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We study the spontaneous excitation of a two-level atom in the presence of a perfectly reflecting mirror,
when the atom, or the mirror, is uniformly accelerating in the framework of the generalized uncertainty
principle (GUP). The quantized scalar field obeys a modified dispersion relation leading to a GUP
deformed Klein-Gordon equation. The solutions of this equation with suitable boundary conditions are
obtained to calculate the spontaneous excitation probability of the atom for the two separate cases. We show
that in the case when the mirror is accelerating, the GUP modulates the spatial oscillation of the excitation
probability of the atom, thus breaking the symmetry between the excitation of an atom accelerating relative
to a stationary mirror, and a stationary atom excited by an accelerating mirror. An explicit violation of the
equivalence principle seems to be thus manifested. We further obtain an upper bound on the GUP
parameter using standard values of the system parameters.
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I. INTRODUCTION

The general theory of relativity discovered by Einstein
[1] is a theory of gravity that has its foundations based on
geometrical ideas. It has been realized that there is a deep
connection of general relativity with thermodynamics. This
understanding has arisen due to developments such as the
formulation of black hole thermodynamics [2], emission of
all species of particles from the strong gravitational field of
black holes known as Hawking radiation [3], the Unruh
effect where accelerating atoms in their ground states
moving through Minkowski vacuum go to an excited state
by absorbing Rindler particles [4], and an acceleration
radiation where an inertial observer interprets the absorp-
tion of Rindler particles as the emission of Minkowski
particles [5,6].
It is also known that the unification of quantum

mechanics with the general theory of relativity poses
formidable challenges, and the search of a consistent
quantum theory of gravity has been one of the main lines
of research in theoretical physics. A lot of effort has been
devoted in the domains of string theory [7] and loop
quantum gravity [8] to develop a consistent quantum
theory of gravity. A common understanding from these
investigations has been the existence of an observer
independent length scale, the so-called Planck length
lP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Gℏ=c3

p
∼ 10−33 cm. The presence of such a length

scale emerges naturally from a modified version of the

uncertainty principle known as the generalized uncertainty
principle (GUP) [9].
The GUP has been employed to address several physical

problems, namely, violation of Lorentz invariance [10],
black hole physics [11], Unruh effect [12], as well as
certain phenomena in low energy systems [13]. Such low
energy systems have opened up a new arena to look for
indirect experimental evidence of quantum gravity effects
[14]. One such evidence is the violation of the gravitational
weak equivalence principle. Violation of the classical weak
equivalence principle [15] has been extensively studied in
arenas such as gravity induced interference experiments
[16], for particles bound in an external gravitational
potential [17], and for particles freely falling under gravity
[18], to name a few. The transformation of quantum states
between reference frames needs careful attention [19],
leading to implications on the equivalence of acceleration
and gravity for quantum systems [20]. A quantum version
of the equivalence principle has been proposed in [21].
The equivalence principle has turned out to be a subject

of fascinating debate in the context of terrestrially imple-
mentable low energy experiments such as the case of an
accelerated atom interacting with a quantum field [22].
Investigations have shown that a violation of the principle
of equivalence can be observed in the response function of
an Unruh-DeWitt detector for different spacetimes and
vacua [23], though the detector’s design and the properties
of the field with which it is interacting may also lead to the
absence of thermal response [24]. Radiative properties of
single [25] and entangled [26] accelerated atoms have been
studied earlier extensively. Recently, it was observed [22]
that virtual transitions such as the emission of a real photon
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from the excitation of a static two-level atom due to the
uniform acceleration of a mirror have a probability gov-
erned by the Planck factor which involves the photon
frequency and the Unruh temperature. It was further
noticed that the result differs from the Unruh radiation
of an atom accelerating uniformly with respect to a static
mirror. In the latter case, the Planck factor appearing in the
probability of transition depends on the frequency of the
atom instead of the frequency of the photon emitted.
A subtle manifestation of the equivalence principle

occurs nonetheless, in terms of the symmetry between
the excitation of a stationary atom by a uniformly accel-
erating mirror in Minkowski spacetime and an atom
accelerating uniformly with respect to a stationary mirror
when the frequency of the emitted photon is identical to the
frequency of the atom. The equivalence principle may be
envisaged [22,27] in terms of a symmetry between exci-
tation of a stationary atom by an accelerating mirror
(Rindler vacuum) and the excitation of an atom freely
falling under gravity with respect to a stationary mirror
(Boulware vacuum). A similar argument can be put forward
in terms of symmetry between the excitation of an atom
accelerating in Minkowski spacetime relative to a sta-
tionary mirror (Minkowski vacuum) and the excitation of a
stationary atom by a mirror freely falling in a gravitational
field (Hartle-Hawking vacuum). A deviation from such
symmetry can be regarded as a manifestation of violation of
the equivalence principle.
The relevance of the GUP comes precisely in this

context, since it takes quantum gravity effects into account.
However, violation of the equivalence principle in the
framework of the GUP has hitherto remained unexplored in
the literature. In the present work our main goal is to look at
the status of the equivalence principle in the framework of
the GUP. Our investigation is performed in the setting of a
relatively accelerating atom-mirror system. Here, it is
worthwhile to note that experimental implementation of
the accelerating atom-mirror system has been proposed
using superconducting circuits [28–31]. Moreover, efforts
to constrain the value of the GUP parameter that have so far
come from nanomechanical and optomechanical setups
[32], can easily be extended for the present setup, as well.

II. EXCITATION OF AN ATOM BY DIFFERENT
VACUA IN THE GUP FRAMEWORK

The simplest form of the GUP proposed in the literature
reads [13]

ΔqiΔpi ≥
ℏ
2
½1þβðΔp2þhpi2Þþ2βðΔp2

i þhpii2Þ� ð1Þ

where β is the GUP parameter (β → 0 leads to the limit of
the Heisenberg uncertainty relation), and p2 ¼ pipi (with
sum on i) and i ¼ 1, 2, 3. This is equivalent to the following
modified Heisenberg algebra:

½qi; pj� ¼ iℏðδij þ βδijp2 þ 2βpipjÞ: ð2Þ

We consider an atom-mirror system in the presence of a
quantized scalar field whose canonical momentum operator
satisfies the GUP modified dispersion relation. The atom is
assumed to have two energy levels fjgi; jeig and energy
eigenvalues f− ω0

2
; ω0

2
g. We study the spontaneous excita-

tion of the atom along with the simultaneous emission of a
photon when the atom and the mirror are in relative
acceleration, in framework of the GUP. Atomic excitation
occurs due to the excitation of the quantum field vacuum
due to acceleration. Our aim is to find the effects of the
GUP on the transition probabilities of the virtual transi-
tions that can occur, and then look at the status of the
equivalence principle. We consider here the setup of a
single mode cavity to obtain explicitly the spatial depend-
ence of the interference pattern exhibited by the transition
probabilities [22].

III. ATOM ACCELERATING AWAY FROM
STATIC MIRROR

First, we consider the situation when the mirror is static
at a spatial position z ¼ z0 in the Minkowski spacetime
ðt; zÞ. The modified Klein-Gordon equation in ð1þ 1Þ
dimensions reads [12]

�
1

c2
∂2
t − ∂2

z þ 2βℏ2∂4
z

�
ϕðt; zÞ ¼ 0: ð3Þ

The field ϕ satisfies the boundary condition ϕðt; z0Þ ¼ 0.
We now take the solution of the above equation in the form
ϕνðt; zÞ ¼ e−iνtenz, where νð> 0Þ is the frequency of the
photon. Substituting this in the above equation, we get

n2 − 2βℏ2n4 þ ν2

c2
¼ 0: ð4Þ

To solve the above equation, we take n ¼ ðn0 þ βñÞ, where
n0 and ñ are to be determined. Substituting this in the above
equation and comparing coefficients of powers of β up to
OðβÞ on both sides of the equation, we find n0 ¼ �iν=c
and ñ ¼∓ iℏ2ν3=c3. This then gives

n ¼ �i
ν

c

�
1 − βℏ2

ν2

c2

�
: ð5Þ

Hence, the solution of Eq. (3) that satisfies the boundary
condition ϕðt; z0Þ ¼ 0 is given by

ϕνðt; zÞ ¼ e−iνte−i
ν
cð1−βℏ2ν

2

c2
Þðz−z0Þ

− e−iνtei
ν
cð1−βℏ2ν

2

c2
Þðz−z0Þ: ð6Þ
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We take the atom to accelerate along the positive z direction
with acceleration a. The trajectory of the atom is of the
form

tðτÞ ¼ c
a
sinh

�
aτ
c

�
zðτÞ ¼ c2

a
cosh

�
aτ
c

�
ð7Þ

where τ is the proper time of the atom.
The atom-field interaction Hamiltonian is given by

HIðτÞ ¼ ℏgðâ†νϕ�
νðt; zÞ þ âνϕνðt; zÞÞ·

i
2
ðjgiheje−iω0τ − jeihgjeiω0τÞ ð8Þ

where g is the atom-field coupling constant, which is
assumed to be independent of τ. âν; â

†
ν are the annihilation

and creation operators of the scalar field. The atomic
transition amplitude is given by

A ¼ 1

ℏ

Z
dτh1ν; ejHIðτÞj0; gi: ð9Þ

Hence, the atomic transition probability is given by

P1 ¼
1

ℏ2
j
Z

dτh1ν; ejHIðτÞj0; gij2

¼ g2

4
j
Z

∞

−∞
dτϕ�

νðt; zÞeiω0τj2: ð10Þ

We now plug in the expression of ϕ�
νðt; zÞ from Eq. (6) and

substitute the atomic trajectories from Eq. (7) in the above
equation. After some calculation, we get

P1 ¼
g2

4

����
Z

∞

−∞
dτ½eðiνcα1eaτc −iα2e−aτc −iν

cα3z0Þ

− e−ðiνcα1e−
aτ
c −iα2e

aτ
c −iν

cα3z0Þ�eiω0τ

����
2

ð11Þ

where α1 ¼ ð1 − βℏ2ν2

2c2 Þ, α2 ¼ βℏ2ν3

2ac , α3 ¼ ð1 − βℏ2ν2

c2 Þ.
Evaluating the above integral, we get

P1 ¼
2πg2c
aω0

·
e−ðβℏ

2ν4

a2
Ω cosΔÞ

eð2πω0ca Þ − 1

× sin2
�
ν̃z0
c

− η −
βℏ2ν2ω0

2ac
þ βℏ2ν4

2a2
Ω sinΔ

�
ð12Þ

where ν̃ ¼ νð1 − βℏ2ν2

c2 Þ, η ¼ δþ θ, δ ¼ ω0c
a ln a

νc, θ ¼
ArgðΓð− iω0c

a ÞÞ, θ1 ¼ ArgðΓð− iω0c
a − 1ÞÞ, Δ ¼ ðθ1 − θÞ,

andΩ ¼ jΓð−iω0c
a −1Þj

jΓð−iω0c
a Þj . From the above expression, we observe

that the Planck factor is governed by the frequency of the

atom. However, the interference term arising due to the
incident and reflected waves contain the effect of the GUP.

IV. MIRROR ACCELERATING AWAY FROM
STATIC ATOM

We next consider the case where the atom is static at
spatial position z ¼ z0 < c2=a in the Minkowski space-
time. The mirror accelerates away from the atom with an
acceleration a. The presence of the accelerating mirror
modulates the field mode. The trajectory of the accelerated
mirror is given by Eq. (7). Coordinate transformation
between the frame of mirror, that is, the Rindler frame
ðt̄; z̄Þ and the Minkowski frame reads

t ¼ c
a
eaz̄=c

2

sinh

�
at̄
c

�
z ¼ c2

a
eaz̄=c

2

cosh

�
at̄
c

�
: ð13Þ

The mirror is spatially static in the Rindler frame and its
trajectory is given by z̄ ¼ 0. The quantized scalar field in
Rindler spacetime satisfies the modified Klein-Gordon
equation given by Eq. (3) with ðt; zÞ replaced by ðt̄; z̄Þ
and boundary condition ϕðz̄Þ ¼ 0. Its solution is given by

ϕνðt̄; z̄Þ ¼ e−iνt̄
�
ei

ν
cð1−βℏ2ν

2

c2
Þz̄ − e−i

ν
cð1−βℏ2ν

2

c2
Þz̄�: ð14Þ

We now need the inverse transformations of Eq. (13) which
are given by

t̄ðt; zÞ ¼ c
2a

ln

�
zþ ct
z − ct

�
;

z̄ðt; zÞ ¼ c2

2a
ln

�
a2

c4
ðz2 − c2t2Þ

�
: ð15Þ

The above transformations are defined for z > cjtj.
Substituting these transformations in Eq. (14) and simpli-
fying, we get the field mode in the Minkowski spacetime as

ϕðt; zÞ ¼ e
i

h
ν̄c
a ln

�
a
c2
ðz−ctÞ

�i�
a
c2

ðzþ ctÞ
�

−iβℏ2ν3

2ac

Θðz − ctÞ

− e
−i½ν̄ca ln

�
a
c2
ðzþctÞ

�
�
�
a
c2

ðz − ctÞ
�iβℏ2ν3

2ac

Θðzþ ctÞ

ð16Þ

where ν̄ ¼ ð1 − βℏ2ν2

2c2 Þν. The atom-field interaction
Hamiltonian and the transition probability amplitude are
the same as Eqs. (8) and (9) with τ replaced by t and ðt; zÞ
replaced by ðt̄; z̄Þ. The atomic transition probability evalu-
ated at atomic position ðt; z0Þ is given by

P2 ¼
g2

4

����
Z

∞

−∞
dtϕ�

νðz0; tÞeiω0t

����
2

: ð17Þ
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Substituting the expression of ϕ�ðt; zÞ from Eq. (16) in the
above equation and after some calculation, we get

P2 ¼
g2

4

����
Z

∞

−z0=c
dte

−i½ν̄ca ln
�

a
c2
ðz0þctÞ

�
þω0t�

×

�
az0
c2

�
1 −

ct
z0

��iβℏ2ν3

2ac þ cc:

����
2

: ð18Þ

Evaluating the above integral, we get

P2 ¼
2πg2ν̄c
aω2

0

·
e
−
�

βℏ2ν3

az0ω0

�

eð2πν̄ca Þ − 1
· sin2

�
ω0z0
c

−
ν̄c
a
ln

�
a

ω0c

�

þ βℏ2ν3

2ac
ln

�
az0
c2

�
þ βℏ2ν3

2ac
þ βℏ2ν4c
2a2z0ω0

þ κ

�
ð19Þ

where κ ¼ ArgðΓðiν̄ca ÞÞ. The Planck factor here is governed
by a GUP modified photon frequency. However, different
from Ref. [22], the spatial oscillation in the interference
pattern here is very interesting. Apart from the usual
position dependent atomic frequency term, there is another
position dependent term which depends on the field
frequency. This term owes its origin to the GUP. It implies
that the interference pattern gets modified by the field
frequency in the presence of the GUP.

V. VIOLATION OF THE EQUIVALENCE
PRINCIPLE

Let us now set ω0 ¼ ν, making the frequencies of the
atom and the photon the same. It can be observed that even
for this case, the spatial oscillations for the two proba-
bilities are not the same, as is evident from Eqs. (12) and
(19), in contrast to the framework based on the Heisenberg
uncertainty relation [22]. This therefore breaks the sym-
metry between the excitation of an atom accelerating in
Minkowski spacetime relative to a stationary mirror and a
stationary atom excited by an uniformly accelerating
mirror. This feature can hence be regarded as a manifes-
tation of violation of the equivalence principle originating
from the GUP. It can be checked that by setting β ¼ 0 in
Eqs. (12) and (19), the symmetry ensues, restoring the
equivalence in the Heisenberg uncertainty framework.
There have been proposals to provided bounds on the

value of the GUP parameter β resulting from various effects
such as correction in Lamb shift, Landau Levels, simple
harmonic oscillators, and gravitational wave detections
[14]. Here we provide an estimate of the upper bound
on β from the exponent of the damping factor. It is clear
from the exponential factor in Eq. (19) that in order to
ensure that the GUP corrections do not dominate over the
results obtained in the Heisenberg uncertainty principle

framework, we must have ðβℏ2ν3az0ω0
Þ ≪ 1. Taking ν ¼ ω0 ¼

1 GHz [22] and az0 ∼ c2, we find β ≪ 1067=ðMPcÞ2, with

MP being the Planck mass. Though this bound is weaker
than the bound obtained on β in the context of gravitational
waves [33], our result provides an example of the pos-
sibility of formulating testable bounds on the GUP param-
eter in the context of controllable low energy atom-photon
interactions. Interestingly, bounds on the GUP parameter
also arise from the mismatch in the spatial oscillation of the
two probabilities. The ratio between the spatial part of the
second and first probabilities is given by R ¼ 1þQðz0Þ,
where Qðz0Þ ¼ βℏ2ν2c2

2a2z2
0

þ βℏ2ν2

2az0
lnðaz0c2 Þ can be regarded as an

equivalence violation parameter. This provides a similar
bound on β as obtained above.

VI. CONCLUSIONS

We now summarize our findings with some observa-
tions. The main focus of this paper is to look at the status of
the symmetry between the excitation of a stationary atom
by an accelerating mirror and a uniformly accelerating
atom relative to a stationary mirror taking into account
Planck scale effects. Such a symmetry has been shown to
be valid in the framework of the Heisenberg uncertainty
relation, and has been interpreted as a manifestation of the
principle of equivalence in [22,27]. It should be noted
however, that the interpretation of this symmetry as a
manifestation of the equivalence principle goes beyond the
well-known classical version which states that by local
measurements it would be impossible to distinguish
between an inertial observer in Minkowski space-
time and a free-falling observer in a gravitational field
(or, equivalently, a static observer in a uniform gravitati-
onal field and a uniformly accelerated observer in flat
spacetime).
Our methodology is to consider a quantized scalar field

vacuum that obeys the GUP modified dispersion relation.
From the GUP modified Klein-Gordon equation, we obtain
the solutions of the scalar field with particular boundary
conditions imposed by the mirror in the two separate cases.
Using these solutions we calculate the excitation proba-
bilities of the atom in both the cases, which are found to
display significant physical differences.
In the first case, the GUP contributes as a constant phase

in the interference. However, in the second case the spatial
oscillation gets modified by an additional term containing
the field frequency and the GUP parameter β. Hence, we
find that the symmetry observed in [22] gets broken in the
framework of the GUP even when ν ¼ ω0. This is the most
striking result of our study, and may be interpreted as an
explicit violation of the equivalence principle. This is
because the symmetry between the excitation of an atom
accelerating in Minkowski spacetime relative to a sta-
tionary mirror and a stationary atom excited by a uniformly
accelerating mirror (considered to be a manifestation of the
equivalence principle in [22,27]) gets broken. Further,
using the condition that the GUP induced corrections do
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not dominate over the corresponding expressions obtained
using the Heisenberg uncertainty relation, it is possible to
constrain the value of the GUP parameter in the context of
this low energy interacting atom-mirror setup.
Before concluding, it may be noted that in both the cases

the excitation probabilities contain a GUP induced damp-
ing factor. In the first case the probability is proportional to
the Planck factor containing the atomic transition frequency
and the Unruh temperature given by TU ¼ ℏa

2πkBc
, that one

gets when β ¼ 0. In the second case, the atomic excitation
probability is proportional to the Planck factor which is a

function of ν̄ ¼ ð1 − βℏ2ν2

2c2 Þν. Thus, in the presence of the
GUP modification, the excitation probability is propor-
tional to the Planck factor containing the field frequ-
ency and the modified Unruh temperature given by

T 0
U ¼ TU=ð1 − βℏ2ν2

2c2 Þ. Since the Planck distribution in
Eq. (19) is analogous to the photon spectrum of an atom
falling freely in the gravitational field of a Schwarzschild
black hole [34], this implies that the acceleration radiation
observed by a distant observer will be a thermal distribution
with a GUP modified Hawking temperature.
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