). Shown here are Ψ22 and Ψ20 as functions of the
radial coordinate r� at some constant value of the time t. The field
Ψ22, which is radiative, is computed using the code presented in
Sec. IV B; it displays scalar waves emanating from the particle
down towards the event horizon (r� → −∞) and out towards
infinity (r� → ∞). The field Ψ20, which is static, is given
analytically in Eq. (12). For all values of l, m, the field is
continuous at the location of the particle but has a finite jump
discontinuity in its first radial derivative there.
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be referred to as “the order” of the analytical model). The
expansion coefficients of ΨP

lm can be determined analyti-
cally from the field equation (9) using a local asymptotic
analysis, as we explain below, and are fixed in advance in
our model. The expansion coefficients of ΨR

lm, on the other
hand, can only be determined by matching to the external
field outside the worldtube; these coefficients remain
a priori unknown, and they are to be determined dynami-
cally during the numerical evolution as described in later
sections. In the rest of this section we describe the
construction of a suitable local analytical model ΨA

lm for
the scaler field. Preliminary considerations regarding the
construction of such a model in the ð3þ 1ÞD gravity
problem of our ultimate interest are discussed in Sec. VIII.
We begin with the construction of a suitable puncture

field ΨP
lm. Recalling our observation that the physical

solution is continuous but has a finite jump discontinuity
in its first radial derivative at the particle, we introduce the
ansatz

ΨP
lmðr; tÞ ¼ jΔrj

Xn
j¼1

ajlmðΔrÞj−1SlmðtÞ; ð13Þ

where Δr ≔ r − rp. Our choice of time dependence here
makes sense, because the source function SlmðtÞ depends
on t harmonically, via the factor e−imΩt implicit in
Ȳlmðπ2 ;ΩtÞ in Eq. (11), and the retarded solution inherits
this harmonic time dependence. We terminate the expan-
sion at order ðΔrÞn for some n ≥ 1, referring to the

resulting field as an “nth-order puncture”, denoted ΨPðnÞ
lm .

The constant coefficients ajlm in Eq. (13) are determined
by substituting (13) in the field equation (9), reexpanding in
powers of Δr, and then demanding that the resulting
equation is satisfied at the particle as a distributional
equality. This produces a hierarchy of algebraic equations
for ajlm, which we can solve recursively order by order in
Δr. More specifically, once (13) is substituted in (9), the
requirement that the delta-function terms balance in the
equation immediately determines a1lm. Then, the require-
ment that the remaining discontinuity vanishes at OðΔr0Þ
determines a2lm in terms of a1lm, the requirement that it
vanishes at OðΔr1Þ determines a3lm in terms of a1lm and
a2lm, and so on. For the first five coefficients one obtains,
in this fashion,

a1lm ¼ −
1

2fp
; ð14aÞ

a2lm ¼ M
2f2pr2p

; ð14bÞ

a3lm ¼ r4pm2Ω2 − λr2pfp − 2Mð3rp − 2MÞ
12f3pr4p

; ð14cÞ

a4lm ¼ λr3pfp − 3Mr4pm2Ω2 þ 2Mð3r2p − 4Mrp þ 2M2Þ
12f4pr6p

;

ð14dÞ

a5lm ¼ 1

240f5pr8p
½2r4pm2Ω2ðλr2pfp þ 2Mð11rp þ 13MÞÞ

− r8pm4Ω4 − 2λr2pfpð9r2p þ 2Mrp − 4M2Þ
− 24Mð5r3p − 10Mr2p þ 10M2rp − 4M3Þ
− λ2r4pf2p�; ð14eÞ

where fp ≔ fðrpÞ ¼ 1–2M=rp and λ ≔ lðlþ 1Þ. With
this, we have all that we need to construct puncture fields
through fifth order.
Next, consider the remaining piece of the local field,

ΨRðnÞ
lm , which we now define as the difference Ψlm −ΨPðnÞ

lm
between the full physical field and the nth-order puncture
field, expanded in Δr, with the expansion truncated at

OðΔrnÞ. Since, by construction, ΨPðnÞ
lm has the same

singular structure as Ψlm through OðΔrnÞ, the so-defined

field ΨRðnÞ
lm is smooth, and takes the form of a polynomial

ΨRðnÞ
lm ðt; rÞ ¼

Xn
j¼0

ψR
j ðtÞðΔrÞj: ð15Þ

The nþ 1 coefficients ψR
k ðtÞ (their l,m indices suppressed

for brevity) are a priori unknown; they are to be determined
by matching to the numerical field outside the worldtube at
each time step in the numerical evolution, as we describe in
the next section.
Our full nth-order analytical approximate field inside the

worldtube is given by

ΨAðnÞ
lm ðt; r;ψR

k Þ ¼ ΨPðnÞ
lm ðt; rÞ þ ΨRðnÞ

lm ðt; r;ψR
k Þ; ð16Þ

where our notation reminds the reader that ΨAðnÞ
lm inherits

from ΨRðnÞ
lm a parametric dependence on the nþ 1 time-

dependent coefficients ψR
k ≔ fψR

0 ðtÞ;…;ψR
n ðtÞg. We use

the field ΨAðnÞ
lm to populate the interior of the excision

worldtube in our numerical simulations, with ψR
k deter-

mined by matching at each time step. The approximate

nature of ΨAðnÞ
lm comes from the finite truncation of the

expansion in Δr at order n. Note that, due to the finite

truncation, our definition of ΨAðnÞ
lm is attached to our

particular choice of a distance expansion parameter; using
e.g., Δr� instead of Δr would yield a slightly different (but

equally valid) analytic approximation. Note also that ΨAðnÞ
lm

cannot be made exact (even in principle) with a fine-tuned
choice of the parameters ψR

k , since these parameters control
only the smooth piece of the field and cannot correct the
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error in the nonsmooth piece caused by the finite truncation

of ΨPðnÞ
lm . The error in ΨAðnÞ

lm is inherent, and can only be
controlled by varying the model order n (or the worldtube
radius).
This concludes the formulation of our ð1þ 1ÞD scalar-

field toy model. In the next section we formulate two
(alternative) matching strategies for the field in and outside
of the worldtube, and in later sections we use our toy model
to test the implementation of each of these strategies. In the
rest of the paper the (n) superscript and lm indices are
mostly suppressed, for brevity.

III. TWO MATCHING APPROACHES

Using our toy model, we now develop our two matching
approaches: one based on matching the numerical field to
the analytical approximation ΨA

lm in an open region around
the particle, and another based on junction conditions
imposed on the surface of the excision region. In this
section we describe the principles behind each approach,
keeping the descriptions independent of any particular
choice of discretization.

A. First approach: Matching in a buffer region

Our first approach is inspired by the method of matched
asymptotic expansions. Let us recall how that method is
traditionally applied to the small-mass-ratio limit of the
binary problem [34], with reference to Fig. 1. The binary is
treated as a one-parameter system, using m1 as an overall
length scale and the small mass ratio q ¼ m2=m1 as a small
parameter (in this treatment, the length R utilized in the
introduction is replaced withm1 rather than being treated as
an independent scale). In the bulk of the binary spacetime,
one expands the metric in powers of q. Sufficiently nearm2,
at distances ∼m2, such an expansion breaks down because
the gravity of m2 dominates over that of m1. One then
constructs a complementary local approximation using an
expansion in powers of q while holding s=m2 fixed, where
s is a suitable measure of spatial distance from the
companion’s representative worldline. By holding s=m2

fixed, this expansion zooms in on the region s ∼m2 ≪ m1,
such that s=m1 ∼ q. In a buffer regionm2 ≪ s ≪ m1, s=m1

and m2=m1 are both small, and the exterior and interior
approximations must agree. This requirement translates
into a precise matching condition: if the local approxima-
tion inside the worldtube is reexpanded in powers of q at
fixed s (no longer holding s=m2 fixed), and the external
solution is reexpanded in powers of s=m1, then in both
cases one arrives at a double series in q and s=m1, which
should be a good approximation in the buffer region. The
matching condition states that because they are expansions
of the same metric, the two double expansions must agree
term by term.
Now consider the translation of these notions into our toy

problem. For simplicity we use t–r coordinates in our

description rather than the double-null coordinates we
ultimately use in scheme I. The setup in the t–r plane is
illustrated in Fig. 3. We define a buffer region B, made up
of disjoint regions B�, in which Δr is small compared to
M. We then define an excision region Γ ¼ ½−R ≤ Δr ≤ R�
around the particle’s orbital radius, with boundaries ∂Γ�
lying in B�. We loosely imagine that outside of Γ, we solve
for Ψ using the homogeneous field equation, Eq. (9) with
the right-hand side set to zero, and that inside, we use the
analytical approximation ΨA

lm. For convenience, we label
the numerically evolved field outside Γ as ΨN

lm. However,
following the dictates of matched expansions, we operate
under the principle that in B, ΨN

lm, and ΨA
lm can be used

interchangeably.
As in the method of matched expansions, to match the

two fields we expand ΨN to put it in the same form as ΨA

(we hereafter omit the indices lm for brevity). In each of
the regions B�, ΨN can be approximated by a power series
in Δr,

ΨN�ðt; rÞ ¼
Xn
j¼0

ψ�
j ðtÞðΔrÞj þOðΔrnþ1Þ; ð17Þ

where ΨN� denotes the restriction of ΨN to B�. The
coefficients ψ�

j can be found by projecting ΨN onto the
basis of functions fðΔrÞ0;…; ðΔrÞng using a suitable inner
product

hx; yi ¼
Z
B0
xðrÞyðrÞdr: ð18Þ

Here B0 is some open interval (with fixed t) in B, or a
collection of multiple such intervals; we consider the

FIG. 3. Spacetime diagram (in t, r coordinates) illustrating the
various regions involved in our first matching approach. The
vertical dashed line indicates the particle’s worldline at constant
orbital radius. The disjoint shaded regions B� make up the buffer
region B ¼ B− ∪ Bþ where the matching occurs. The excision
region Γ has a disjoint boundary ∂Γ ¼ ∂Γþ ∪ ∂Γ− that lies
within B. We carry out the matching by expanding the numerical
field ΨN in powers of Δr and equating the coefficients in the
expansion to the coefficients in ΨA. The orange shaded region
shows the domain of dependence of the field outside Γ at time t2,
given data at time t1.
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choice of integration domain below. Our matching con-
dition is then that the coefficients in Eq. (17) are identical to
the coefficients in ΨA,

ψ�
j ðtÞ ¼ ψR

j ðtÞ þ ψP�
j ðtÞ; ð19Þ

where ψP� are the puncture coefficients, which can be read
off Eq. (13): ψP�

j ðtÞ ¼ �ajlmSlmðtÞ.
To satisfy Eq. (19), we must ensure that ψ�

j satisfies the
same jump conditions as ψP�

j , meaning ψþ
j − ψ−

j ¼
ψPþ
j − ψP−

j . If we were to construct the approximations
(17) separately in their respective regions B�, with no
regard to the relationship between them, then these jump
conditions would not be precisely satisfied. We enforce the
correct jumps by demanding that the differenceΨN −ΨP is
approximated by the smooth field ΨR,

ΨNðt; rÞ −ΨPðt; rÞ ¼
Xn
j¼0

ψR
j ðtÞðΔrÞj þOðΔrnþ1Þ: ð20Þ

This requires choosing the integration domain in Eq. (18) to
have support in both Bþ and B−. Taking the inner product
of Eq. (20) with ðΔrÞk and discarding higher-order terms,
we obtain a linear system for ψR

j ,

Xn
j¼0

Ajkψ
R
j ðtÞ ¼ bkðtÞ for k ¼ 0;…; n; ð21Þ

with Ajk ¼ hðΔrÞj; ðΔrÞki and bk ¼ hΨN −ΨP ; ðΔrÞki.
We note that the solution to Eq. (21) yields the L2 best
approximation of ΨN −ΨP . Since this equation must hold
for all t, it also implies an analogous equation for ∂tψ

R
j ,

which is required for a Cauchy evolution.
To enforce the matching condition in a numerical

evolution, we can use the following scheme:
1. Suppose that at time t1, we have data for ΨN and

∂tΨN everywhere outside Γ.
2. Determine the approximate solution ΨAðt1Þ and

∂tΨAðt1Þ by solving Eq. (21) and the analogous
equation for ∂tψ

R
j . We then have Ψ and ∂tΨ for all r

at time t1, given by the field values from Step 1
outside Γ and by ΨA and ∂tΨA inside Γ.

3. Use the homogeneous equation, Eq. (9) with the
right-hand side set to zero, together with the data at
t1 to obtain ΨN at a later time t2 everywhere outside
Γ, as illustrated in Fig. 3. This requires data from
inside Γ at t1, which is provided by ΨAðt1; rÞ and
∂tΨAðt1; rÞ.

This can then be repeated indefinitely. Note that the time
interval from one slice to the next is tied to the length scale
of the buffer region. The evolution from tk to tkþ1 should
only draw upon data for ΨA in the buffer region, implying

that the time intervals must be of order R or shorter. In
principle, this division of spacetime into time intervals need
not be associated with one’s numerical discretization, and
the spacetime region between tk and tkþ1 can be spatially
discretized in any convenient way.
Our description here refers to an evolution between

slices of constant t, but it extends straightforwardly to any
choice of slicing, including particularly the characteristic
slicing we work with in Sec. IV. In general, the one-
dimensional series approximation (17) is replaced by a two-
dimensional series in powers of coordinate distances (Δt
andΔr or appropriate null coordinates, for example) from a
reference point on the worldline. The inner product (18) is
then replaced by an integral over a two-dimensional region.
We can also naturally extend the method to an evolution in
(3þ 1) dimensions by matching to a local approximation in
a three- or four-dimensional region around the companion.
One additional aspect of this matching approach that

should be noted is that it does not inherently impose any
degree of differentiability across ∂Γ�, except in the limit
n → ∞. This contrasts with our second matching approach,
which we describe next.

B. Second approach: Matching using junction
conditions

Our second approach consists of matching the fields and
its derivatives on the surface of the worldtube. As in the first
approach, the regular part ΨR is a truncated Taylor series in
Δr�. However, here the coefficients are determined through
a Hermite interpolation using values of the field and its
derivatives up to a certain order d on ∂Γ− and ∂Γþ, i.e., we
solve the system

∂k
r�

�
ΨN−ΨP−

X2dþ1

j¼0

ψR
j ðΔr�Þj

�����
∂Γ�

¼0 for k¼0;…;d;

ð22Þ

which is a system of (2dþ 2) linear equations for the
(2dþ 2) coefficients ψR

j . Unlike in the previous scheme,
here we take the expansion order of the puncture field, nP ,
and that of the regular field, nR ¼ 2dþ 1, as independent.
The overall convergence of the scheme with respect to R is
hence limited by nP and nR. The same procedure is carried
out for the time derivative of the regular part _ΨR and
potentially further reduction variables. The Taylor expan-
sions are then used to construct the boundary data that must
be provided on the worldtube.
Boundary conditions can be interpreted and imple-

mented as modifications to the right-hand sides of the
bulk partial differential equations (PDEs), which we
assume to be strongly hyperbolic, as it is the case for
our wave equation toy model. The system remains well
posed if the boundary conditions retain strong
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hyperbolicity, which is the case when the coefficients of the
series expansion are constructed from nonprincipal deriv-
atives of ΨN only. At first sight this severely limits the
achievable expansion order, because we can use at most up
to first derivatives of ΨN and only field values of _ΨN .
However, this limitation can be overcome by introducing an
auxiliary system of ODEs evolving variables that represent
the derivatives ∂k

r�ΨN j∂Γ� and ∂k
r�
_ΨN j∂Γ� up to derivative

order d. The ODEs must be formulated compatibly with the
bulk PDEs, which can be done by taking derivatives of the
bulk equations. The coefficients ψR

j are then computed
using these auxiliary variables instead of data from the bulk
PDEs. The auxiliary ODE system is solved simultaneously
with the PDE system in a fashion not involving principal
(or higher) derivatives of the PDE variables.
The boundary regular field derivatives ∂k

r�ΨRj∂Γ� are
related to the coefficients ψR

j through a simple matrix
transform that follows from Eq. (22),

∂kΨR

∂r�k
����∂Γ�

¼
X2dþ1

j¼0

ψR
j
∂kðΔr�Þj
∂r�k

����∂Γ�

for k¼0;…;d: ð23Þ

Hence, for a linear system like the wave equation, this
approach of using auxiliary ODEs is equivalent to evolving
the regular part of the field inside the worldtube using a
spectral method, similar to puncture schemes in self-force
calculations, as is discussed in the next section. For
nonlinear systems however this split into a regular part
might not be possible, whereas the scheme presented here
could still be a viable option when dealing with such
systems.
From the equivalence to a collocation-based spectral

method it is possible to derive a numerically stable scheme
to couple the bulk PDEs to the auxiliary system. This
equivalence also explains how to control nonlocal effects
that one might expect in an excision scheme. As long as the
stability criteria of the equivalent spectral method are
satisfied, this excision approach will satisfy them as well.
These criteria entail satisfaction of a CFL-like inequality
and using “energy preserving” boundary conditions. For a
nonlinear field equation, this discretization using boundary
derivatives will no longer be equivalent to a collocation-
based method. However, both approaches converge to the
same continuum limit and all stability criteria should
still apply.
Our second matching approach will be developed in full

in Sec. VI using a spectral method formulated on Cauchy
slices, and its performance will be explored in Sec. VII.

C. Error estimates and connection
to standard puncture methods

Our excision procedure is similar in some ways to the
puncture schemes used in numerous self-force calculations

[14,15]. However, there is a crucial difference that we
clarify (and motivate) here.
In a standard puncture scheme, one splits the exact field

into two pieces,Ψ ¼ Ψ̃P þ Ψ̃R. Here Ψ̃P captures the local
singularity at the particle but is attenuated to zero outside
some neighborhood of the particle. For example, it could be
the field ΨP we work with in this paper but multiplied by a
step function θðR − jΔrjÞ that vanishes outside Γ. Unlike
the field ΨR that we work with, Ψ̃R is the exact differ-
ence Ψ̃R ≔ Ψ − Ψ̃P .
Using this split, one treats Ψ̃R as the field variable,

rearranging Eq. (9) to formulate a field equation with an
effective source,

□Ψ̃R ¼ SðtÞδðr� − r�pÞ −□Ψ̃P ≔ Seff ; ð24Þ

where for brevity we have defined □ ≔ ∂2
t − ∂2

r� þ V and
continued to omit lm labels. Equation (24) is solved over
the entire domain, without excising a region around the
particle, and with the same boundary conditions on Ψ̃R as
on Ψ. In such a scheme, there is no approximation: outside
the support of Ψ̃P , the solution for Ψ̃R is identical to Ψ;
inside, one can add Ψ̃P to likewise obtain the exact Ψ.
While this method is well suited to linear field equations,

its applicability to the fully nonlinear Einstein equations is
unclear. Due to nonlinearities, the metric of a tidally
perturbed black hole is not a simple sum of singular and
regular pieces, and one cannot simply move a piece of the
metric to the right-hand side of the field equations. The
excision methods we explore in this paper represent an
alternative that should extend to the nonlinear problem.
However, they do so at the cost of introducing an
approximation; unlike a traditional puncture scheme, our
methods do not yield the exact field Ψ.
First consider the error in our method inside Γ. In that

region we use the approximation ΨA, which differs from Ψ
by an amount of order ðΔrÞnþ1 at best. This is a best-case
estimate because it assumes that our matching methods
enforce the exact values 1

j! ∂j
rðΨ −ΨPÞjr¼rp for the coef-

ficients ψR
j in Eq. (15). For simplicity, let us assume this

best case.
Now consider the field outside Γ. More concretely,

consider a bounded region V with ∂Γ as one of its
boundaries; in a Cauchy evolution, the other boundaries
might be an initial-data surface (outside Γ) and timelike
boundaries far away, for example. Inside V, our field ΨN

satisfies the same homogeneous field equation as Ψ,
□ΨN ¼ 0, but it inherits errors that propagate out from
Γ. Those errors can be understood by writing ΨN in a
Kirchhoff integral form [34]. We introduce a retarded
Green’s function satisfying

□Gðx; x0Þ ¼ □
0Gðx; x0Þ ¼ δ2ðx; x0Þ; ð25Þ
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where x ¼ ðt; r�Þ, □0 ≔ ∂2
t0 − ∂2

r0� þ Vðr0Þ, and δ2ðx; x0Þ ≔
δðt − t0Þδðr� − r0�Þ. If we now take any point x ∈ V, then
Eq. (25) and □ΨN ¼ 0 imply the identity

ΨNðx0Þ□0Gðx; x0Þ −Gðx; x0Þ□0ΨNðx0Þ ¼ ΨNðx0Þδ2ðx; x0Þ:
ð26Þ

Integrating this equation over all x0 ∈ V and then using
integration by parts, we obtain the Kirchhoff representation

ΨNðxÞ ¼
Z
V
½ΨNðx0Þ□0Gðx; x0Þ

−Gðx; x0Þ□0ΨNðx0Þ�d2x0;

¼
Z
∂V

½ΨNðx0Þ∂n0Gðx; x0Þ

−Gðx; x0Þ∂n0ΨNðx0Þ�ds0: ð27Þ

Here the coordinate area element in V is d2x0 ¼ dt0dr0�. ∂n0

is the partial derivative normal to the boundary ∂V, and ds0
is the coordinate line element on the boundary. For us the
relevant portions of ∂V are the worldtube boundaries ∂Γ�,
where ∂n0 ¼∓ ∂r0� and ds0 ¼ dt0.
From the Kirchhoff form, we see that ΨN inherits two

errors, respectively proportional to the errors in ΨN j∂Γ and
∂r�ΨN j∂Γ. Suppose thatΨN ¼ ΨA þOðjΔrjnþ1Þ in an open
neighborhood of ∂Γ, as we seek to enforce in our first
matching approach. ThenΨN j∂Γ has an error of order Rnþ1,
but ∂r�ΨN j∂Γ has an error of order Rn. The field ΨN

therefore differs from Ψ by OðRnÞ throughout V. This
represents a loss of one order relative to the OðRnþ1Þ
scaling that one might naively expect. Our numerical
analysis in Sec. V confirms this OðRnÞ error estimate.
However, our second matching approach more directly
controls derivatives at ∂Γ, and in Sec. VII we find that in
certain cases this second approach yields the more rapid,
OðRnþ1Þ convergence.
Analogous error estimates can be obtained for the ð3þ

1ÞD problem using a covariant Kirchhoff representation of
the form (138) in Ref. [35]. A similar estimation might also
be possible in fully nonlinear general relativity using
Eq. (39) of that reference (reproduced from Ref. [36]).

IV. SCHEME I: NUMERICAL METHOD

A. Setup

In scheme I we use a finite-difference method based on a
uniform, fixed characteristic mesh in Eddington–
Finkelstein coordinates

u ¼ t − r�; v ¼ tþ r�: ð28Þ

Figure 4 illustrates the basic setup. The numerical evolution
starts from characteristic initial data specified on two initial

rays v ¼ v0 and u ¼ u0 (blue, square grid points in the
figure), chosen to intersect at the radius r� ¼ r�p of the
scalar charge’s circular orbit (dashed red line running
vertically at the center of the grid); that is, v0 − u0 ¼
2r�p. An excision worldtube of width Δr� ¼ 2R is intro-
duced around the orbit, with boundaries at r� ¼ r�p � R
(vertical red lines), chosen to intersect grid points. The
numerical evolution proceeds along successive character-
istic rays using a finite-difference formula to be described
in Sec. IV B below. At each time step, we integrate first
along a u ¼ constant ray starting at v ¼ v0 and progressing
outwards up until tube’s left boundary, and then along the
corresponding incoming ray v ¼ uþ 2r�p starting at u ¼
u0 and progressing inwards down to the tube’s right
boundary. At each time step, a matching procedure then
follows (described in Sec. IV C below), in which the value
of the analytical model ΨA is determined along the
remaining sections of the two rays inside the tube. In
particular, we assign analytical values to two “ghost” grid
points adjacent to the tube’s boundary in its interior (black
starred points in the figure); these are needed for the
subsequent time step of the numerical evolution.
Our characteristic mesh has a fixed (preset) stepping

interval h in both u and v. The value of the field at a grid
point with coordinates ðu; vÞ outside the tube (or on its
boundary) is determined by our finite-difference formula

FIG. 4. The ð1þ 1ÞD characteristic mesh used in scheme I,
with a fixed, uniform grid based on Eddington-Finkelstein
coordinates u, v. The particle’s circular orbit is represented by
the dashed (red) line running vertically down the center. The solid
(red) vertical lines mark the boundaries of the excision worldtube.
Outside the worldtube we evolve the field equation numerically
along characteristic rays (as described in the text) using a finite-
difference formula detailed in Sec. IV B. The evolution starts
from characteristic initial data set on the two initial rays v ¼ v0
and u ¼ u0 (blue square grid points) and proceeds to determine
the data points in the bulk of spacetime outside the tube and on its
boundaries (gray circle points). At each time step, a matching
procedure, described in Sec. IV C, is applied to determine the
parameters of the approximate analytical solution on the remain-
ing sections of the characteristic rays inside the tube, and in
particular on the two “ghost” grid points (black, starred) needed
at subsequent steps of the evolution.
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based only on previously obtained values at the three grid
points with coordinates (u − h, v), (u; v − h) and
ðu − h; v − hÞ. This, as we show in Sec. IV B, suffices
for obtaining a quartic Oðh4Þ local convergence and a
quadratic Oðh2Þ global convergence.
The physical initial data for the numerical evolution are,

of course, unknown to us except in the case of stationary,
m ¼ 0 modes, where the entire solution is known analyti-
cally, Eq. (12). We thus resort to assigning fictitious initial
data, and rely on dissipation of the resulting junk radiation
over time. In postprocessing we monitor the level of
residual junk radiation, discard the early, junk-contami-
nated portion of the evolution, and retain only the remain-
ing underlying “physical”, approximately stationary
solution. In practice, we choose to set Ψ ¼ ΨP on the
portions of the rays v ¼ v0 and u ¼ u0 inside the world-
tube, and attenuate smoothly to zero with a Gaussian across
the tube’s boundary. The value of the field Ψ on the two
complete rays v ¼ v0 and u ¼ u0 suffices, in principle, to
determine the solution anywhere in the domain of depend-
ence u > u0 and v > v0.

B. Finite-difference formula

We now describe the algorithm used to integrate the
wave equation numerically outside the excision region. Our
method is a standard one, used extensively in self-force
literature, legacy of early work by Lousto and Price [37].
Since we evolve numerically only in the vacuum region
outside the excision tube, it suffices to consider the scalar
field equation (9) in vacuum. In terms of the u, v
coordinates it reads

∂u∂vΨþ 1

4
VðrÞΨ ¼ 0; ð29Þ

where hereafter ∂u is taken with fixed v and ∂v is taken
with fixed u. Our goal is to write a finite-difference version
of this equation on the characteristic grid described above.
To this end, consider a generic vacuum grid point with

coordinates ðu; vÞ, and assume the field has been computed
in previous steps at all grid points within the past light cone
of ðu; vÞ (to the future of the initial surfaces). Consider the
grid “cell” with vertices ðu; vÞ, (u − h, v), (u; v − h) and
ðu − h; v − hÞ, where, recall, h is our fixed step size in both
u and v. To obtain our finite-difference formula, it is
convenient to consider the formal integral of both sides of
Eq. (29) over the area of the grid cell. For the principal part
of the equation we obtain

ZZ
cell

∂uvΨdudv¼Ψðu;vÞ−Ψðu;v−hÞ

−Ψðu−h;vÞþΨðu−h;v−hÞ; ð30Þ

which is exact, and does not incur any finite-differencing
error. For the potential term in Eq. (29) we obtain

1

4

ZZ
cell

VðrÞΨdudv¼ h2

8
VðrcÞ½Ψðu;v−hÞþΨðu−h;vÞ�

þOðh4Þ; ð31Þ

where VðrcÞ is the value of the potential at the center of the
cell, i.e., at r�c ¼ ðv − u − hÞ=2. Since the cell integral of
the right-hand side of Eq. (29) is zero, combining the above
results gives

Ψðu; vÞ ¼ ½Ψðu; v − hÞ þΨðu − h; vÞ�
�
1 −

h2

8
VðrcÞ

�

−Ψðu − h; v − hÞ þOðh4Þ: ð32Þ

This simple finite-difference formula has a local error of
Oðh4Þ at each vacuum grid point. Since the total number of
vacuum grid points scales as 1=h2 (for fixed physical grid
dimensions), we expect the global cumulative error to scale
like h2.
We note that the above, quadratically convergent scheme

requires only three input data points to determine the field
value at each vacuum point. These three data points are
always available from previous steps of the characteristic
evolution. To calculate points that are on the tube’s
boundary, an input data point is required from inside the
tube. For this internal point we use the value of the
approximate analytical field ΨA, which will have been
fitted for in the previous time step of the evolution, using
the procedure described in Sec. IV C below.

1. Test evolution with a point particle and no excision

For test and benchmarking, we have also developed a
version of our code that solves the full inhomogeneous field
equation (9) as it is, without an excision. In this case the
vacuum regions extend to the exposed scalar charge, and
we must modify our finite-difference scheme to account for
the presence of the sourcing particle. Our vacuum for-
mula (32) still applies at all grid points, except points sitting
directly on the particle’s worldline at r� ¼ r�p, for which we
need a modified formula.
In u, v coordinates, the inhomoheneous field equation (9)

becomes

∂u∂vΨþ 1

4
VðrÞΨ ¼ 1

4
SðtÞδðr� − r�pÞ: ð33Þ

Consider a generic worldline grid point at ðu; vÞ, such that
v − u ¼ 2r�p. To write down a finite-difference expression
for the field at ðu; vÞ, we again integrate both sides of the
equation over the cell with ðu; vÞ at its upper vertex.
Recalling that (in the continuous limit) solutions are
continuous (albeit generally not differentiable) on the
particle’s worldline, we find that Eq. (30) for the principal
part still holds exactly, even for cells crossed by the particle.
Equation (31) for the potential term also holds, but the error
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term is expected to be of Oðh3Þ in general, due to the
discontinuous derivative. This, however, would suffice for
our purpose, since the number of worldline points scale
only as 1=h, and so a local error ofOðh3Þ should lead to an
cumulative global error of only Oðh2Þ, consistent with our
quadratic-convergence standard.
It remains only to evaluate the cell integral of the right-

hand side of (33). To this end, we recall the form of the
source function SðtÞ, given in Eq. (11); it depends on t only
through the factor Ȳlmðπ2 ;ΩtÞ, which itself depends on t
only through the factor e−imΩt. It is therefore convenient
here to write

SðtÞ ¼ Alme−imΩt; ð34Þ

where, we obtain,

Alm ¼ð−1Þlþm
2

γrp

�
4πð2lþ1Þðlþm−1Þ!!ðl−m−1Þ!!

ðlþmÞ!!ðl−mÞ!!
�
1=2

ð35Þ

when lþm is even, or Alm ¼ 0 when lþm is odd. The
cell integral over the source can now be readily evaluated in
exact form, giving

Z ≔
1

4

Z Z
cell

SðtÞδðr� − r�pÞdudv

¼ 1

2
hAlmsinc

�
mΩh
2

�
e−imΩtc ; ð36Þ

where sincx ≔ ðsin xÞ=x and tc is the value of t at the center
of the cell in question, i.e., tc ¼ ðvþ u − hÞ=2.
Collecting the above results, we arrive at the following

finite-difference formula, applicable at grid points traversed
by the particle,

Ψðu; vÞ ¼ ½Ψðu; v − hÞ þΨðu − h; vÞ�
�
1 −

h2

8
VðrcÞ

�

−Ψðu − h; v − hÞ þ Z þOðh3Þ: ð37Þ

For our test evolution with a point particle, we use the
vacuum formula (32) at all grid points except those on the
particle’s worldline, for which we use (37). With this, we
expect (and observe) a global quadratic convergence
with h.

C. Matching procedure

Scheme I employs the matching approach described in
Sec. III A, i.e., matching in a buffer region. In practice, the
implementation is a discretized version of the approach,
and the integral in Eq. (18) reduces to a summation over
discrete data points. With i labelling the discrete data
points, Eq. (21) becomes

Xn
j¼0

Ajkψ
R
j ðtÞh ¼ bkðtÞh for k ¼ 0;…; n; ð38Þ

with Ajk ¼
P

d
i¼1Δr

j
iΔrki and bk ¼

P
d
i¼1ðΨN

i −ΨP
i ÞΔrki .

The discretization factor h, appears on both sides of
Eq. (38) and cancels. The number d of data points must
be taken to be greater than or equal to the number of
unknown coefficients ψR

j , and the solution to Eq. (38) then

yields the least-squares polynomial regression ofΨN
i −ΨP

i .
It should be noted that alternative matching methods could
be used. However, we adopt the standard least-squares
polynomial regression for simplicity at this trial stage.
The above description assumes (for simplicity) a

Cauchy-type evolution, and it needs to be adapted for
use in our characteristic evolution setup. In the Cauchy
evolution case, the regular field component of the analytical
solution is expanded in powers of Δr about the point where
the current Cauchy slice intersects the particle’s worldline
(at the center of the tube; refer again to Fig. 3). In our
characteristic implementation, we instead choose to expand
ΨRðu; vÞ as a double Taylor series in Δu ≔ u − up and
Δv ≔ v − vp about the point of intersection of the two
current null slices ðup; vpÞ, which in our setup is a point
along the particle’s worldline at the center of the tube (refer
again to Fig. 4). The expansion takes the form

ΨRðu; vÞ ¼
Xn
i¼0

Xn−i
j¼0

ψR
ijΔuiΔvj; ð39Þ

where n is the puncture order, and the coefficients ψR
ij are

a priori unknown constant coefficients at each time step.
There are N ¼ ðnþ 1Þðnþ 2Þ=2 such coefficients. The
matching conditions in Eq. (38) are then replaced with a
suitable two-dimensional version, with solutions that are
the least-squares 2D polynomial regression model of ΨN

i −
ΨP

i over a 2D array of data points in the u, v plane. For this
to work, one must take d ≥ N, i.e., the number of data
points must be greater than or equal to the number of
coefficients ψR

ij .
In our particular implementation we choose to take

d ¼ 2N, i.e., twice as many data points as unknown
coefficients. This choice appeared to provide a good
balance in the tradeoff between accuracy and runtime.
Since, with this choice, the number of data points is always
even, it allows us to distribute them evenly and symmet-
rically either side of the worldtube. Our choice of data
points for the matching, for model orders n ¼ 1, 2, and 3, is
shown in Fig. 5. In all cases, we draw our matching points
from the current two null rays and from the two null rays in
the preceding time step (it is necessary to use data from
more than a single time step in order to fit for mix-
derivative coefficients like ψR

11).
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With these choices, the matching procedure is as follows.
As described already, at each time step we evolve the initial
data using successive applications of our finite-difference
formula along the corresponding two null rays u ¼ const
and v ¼ const (such that v − u ¼ 2r�p) running from the
initial null surfaces to the boundaries of the tube. Once this
step is completed, we record the d numerical data points
ΨN

i shown in Fig. 5, all of which are known to us from the
current or previous steps of the numerical evolution, and
then construct the d values ΨN

i −ΨP
i by subtracting the

analytically known puncture values at the corresponding
grid points. To these d values we now match the nth-order
2D polynomial given in Eq. (39) using a least-square
minimization procedure to obtain the coefficients ψR

ij . This,
in turn, determines the regular field ΨR, and thus also the
complete analytical approximation ΨA ¼ ΨR þ ΨP inside
the worldtube, in the vicinity of the current characteristic
rays. We record the values of ΨA at the two “ghost” grid
points inside the tube adjacent to the boundaries on the
current ray (starred points in Fig. 4); these two values will
be required when calculating the numerical field on the
boundary in the next time step. This concludes the
computation for the current time step, and we can now
step forward in (advance/retarded) time and repeat.
A few comments are in order. First, it may be noticed that

in the first few time steps of the evolution there may not be
available sufficiently many data points to fit all of the N
model parameters. In such cases we simply set to zero the
values of the “missing” data points. This does not cause a
problem, because the early evolution is in any case
dominated by nonphysical junk radiation; all this does is
modify the profile of the initial junk.
Second, we note that in our procedure we choose not to

impose that ΨA satisfies the field equation in the tube; if we
did, some of the coefficients ψR

ij would become mutually
dependent. For example, in the quadratic model with
n ¼ 2, imposing the field equation would determine the
coefficient ψR

11 in terms ψR
00, ψR

01, and ψR
10. Such an

alternative approach is possible, but for simplicity we
opt to treat all N coefficients ψR

ij as independent for the
purpose of the matching. By matching ΨA to a vacuum
solution over an extended region, we guarantee the field
equation is satisfied within the tube to the overall order of
accuracy of the scheme. We have confirmed numerically
that the violation of the field equation appropriately goes to
zero with decreasing worldtube size R.
Finally, we comment on the degree of differentiability of

our solution on the tube’s boundary. As already mentioned,
since we are not explicitly imposing continuity of the field
or its derivatives at the tube’s boundary, there is no reason
to expect that the field constructed via our matching
procedure should exhibit any level of differentiability there.
In practice, for our specific choice of matching data points,
we find that the discrepancy between ΨN and ΨA, and
between their radial derivatives, are numerically small and
decrease with increasing numerical resolution. Any
residual discontinuity (of order the tube error) is too small
to observe within our numerical accuracy.

V. SCHEME I: TESTS AND ANALYSIS

All of the results discussed below are for the fixed
circular geodesic orbit described in Eq. (7), with radius
rp ¼ 7M. Wewill consider two modes, ðl; mÞ ¼ ð2; 0Þ and
(2,2), as representative examples of static and radiating
modes, respectively. For the static mode we have the
analytical solution (12) for comparison, and for the radiat-
ing mode we compare the solutions obtained with an
excision worldtube to numerical solutions produced by
the “exposed” point-particle code described in Sec. IV B 1.
Our numerical solutions depend on three “control”

parameters; the uniform grid resolution h, the worldtube
radius R, and the order n of the analytical model inside
the tube. For our numerical convergence tests we use the
sequence of values h ¼ f0.02; 0.01; 0.005gM, fixing the
resolution at h ¼ 0.005M for all other tests. The value of R
for our various tests is chosen in the interval
½0.0125M; 0.8M�. In scheme I we restrict to models with
n ¼ 1, 2, 3 (while scheme II extends this to n ¼ 4, 5).
Convergence towards our benchmark solution is observed,
as expected, when decreasing h, or when decreasing R, or
when increasing n (for a sufficiently small R). In what
follows we demonstrate, explore and better quantify this
behavior using a range of numerical experiments.

A. Convergence with resolution

We start by examining the convergence of the finite
difference scheme with respect to grid resolution h, using a
local convergence test. Three runs are performed, with
fixed worldtube width R and model order n, and varying h.
Denoting by Ψh the field computed with resolution h, we
construct the local convergence index

FIG. 5. Data used to fit for the unknown parameters ψR
ij in the

linear, quadratic and cubic-order approximate analytical models
(n ¼ 1, 2, and 3, left to right respectively). Red vertical lines
mark the worldtube’s boundaries, and the red diamond is the
reference point about which the regular field is expanded in a
double Taylor series. Black circles represent the numerically
determined field data points used to the fit the parameters ψR

ij of
the analytical model inside the tube, using the procedure
described in the text.
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nh ≔ log2

����
Ψh −Ψh

2

Ψh
2
−Ψh

4

����; ð40Þ

which should yield approximately 2 for a quadratic con-
vergence. When applied to our exposed point-particle code,
the test indeed yields nh ≈ 2 after initial-junk transients
sufficiently subside; an example is shown in Fig. 6. This
confirms the quadratic convergence of our basic finite-
difference algorithm.
Next we perform our convergence test with a worldtube

excision. Here we have a choice in how the array of
matching points outside the tube is modified as we vary h.
A sensible “like-to-like” comparison is one in which the
physical position and pattern of the data points around the
worldtube is held fixed as h is varied. Proceeding in this
way, our convergence test with a worldtube excision yields
nh ≈ 1, indicating that the convergence is only linear—see
again Fig. 6 for an example. We find this deterioration in
convergence rate affects all l, m modes examined (static as
well as radiative), and all model orders attempted (n ¼ 1, 2,
3). Repeating the test with a sequence of smaller h values
does not improve the situation, and the convergence
remains linear. However, quadratic convergence is recov-
ered if (for a static mode) we replace the regression model
in the tube with the known exact analytical solution. We
also recover quadratic convergence if we “freeze” the
matched analytical model in the tube as we vary h (i.e.,
fit the model using one value of h and then apply the same

polynomial regression model when running with the other
two h values participating in our convergence test).
The apparent reduction in convergence rate may be

explained as resulting from a coupling between h-related
and R-related errors, expected when the approximate ana-
lytical model in the tube is allowed to depend on h, as in our
convergence test. To understand this, consider that the value
of the numerical field at a point x outside the worldtube is a
function Ψðx; h̃; R̃Þ ¼ ΨexactðxÞ þ δΨðx; h̃; R̃Þ depending
parametrically on both h̃ ≔ h=m1 and R̃ ≔ R=m1 (we ignore
here the dependence on n, assumed fixed for the rest of this
discussion). For small h̃ and R̃, the error term may be
expressed as a double Taylor expansion, δΨ ¼ P

i;j aijh̃
iR̃j.

The terms with j ¼ 0 describe the usual discretization error
for R → 0 (exposed point particle); we have a00 ¼ 0 ¼ a10,
with the leading term being a20h̃

2 for our quadratically
convergence code. The terms with j ≠ 0 arise from the
approximate nature of the analytical solution in the tube.
According to the argument in Sec. III C (and as demonstrated
in the next subsection), the leading finite-R error is ofOðRnÞ,
and it is therefore expected to have the form δΨ ≃ ða0n þ
a1nh̃þ � � �ÞR̃n in general.Whenwe construct the index nh in
our convergence test, the contribution from the ∝ a0n term
cancels out, and nh is dominated by the ∝ a1n error term,
giving rise to the observed linear convergence in h at fixedR.
The crucial point here is that, in our convergence test, we
allow the value of the approximate analytical model on the
tube’s boundary to depend on h (in a complicated way, via a
matching procedure that involves numerical data points that
themselves depend on h), and as a result the R-related error
also becomes h-dependent. When we freeze the analytical
model (or use the exact analytical solution for it)we decouple
between the h-related and R-related errors, and quadratic
convergence is recovered.
We note the occurrence of such linear in h error terms is

not necessarily a weakness of our scheme; in practice, for a
particular choice of h and R, the error term a1nh̃Rn is not
necessarily numerically larger than the term a02h̃

2. Rather,
the occurrence of a linear term is a somewhat artificial
combined feature of the particular matching procedure
applied and the particular way the convergence test is
designed. The lesson from the above discussion is that one
should exercise caution in designing and interpreting
convergence tests for a worldtube scheme, being mindful
about the potential effect of coupling between finite-differ-
ence and worldtube-related sources of error.

B. Convergence with worldtube size

It is of greater interest, in the context of this work, to
quantify and understand the scaling of our solutions with
the tube size R and model error n. Figures 7 and 8 show
how the local finite-R error in our numerical solutions
varies as a function of R (at fixed n; top panels) and as a
function of n (at fixed R; bottom panels). In Fig. 7 we

FIG. 6. Convergence of the numerical solution with respect to
grid resolution h. Plotted is the convergence index nh, defined in
Eq. (40), as a function of t along a slice of constant radius r� ¼
8.93258 (corresponding to the right boundary of the excision
tube). In the “standard” test, the analytical solution in the tube is
fitted for afresh for each choice of grid resolution, and the
observed steady-state convergence is linear (nh ≈ 1). For com-
parison, when we fix the analytical solution in the tube as we vary
h (“frozen fit”), the observed convergence is quadratic (nh ≈ 2),
as it is for a run with an exposed point particle without an excision
tube (“point particle”). The reduction in convergence rate
evidently caused by the matching procedure is discussed in
the text.
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measure the finite-R error by comparing with the exact
analytical solution for the static mode (2,0) and in Fig. 8 we
measure it by comparing with numerical solutions obtained
using our exposed point-particle code. In both cases we
display the relative differences as functions of r� on a late-
time t ¼ constant slice.
We see that, as expected, our solutions generally become

more accurate as we decrease R or increase n. We note that
even with the simplest, linear (n ¼ 1) analytical model, and
with a tube radius as large as R ¼ 0.1M, the worldtube-
related error is only around 1% almost uniformly. There is a
marked reduction in error at smaller R and larger n, except
near the worldtube (at r� ≈ 9M in these figures, too narrow
to be resolved), where the error seems to saturate. As we
demonstrate further below, the saturation marks the point
where finite-difference error becomes dominant over R-
related error, so that a further decrease in R (or increase in
n) does not lead to a further reduction in overall error. The
effect ismost pronouncednear theworldtube, since the finite-
difference error is largest there (where field gradients are
largest), while worldtube error (we expect) remains roughly
spatially uniform. The effect is exacerbated by the fact that as
we decrease R we expose more of the high-gradient region
surrounding the particle. To fully demonstrate convergence

with R or n near the tube would require a concurrent
refinement of resolution there.
To quantify the rate of convergence with respect to R (at

fixed n and h), we construct the index

nR ¼ log2

����ΨR −ΨR
2

ΨR
2
−ΨR

4

����; ð41Þ

whereΨR0 represents the value of the field calculated with a
tube radius R ¼ R0. This measures the “internal” conver-
gence of the numerical solution as we decrease R (as
opposed to convergence to the exact solution, illustrated in
Figs. 7 and 8). Figure 9 shows nR as a function of t along an
r ¼ constant. We observe nR ≈ n, indicating that the
dominant tube-related error is of OðRnÞ—precisely as
predicted in Sec. III C
So far we have been considering local measures of error,

ones depending on location and time. It is also informative
to examine a global error norm, which we now introduce
and adopt for the rest of our analysis here and in Sec. VII.
We denote by kΨkL1 the L1 norm of a numerical field Ψ
evaluated on a t ¼ constant slice. The numerical data points
for this norm are sampled uniformly in r� in the domain
½−100M; r�p − R� ∪ ½r�p þ R; 100M�. When comparing
norms corresponding to runs with different R values, the
largest of the R values is used for all norms.

FIG. 8. The relative finite-R error in Ψ22 as measured by
comparison with the (accurate) numerical solution Ψpp from our
point-particle code. The format of this plot and all other details
are as in Fig. 7.

FIG. 7. The relative finite-R error in Ψ20 as measured by
comparison with the exact analytical solution Ψexact. In the upper
panel we vary the tube radius R at fixed model order n ¼ 2, and in
the lower panel we vary n at fixed R ¼ 0.1M. The relative
difference is shown on a late-time t ¼ constant slice. The
numerical resolution is h ¼ 0.005M in all cases.
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The top panel in Fig. 10 shows the value of the relative
error norm kΨ −ΨexactkL1=kΨexactkL1 as a function of R for
the static mode (2,0), with Ψexact being the exact analytical

solution. We see that the error norm decreases with
increasing model order n and decreasing tube size R,
but for n ¼ 2, 3 it seems to saturate at small R. This
behavior is consistent with what we saw in Figs. 7 and 8;
when the worldtube error magnitude falls below that of the
discretization error, a further reduction in tube size does not
improve the accuracy of the solution. This explanation is
further supported by the data shown in the lower panel of
Fig. 10, where we display the internal error norm
kΨR −ΨR=2kL1=jΨR=2jjL1 ; here we see a monotonic con-
vergence with R at a constant rate even for n ¼ 2, 3—the
field norm converges to a value that differs slightly from
kΨexactkL1 due to the dominating h-related error.
To quantify the rate of convergence of the global norm

with R, we introduce the convergence index

nðnormÞ
R ≔ log2

kΨR −ΨR
2
kL1

kΨR
2
−ΨR

4
kL1

; ð42Þ

plotted in Fig. 11. We observe nðnormÞ
R ≈ n, i.e., the tube-

related error is OðRnÞ also as measured by the global L1

norm. Similar results are obtained for other l, m modes.

VI. SCHEME II: NUMERICAL METHOD

A. Evolution equations

By introducing the new variables

π ≔ ∂tΨ; ð43Þ

χ ≔ ∂r�Ψ; ð44Þ

we reduce the evolution equation (9) (in the vacuum region
outside the worldtube) to the first-order system

FIG. 10. Top panel: Relative L1 error norm with respect to the
exact analytical solution, as a function of worldtube radius R.
Bottom panel: Internal relative error norm calculated by varying
R. In both cases the finite-difference resolution is held fixed at
h ¼ 0.005. The saturation of error in the upper panel is due to the
finite-difference error becoming dominant at small R.

FIG. 11. Convergence of the L1 norm with respect to R, at fixed
model order n and resolution hð¼ 0.005MÞ. We plot the internal

convergence index nðnormÞ
R , defined in Eq. (42), and observe

nðnormÞ
R ≈ n. Thus the worldtube error scales like ∼Rn also as

measured by the global L1 norm.

FIG. 9. Convergence of the numerical solution with respect to
tube size R, at fixed model order n and resolution hð¼ 0.005MÞ.
We plot the internal convergence index nR, defined in Eq. (41), as
a function of t along a fixed radius of r� ¼ 8.93258M. To obtain
nR (for each model order n) we carry out three runs with
R ¼ 0.1M, 0.05M, and 0.025M. After the decay of initial junk,
the convergence order appears to be nR ≈ n, indicating that the
dominant tube-related error is of OðRnÞ.
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∂tΨ ¼ π; ð45aÞ

∂tπ ¼ ∂r�χ − VΨ; ð45bÞ

∂tχ ¼ ∂r�π þ κð∂r�Ψ − χÞ; ð45cÞ

where κ is a constraint-damping parameter controlling how
strongly violations of the constraint (44) are damped (see
[38], where the symbol γ2 corresponds to our κ). In practice
we chose κ ¼ 1 for all the results presented for this scheme.
We further introduce the puncture and regular fields πP , χP ,
πR, χR of the reduction variables π and χ, as well as their
corresponding analytical approximations in the tube, πA ¼
πP þ πR and χA ¼ χP þ χR.
We now introduce auxiliary variables Ψ̃ðtÞ, Ψ̃0ðtÞ, and

Ψ̃00ðtÞ defined on the worldtube boundary ∂Γ, which are to
act as intermediaries in conveying information to and from
the approximate solution within the worldtube. These
represent, respectively, the field Ψ, and its first and second
r� derivatives on ∂Γ. Similarly, we introduce π̃, π̃0, and π̃00,
as well as χ̃, χ̃0, and χ̃00. These fields are determined by
solving a set of ODEs along ∂Γ, obtained from the
restriction of Eqs. (45) to the boundary

∂tΨ̃ ≙ π̃; ð46aÞ

∂tπ̃ ≙ χ̃0 − VΨ̃; ð46bÞ

∂tχ̃ ≙ π̃0 þ κðΨ̃0 − χ̃Þ. ð46cÞ

The symbol ≙ denotes equality on ∂Γ. The ODEs for
ðΨ̃0; π̃0; χ̃0Þ arise from the radial derivative of Eqs. (45),
restricted to the boundary:

∂tΨ̃0 ≙ π̃0; ð46dÞ

∂tπ̃
0 ≙ χ̃00 − Ψ̃∂r�V − VΨ̃0; ð46eÞ

∂tχ̃
0 ≙ π̃00 þ κðΨ̃00 − χ̃0Þ. ð46fÞ

Finally, the ODEs for ðΨ̃0; π̃00; χ̃0Þ arise from the second
spatial derivative of Eqs. (45),

∂tΨ̃00 ≙ π̃00; ð46gÞ

∂tπ̃
00 ≙ ∂3

r�χ
A − Ψ̃∂2

r�V − 2Ψ̃0∂r�V − VΨ̃00; ð46hÞ

∂tχ̃
00 ≙ ∂3

r�π
A þ κð∂3

r�ΨA − χ̃00Þ: ð46iÞ

To close the set of auxiliary ODEs, Eqs. (46h) and (46i)
couple to the matched analytical approximations ΨA, πA,
and χA. ΨA is obtained by solving Eq. (22) using as ∂j

r�ΨN

the six boundary values Ψ̃, Ψ̃0, Ψ̃00 (three each at ∂Γ− and at

∂Γþ). Analogously, πA and χA are obtained using π̃, π̃0, π̃00,
and χ̃, χ̃0, χ̃00, respectively. The system of equations (45) are
not yet coupled to the exterior (bulk) solution; this coupling
will be discussed and incorporated below in Sec. VI C.
The ODE system above yields an approximate analytical

solution whose regular part is accurate throughOðΔr�5Þ. In
Sec. VII we also investigate setups with regular fields
expanded to OðΔr�3Þ only. For these tests we discard Ψ̃00,
π̃00, and χ̃00 and the corresponding evolution equa-
tions (46g)–(46i), and use a third-order analytical approxi-
mation to close the system. The auxiliary system could be
extended to arbitrary derivative orders in an obvious way,
by taking sufficiently many derivatives of the field equa-
tions. Note that the scheme can be interpreted as evolving
the regular parts only, since the puncture field and its spatial
and temporal derivatives are known up to a given order
through Eq. (13).

B. Boundary treatment

Boundary conditions must be provided on the outer
boundaries of the computational domain and on the
excision boundary ∂Γ. Furthermore, if the computational
domain is divided into smaller elements, then boundary
conditions are needed at the interfaces where neighboring
elements meet. For the boundary implementation presented
here we assume a numerical scheme that is formulated on
collocation points. To derive the boundary implementation
we perform a characteristic decomposition [39] of the
system of PDEs. We write the system in the form

∂tu ¼ Ak∂kuþ fðuÞ; ð47Þ

where u ¼ ðΨ; π; χÞ is the vector of evolution variables, Ak

are the principal part matrices and f contains the non-
principal terms. The characteristic vectors v are the left
eigenvectors of Akŝk, where ŝ is the respective outward
pointing unit normal to the element boundary; here, since
we work in one spatial dimension, ŝ has only one
component and the index is suppressed in the notation.
The characteristic speeds λ are the corresponding eigen-
values. The characteristic variables are the inner products of
v and u, i.e., for our system,

û� ¼ π � ŝχ þ κΨ λ� ¼ �1

û0 ¼ Ψ λ0 ¼ 0:
ð48Þ

Characteristic variables with positive characteristic speed
are referred to as incoming and boundary conditions must
be provided for them, i.e., we have to provide boundary
data for ûþ. Characteristic variables with λ < 0 are out-
going and no boundary condition is needed. Likewise we
do not need boundary conditions for the static characteristic
variable û0.
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We modify the time derivatives of the incoming char-
acteristic variables at the boundary points to impose
boundary conditions. At the interface between elements
we employ a penalty method [40], modifying the time
derivative of the incoming characteristic field ûþ in the
following way,

∂tûþ ¼ Dtûþ þ pλþðûþneighbour − ûþÞ; ð49Þ

where Dt is the time derivative constructed from the
evolution equations (45), before the boundary modification
has been added. Furthermore, ûþneighbour denotes the value of
ûþ on the neighboring element (i.e., evaluated with data
from the neighboring element, but still using the surface
normal ŝ pointing out of the current element). Finally, the
penalty parameter p is chosen to be p ¼ J=w as in [40],
which guarantees stability of the method. Here J ¼ ∂x=∂r�
is the Jacobian associated to transformations from the local
coordinates x of the element to the global coordinates r� of
the computational domain and w is the integration weight
of the point at the element boundary for the quadrature on
the element grid. The given expression for the penalty
parameter holds for integration weights satisfying a sum-
mation by parts property [41] with respect to the derivative
stencil of the numerical method. We now introduce

b�ðr�Þ ¼
�
1; if r� ¼ r��
0; if r� ≠ r��

; ð50Þ

where r�− and r�þ denote the position of the element’s left
and right boundary, with the corresponding boundary
normals being ŝ ¼ −1 on r�− and ŝ ¼ 1 on r�þ. The
modified equation of motion can be rewritten as

∂tûþ ¼ Dtûþ þ ½pλþðûþneighbour − ûþÞ�
r�−
b−

þ ½pλþðûþneighbour − ûþÞ�
r�þ
bþ; ð51Þ

where the subscript on the square bracket denotes the point
at which the bracketed expression is evaluated.
An alternative way to impose boundary conditions is the

Bjørhus method [42], where the time derivatives are
modified like

∂tûþ ¼ Dtûþ þ ½−λþðŝ∂r� ûþ − gÞ�r�−b−
þ ½−λþðŝ∂r� ûþ − gÞ�r�þbþ: ð52Þ

The term g models the expression for ŝ∂r� ûþ that one
desires to impose at the boundary. At the excision and the
outer boundary one can employ either the penalty or the
Bjørhus method, but for the results shown here at the outer
boundaries the latter is employed, whereas on the excision
boundary the penalty method is used.

The modifications of the original equations (45a) are
obtained after transforming back from the characteristic
variables to the evolved variables.
On the excision boundary, boundary conditions for the

penalty method are obtained from the matched analytical
solutions,

ûþneighbour ¼ πA þ ŝχA þ κΨA; ð53Þ

and similarly for the Bjørhus method,

g ¼ ŝ∂r� ðπA þ ŝχA þ κΨAÞ: ð54Þ

For the static modes we find it useful to choose

g ¼ ∂2
r�Ψexact

ŝ∂r�Ψexact
ðπ þ ŝχÞ þ κŝχ: ð55Þ

This choice ensures that in the static case, i.e., π ¼ 0, the
field has the same derivative as the exact analytical solution
(12). There are other choices consistent with the analytical
solution, but we find that this particular choice has small
numerical reflections at the boundary.
For the radiative modes we find that for large r�

the characteristic variables behave like ûþ − κΨ∼
exp½imΩðr� − tÞ�=r�2. Boundary conditions compatible
with this functional form are given by

g ¼
�
−
2

r
þ imΩ

�
ðπ þ ŝχÞ þ κŝχ: ð56Þ

Near the horizon we impose

g ¼ −imΩðπ þ ŝχÞ þ κŝχ; ð57Þ

corresponding to the behavior ûþ−κΨ∼expðimΩð−r�−tÞÞ.

C. Coupling to the boundary ordinary
differential equations

Besides coupling the auxiliary ODEs to the bulk PDEs
one also needs a prescription for the opposite direction, i.e.,
some external input for the auxiliary system, Eqs. (46). A
stable system can be derived realizing that the auxiliary
system is equivalent to a spectral method employed inside
the excision worldtube. This means we can employ the
same techniques as before when imposing boundary con-
ditions, i.e., we will modify each block of Eqs. (46) with
extra terms in the spirit of Eq. (51)—if the penalty method
is chosen—or Eq. (52), if the Bjørhus method is used. The
necessary right-hand side modifications are constructed by
assuming a fiducial spectral element spanning the world-
tube Γ on which the functions b� are evaluated. On the
fiducial element we collocate grid points employing a
Chebyshev-Gauss-Lobatto [43] collocation scheme with
the number of grid points chosen to be consistent with the
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order of expansion of the regular field, i.e., one grid point
more than the order.
The boundary data in the modification terms for the

penalty method, Eq. (49), is given simply by the values of
the bulk fields

ˆ̃uþneighbour ¼ ûþjr�� : ð58Þ

Similarly in the case of the Bjørhus method, Eq. (52), one
uses the derivatives of the bulk fields,

g̃ ¼ ŝð∂r�πjr�� þ ŝ∂r�χjr�� þ κχjr��Þ: ð59Þ

Denoting by C the square bracket expressions in either (51)
or (52), the corresponding modifications in the auxiliary
system are given by

∂t
ˆ̃uþ ¼ Dt

ˆ̃uþ þ Cr�−b− þ Cr�þbþ; ð60Þ

∂t∂r� ˆ̃u
þ ¼ Dt∂r� ˆ̃u

þ þ Cr�−∂r�b− þ Cr�þ∂r�bþ; ð61Þ

∂t∂2
r�
ˆ̃uþ ¼ Dt∂2

r�
ˆ̃uþ þ Cr�−∂2

r�b− þ Cr�þ∂2
r�bþ: ð62Þ

The system generalizes in an obvious way to higher orders
by taking higher and higher derivatives in r�, and it is
understood that Cr��

are constants with respect to r�. When
employing the penalty boundary conditions (49), the
penalty parameter contained in Cr��

is determined from
the fiducial worldtube element grid. As for the boundary
modifications of the bulk PDEs, the modifications of the
ODE system (46) are obtained by transforming back from
the characteristic variables to the evolved variables.

D. Implementation details

We evolve Eqs. (45) and (46) using the classic fourth-
order Runge-Kutta method on the spatial domain
½−300M; 300M�nΓ, where the worldtube Γ is centered
on the position r�p of the particle. The numerical domain
is divided into a set of up to 256 spectral spectral elements
and each element is collocated with 15 grid points. On each
element field values are expanded into a series of basis
polynomials and on every element the series is truncated at
the same order. For the results presented here, Chebyshev
polynomials are used as the spectral basis and the grid is
collocated on Chebyshev-Gauss-Lobatto points. Details on
how the method works can be found in [43], which we
mostly followed for our code.
For the evolution of the system to be stable, the time step

has to satisfy a CFL condition, where the relevant length
interval is given by the minimal interval Δr�min between
collocations points. Henceforth we chose the time step to
be Δt ¼ cCFLΔr�min, where it is important that the fiducial
element, which was introduced for the coupling to the
auxiliary boundary system, is also taken into account in the

determination of Δr�min. The constant cCFL is set to 0.5 for
static setups (m ¼ 0 modes), whereas for the evolution of
radiative modes we chose cCFL ¼ 0.25, which we have
checked to be sufficiently small for the results in our setups
to be converged with respect to Δt. Furthermore, we note
that the matching must be performed at every Runge-Kutta
substep, i.e., in every right-hand side evaluation. Otherwise
the scheme does not converge with fourth order with
respect to Δt.
For radiative modes it is important to treat the phase

factor e−imΩt, which is implicit in SlmðtÞ in Eq. (13), with
high numerical precision. Because of the high precision of
the spectral scheme, we are sensitive to machine round-off
in the argument of the phase factor. If we were to use the
total time t, the round-off error would grow linearly with t
and thus affect the precision of the phase factor as well.
Instead we use an approach where after every time step Δt
we multiply the phase factor by e−imΩΔt to update it for the
next time step, and normalize the result such that the norm
of the phase factor remains exactly 1. The same updating
procedure is employed for the individual Runge-Kutta
substeps, so that the phase factor corresponds to the
respective time of the substep. Furthermore, we use
quadruple precision in evaluating the evolution time. We
find this necessary to ensure that our convergence tests are
not limited by round-off error in the time at which different
configurations are compared.

VII. SCHEME II: TESTS AND ANALYSIS

A. Test setups

We investigate the scheme with two different matching
setups, which differ by the polynomial order of the matched
regular field inside the worldtube. We test one setup where
the regular field is expanded to fifth order and the auxiliary
system is evolved using the evolution equations as stated in
Sec. VI. In the second setup the regular field is expanded to
third order only and the auxiliary system is evolved using
Eqs. (46a)–(46f), with Ψ̃00, π̃00, χ̃00, replaced by their
analytical approximations to close the system. The expan-
sion of the puncture field varies from second to fifth order
and hence the second setup can probe a situation where the
truncation error is dominated by the regular field, whereas
the first setup always makes sure that the error in the
puncture field converges slower or as fast as the regular
field. Combined these setups allow us to distinguish
between the convergence behavior stemming from the
truncation of the puncture expansion and the one stemming
from the expansion of the regular field.
Because the numerical domain changes when the world-

tube radius is changed we always compute norms on the
reference domain covering values ½−100; 300�n½r�p −
2M; r�p þ 2M� to ensure comparability. For the internal
convergence tests we interpolate all solutions onto a highly-
resolved grid covering this reference domain before
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subtracting the different solutions. This accounts for the
change of grid collocation when the resolution or the
worldtube radius is changed.
We first test the scheme for the static mode l ¼ 2,

m ¼ 0, with the scalar charge in a fixed circular geodesic
orbit with rp ¼ 7M (as for scheme I). As initial data for the
evolution, the static analytical solution (12) is used.
Because of the finite-resolution truncation error, the
numerical solution does not settle to the precise analytical
solution, but to a slightly different one. The transition from
the analytical initial data to the numerical static solution
causes transient radiation propagating off the numerical
domain, with a small partial reflection at the outer domain
boundaries. After a coordinate time of ∼5000M much of
the transient radiation has decayed and the difference with
the analytical solution saturates. The numerical data at this
time is taken as the representation of the numerical static
solution.

Figure 12 shows the relative difference between the
numerical and analytic solution. The small differences are
amplified at large r�, because they are normalized by the
solution which approaches zero in this limit. The data
shows that the numerical solution does not settle down
completely, but that there remains some residual numerical

FIG. 12. Relative error of the Y20 mode for 15 points per
element using the fifth-order expansions for the puncture and
regular field, and a worldtube radius of R ¼ 0.1.

FIG. 13. Relative error of the Y44 mode for 15 points per
element using the fifth-order expansions for the puncture and
regular field and a worldtube radius of R ¼ 0.05. The data is
taken for the stationary end state at t ¼ 11000M.

FIG. 14. Error of the Y20 mode as a function of the number of
points per spectral element. The grid consists of 128 elements and
a has worldtube radius of R ¼ 0.2. The puncture and regular parts
of fields are expanded to fifth order.

FIG. 15. Top panel: L1 norm of the difference to the analytical
static solution with respect to the worldtube radius R for the Y20

mode. The indicated order nP denotes the order of expansion of
the puncture field ΨP . The regular fields are all expanded to order
five. Bottom panel: Convergence order for the L1 norm.
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noise propagating on the grid, which can be attributed to the
finite machine precision. We have also tested the numerical
scheme with different initial data and find that it settles
down to the same static solution. However, in that case the
transient radiation has a larger amplitude and takes longer
to decay.
To test the convergence with R in a nonstatic situation we

investigate the l ¼ 4, m ¼ 4 mode, with the charge again
being fixed at rp ¼ 7M. For these modes there is no
solution known in analytical form and hence we start with
zero initial data, i.e., Ψ ¼ 0, _Ψ ¼ π ¼ 0. Furthermore, we
estimate the error by taking the difference between two runs
that differ in the size of their worldtubes by a factor of two.
As in the static case, there is some transient radiation that is
radiated away until the system settles down to a stationary
state. The presence of this junk radiation is partially
obscured by the periodic changes in Ψ, but it can be
observed when taking the difference of the modulus jΨj of
two simulations with different worldtube size. Figure 13
shows the estimated relative error for the highest resolution
used in our results. It can be observed that the error on the
left side of the particle is dominated by numerical noise,
whereas on the right the difference between the two runs
looks smooth and is modulated by the periodic waveform
of the signal. The noise on the left side can be attributed to

an insufficient resolution, which is amplified by the
relatively small modulus jΨj in that area; cf. Fig. 2.

B. Convergence tests

Figure 14 shows the error as a function of the number of
collocation points per spectral element and demonstrates
the exponential convergence of our spectral discretization
scheme. The error levels off at high number of points,
because error contributions in the matched analytical
solution inside the worldtube become the dominating
source of error. Next the convergence with respect to the
size of the worldtube is tested. In these tests we report only
error quantities that are fully converged with respect to the
number of collocation points and the matched analytical
solution is the only source of error.
Figure 15 demonstrates the convergence of the first

setup, where the matched regular fields are all expanded up
to order five. It shows the L1 norm of the difference to the
exact analytical solution, along with the corresponding

convergence order nðnormÞ
R defined in Eq. (42). For even

expansion orders nP of the puncture field, the total scheme
converges with nP as predicted from the analysis in
Sec. III C, whereas for the odd orders the convergence is
one order higher. It is not known to us what causes this
irregular convergence pattern with respect to nP , but this

FIG. 16. Top panel: L1 norm of the difference to the analytical
static solution with respect to the worldtube radius R for the Y20

mode. The indicated order nP denotes the order of expansion of
the puncture field ΨP . The regular fields are all expanded to order
three. Bottom panel: Convergence order for the L1 norm.

FIG. 17. Top panel: L1 norm of the difference between
solutions with worldtube radius R and R=2 for the Y44 mode.
The indicated order nP denotes the order of expansion of the
puncture field ΨP . The regular fields are all expanded to order
five. Bottom panel: Convergence order for the L1 norm.
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finding suggests that the ∂nΨN term in Eq. (27) is sup-
pressed for odd nP .
We can not only observe a decrease in the error with

decreasing worldtube size, but also with increasing order of
the puncture expansion. The error for third and fourth order,
however, are almost identical in their magnitude. The
reason for this particular behavior is unknown to us.
Figure 16 shows the convergence behavior of the second

setup. For the cases where the expansion order of the
puncture is in the range from two to four we find
convergence consistent with the findings of the first setup.
However, for a puncture expansion order of five the
convergence order is limited by the regular solution.
Since the regular field is truncated at third order in this
setup, the analysis of Sec. III C would predict a conver-
gence order of only three and disregarding the ∂nΨN terms
a convergence order of four, but it is observed that the
convergence is actually of fifth order. This apparent super-
geometric convergence could be explained by the fact that
it is not only the fieldΨR that is expanded to third order, but
also the derivative χR. Since the third order coefficient of
χR corresponds to the fourth order coefficient of ΨR this
could lead to a scheme where the effective expansion order
of the regular field is one order higher than naively
expected.

The radiative modes exhibit an error convergence
behavior that is qualitatively identical to the static modes.
For completeness we show the corresponding convergence
behavior in Figs. 17 and 18.

VIII. CONCLUSION

Numerical simulations of binary black holes are increas-
ingly costly with more extreme mass ratio q, because the
CFL instability forces a reduction of the evolution time step
Δt≲m2 ∝ q. This article explores a new technique to
circumvent the time step limitations that arise from solving
the field equations fully numerically in the region of
spacetime near the small mass m2. We place a worldtube
of radius R ≫ m2 around m2. Inside this worldtube, we
replace the fully numerical solution by a perturbative
solution while retaining a fully numerical solution outside
the worldtube. Thus, the smallest length scales remaining
on the numerical grid are of order R, and the CFL limit is
relaxed to Δt ∼ R.
The present article explores the toy problem of comput-

ing the scalar field generated by a point charge orbiting a
Schwarzschild black hole on a circular orbit. The solutions
of this problem are illustrated in Fig. 2. We explore two
different algorithms to match the perturbed solution inside
the worldtube with the fully numerical solution outside, a
matching scheme that fits over an extended region, and a
boundary scheme that imposes conditions precisely at one
radius. We furthermore explore two different numerical
implementations for the numerical exterior solution, one
based on finite differences on a characteristic grid, the other
on spectral methods on spatial hypersurfaces. The most
accurate solutions are obtained with the spectral scheme,
which allows significantly smaller discretization errors than
the finite-difference scheme.
We achieved stable evolutions in both schemes. We also

established convergence of the results in various quantities:
in the grid spacing of the numerical domain, in the radius R
of the worldtube, as well as in the order of the approximate
perturbative solution inside the worldtube. Of primary
concern is convergence with worldtube radius R. For the
finite-difference scheme, Fig. 10 demonstrates convergence
∝ Rn for a perturbative solution of order n. For the spectral
scheme, Figs. 15 and 17 demonstrate up to sixth-order
convergence in R.
For a worldtube radius of R ¼ 0.8M, we achieve relative

errors ≲10−6 for a fifth-order perturbative solution, and
≈10−4 for a third-order internal solution. This level of
accuracy at such large worldtube radius is encouraging for
our ultimate goal—the application of the worldtube scheme
to full general relativity (GR).
The work in this paper has focused on the implementa-

tion of the worldtube architecture and exploration of
matching approaches, thus demonstrating in principle that
the proposed worldtube excision method works.

FIG. 18. Top panel: L1 norm of the difference between
solutions with worldtube radius R and R=2 for the Y44 mode.
The indicated order nP denotes the order of expansion of the
puncture field ΨP . The regular fields are all expanded to order
three. Bottom panel: Convergence order for the L1 norm.
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Future steps include ð3þ 1ÞD simulations of the scalar-
charge problem, extending over the ð1þ 1ÞD simulations
presented here. Such simulations will first proceed with the
charge on a fixed circular orbit, and subsequently they will
include scalar self-force effects resulting in an inspiral of
the scalar charge. These steps will provide valuable addi-
tional insights needed to address our ultimate goal, the full
binary black hole problem in GR at intermediate mass
ratios.
We expectmuch of ourmethodology to carry over to those

more complex cases, but with some foreseeable differences
and challenges. In the ð3þ 1ÞD scalar toy problem, in local
Fermi coordinates ðt; xiÞ centered on the scalar charge, the
scalar field has the form Φ ¼ ΦP þΦR with [34]

ΦP ¼ e
s
−

e
6s

EijðtÞxixj þOðs2Þ: ð63Þ

Here s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
δijxixj

q
is the distance from the particle, and

Eij ¼ Rtitj (evaluated on the particle) is the tidal field due to
the large black hole. This local solution takes the place of our
ð1þ 1ÞD local solution (16) [with Eq. (13)]. All the
unknowns in the ð3þ 1ÞD local solution are contained in
ΦR, just as in our ð1þ 1ÞD calculation, and after trans-
forming the local solution to whatever external coordinates
are convenient, our matching approaches should apply with
little or no fundamental change.
More significant differences appear in the full gravity

problem, where the local solution will instead be the metric
of a tidally perturbed black hole. In local coordinates
centered on the small black hole, a typical component has
the form

gtt ¼ −ð1 −m2=sÞ þ e1ðm2=sÞEijxixj þOðs3=R3Þ ð64Þ

for some function e1ðm2=sÞ [25,28], where m2 is the black
hole’s mass. Here Eij is now an effective tidal field that can
only be determined through a matching procedure; due to
nonlinearities, it is influenced by the small black hole’s own

effect on the external geometry [44]. The m2=s term in gtt
plays the role of the e=s term in ΦP , but as mentioned in
Sec. III, beyond that term the metric does not have a neat
decomposition into singular and regular pieces. Due to the
m2=s dependence in e1, the tidal term is singular at s ¼ 0.
A regular piece can still be constructed by setting explicit
appearances of m2 to 0, yielding a metric with components
of the form gRtt ¼ −1þ Eijxixj þOðs3=R3Þ, which is a
smooth vacuum solution analogous to ΦR. But the remain-
der gPαβ ¼ gαβ − gRαβ does not satisfy a simple field equation.
Any such field equation will involve complicated nonlinear
dependence on gRαβ, such that gPαβ cannot be determined

without simultaneously determining gRαβ. This should not
pose a problem for us because, by design, our matching
approaches allow us to match the total metric to the external
solution rather than solving field equations for a residual
field as in a traditional puncture scheme discussed in
Sec. III C.
A more pronounced practical complication in the gravity

problem is that we will not know in advance the trans-
formation from the local coordinates of Eq. (64) to the
coordinates used in the external numerics. The transforma-
tion must be determined as part of the matching procedure.
Likewise, the motion of the small black hole must be
determined dynamically through matching. We leave these
challenges for future work.
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