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Infrared dressing of bosonic or fermionic heavy particles by a cloud of massless particles to which they
couple is studied as a possible production mechanism of ultralight dark matter or dark radiation in a
radiation-dominated cosmology. We implement an adiabatic expansion valid for wavelengths much smaller
than the Hubble radius combined with a nonperturbative and manifestly unitary dynamical resummation
method to study the time evolution of an initial single heavy-particle state. We find a striking resemblance
to the process of particle decay: the initial amplitude of the single particle decays in time, not exponentially
but with a power law with anomalous dimension ∝ t−Δ=2 featuring a crossover to t−Δ as the heavy particle
becomes nonrelativistic in both bosonic and fermionic cases suggesting certain universality. At long time
the asymptotic state is an entangled state of the heavy and massless particles. The entanglement entropy is
shown to grow under time evolution describing the flow of information from the initial single particle to the
final multiparticle state. The expectation value of the energy momentum tensor in the asymptotic state is
described by two independent fluids each obeying covariant conservation, one of heavy particles and the
other of relativistic (massless) particles (dark radiation). Both fluids share the same frozen distribution
function and entropy as a consequence of entanglement.
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I. INTRODUCTION

Light and ultralight particles in extensions beyond the
Standard Model, such as axions or axionlike particles,
“fuzzy” dark matter (FDM), light dark scalars [1–9] could
be suitable cold dark matter candidates, and dark vector
bosons may contribute to a dark radiation component. An
FDM particle with massm ≃ 10−22 eV has the potential for
solving some small-scale aspects of galaxy formation
[10–15].
All of these candidates are characterized by very small

masses and couplings to Standard Model degrees of
freedom or beyond. Lyman-α [16,17] and pulsar timing
[18] provide constraints on the mass range of (ultra-) light
dark matter (ULDM). Light dark matter candidates are not
only probed by their gravitational properties [19] but there
are various proposals for direct detection, from high-
energy colliders [20] to “table-top” experiments [21–27].
Various possible mechanisms of production of light
or ultralight dark matter have been discussed in the
literature [1–9] including nonadiabatic gravitational pro-
duction [28].
In this article we explore the dynamics of infrared dressing

in nongauge theories as a possible nonthermal cosmological

productionmechanism of either ultralight darkmatter or dark
radiation prior to recombination. Infrared dressing refers to
the cloud of nearly on-shell massless quanta that dresses the
charged particle to which these massless fields couple.
Infrared singularities associated with the emission and/or
absorption of soft massless quanta by charged fields
continues to be the subject of study within the context of
the Smatrix in gauge theories [29–37] and more generally of
infrared phenomena [38–42], including in gravity where the
emission and absorption of gravitons yields similar infrared
effects [43,44].

A. Motivations and objectives

Although the decay in time of the amplitude of the initial
state is not exponential but as a power law with an
anomalous dimension [45], the asymptotic quantum state
is, in fact, qualitatively similar: a quantum state in which
the daughter particles are kinematically entangled [46].
This similarity suggests that just as in particle decay,
infrared dressing is an effective production mechanism
of (nearly) massless particles.
Motivated by these results in Minkowski space-time, our

objectives in this study are twofold:
(i) to study the dynamics of infrared dressing as a

fundamental process in a radiation-dominated (RD)
cosmology, with direct relevance in gauge theories
and gravity.
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(ii) A “proof of principle” of infrared dressing as a
possible nonthermal production mechanism of ultra-
light dark matter or dark radiation prior to recombi-
nation.
Neither of these aspects of infrared phenomena has

been hitherto addressed in cosmology; thus, this study
represents a first step towards a more comprehensive
treatment of these phenomena in connection with
ultralight dark matter and/or dark radiation in exten-
sions beyond the Standard Model. Ultralight dark
matter or dark radiation with a nonthermal frozen
distribution may contribute to the effective number of
ultrarelativistic species prior to recombination, but
their contribution depends crucially on their non-
thermal distribution [47], which in turn depends on
the dynamics of the production mechanism. There-
fore, the study of infrared dressing in cosmology may
reveal a new a production mechanism leading to a
nonthermal frozen distribution that may evade current
cosmological bounds [48].

B. Brief summary of results

In this article we focus on the dynamics of infrared
dressing of a single heavy particle resulting from the
emission/absorption of soft quanta in a radiation-dominated
cosmology in nongauge theories, as a prelude towards a
study of an ensemble of heavy particles during this era.
We implement the dynamical resummation method

(DRM) introduced in Refs. [45,49] (and references therein)
combined with an adiabatic expansion valid for wave-
lengths much smaller than the particle horizon [49,50], to
study the infrared dressing of heavy particles by soft quanta
of a massless (or nearly massless) scalar field in a radiation-
dominated cosmology. While we focus on nongauge
theories, thereby bypassing the important and subtle issue
of gauge invariance, postponed to a future study, the nature
of the infrared divergences in the case of massless scalar
fields is akin to those in gauge theories [45].
Two models are considered: a heavy complex scalar

minimally coupled to gravity and coupled to a massless
scalar field and a heavy fermion Yukawa coupled to the
massless scalar field. The massless scalar field is taken to
possibly describe the ultralight dark matter or dark radi-
ation particle, which could be a (pseudo-) Goldstone boson
in a suitable extension beyond the Standard Model. We do
not specify nor address the nature or phenomenology of
this field since our main objective is to focus on the
fundamental aspects and a proof of principle of the
production mechanism.
Our study shows that infrared dressing is qualitatively

similar to particle decay in that the amplitude of the initial
single-particle state decays in time, not as an exponential
modified by the expansion [49] as in the case of particle
decay, but as a power law with an anomalous dimension
∝ ½EkðtÞt�−Δ with EkðtÞ the local energy of the heavy

particle. Bosonic and fermionic heavy particles feature the
same long-time behavior with different anomalous dimen-
sions suggesting a universality for infrared phenomena in
cosmology. At long time the asymptotic state is an
entangled state of the heavy and massless particles with
the total probability of this entangled state saturating the
unitarity condition. Entanglement of the asymptotic state is
confirmed by obtaining the entanglement (von Neumann)
entropy, which describes the information flow from the
initial single particle to the asymptotic multiparticle state.
The entanglement entropy is shown to increase in time and
its time evolution is completely determined by the DRM
equations. The expectation value of the energy momentum
tensor in the asymptotic state describes two independent
fluids each satisfying covariant conservation, one associ-
ated with the heavy particle and another describing a
relativistic particle associated with either ultralight dark
matter or dark radiation. Entanglement in the asymptotic
state results in that both fluids share the same frozen
distribution function and entropy.
The article is organized as follows: In Sec. II we consider

a bosonic model of a heavy boson interacting with a
massless boson. We discuss its quantization aspects and
introduce the adiabatic expansion in detail explaining its
physical underpinning. In Sec. III we introduce the DRM
described in Ref. [45] extended to cosmology in conjunc-
tion with the adiabatic expansion and apply it to the bosonic
model. We show that an initial single heavy-particle state
decays in time as ½EkðtÞt�−Δ with EkðtÞ the local energy of
the heavy particle and Δ an anomalous dimension, dis-
playing a crossover from∝ t−Δ=2 early when it is relativistic
to ∝ t−Δ when it becomes nonrelativistic. We extract the
asymptotic state obtained from the relaxation of an initial
single heavy-particle state and show that it is an entangled
state of the heavy and the massless bosons with a frozen
nonthermal distribution function.
In Sec. IV we consider a heavy fermion Yukawa coupled

to a massless scalar, quantizing the theory, introducing the
adiabatic expansion and the dynamical resummation
method for fermions. We show that the amplitude of an
initial single-particle heavy fermion state decays in time in
a manner qualitatively similar to the bosonic case, indicat-
ing certain universality in the cosmological dynamics of
infrared dressing [45]. The asymptotic state is, again, an
entangled state of the heavy fermion and the massless
particle with a frozen nonthermal distribution.
In Sec. V we study the energy momentum tensor in the

asymptotic regime when the amplitude of initial states is
vanishingly small in both cases. Entanglement between the
heavy and massless degrees of freedom in the asymptotic
state is confirmed by obtaining the (entanglement) von
Neumann entropy by tracing either one of the degrees of
freedom. To leading order in the adiabatic expansion and
couplings, the energy momentum tensor describes two
independent fluids: one of massive particles and another of
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radiation; both are determined by the nonthermal frozen
distribution associated with the asymptotic entangled state,
and share the same distribution function and entropy as a
consequence of entanglement.
Section VI discusses various aspects and caveats of the

results; conclusions and further questions are summarized
in Sec. VII.

II. BOSONIC CASE: QUANTIZATION AND
ADIABATIC EXPANSION

We focus our study on the infrared dynamics in a
spatially flat Friedmann-Robertson-Walker (FRW) cosmo-
logy. In conformal time η with dη ¼ dt=aðtÞ, the metric is
given by

gμν ¼ a2ðηÞdiagð1;−1;−1;−1Þ: ð2:1Þ

In the standard cosmological picture most of the interesting
particle physics processes occur during the RD era and we
focus our attention on this epoch, during which the scale
factor in conformal time is given by

aðηÞ ¼ HRη; HR ¼ H0

ffiffiffiffiffiffi
ΩR

p
≃ 10−44 GeV: ð2:2Þ

In a radiation-dominated cosmology the Ricci scalar
vanishes; therefore, massless particles are conformally
coupled to gravity during this epoch.
During the RD stage the relation between conformal and

comoving time is given by

η ¼
�
2t
HR

�1
2

⇒ aðtÞ ¼ ½2tHR�12; ð2:3Þ

a result that will prove useful in the study of the (comoving)
time dependence of amplitudes during this stage.
We begin by considering the simpler case of two

interacting scalar fields minimally coupled to gravity, a
massive complex (charged) field Φ and a massless neutral
field π, with action given by

A ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
gμν∂μΦ†∂νΦ −M2Φ†Φ

þ 1

2
gμν∂μπ∂νπ − λ∶Φ†Φ∶π

�
; ð2:4Þ

where normal ordering is understood in the interaction
picture of free fields.
Expressing the action of Eq. (2.4) in terms of comoving

spatial coordinates and conformal time, and conformally
rescaling the fields as

Φðx⃗; tÞ ¼ φðx⃗; ηÞ
aðηÞ ; πðx⃗; tÞ ¼ χðx⃗; ηÞ

aðηÞ ; ð2:5Þ

yields

A ¼
Z

d3x dη
�
dφ†

dη
dφ
dη

−∇φ† · ∇φ −M2a2ðηÞφ†φ

þ 1

2

�
dχ
dη

�
2

−
1

2
ð∇χÞ2 − λaðηÞ∶φ†φ∶χ

�
; ð2:6Þ

where, as usual, we have neglected total surface
terms which do not contribute to the equations of
motion.
We begin with the quantization of free fields [51–60] as a

prelude to the interacting theory. The Heisenberg equations
of motion for the conformally rescaled fields φ, χ in
conformal time are

d2

dη2
φðx⃗; ηÞ −∇2φðx⃗; ηÞ þM2a2ðηÞϕðx⃗; ηÞ ¼ 0; ð2:7Þ

d2

dη2
χðx⃗; ηÞ −∇2χðx⃗; ηÞ ¼ 0: ð2:8Þ

It is convenient to quantize the fields in a comoving volume
V, in a plane-wave expansion in terms of comoving wave
vectors k⃗ and comoving coordinates x⃗, namely,

φðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

½ak⃗gkðηÞeik⃗·x⃗ þ b†
k⃗
g�kðηÞe−ik⃗·x⃗�; ð2:9Þ

χðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

½ck⃗fkðηÞeik⃗·x⃗ þ c†
k⃗
f�kðηÞe−ik⃗·x⃗�; ð2:10Þ

where the mode functions gkðηÞ; fkðηÞ are solutions of the
following equations:

�
d2

dη2
þΩ2

kðηÞ
�
gkðηÞ¼0; Ω2

kðηÞ¼k2þM2a2ðηÞ; ð2:11Þ

�
d2

dη2
þ k2

�
fkðηÞ ¼ 0; ð2:12Þ

and satisfy the Wronskian condition:

g0kðηÞg�kðηÞ − g�0k ðηÞgkðηÞ ¼ −i; ð2:13Þ

f0kðηÞf�kðηÞ − f�0k ðηÞfkðηÞ ¼ −i; ð2:14Þ

so that the annihilation and creation operators are time
independent and obey the canonical commutation relations
½ak⃗; a†k⃗0 � ¼ δk⃗;k⃗0 ; ½ck⃗; c†k⃗0 � ¼ δk⃗;k⃗0 etc. The vacuum state

j0φ; 0χi is defined such that
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ak⃗j0φ; 0χi ¼ bk⃗j0φ; 0χi ¼ ck⃗j0φ; 0χi ¼ 0: ð2:15Þ

The mode functions fkðηÞ solutions of Eq. (2.12) obey-
ing (2.14) are given by

fkðηÞ ¼
e−ikηffiffiffiffiffi
2k

p : ð2:16Þ

Introducing the dimensionless variables

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MHR

p
η; α ¼ −

k2

2MHR
; ð2:17Þ

in terms of which Eq. (2.11) is identified with Weber’s
equation [61–65],

d2

dx2
wðxÞ þ

�
x2

4
− α

�
wðxÞ ¼ 0: ð2:18Þ

The general solutions are linear combinations of Weber’s
parabolic cylinder functions W½α;�x� [61–65]. These are
real solutions; hence, we seek a linear combination that can
be identified with particle states asymptotically at long time.
To understand the asymptotic behavior at long time we

will carry out a Wentzel-Kramers-Brillouin (WKB) analy-
sis for gkðηÞ. Writing the solution of the mode equa-
tions (2.11) in the WKB form [54–59,66–68],

gkðηÞ ¼
e
−i
R

η

ηi
Wkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðηÞ
p ; ð2:19Þ

and inserting this ansatz into (2.11), it follows that WkðηÞ
must be a solution of the equation [56]

W2
kðηÞ ¼ Ω2

kðηÞ −
1

2

�
W00

kðηÞ
WkðηÞ

−
3

2

�
W0

kðηÞ
WkðηÞ

�
2
�
: ð2:20Þ

This equation can be solved in an adiabatic expansion:

W2
kðηÞ ¼ Ω2

kðηÞ
�
1 −

1

2

Ω00
kðηÞ

Ω3
kðηÞ

þ 3

4

�
Ω0

kðηÞ
Ω2

kðηÞ
�

2

þ � � �
�
;

ΩkðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2a2ðηÞ

q
: ð2:21Þ

We refer to terms that feature n-conformal time derivatives
ofΩkðηÞ as of nth adiabatic order. The nature and reliability
of the adiabatic expansion is revealed by considering the
term of first adiabatic order, namely,

Ω0
kðηÞ

Ω2
kðηÞ

¼ M2aðηÞa0ðηÞ
½k2 þM2a2ðηÞ�3=2 : ð2:22Þ

This is most easily recognized in comoving time t,
introducing the local energy EkðtÞ and Lorentz factor

γkðtÞ measured by a comoving observer in terms of the
physical momentum kpðtÞ ¼ k=aðtÞ:

EkðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2pðtÞ þM2

q
¼ ΩkðηÞ;

aðηÞ ð2:23Þ

γkðtÞ ¼
EkðtÞ
M

; ð2:24Þ

and the Hubble expansion rate HðtÞ ¼ _aðtÞ
aðtÞ ¼ a0=a2. In

terms of these variables, the first-order adiabatic ratio
(2.22) becomes

Ω0
kðηÞ

Ω2
kðηÞ

¼ HðtÞ
γ2kðtÞEkðtÞ

: ð2:25Þ

In similar fashion the higher-order terms in the adiabatic
expansion for an RD cosmology (vanishing Ricci scalar)
can be obtained,

Ω00
kðηÞ

Ω3
kðηÞ

¼ 1

γ2kðtÞ
H2ðtÞ
E2
kðtÞ

�
1 −

1

γ2kðtÞ
�

Ω000
k ðηÞ

Ω4
kðηÞ

¼ −
3

γ3kðtÞ
H3

E3
k

�
1 −

1

γ2kðtÞ
�
: ð2:26Þ

Consequently, (2.21) takes the form

W2
kðtÞ ¼ a2ðtÞE2

kðtÞ
�
1 −

1

2γ2kðtÞ
H2ðtÞ
E2
kðtÞ

�
1 −

5

2γ2kðtÞ
�
þ � � �

�
:

ð2:27Þ

From the above analysis it is clear that

HðtÞ
γkðtÞEkðtÞ

≪ 1 ð2:28Þ

is the small, dimensionless adiabatic expansion parameter.
We will instead adopt a more stringent condition for
validity of the adiabatic approximation, namely

HðtÞ
EkðtÞ

≪ 1 ⇒ EkðtÞt ≫ 1; ð2:29Þ

where we used the relation (2.3) in the second inequality.
The physical interpretation of the ratio HðtÞ=EkðtÞ is

clear: typical particle physics degrees of freedom feature
either physical de Broglie or Compton wavelengths that are
much smaller than the (physical) particle horizon (or
Hubble radius) ∝ 1=HðtÞ at any given time during RD.
In a standard RD cosmology the particle horizon always

grows faster than a physical wavelength; therefore, the
reliability of the adiabatic expansion improves with the
cosmological expansion. The condition (2.29) is also
equivalent to a “long-time limit” in the sense that there
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are many oscillations of the microscopic degrees of free-
dom within a Hubble time ≃1=HðtÞ.
Therefore the validity of the adiabatic expansion hinges

on the separation of the two relevant timescales: the slow
timescale of cosmological expansion ≃1=HðtÞ and the
rapid timescale associated with the oscillations of the field
≃1=EkðtÞ, with EkðtÞ=HðtÞ ≫ 1 [50].
In an RD cosmology with scale factor given by (2.2), it

follows that in the adiabatic regime

Ω0
kðηÞ

Ω2
kðηÞ

≡ ϵ̃kðηÞ ¼
ϵkðηÞ
γ2kðηÞ

; ϵkðηÞ≡ HðtÞ
EkðtÞ

¼ 1

ΩkðηÞη
≪ 1;

ð2:30Þ

where we introduced the small dimensionless parameter
ϵkðηÞ that characterizes the adiabatic expansion. For the
purpose of analyzing contributions in the adiabatic expan-
sion, we will consider ϵkðηÞ and ϵ̃kðηÞ to be of the same
order. Therefore the adiabatic expansion is an expansion in
the small dimensionless ratio ϵkðηÞ which becomes smaller
upon cosmological expansion.
Since the adiabatic approximation improves with

cosmological expansion, either the short wavelength
or the long-time limits of the WKB solution (2.19) is
given by

gkðηÞ →
e
−i
R

η

ηi
Ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΩkðηÞ
p ; ð2:31Þ

which is the zeroth-order approximation in the adiabatic
expansion. The lower limit ηi corresponds to an initial time
at which the adiabatic approximation becomes reliable.
The phase of the mode function has an immediate

interpretation in terms of comoving time and the local
comoving energy (2.23), namely

e
−i
R

η

ηi
Ωkðη0Þdη0 ¼ e

−i
R

t

ti
Ekðt0Þdt0 ; ð2:32Þ

where we used the relations ΩkðηÞ ¼ aðηÞEkðtÞ;
aðηÞdη ¼ dt. This is a natural and straightforward gener-
alization of the phase of positive-frequency particle boun-
dary conditions on the mode functions [69].
To understand better the nature of the zeroth

adiabatic order (2.31) let us consider a short-time
interval in the phase in (2.32). Writing Ekðt0Þ ≃ EkðtiÞ −
kphðtiÞβkðtiÞHðtiÞðt0 − tiÞ þOððt − tiÞ2 þ � � � the phase
becomes

Z
t

ti

Ekðt0Þdt0 ¼EkðtiÞðt− tiÞ
�
1−

1

2
β2kðkiÞHðtiÞðt− tiÞþ���

�
;

βkðtÞ¼
kpðtÞ
EkðtÞ

; ð2:33Þ

therefore, the phase coincides with that expected in
Minkowski space-time when ðt − tiÞ ≪ 1=HðtiÞ, namely
when the timescale involved is much smaller than the
Hubble time. This is the equivalence principle at work.
However, early during the RD era, and for processes that
occur over long periods of time during the expansion
history as could be the case for very weakly coupled
theories, the full time integral must be considered as it
includes memory of this history.
As an example to clarify the regime of validity of the

adiabatic approximation, let us consider processes occur-
ring early in the RD stage, for example at the grand
unification theory (GUT) scale ≃1015 GeV, assuming that
particles feature physical momenta at this scale kphðηÞ ¼
k=aðηÞ ≃ 1015 GeV with k being the comoving momentum
and a mass ≃100 GeV, hence a local Lorentz factor
γk ≃ 1013. If the environmental temperature of the plasma
is T ≃ TGUT ≃ 1015 GeV and taking as an example
the Standard Model result geff ≃ 100, it follows
that H ≃ 1012 GeV. Approximating TGUT ≃ TCMB=aðηiÞ,
where TCMB is the temperature of the cosmic microwave
background today, implies that the scale factor at the GUT
scale aðηiÞ ≃ 10−28 and a comoving wave vector k ≃
10−13 GeV (the average momentum of a microwave photon
today). This situation yields ϵk ¼ H=Ek ≃ 10−3, which
becomes smaller with the cosmological expansion and
the adiabatic ratio ϵ̃kðηÞ is even much smaller on account
of the Lorentz factor. It is the wide separation between the
slow Hubble timescale ∝ 1=HðtÞ and the fast oscillation
timescale ∝ 1=EkðtÞ that warrants the adiabatic approxi-
mation implemented in our analysis below.
The exact solution of the mode equations (2.11) that

feature asymptotic positive-frequency particle boundary
conditions

gkðηÞ →
e
−i
R

η

ηi
Ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΩkðηÞ
p ; ð2:34Þ

and satisfy the Wronskian condition (2.14) were found in
Ref. [69]; these are given by

gkðηÞ ¼
1

ð8MHRÞ1=4
�
1ffiffiffi
κ

p W½α; x� − i
ffiffiffi
κ

p
W½α;−x�

�
;

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e−2πjαj

p
− e−πjαj: ð2:35Þ

It is shown in Ref. [69] that the asymptotic behavior
of gkðηÞ is indeed given by (2.34) both at long time
and also for large (comoving) wave vectors, or short
distance.
In the presence of interactions, obtaining transition

matrix elements with the exact mode functions (2.35) is
a daunting task. To make progress, we will restrict our
study by considering (comoving) wave vectors and mass
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for the heavy degrees of freedom for which the adiabatic
expansion is reliable, namely for ϵkðηÞ ¼ HðtÞ=EkðtÞ ¼
1=ðΩkðηÞηÞ ≪ 1 at all times, and keeping only the leading,
(zeroth) order in the adiabatic expansion. In this approxi-
mation the quantized fields are

φðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ΩkðηÞ

p ½ak⃗e
−i
R

η

ηi
Ωkðη0Þdη0eik⃗·x⃗

þ b†
k⃗
e
i
R

η

ηi
Ωkðη0Þdη0e−ik⃗·x⃗�; ð2:36Þ

χðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X
k⃗

1ffiffiffiffiffi
2k

p ½ck⃗e−ikηeik⃗·x⃗ þ c†
k⃗
eikηe−ik⃗·x⃗�; ð2:37Þ

and the vacuum state j0φ; 0χi is annihilated by ak⃗, bk⃗, ck⃗ as
per Eq. (2.15).
While the particle interpretation of the quanta of

the massless field χ is clear from the expansion (2.37),
the particle identification in the massive case is
confirmed by considering the free-field Hamiltonian in
the adiabatic approximation [49]. The conformal time
free-field Hamiltonian for the massive field is
given by

H0φðηÞ ¼
Z

d3xfπ†π þ∇φ† ·∇φþM2a2ðηÞφ†φg;

π ≡ φ0; ð2:38Þ

with equal conformal time canonical commutation relation

½πðx⃗; ηÞ;φðy⃗; ηÞ� ¼ −iδð3Þðx⃗ − y⃗Þ; ð2:39Þ

and similar commutation relations for the neutral massless
field. Using the expansion (2.34) and carrying out the
spatial integration, we find

H0φðηÞ ¼
X
k⃗

f½a†
k⃗
ak⃗ þ bk⃗b

†
k⃗
�½jg0kj2 þ Ω2

kðηÞjgkj2�

þ ðak⃗b−k⃗½ðg0kÞ2 þ Ω2
kðηÞðgkÞ2� þ H:c:Þg: ð2:40Þ

Writing gkðηÞ in the WKB form (2.19) it is straightforward
to confirm that the terms ak⃗b−k⃗ in (2.40) are of second and
higher adiabatic order [49,50]. Keeping the leading zeroth
adiabatic order, we find

H0φðηÞ ¼
X
k⃗

½a†
k⃗
ak⃗ þ bk⃗b

†
k⃗
�ΩkðηÞ; ð2:41Þ

with

½H0φðηÞ; H0φðη0Þ� ¼ 0: ð2:42Þ

Similarly, for the massless fields,

H0χ ¼
X
k⃗

c†
k⃗
ck⃗k; ð2:43Þ

where we neglected a zero-point contribution. To leading
adiabatic order the total free-field Hamiltonian is H0ðηÞ ¼
H0φðηÞ þH0χ which depends explicitly on time through the
time-dependent frequencies ΩkðηÞ for the massive fields.
The vacuum state is defined by Eq. (2.15) and particle

states are, as usual, obtained by applying the creation
operators a†

k⃗
; b†

k⃗
; c†

k⃗
to the vacuum state. These are

instantaneous eigenstates of the zeroth adiabatic order
Hamiltonian (2.42).

A. Dark radiation vs ultralight dark matter

We consider the coupling of the massive to a massless
field. This massless field could be a Goldstone boson
associated with a broken symmetry beyond the Standard
Model and as such could be a candidate for “dark
radiation.” However, an ultralight boson with mass
≃10−22 eV can be taken as massless during the radiation
era with aðηÞ ≤ 10−3. Consider for example a comoving
wave vector k ≃ 10−24 eV corresponding to a de Broglie
wavelength ≃kpc; the physical wave vector kphðηÞ ¼
k=aðηÞ is still much larger than the mass of the ultralight
scalar during radiation and the contribution of these wave
vectors to the energy momentum tensor are strongly sup-
pressed by the phase-space factor ∝ k2 (see Sec. V).
Therefore, by considering a massless boson coupled to
the heavy degrees of freedom we treat dark radiation and an
ultralight dark matter candidate on the same footing during
the radiation era.

III. DYNAMICAL RESUMMATION METHOD

In this section we adapt the dynamical resummation
method developed in Ref. [45] to the cosmological setting.
In the Schrödinger picture, quantum states obey

i
d
dη

jΨðηÞi ¼ HðηÞjΨðηÞi; ð3:1Þ

where the total Hamiltonian carries an explicit η
dependence. The solution of (3.1) is given in terms of
the unitary time evolution operator Uðη; ηiÞ, namely
jΨðηÞi ¼ Uðη; ηiÞjΨðηiÞi, and Uðη; ηiÞ obeys

i
d
dη

Uðη; ηiÞ ¼ HðηÞUðη; ηiÞ; Uðηi; ηiÞ ¼ 1: ð3:2Þ
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The initial value problem for the time evolution of states
will be initialized at a (conformal) time ηi, with the main
assumption that ΩkðηiÞηi ≫ 1, to ensure the validity of
the adiabatic approximation. In the interacting theory
HðηÞ ¼ H0ðηÞ þHiðηÞ, where H0ðηÞ is the free-field
theory Hamiltonian, which to leading adiabatic order is
given by H0φ þH0χ, with H0φ given by (2.40) and HiðηÞ
the interaction Hamiltonian. In the absence of interactions
with Hi ¼ 0, the time evolution operator of the free-field
theory U0ðη; η0Þ obeys

i
d
dη

U0ðη;ηiÞ¼H0ðηÞU0ðη;ηiÞ;

−i
d
dη

U−1
0 ðη;ηiÞ¼U−1

0 ðη;ηiÞH0ðηÞ; Uðηi;ηiÞ¼1: ð3:3Þ

To leading order in the adiabatic approximation it is given by

U0ðη; ηiÞ ¼ e−iH0χðη−ηiÞ ⊗ e
−i
R

η

ηi
H0φðη0Þdη0 ; ð3:4Þ

as a consequence of (2.42).
It is convenient to pass to the interaction picture, where

the operators evolve with the free-field Hamiltonian and the
states carry the time dependence from the interaction,
namely

jΨIðηÞi ¼ U−1
0 ðη; ηiÞjΨðηÞi; ð3:5Þ

and their time evolution is given by

jΨIðηÞi ¼ UIðη; ηiÞjΨIðηiÞi;
UIðη; ηiÞ ¼ U−1

0 ðη; ηiÞUðη; ηiÞ: ð3:6Þ

The unitary time evolution operator in the interaction
picture UIðη; ηiÞ obeys

i
d
dη

UIðη;ηiÞ¼HIðηÞUIðη;ηiÞ;

HIðηÞ¼U−1
0 ðη;ηiÞHiðηÞU0ðη;ηiÞ; UIðηi;ηiÞ¼1:

ð3:7Þ

For the conformal action (2.6) it follows that

HIðηÞ ¼ λaðηÞ
Z

d3x χðx⃗; ηÞ∶ φ†ðx⃗; ηÞφðx⃗; ηÞ; ð3:8Þ

where the fields are given by the free-field expansion
(2.36), (2.37) and time-independent creation and annihila-
tion operators for the respective fields.
We now extend the dynamical resummation method

implemented in Ref. [45], and based on the treatement in
Refs. [46,70] to the cosmological setting. As discussed in
these references, this method is manifestly unitary and
leads to a nonperturbative systematic description of

transition amplitudes and probabilities directly in real time;
as shown in Ref. [45] it is equivalent to the dynamical
renormalization group. Here we describe the main aspects
of its implementation within the cosmological setting.
Consider an interaction picture state jΨIðηÞi ¼P
n CnðηÞjni, expanded in the Fock states associated with

the annihilation and creation operators of the free-field
expansions (2.9), (2.10) for each field. To leading order in
the adiabatic approximation, these are instantaneous eigen-
states ofH0ðηÞ. Inserting this expansion into (3.7) yields an
exact set of coupled equations for the coefficients

i
d
dη

CnðηÞ ¼
X
m

CmðηÞhnjHIðηÞjmi: ð3:9Þ

In principle this is an infinite hierarchy of integro-
differential equations for the coefficients CnðηÞ; progress
is made by truncating the hierarchy to states connected by
the interaction Hamiltonian to a given order in the inter-
action. Consider that at an initial (conformal) time ηi the

state is jAi so that CAðηiÞ ¼ CðiÞ
A and CκðηiÞ ¼ 0 for

jκi ≠ jAi, and consider a first-order transition process
jAi → jκi to intermediate multiparticle states jκi with
transition matrix elements hκjHIðηÞjAi. Obviously the state
jκi will be connected via HIðηÞ to other multiparticle states
jκ0i different from jAi. Hence, for example up to second
order in the interaction, the state jAi ↔ jκi ↔ jκ0i.
Restricting the hierarchy to first-order transitions from
the initial state jAi ↔ jκi results in the following set of
coupled equations:

i
d
dη

CAðηÞ ¼
X
κ

CκðηÞhAjHIðηÞjκi; CAðηiÞ≡ CðiÞ
A ;

ð3:10Þ

i
d
dη

CκðηÞ ¼ CAðηÞhκjHIðηÞjAi; CκðηiÞ ¼ 0: ð3:11Þ

These processes are shown in Fig. 1. The initial condition
in Eq. (3.10) allows for an arbitrary initial amplitude of the
state jAi; the origin of the initial amplitude will be
discussed below [see discussion after Eq. (3.71)].
Equation (3.11) with CκðηiÞ ¼ 0 is formally solved by

CκðηÞ ¼ −i
Z

η

ηi

hκjHIðη0ÞjAiCAðη0Þdη0; ð3:12Þ

and inserting this solution into Eq. (3.10) we find

FIG. 1. Transitions jAi ↔ jκi in first order in HI .
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d
dη

CAðηÞ ¼ −
Z

η

ηi

dη0ΣAðη; η0ÞCAðη0Þ; ð3:13Þ

where we have introduced the self-energy

ΣAðη; η0Þ ¼
X
κ

hAjHIðηÞjκihκjHIðη0ÞjAi; ð3:14Þ

shown in Fig. 2. This integro-differential equation with
memory yields a nonperturbative solution for the time
evolution of the amplitudes and probabilities. In
Minkowski space-time and in frequency space, this is
recognized as a Dyson resummation of self-energy dia-
grams, which upon Fourier transforming back to real time,
yields the usual exponential decay law [46]. Introducing the
solution for CAðηÞ back into (3.11) yields the amplitude of
the state jκi.
Equation (3.13) is in general very difficult to solve

exactly, but a weak coupling assumption yields to a
systematic approximation, achieved by introducing

EAðη; η0Þ≡
Z

η0

ηi

ΣAðη; η00Þdη00; ð3:15Þ

such that

d
dη0

EAðη; η0Þ ¼ ΣAðη; η0Þ; ð3:16Þ

with the condition

EAðη; ηiÞ ¼ 0: ð3:17Þ

Then (3.13) can be written as

d
dη

CAðηÞ ¼ −
Z

η

ηi

dη0
d
dη0

EAðη; η0ÞCAðη0Þ ð3:18Þ

which can be integrated by parts to yield

d
dη

CAðηÞ ¼ −EAðη; ηÞCAðηÞ þ
Z

η

ηi

dη0EAðη; η0Þ
d
dη0

CAðη0Þ:

ð3:19Þ

Since EA ∝ OðH2
I Þ the first term on the right-hand side

is of order H2
I , whereas the second is OðH4

I Þ because
dCAðηÞ=dη ∝ OðH2

I Þ. Therefore to leading order in the
interaction (OðH2

I Þ), the evolution equation for the ampli-
tude becomes

d
dη

CAðηÞ ¼ −EAðη; ηÞCAðηÞ; ð3:20Þ

with solution

CAðηÞ ¼ exp

�
−
Z

η

ηi

EAðη0; η0Þ dη0
�
CðiÞ
A : ð3:21Þ

This expression highlights the nonperturbative nature of
the dynamical resummation method. The imaginary part of
the self-energy ΣA yields a renormalization of the frequen-
cies which we will not pursue here [46,70], whereas the real
part gives the decay rate, with

jCAðηÞj2 ¼ e
−
R

η

ηi
ΓAðη0Þdη0 jCðiÞ

A j2;

ΓAðηÞ ¼ 2

Z
η

ηi

dη1Re½ΣAðη; η1Þ�: ð3:22Þ

Finally, the time evolution of the amplitude of the state
jκi is obtained by inserting the amplitude (3.21) into (3.12),
yielding

CκðηÞ ¼ −iCðiÞ
A

Z
η

ηi

hκjHIðη0ÞjAi

× exp

�
−
Z

η0

ηi

EAðη00; η00Þdη00
�
dη0: ð3:23Þ

The hermiticity of HI leads to the result

d
dη

�
jCAðηÞj2 þ

X
κ

jCκðηÞj2
�

¼ 0 ⇒

jCAðηÞj2 þ
X
κ

jCκðηÞj2 ¼ jCðiÞ
A j2; ð3:24Þ

where we used the initial conditions CAðηiÞ ¼ CðiÞ
A ;

CκðηiÞ ¼ 0. This is the statement of unitarity: in the
interaction picture the time-evolved state is given by

jΨIðηÞi ¼ UIðη; ηiÞjΨIðηiÞi ¼ CAðηÞjAi þ
X
κ

CκðηÞjκi;

ð3:25Þ

therefore,

hΨIðηÞjΨIðηÞi ¼ hΨIðηiÞjU†
I ðη; ηiÞUðη; ηiÞjΨIðηiÞi

¼ jC2
AðηÞj2 þ

X
κ

jC2
κðηÞj2

¼hΨIðηiÞjΨIðηiÞi ¼ jCðiÞ
A j2: ð3:26Þ

In our study, for the bosonic case the state
jAi ¼ a†

k⃗
j0φ; 0χi≡ j1φ

k⃗
; 0χi and the intermediate state

FIG. 2. One loop self-energy corresponding to the state jAi.
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jκi ¼ a†p⃗c
†
q⃗j0φ; 0χi≡ j1φp⃗; 1χq⃗i; therefore, we identify

jCκðηÞj2 as the production probability of the massless
particle. This interpretation will be confirmed by the
analysis of the expectation value of the energy momentum
tensor in this time-evolved state in Sec. V B. We notice that
the production probability of the massless particle is

proportional to jCðiÞ
A j2 [see Eq. (3.23)] which can be

associated with the initial “population” of the single
massive particle state; however, we show in Sec. V B that
the expectation value of the energy momentum tensor does
not depend on this initial condition.
We first describe the dynamical resummation method for

the bosonic case, adapting it to the fermionic case in
Sec. IV. For the bosonic model (2.6), the matrix elements
that enter in the self-energy (3.14) are given by

h1φp⃗; 1χq⃗jHIðη0Þj1φk⃗ i ¼
λaðη0Þ
V1=2 gkðη0Þg�pðη0Þfq⃗ðη0Þδk⃗;p⃗þq⃗;

ð3:27Þ

h1φ
k⃗
jHIðηÞj1φp⃗; 1χq⃗i ¼

λaðηÞ
V1=2 g�kðη0Þgpðη0Þf�q⃗ðη0Þδk⃗;p⃗þq⃗;

ð3:28Þ

with

Σkðη;η0Þ¼
X
p⃗

h1φ
k⃗
jHIðηÞj1φp⃗;1χq⃗ih1φp⃗;1χq⃗jHIðη0Þj1φk⃗ i: ð3:29Þ

In these expressions we have displayed the general form
of the matrix elements in terms of the mode functions exact
solutions of the free-field equations of motion (2.11), (2.12)
to highlight the complexities of the self-energies in curved
space-time. Obviously the calculation of the self-energy in
the general case with the exact solutions of the mode
equations is a daunting task; instead, we rely on the
adiabatic approximation.
To leading (zeroth) order in the adiabatic approximation

with gkðηÞ given by (2.31) and fkðηÞ by (2.16), summing
over the intermediate states and taking the infinite volume
limit, we find

Σkðη; η0Þ ¼
λ

8
aðηÞaðη0Þ

Z
d3p
ð2πÞ3

e
i
R

η

η0 ½Ωkðη00Þ−Ωpðη00Þ−q�dη00

q½ΩkðηÞΩkðη0ÞΩpðηÞΩpðη0Þ�1=2
; q⃗ ¼ k⃗ − p⃗; ð3:30Þ

and the rate of decay of the initial probability is given by the
time integral (3.22). While the conformal time integral of
the frequencies can be obtained in closed form [49], neither
the momentum integral nor the final time integral leading to
the rate ΓðηÞ can be done in closed form. A numerical study
is not feasible either because of the enormous range in
momenta and time. Instead, we will leverage the adiabatic
approximation to obtain ΓðηÞ.
The analysis begins by establishing that the self-energy

kernel Σkðη; η0Þ is short ranged in the sense that it is
dominated by the region η ≃ η0. To see this clearly, let us
write

Σkðη; η0Þ ¼
λ

8
aðηÞaðη0Þ e

i
R

η

η0 Ωkðη00Þdη00

½ΩkðηÞΩkðη0Þ�1=2
Ikðη; η0Þ; ð3:31Þ

with

Ikðη; η0Þ ¼
Z

d3p
ð2πÞ3

e
−i
R

η

η0 ½Ωpðη00Þþjk⃗−p⃗j�dη00

jk⃗ − p⃗j½ΩpðηÞΩpðη0Þ�1=2
: ð3:32Þ

Consider first the equal time limit η ¼ η0, for which

Ikðη; ηÞ ¼
Z

d3p
ð2πÞ3

1

jk⃗ − p⃗jΩpðηÞ
ð3:33Þ

is ultraviolet linearly divergent. The kernel Ikðη; η0Þ in
(3.31) can be calculated explicitly for M ¼ 0 (see
Ref. [70]), in which case one finds

Ikðη; η0Þ ∝
1

η − η0
; ð3:34Þ

whose divergence as η → η0 reflects the linear ultra-
violet divergence. This short-time divergence is indepen-
dent of the mass; therefore, the full kernel Ikðη; η0Þ for
M ≠ 0 is expected to feature this short-time behavior.
Motivated by this observation we seek an expansion
anchored in the adiabatic approximation; this is achieved
by writing

Ωpðη0Þ ¼
�
p2 þM2a2ðηÞ þM2a2ðηÞ

��
η − η0

η

�
2

− 2

�
η − η0

η

���
1=2

: ð3:35Þ

Introducing τ ¼ ΩkðηÞðη − η0Þ it follows that (3.35)
becomes
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Ωpðη0Þ ¼ ΩpðηÞ
�
1þ 1

γ2pðηÞ
ð−2ϵkðηÞτ þ ϵ2kðηÞτ2Þ

�
1=2

≃ΩpðηÞ
�
1 −

ϵkðηÞ
γ2pðηÞ

τ þ � � �
�
; ð3:36Þ

where γpðηÞ ¼ ΩpðηÞ=MaðηÞ is the local Lorentz factor,
ϵkðηÞ ¼ 1=ðΩkðηÞηÞ ≪ 1 is the dimensionless adiabatic
parameter introduced in Eq. (2.30), and only displayed
in the first-order term in the expansion in ϵkðηÞ in (3.36).
We confirm below self-consistently that for τ ≃ 1=ϵkðηÞ
when the higher-order adiabatic terms in (3.36) become of
the same order as the leading contribution, the kernel (3.32)
is suppressed by ∝ ϵ2kðηÞ, therefore confirming the
consistency of the leading-order terms in this expansion.
We now proceed to prove this important aspect self-
consistently.
Up to first order in ϵkðηÞ (3.32) becomes

Ikðη; η0Þ ¼
Z

d3p
ð2πÞ3

�
1þ ϵkðηÞτ

2γ2pðηÞ
�

×
e−if½ΩpðηÞþjp⃗−k⃗j�ðη−η0Þ½1−δp;kðηÞϵkðηÞτ�g

jp⃗ − k⃗jΩpðηÞ
; ð3:37Þ

where

δp;kðηÞ ¼
ΩpðηÞ

2γ2pðηÞðΩpðηÞ þ jp⃗ − k⃗jÞ
<

1

2
: ð3:38Þ

Obviously even at this first order in ϵkðηÞ the integral
cannot be done in closed form; however, it allows us to
understand the range of the kernel. First, since δp;kðηÞ <
1=2 at all times and for all values of p we approximate it as
δp;kðηÞ≡ δ̄ < 1=2 for all momenta and time; similarly, we
replace γpðηÞ≡ γ̄ ≥ 1 for all values of momenta and time,
and finally we introduce T ¼ ðη − η0Þ½1 − δ̄ϵkðηÞτ�. With
these approximations,

Ikðη; η0Þ≡
�
1þ ϵkðηÞτ

2γ̄2

�
Īkðη; η0Þ;

Īkðη; η0Þ ¼
Z

d3p
ð2πÞ3

e−i½ΩpðηÞþjp⃗−k⃗j�T

jp⃗ − k⃗jΩpðηÞ
: ð3:39Þ

Introducing the spectral density

ρðk0; kÞ ¼
Z

d3p
ð2πÞ3

δðk0 −ΩpðηÞ − jp⃗ − k⃗jÞ
jp⃗ − k⃗jΩpðηÞ

; ð3:40Þ

which depends on η parametrically, we can write

Īkðη; η0Þ ¼
Z

∞

−∞
ρðk0; kÞe−ik0Tdk0: ð3:41Þ

The spectral density (3.40) is the same as that found in the
study of infrared dynamics in Minkowski space-time in
Ref. [45], but depending parametrically on η, it is given by

ρðk0; kÞ ¼ ρ̄ðk0; kÞΘðk0 −ΩkðηÞÞ;

ρ̄ðk0; kÞ ¼
1

4π2

�
k20 − Ω2

kðηÞ
k20 − k2

�
: ð3:42Þ

The T → 0 limit of (3.41) is determined by the large k0
behavior of the spectral density1; introducing a conver-
gence factor T → T − iε, ε → 0þ, we find

ĪkðT → 0Þ ¼ −i
4π2T

e−iΩkðηÞT; ð3:43Þ

which reflects the short-time behavior (3.34). The asymp-
totic long-time limit T → ∞ can be obtained systematically
as follows: using the identity

e−ik0T ¼ i
T

d
dk0

ðe−ik0TÞ; ð3:44Þ

integrate by parts (with the convergence factor). Because
the spectral density vanishes at threshold k0 ¼ ΩpðηÞ this
procedure must be repeated for a second time, obtaining

ĪðT → ∞Þ ¼ e−iΩkðηÞT

T2

dρ̄
dk0

				
k0¼ΩkðηÞ

þOð1=T3Þ: ð3:45Þ

This result is important: in terms of τ ¼ ΩkðηÞðη − η0Þ it
follows that

ĪðT → ∞Þ ∝ ðϵkðηÞΩkðηÞÞ2
ðϵkðηÞτÞ2

1

½1 − δ̄ϵkðηÞτ�2
: ð3:46Þ

Therefore, for ϵkτ ≃ 1 when the higher adiabatic orders
become important, the kernel Ikðη; η0Þ ∝ ϵ2kðηÞ, hence of
subleading adiabatic order.
The main conclusion of this analysis is that the self-

energy kernel is short ranged in time, and to leading
adiabatic order it is the region η ≃ η0 that is dominant.
At the timescale when the higher-order adiabatic terms
become comparable to the zeroth order the kernel is
suppressed by a high power of ϵ. Therefore, terms with
powers of ϵkðηÞτ can be safely neglected to leading
adiabatic order, thereby validating keeping the zeroth
adiabatic order in the analysis below.
Armed with this result, we can now focus on the leading

contribution to the self-energyΣkðη; η0Þ in (3.31). To leading
order the expansion (3.36) yields Ωkðη0Þ ¼ ΩkðηÞ þ � � �;
furthermore, using the identity (valid during RD)

1This can be seen by rescaling k0T ¼ ζ in the integral in
(3.41).
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aðη0Þ¼aðηÞ
�
1−

�
η−η0

η

��
¼aðηÞ½1−ϵkðηÞτ�¼aðηÞþ���

ð3:47Þ

and from Eq. (3.36) Ωkðη0Þ ¼ ΩkðηÞ þ � � � where the � � �
stand for higher-order terms in the adiabatic expansion, we
finally find, to leading adiabatic order,

Σkðη; η0Þ ¼
λ2a2ðηÞ
8ΩkðηÞ

Z
∞

ΩkðηÞ
ρ̄ðk0; kÞe−iðk0−ΩkðηÞÞðη−η0Þdk0;

ð3:48Þ

where ρ̄ðk0; kÞ is given by Eq. (3.42). The integral in η0 can
now be carried out.
The decay rate of the single φ particle of comoving

momentum k, given by Eq. (3.22) is

ΓkðηÞ¼
λ2a2ðηÞ
4ΩkðηÞ

Z
∞

ΩkðηÞ
ρ̄ðk0;kÞ

sin½ðk0−ΩkðηÞÞðη−ηiÞ�
k0−ΩkðηÞ

dk0:

ð3:49Þ

Introducing the dimensionless variable

s ¼ k0 −ΩkðηÞ
ΩkðηÞ

; ð3:50Þ

which depends explicitly on η (we suppressed the argu-
ment), it follows that the spectral density (3.42) written in
terms of s, vanishes linearly in s and restoring its
dependence on η can be written as

ρ̄ðs; ηÞ ¼ sDðηÞð1þ sσ̃ðs; ηÞÞ; DðηÞ ¼ dρ̄ðs; ηÞ
ds

				
s¼0

;

ð3:51Þ

where σ̃ð0; ηÞ is time dependent but finite. For ρ̄ðk0; kÞ
given by (3.42) we find

DðηÞ ¼ γ2kðηÞ
2π2

; σ̃ðs; ηÞ ¼ 1

2

� 1
γ2kðηÞ

− 4 − 2s
1

γ2kðηÞ
þ 2sþ s2

�
: ð3:52Þ

The rate (3.49) can now be written as

ΓkðηÞ ¼
λ2a2ðηÞDðηÞ

4ΩkðηÞ
Z

∞

0

ð1þ sσ̃ðs; ηÞÞ

× sin½sΩkðηÞðη − ηiÞ�ds: ð3:53Þ

In Minkowski space-time the region s ≃ 0 yields an
infrared divergence in the long-time limit [45]; this is also
the case in the RD cosmology as is made explicit by the
following analysis. Let us write

R
∞
0 ð� � �Þds ¼ R

1
0 ð� � �ÞdsþR∞

1 ð� � �Þds, yielding

ΓkðηÞ ¼ Γð1Þ
k ðηÞ þ Γð2Þ

k ðηÞ þ Γð3Þ
k ðηÞ; ð3:54Þ

with

Γð1Þ
k ðηÞ ¼ λ2a2ðηÞDðηÞ

4ΩkðηÞ
Z

1

0

sin½sΩkðηÞðη − ηiÞ�ds; ð3:55Þ

Γð2Þ
k ðηÞ ¼ λ2a2ðηÞDðηÞ

4ΩkðηÞ
Z

1

0

sσ̃ðs; ηÞ sin½sΩkðηÞðη − ηiÞ�ds;

ð3:56Þ

Γð3Þ
k ðηÞ¼ λ2a2ðηÞ

4ΩkðηÞ
Z

∞

1

ρ̄ðs;ηÞ
s

sin½sΩkðηÞðη−ηiÞ�ds: ð3:57Þ

Obviously the first integral (3.55) is straightforward.
Finally, from Eq. (3.22) to understand the time evolution
of the survival probability of the initial state, we need the

η-integral
R
η
ηi
Γkðη0Þdη. The contribution from Γð1Þ

k ðηÞ is
shown below to be infrared divergent in the long-time

limit, whereas those from Γð2;3Þ
k ðηÞ are infrared and ultra-

violet finite and feature a slow time evolution in the
long-time limit. Their contribution is analyzed in detail
in Appendix A.
Carrying out the s integration for the first contribution,

we findZ
η

ηi

Γð1Þ
k ðη0Þdη0 ¼ 2Δb

Z
η

ηi

½1 − cosðΩkðη0Þðη0 − ηiÞÞ�
ðη0 − ηiÞ

dη0;

ð3:58Þ

where we introduced the effective dimensionless coupling

Δb ¼
�

λ

4πM

�
2

: ð3:59Þ

This integral cannot be done in closed form; however, it can
be obtained in an adiabatic expansion as follows: with the
definition

x≡ Ωkðη0Þðη0 − ηiÞ ⇒
dx
dη0

¼ Ωkðη0Þ½1þ ϵ̃kðη0Þx�; ð3:60Þ

where ϵ̃k is given by Eq. (2.30) in terms of the adiabatic
ratio ϵk. In the above expressions η0 is a function of x. In
terms of this variable and taking η ≫ ηi we findZ

η

ηi

Γð1Þ
k ðη0Þdη0 ¼ 2Δb

�Z
1=ϵkðηÞ

0

1 − cosðxÞ
x

dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

−
Z

1=ϵkðηÞ

0

eϵkðxÞ 1 − cosðxÞ
1þ ϵ̃kðxÞx

dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�

B

; ð3:61Þ
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the (A) integral in the long-time limit 1=ϵkðηÞ ¼ ΩkðηÞη →
∞ becomes

ðAÞ → ln½ΩkðηÞη�; ð3:62Þ

whereas for the (B) term, the cosine term averages out.
Furthermore, note that at x ¼ 1=ϵkðηÞ the ratio
ϵ̃kðηÞ=ϵkðηÞ ¼ 1=γ2kðηÞ ≤ 1; therefore, ðBÞ ≃Oð1Þ and
varies slowly in the long-time limit [keeping ϵ̃ ≃
constant it follows that ðBÞ ≤ lnð2Þ]. In Appendix A we

show that the contributions from Γð2;3Þ
k are infrared and

ultraviolet finite and remain bound and slowly varying in
time, reaching a constant value at asymptotically long time.
Therefore, we find for ΩkðηÞη ¼ EkðtÞ=HðtÞ ≫ 1

Z
η

ηi

Γkðη0Þdη0 ¼ 2Δb ln

�
EkðtÞ
HðtÞ

�
þ zðtÞ; ð3:63Þ

where zðtÞ is a slowly varying function of time that
approaches an infrared and ultraviolet finite constant in
the asymptotic long-time limit (see Appendix A).
During the RD era HðtÞ ¼ 1=2t; therefore, in terms of

cosmic time, the contribution that grows in time on the
right-hand side of (3.63) is 2Δb ln½2EkðtÞt�, which is very
similar to the result in Minkowski space-time [45].
However, in the expanding cosmology the local energy
depends on time as a consequence of the cosmological
redshift. With the scale factor given by (2.3) it is convenient
to introduce the timescale tnr that determines when the
particle becomes nonrelativistic as

tnr ¼
k2

2M2HR
; ð3:64Þ

so that the local Lorentz factor

γkðtÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ tnr

t

r
⇒

�
Relativistic for t≪ tnr
Nonrelativistic for t≫ tnr

: ð3:65Þ

Hence, we find asymptotically

Z
η

ηi

Γkðη0Þdη0 ¼ 2Δb ln½2MtγkðtÞ� þ zðtÞ: ð3:66Þ

In summary, the survival probability of a single φ

particle state with momentum k⃗ in the long-time limit is

jCφ
k ðtÞj2¼Cφ

k ðtiÞ
�
EkðtÞ
HðtÞ

�
−2Δb

ZðtÞ; ZðtÞ¼e−zðtÞ; ð3:67Þ

or in terms of cosmic time, that

jCφ
k ðtÞj2 ≃ Cφ

k ðtiÞ½2MtγkðtÞ�−2ΔbZðtÞ: ð3:68Þ

Thewave function renormalizationZðtÞ is a slowly varying
function of time that remains bounded at long time. The
cosmological redshift responsible for the time dependence
of the local Lorentz factor entails a crossover of the
decaying term:

jCφ
k ðtÞj2 ∝

�
t−Δb ; t ≪ tnr
t−2Δb ; t ≫ tnr

: ð3:69Þ

The anomalous dimension 2Δb is the same as in
Minkowski space-time and originates in the infrared
divergence [45].
The amplitude of the multiparticle state j1φp⃗; 1χk⃗−p⃗i is

Cφ;χ

p⃗;k⃗
ðηÞ¼−i

λ

V1=2

Z
η

ηi

aðη0Þ

×
e
−i
R

η0
ηi
ðΩkðη00Þ−Ωpðη00ÞÞdη00eijk⃗−p⃗jη0

½8Ωkðη0ÞΩpðη0Þjk⃗− p⃗j�1=2
Cφ
k ðη0Þdη0; ð3:70Þ

and the time-evolved state in the interaction picture is given
by

jΨIðηÞi ¼ Cφ
k ðηÞj1φk⃗ ; 0χi þ

X
p⃗

Cφ;χ

p⃗;k⃗
ðηÞj1φp⃗; 1χk⃗−p⃗i: ð3:71Þ

Unitarity (3.24) implies that hΨIðηÞjΨIðηÞi ¼ jCφ
k ðηiÞj2.

The second term in (3.71) describes an entangled state of
the single φ particle and a single χ particle; this cloud
of χ particles “dresses” the φ particle. Since Cφ

k ðηÞ → 0 as
η → ∞ only the second term survives in the asymptotic
long-time limit; hence, the sum rule (3.26) yieldsP

p⃗ jCφ;χ

p⃗;k⃗
ðηÞj2 ¼ jCφ

k ðηiÞj2 thus saturating the unitarity

constraint in the asymptotic long-time limit.
The initial amplitudeCφ

k ðtiÞmust be determined from the
amplitude of the single-particle state at the time when the
adiabatic approximation begins to be valid. It is determined
by the processes that lead to the production of single φ
particle states prior to the onset of the adiabatic era, such as
particle production during inflation or the postinflationary
era. However, we show in Sec. V that the expectation value
of the energy momentum tensor does not depend on this
initial condition.

IV. FERMIONIC CASE

A. Adiabatic approximation for fermions

We consider the massless scalar field π as the ultralight
degree of freedom Yukawa coupled to one Dirac fermion in
a spatially flat FRW cosmology.
In comoving coordinates, and for an RD cosmology

(with vanishing Ricci scalar) the action is given by
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S¼
Z

d3xdt
ffiffiffiffiffi
jgj

p �
1

2
gμν∂μπ∂νπþΨ½iγμDμ−M−Yπ�Ψ

�
:

ð4:1Þ

Introducing the vierbein field eμaðxÞ defined as

gμνðxÞ ¼ eμaðxÞeνbðxÞηab;

where ηab is the Minkowski space-time metric, the curved
space-time Dirac gamma matrices γμðxÞ are given by

γμðxÞ ¼ γaeμaðxÞ; fγμðxÞ; γνðxÞg ¼ 2gμνðxÞ; ð4:2Þ

where the γa are the Minkowski space-time Dirac matrices,
chosen to be in the standard Dirac representation, and the
fermionic covariant derivative Dμ is given in terms of the
spin connection [56,71–73] by

Dμ ¼ ∂μ þ
1

8
½γc; γd�eνcð∂μedν − Γλ

μνedλÞ; ð4:3Þ

where Γλ
μν are the usual Christoffel symbols.

With the metric in conformal time given by (2.1) the
vierbeins eμa are given by (up to a local Lorentz trans-
formation)

eμa ¼ a−1ðηÞδμa; eaμ ¼ aðηÞδaμ: ð4:4Þ

The fermionic part of the action in conformal coordinates
now becomes

Sf ¼
Z

d3x dηa4ðηÞΨ̄ðx⃗; ηÞ
�
i
γ0

aðηÞ
�
d
dη

þ 3
a0ðηÞ
2aðηÞ

�

þ i
γi

aðηÞ∇i −M − Yπ

�
Ψðx⃗; ηÞ: ð4:5Þ

The Dirac Lagrangian density in conformal time and
with the conformal rescaling of the π field as in Eq. (2.5)
simplifies to

ffiffiffiffiffiffi
−g

p
Ψ̄ðiγμDμ −M − YϕÞΨ

¼ ða3=2ðηÞΨ̄ðx⃗; ηÞÞ½i=∂ −MaðηÞ − YχÞ�ða3=2ðηÞΨðx⃗; ηÞÞ;
ð4:6Þ

where i=∂ ¼ γa∂a is the usual Dirac differential operator in
Minkowski space-time in terms of flat space-time γa

matrices. Introducing the conformally rescaled fermionic
fields

a
3
2ðηÞΨðx⃗; tÞ ¼ ψðx⃗; ηÞ; ð4:7Þ

and neglecting surface terms, the action becomes

S ¼
Z

d3x dηfL0½χ� þ L0½ψ � þ LI½χ;ψ �g; ð4:8Þ

with

L0½χ� ¼
1

2
½χ02 − ð∇χÞ2�; ð4:9Þ

L0½ψ � ¼ ψ̄ ½i=∂ −MðηÞ�ψ ; ð4:10Þ

LI½χ;ψ � ¼ −Yψ̄χψ : ð4:11Þ

The effective time-dependent fermion mass is given by

MðηÞ ¼ MaðηÞ: ð4:12Þ

In the noninteracting case, Y ¼ 0, the Heisenberg equa-
tions of motion for the spatial Fourier modes with comov-
ing wave vector k⃗ for the conformally rescaled scalar field
is given by Eq. (2.8).
The Heisenberg fields are quantized in a comoving

volume V, the real scalar field χ is expanded as in
Eq. (2.37), and for Dirac fermions the field ψðx⃗; ηÞ are
expanded as

ψðx⃗; ηÞ ¼ 1ffiffiffiffi
V

p
X

k⃗;λ¼1;2

½bk⃗;λUλðk⃗; ηÞeik⃗·x⃗ þ d†
k⃗;λ
Vλðk⃗; ηÞe−ik⃗·x⃗�;

ð4:13Þ

where the spinor mode functions U, V obey the Dirac
equations [74–83]:

½i γ0∂η − γ⃗ · k⃗ −MðηÞ�Uλðk⃗; ηÞ ¼ 0; ð4:14Þ

½i γ0∂η þ γ⃗ · k⃗ −MðηÞ�Vλðk⃗; ηÞ ¼ 0: ð4:15Þ

These equations become simpler by writing

Uλðk⃗; ηÞ ¼ ½i γ0∂η − γ⃗ · k⃗þMðηÞ�fkðηÞUλ; ð4:16Þ

Vλðk⃗; ηÞ ¼ ½i γ0∂η þ γ⃗ · k⃗þMðηÞ�hkðηÞVλ; ð4:17Þ

with Uλ; Vλ being constant spinors [76,77] obeying

γ0Uλ ¼ Uλ; γ0Vλ ¼ −Vλ: ð4:18Þ

Inserting (4.16) and (4.17) into the Dirac equations (4.14)
and (4.15) and using (4.18), it follows that the mode
functions fkðηÞ; hkðηÞ obey the equations

�
d2

dη2
þΩ2

kðηÞ − iM0ðηÞ
�
fkðηÞ ¼ 0; ð4:19Þ
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�
d2

dη2
þΩ2

kðηÞ þ iM0ðηÞ
�
hkðηÞ ¼ 0; ð4:20Þ

where

ΩkðηÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM2ðηÞ

q
: ð4:21Þ

Multiplying the Dirac equations on the left by γ0, it is
straightforward to confirm that

d
dη

ðU†
λðq;ηÞUλðq;ηÞÞ ¼ 0;

d
dη

ðV†
λðq;ηÞVλðq;ηÞÞ ¼ 0:

ð4:22Þ

We choose the normalizations

U†
λðq; ηÞUλ0 ðq; ηÞ ¼ V†

λðq; ηÞVλ0 ðq; ηÞ ¼ δλ;λ0 ; ð4:23Þ

so that the operators b, b†, d, d† obey the canonical
anticommutation relations. Furthermore, we will choose
particle-antiparticle boundary conditions so that hkðηÞ ¼
f�kðηÞ. We note that for M ¼ 0 the conformally rescaled
Fermi fields obey the same equations as in Minkowski
space-time but, in terms of conformal time, this is also the
case for massless scalar fields in an RD cosmology where
the Ricci scalar vanishes. The adiabatic expansion for
Fermi fields has been studied in Refs. [70,78–83], to which
we refer the reader for details. Here we summarize the
results up to leading (zeroth) adiabatic order. In particular
we recognize that

M0ðηÞ
Ω2

kðηÞ
¼ HðtÞ

γkðtÞEkðtÞ
¼ ϵkðtÞ

γkðtÞ
; ð4:24Þ

therefore, the purely imaginary term in the mode equa-
tions (4.19) and (4.20) are of first adiabatic order and will
be neglected to leading (zeroth) order.

Hence, to leading order we find

fkðηÞ ¼ h�kðηÞ ¼
e
−i
R

η

ηi
Ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΩkðηÞ
p : ð4:25Þ

To this order the Dirac spinor solutions in the standard
Dirac representation and with the normalization conditions
(4.23) are found to be

Uλðk⃗; ηÞ ¼
e
−i
R

η

ηi
Ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΩkðηÞ
p Uλðk⃗; ηÞ; ð4:26Þ

Vλðk⃗; ηÞ ¼
e
i
R

η

ηi
Ωkðη0Þdη0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ΩkðηÞ
p Vλðk⃗; ηÞ; ð4:27Þ

where

Uλðk⃗;ηÞ¼
1ffiffiffiffiffiffiffiffiffiffiffi
WðηÞp �WðηÞξλ

σ⃗ · k⃗ξλ

�
; ξ1¼

�
1

0

�
; ξ2¼

�
0

1

�
;

ð4:28Þ

and

Vλðk⃗;ηÞ¼
1ffiffiffiffiffiffiffiffiffiffiffi
WðηÞp �

σ⃗ · k⃗ξ̃λ
WðηÞξ̃λ

�
; ξ̃1¼

�
0

1

�
; ξ̃2¼−

�
1

0

�
;

ð4:29Þ

where we introduced

WkðηÞ ¼ ΩkðηÞ þMðηÞ ¼ aðηÞ½EkðηÞ þM�: ð4:30Þ

To leading adiabatic order the U spinors satisfy the
completeness relations:

X
λ¼1;2

Uλ;aðk⃗; ηÞŪλ;bðk⃗; η0Þ≡ ðΛþ
k ðη; η0ÞÞab ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WkðηÞWkðη0Þ

p �
WkðηÞWkðη0ÞI −σ⃗ · k⃗WkðηÞ
σ⃗ · k⃗Wkðη0Þ −k2I

�
; ð4:31Þ

in particular for η ¼ η0

Λþðη;ηÞ¼ ½=KðηÞþMðηÞ�; KμðηÞ¼ðΩkðηÞ;−k⃗Þ: ð4:32Þ

B. Dynamical resummation

We now have the main ingredients to implement the
dynamical resummation for this fermionic case, for which
the single-particle initial state is taken to be jAi ¼ j1ψ

k⃗;α
; 0χi

and the intermediate state connected to jAi at first order in
the interaction is jκi ¼ j1ψp⃗;β; 1χq⃗i. Therefore, to lowest
adiabatic order the transition matrix elements are

h1ψp⃗;β;1χq⃗jHIðη0Þj1ψk⃗;αi¼
Y

V1=2δk⃗;p⃗þq⃗

e
−i
R

η0
ηi
½Ωkðη00Þ−Ωpðη00Þ�dη00eiqη0

½2Ωkðη0Þ2Ωpðη0Þ2q�1=2
×
X
a

Ū p⃗βaðη0ÞU k⃗αaðη0Þ; ð4:33Þ
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h1ψ
k⃗;α
jHIðηÞj1ψp⃗;β;1χq⃗i¼

Y

V1=2δk⃗;p⃗þq⃗

e
i
R

η

ηi
½Ωkðη00Þ−Ωpðη00Þ�dη00e−iqη

½2ΩkðηÞ2ΩpðηÞ2q�1=2
×
X
b

Ū k⃗αbðηÞU p⃗βbðηÞ; ð4:34Þ

with

Σk;αðη; η0Þ ¼
X
p⃗;q⃗

X
β

h1ψ
k⃗;α
jHIðηÞj1ψp⃗;β; 1χq⃗i

× h1ψp⃗;β; 1χq⃗jHIðη0Þj1ψk⃗;αi: ð4:35Þ

Taking the average over the initial polarizations and using
the projector (4.31) we find

Σ̄kðη; η0Þ≡ 1

2

X
α

Σk;α ¼
Y2

16

e
i
R

η

η0 Ωkðη00Þdη00

½ΩkðηÞΩkðη0Þ�1=2
Ikðη; η0Þ;

ð4:36Þ

where

Ikðη; η0Þ ¼
Z

d3p
ð2πÞ3

e
−i
R

η

η0 ½Ωpðη00Þþjk⃗−p⃗j�dη00

jp⃗ − k⃗j½ΩpðηÞΩpðη0Þ�1=2
× tr½Λþ

p ðη; η0ÞΛþ
k ðη0; ηÞ�: ð4:37Þ

Obviously even to leading order in the adiabatic approxi-
mation the calculation of the self-energy is a daunting task
and no analytic closed expression is available. However, as
in the bosonic case of the previous section, the kernel
Ikðη; η0Þ is localized in the region η ≃ η0 as a consequence
of the momentum integral. Such temporal localization
allows us to leverage the adiabatic expansion to simplify
its expression to leading order.
To understand this aspect more clearly, we follow the

same steps as in the bosonic case. In terms of ϵkðηÞ [see
Eq. (2.30)] and τ ¼ ΩkðηÞðη − η0Þ, the results (3.360) and
(3.47) lead to the expansion

Wpðη0Þ ¼ WpðηÞ
�
1 −

ϵkðηÞτ
γpðηÞ

þ � � �
�
; ð4:38Þ

where the dots stand for higher powers of ϵkτ. This identity
leads to the expansion

Λþ
p ðη; η0Þ ¼ ½=PðηÞ þMðηÞ� þ ϵkðηÞτ

γpðηÞ
Λ̃pðηÞ; ð4:39Þ

where Λ̃pðηÞ is of zeroth adiabatic order; therefore,

tr½Λþ
p ðη; η0ÞΛþ

k ðη0; ηÞ� ¼ 4½ΩkðηÞΩpðηÞ − k⃗ · p⃗þM2ðηÞ�
þOðϵkτÞ: ð4:40Þ

Neglecting the terms of OðϵkτÞ the kernel can be written as

Ikðη; η0Þ ¼ 4

Z
∞

−∞
ρ̃ðk0; kÞe−ik0T dk0; ð4:41Þ

where T is the same as for Eq. (3.39) and

ρ̃ðk0;kÞ¼
Z

d3p
ð2πÞ3

δðk0−ΩpðηÞ− jp⃗− k⃗jÞ
ΩpðηÞjp⃗− k⃗j

× ½ΩpðηÞΩkðηÞ− k⃗ · p⃗þM2ðηÞ�; ð4:42Þ

which has been calculated in Ref. [45] and is given by

ρ̃ðk0; kÞ ¼
1

8π2

�
k20 − Ω2

kðηÞ
k20 − k2

��
k0

�
ΩkðηÞ − k0
k20 − k2

�
ðk20 − k2

þM2ðηÞÞ þ k20 − k2 þ 3M2ðηÞ
�
Θðk0 −ΩkðηÞÞ:

ð4:43Þ

We have suppressed the argument η in ρ̃ðk0; kÞ which
depends parametrically on it. The short-time limit η − η0 →
0 (T → 0) is dominated by the large k0 behavior in (4.41),
since for large k0 it follows that ρ̃ðk0; kÞ → k0ΩkðηÞ, then
as T → 0

Ikðη; η0Þ ∝
1

ðη − η0Þ2 : ð4:44Þ

The large-T behavior is obtained as for the bosonic case,
since the spectral density vanishes as k0 → ΩkðηÞ following
the same steps as for the bosonic case, namely with the
identity (3.44) and the derivative expansion leading to
Eq. (3.45), we find the asymptotic long-time behavior:

Ikðη; η0Þ ∝
1

T2
∝
ðϵkðηÞΩkðηÞÞ2
ðϵkðηÞτÞ2

1

½1 − δ̄ϵkðηÞτ�2
: ð4:45Þ

Therefore, for τ ≃ 1=ϵk when the higher-order adiabatic
corrections become of the same order as the leading term,
the kernel Ik is of order ϵ2k. This analysis leads to
the conclusion that the self-energy kernel is localized in
the region η ≃ η0 and to leading adiabatic order we can set
η ¼ η0 in Ωkðη0Þ, Ωpðη0Þ. Following the same steps as for
the bosonic case we find to leading (zeroth) adiabatic order

Σ̄kðη;η0Þ¼
Y2

32π2

Z
∞

ΩkðηÞ
ρ̄ðk0;kÞe−iðk0−ΩkðηÞÞðη−η0Þdk0; ð4:46Þ

with
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ρ̄ðk0; kÞ ¼
ðk0 −ΩkðηÞÞ

ΩkðηÞ
�
k0 þ ΩkðηÞ
k20 − k2

��
−k0

�
k0 −ΩkðηÞ
k20 − k2

�
ðk20 − k2 þM2ðηÞÞ þ k20 − k2 þ 3M2ðηÞ

�
: ð4:47Þ

We now integrate Σ̄k in η0 to obtain the decay rate of a
single fermion with comoving momentum k given by
Eq. (3.22); it is given by

ΓkðηÞ ¼
Y2

16π2

Z
∞

ΩkðηÞ
ρ̄ðk0; kÞ

sin½ðk0 −ΩkðηÞÞðη − ηiÞ�
k0 −ΩkðηÞ

dk0:

ð4:48Þ

In terms of the variable s defined by Eq. (3.50) we note that
ρ̄ðsÞ given by (4.47) vanishes linearly in s; therefore, we
write as for the bosonic case (3.51)

ρ̄ðs; ηÞ ¼ sDfðηÞ½1þ sσ̃fðs; ηÞ�; ð4:49Þ

where for the fermionic case

DfðηÞ ¼ 8ΩkðηÞ; ð4:50Þ

and σ̃ðs; ηÞ ∝ s as s → 0. As in the bosonic case, we writeR∞
0 ð� � �Þds ¼ R

1
0 ð� � �Þdsþ

R∞
1 ð� � �Þds. For the first integral

we write ρ̄ðsÞ as in (4.49), yielding

ΓkðηÞ ¼ Γð1Þ
k ðηÞ þ Γð2Þ

k ðηÞ þ Γð3Þ
k ðηÞ; ð4:51Þ

with

Γð1Þ
k ðηÞ ¼ Y2ΩkðηÞ

2π2

Z
1

0

sin½sΩkðηÞðη − ηiÞ� ds; ð4:52Þ

Γð2Þ
k ðηÞ ¼ Y2ΩkðηÞ

2π2

Z
1

0

sσ̃ðs; ηÞ sin½sΩkðηÞðη − ηiÞ� ds;

ð4:53Þ

Γð3Þ
k ðηÞ ¼ Y2

16π2

Z
∞

1

ρ̄ðs; ηÞ
s

sin½sΩkðηÞðη − ηiÞ� ds; ð4:54Þ

yieldingZ
η

ηi

Γð1Þ
k ðη0Þdη0 ¼ 2Δf

Z
η

ηi

½1 − cosðΩkðη0Þðη0 − ηiÞÞ�
ðη0 − ηiÞ

dη0;

ð4:55Þ

with

Δf ¼
Y2

4π2
: ð4:56Þ

The integral for Γð1Þ
k ðηÞ is the same as for the bosonic

case, Eq. (3.55); therefore, the same analysis as that leading

to Eq. (3.61) applies also to (4.55). An analysis for the

contributions from Γð2;3Þ
k ðηÞ is given in Appendix B, these

yield terms that remain bounded in time at long time but
feature ultraviolet divergences. Gathering these terms we
find in this case

Z
η

ηi

Γkðη0Þ dη0 ¼ 2Δf ln
�
EkðtÞ
HðtÞ

�
þ zfðtÞ: ð4:57Þ

In the fermionic case, zfðtÞ is a slowly varying function of η
that approaches an ultraviolet logarithmically divergent
constant in the long-time limit. This behavior is manifest in
the result given by (B3) in Appendix B at leading adiabatic
order in the long-time limit because the spectral density
ρ̄ðs; ηÞ ∝ s for large s. Therefore, for the fermionic case, the
survival probability of a single ψ particle state with
momentum k⃗ in the long-time limit is

jCψ

k⃗;α
ðtÞj2¼jCψ

k⃗;α
ðtiÞj2

�
EkðtÞ
HðtÞ

�
−2Δf

ZfðtÞ; ZfðtÞ¼e−zfðtÞ:

ð4:58Þ
However, in this case the slowly varying wave function
renormalization ZðtÞ is ultraviolet logarithmically diver-
gent in the long-time limit, just as in Minkowski space-
time [45].
Finally, the amplitude of the state j1ψp⃗;β; 1χq⃗i is

Cψ ;χ

p⃗;β;k⃗
ðηÞ¼−i

Z
η

ηi

h1ψp⃗;β;1χq⃗jHIðη0Þj1ψk⃗;αiC
ψ

k⃗;α
ðη0Þdη0; ð4:59Þ

where the matrix element is given by Eq. (4.33). Hence, the
time-evolved state in the interaction picture is

jΨIðηÞi ¼ Cψ

k⃗;α
ðηÞj1ψp⃗;β; 0χi þ

X
p⃗;β

Cψ ;χ

p⃗;β;k⃗
ðηÞj1ψp⃗;β; 1χq⃗i;

ð4:60Þ

and unitarity (3.24) implies that hΨIðηÞjΨIðηÞi ¼
jCψ

k⃗;α
ðηiÞj2.

V. CONSEQUENCES OF ENTANGLEMENT

A. Entanglement entropy: Information flow

In both the bosonic and fermionic cases the time-evolved
states jΨIðηÞi (3.71) and (4.60) are entangled states of the
heavy and the light particle. The pure state density matrix
from jΨIðηÞi is given by
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ϱ̂ðηÞ ¼ jΨIðηÞihΨIðηÞj
hΨIðηÞjΨIðηÞi

: ð5:1Þ

Entanglement is confirmed by obtaining the von Neumann
entanglement entropy from the reduced density matrix
which is obtained by tracing over one of the degrees of
freedom. For example, by tracing over the ultralight field χ
for the bosonic case (3.71) we find

ϱ̂φr ðηÞ ¼ Trχϱ̂ðηÞ ¼ jC̃φ
k ðηÞj2j1φk⃗ ih1

φ

k⃗
j

þ
X
p⃗

jC̃φ;χ

p⃗;k⃗
ðηÞj2j1φp⃗ih1φp⃗j; ð5:2Þ

and tracing over the heavy field φ we find

ϱ̂χrðηÞ¼Trφϱ̂ðηÞ
¼ jC̃φ

k ðηÞj2j0χih0χ jþ
X
q⃗

jC̃φ;χ

k⃗−q⃗;k⃗
ðηÞj2j1χq⃗ih1χq⃗j; ð5:3Þ

with

C̃φ
k ðηÞ ¼

Cφ
k ðηÞ

Cφ
k ðηiÞ

; C̃φ;χ

p⃗;k⃗
ðηÞ ¼

Cφ;χ

p⃗;k⃗
ðηÞ

Cφ
k ðηiÞ:

ð5:4Þ

It follows from the solutions (3.21) and (3.23) that the
normalized amplitudes C̃φ

k ðηÞ; C̃φ;χ

p⃗;k⃗
ðηÞ are independent of

the initial amplitude Cφ
k ðηiÞ and the unitarity condition

(3.24) yields

jC̃φ
k ðηÞj2 þ

X
p⃗

jC̃φ;χ

p⃗;k⃗
ðηÞj2 ¼ 1; ð5:5Þ

which implies that

Trϱ̂φr ðηÞ ¼ 1; Trϱ̂χrðηÞ ¼ 1: ð5:6Þ

The reduced density matrices (5.2) and (5.3) are diagonal
in the basis of single-particle states of definite momentum.
The von Neumann entropy SvNðηÞ ¼ −Trϱ̂rðηÞ lnðϱ̂rðηÞÞ
for both cases is therefore given by

SvNðηÞ ¼ −
�
jC̃φ

k ðηÞj2 ln½jC̃φ
k ðηÞj2�

þ
X
p⃗

jC̃φ;χ

p⃗;k⃗
ðηÞj2 ln½jC̃φ;χ

p⃗;k⃗
ðηÞj2�

�
: ð5:7Þ

This entanglement entropy grows during the time evolution
since SvNðηiÞ ¼ 0 because C̃φ

k ðηiÞ ¼ 1; C̃φ;χ

p⃗;k⃗
ðηiÞ ¼ 0, and

at very long time when the amplitude of the initial state has
“decayed,” namely jC̃φ

k ðηÞj2 ¼ 0, it follows that SvN > 0

since jC̃φ;χ

p⃗;k⃗
ðηÞj2 < 1 as a consequence of the unitarity

condition (5.5) for jC̃φ
k ðηÞj2 ¼ 0. The time evolution of

SvN is completely determined by the DRM equations (3.10)

and (3.11) and describes the information flow from the
single-particle initial state to the entangled asymptotic final
state during the “dressing” process.

B. Energy momentum tensors

The main result of the previous sections is that the
amplitude of the initial state is

jC̃ψ

k⃗;α
ðηÞj ∝

�
EkðηÞ
HðηÞ

�
−Δf

; jC̃φ
k ðηÞj ∝

�
EkðtÞ
HðtÞ

�
−Δb

: ð5:8Þ

To estimate the magnitude of the decay of the amplitude of
the initial state between an early period in RD to near the
radiation to matter transition, let us consider as an example
that the mass of the heavy particle ≃GeV and the comoving
momentum k ≃ 10−3 eV, corresponding to an average
photon in the cosmic microwave background today.
At the electroweak scale the physical momentum
corresponds to kphðηÞ≃100GeV; hence, at this scale
EkðηÞ=HðηÞ ≃ 1017, whereas near the radiation to matter
transition kphðηÞ ≃ few eV and EkðηÞ=HðηÞ ≃ 1037.
We now study the energy momentum tensor in the

asymptotic long-time limit for η ≫ ηf such that the
amplitudes of the initial state C̃φ

k ðηfÞ; C̃ψ ;α
k ðηfÞ ≃ 0 and

all the probability in the initial state has flowed to the
aymptotic final state with the coefficients C̃φ;χ

p⃗;k⃗
ðηfÞ;

C̃ψ ;χ

p⃗;k⃗
ðηfÞ nearly constant in time and saturating the unitarity

relation. In this asymptotic long-time limit, the time-
evolved state is the entangled two-particle state jΨIðηfÞi ≃P

p⃗ C
φ;χ

p⃗;k⃗
ðηfÞj1φp⃗; 1χk⃗−p⃗i with the coefficients Cφ;χ

p⃗;k⃗
ðηfÞ being

nearly time independent satisfying the unitarity condition:X
p⃗

jC̃φ;χ

p⃗;k⃗
ðηfÞj2 ≃ 1; ð5:9Þ

for the bosonic case, with a similar consideration for the
fermionic case. We are interested in understanding the
expectation value of the energy momentum tensor asso-
ciated with this state in the asymptotic long-time limit
η ≫ ηf with C̃φ

k⃗
ðηfÞ ≃ 0; C̃ψ

k⃗
ðηfÞ ≃ 0, assuming that ηf

corresponds to a timescale well before recombination. Let
us first consider the bosonic case.
For minimally coupled fields the energy momentum

tensor during RD (with vanishing Ricci scalar) is [84]

TμνðxÞ ¼ ∂μΦ†∂νΦþ ∂νΦ†∂μΦ

− gμν½gαβ∂αΦ†∂βΦ −m2jΦj2�
þ ∂μπ∂νπ −

gμν
2

½gαβ∂απ∂βπ� þ λΦ†Φπ: ð5:10Þ

Covariant conservation can be explicitly confirmed by
using the equations of motion [84].
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Passing to conformal time and in terms of the conformally rescaled fields (2.5) we find

T0
0ðx⃗; ηÞ ¼

1

a4ðηÞ
��

φ0 −
a0ðηÞ
aðηÞ φ

�†�
φ0 −

a0ðηÞ
aðηÞ φ

�
þ∇φ† · ∇φþM2a2ðηÞjφj2

�

þ 1

2a4ðηÞ
��

χ0 −
a0ðηÞ
aðηÞ χ

�
2

þ∇χ ·∇χ þ λaðηÞφ†φχ

�
: ð5:11Þ

Upon quantization the energy density becomes an operator
in the Heisenberg representation. The energy density of a
quantum state jΨi is

ρΨðx⃗; ηÞ ¼
hΨjT0

0ðx⃗; ηÞjΨi
hΨjΨi ; ð5:12Þ

where the state jΨi does not evolve in time in the
Heisenberg picture. Since T0

0ðx⃗; ηÞ ¼ U−1ðη; ηiÞ×
ðT0

0ðx⃗; ηÞÞSUðη; ηiÞ where Uðη; ηiÞ is the time evolution
operator (3.2) and ðT0

0ðx⃗; ηÞÞS is in the Schrödinger picture,
where its time dependence is explicit through the scale
factor, and writing as in Eq. (3.6) Uðη; ηiÞ ¼ U0ðη; ηiÞ×
UIðη; ηiÞ, it follows that

ρΨðx⃗; ηÞ ¼
hΨIðηÞjðT0

0ðx⃗; ηÞÞIjΨIðηÞi
hΨIðηÞjΨIðηÞi

¼ Trfϱ̂ðηÞðT0
0ðx⃗; ηÞÞIg; ð5:13Þ

where ðT0
0ðx⃗; ηÞÞI ¼ U−1

0 ðη; ηiÞðT0
0ðx⃗; ηÞÞSU0ðη; ηiÞ is in

the interaction picture, wherein the fields carry the free-
field time evolution (2.9) and (2.10). In this form we
can now obtain the energy density of the dressed state
jΨIðηÞi given by (3.71) to leading adiabatic order. This is
achieved with the following steps: (i) Expand the fields in
creation and annihilation operators to leading adiabatic
order as in Eqs. (2.36) and (2.37); (ii) neglect the terms with
a0=a, ða0=aÞ2 in T0

0 because these are of first and second
adiabatic order, respectively; (iii) in the terms quadratic in
the fields in T0

0 neglect terms of the form a†b†, ab, c†c†, cc
because the asymptotic state jΨIi contains terms of the
form j1φij1χi, namely products of single-particle states
for each particle, hence expectation values of the form
hΨIja†b†jΨIi ¼ 0 and similarly with the other bilinears,
and (iv) the expectation value of the interaction term
hΨIjφ†φχjΨIi ¼ 0, because χ ≃ cþ c†, hence either de-
stroying or creating a single χ particle from jΨIi; therefore,
the expectation value of such operator vanishes. As a result
the expectation value of the energy momentum tensor
becomes a sum of the contribution from the heavy-field
φ and that of the ultralight-field χ. For each of these, the
expectation value implies tracing over the other field (for
example, for the contribution of the φ field, it implies
tracing over the χ field, and vice versa). Therefore we find
that asymptotically at long time, when the amplitude of the

initial single-particle state has become negligible, and to
leading order in the coupling

ρΨðηÞ ¼
1

a4ðηÞV
X
p⃗

ΩpðηÞTrfϱ̂φr ðηÞða†p⃗ap⃗ þ b†p⃗bp⃗ þ 1Þg

þ 1

a4ðηÞV
X
q⃗

jq⃗jTr
�
ϱ̂χrðηÞ

�
c†p⃗cp⃗ þ

1

2

��
; ð5:14Þ

where V is the comoving volume, and ϱ̂φr ðηÞ; ϱ̂χrðηÞ are the
reduced density matrices (5.2) and (5.3), respectively.
The terms ð1; 1=2Þ inside the respective parentheses in

(5.14) yield the zero-point energy which as usual is sub-
tracted away with an appropriate renormalization scheme
(this is usually assumed in the literature), and we find

ρΨðηÞ ¼
1

a3ðηÞ
Z

d3p
ð2π3ÞEpðηÞjC̃φ;χ

p⃗;k⃗
ðηfÞj2

þ 1

a4ðηÞ
Z

d3q
ð2π3Þ jqjjC̃

φ;χ

k⃗−q⃗;k⃗
ðηfÞj2

≡ ρMðηÞ þ ρRðηÞ: ð5:15Þ

Asymptotically at long time when the single-particle
amplitude of the heavy field has “decayed,” jC̃φ;χ

p⃗;k⃗
ðηfÞj2

becomes a nonthermal frozen distribution function ful-
filling the “sum rule” (5.9) from the unitarity condition in
the asymptotic long-time limit. The energy density (5.15)
describes two independent fluids: the first term, ρMðηÞ is
identified with the energy density of a massive, frozen
species, and the second ρRðηÞ with a massless, frozen
ultrarelativistic species, both independently obeying covar-
iant conservation, namely

d
dt

ρMðtÞ þ 3HðtÞðρMðtÞ þ PMðtÞÞ ¼ 0;

PMðtÞ ¼ 1

3

Z
d3pph

ð2πÞ3
p2
ph

EpðtÞ
jC̃φ;χ

p⃗;k⃗
ðηfÞj2; ð5:16Þ

d
dt

ρRðtÞ þ 4HðtÞρRðtÞ ¼ 0: ð5:17Þ

The expression (5.14) for the expectation value of the
energy density involves the reduced density matrices ϱ̂φr ðηÞ;
ϱ̂χrðηÞ obtained by tracing over the χ, φ fields, respectively.
This suggests that the entropy associated with each fluid is

BOYANOVSKY, RAI, and CHEN PHYS. REV. D 104, 123552 (2021)

123552-18



precisely the entanglement entropy (5.7), because each
fluid component in the energy momentum tensor arises
from tracing over the complementary field yielding the
reduced density matrices (5.2) and (5.3), each of which
describes a mixed state associated with the entanglement
entropy (5.7). Entanglement in the final asymptotic state
entails that the fluids share the same entropy and the same
frozen distribution function.
It is important to highlight that we have studied the time

evolution of an initial single-particle state; as a result the
energy density and pressure are both proportional to 1=V
since the matrix elements yielding the coefficients C̃ ∝ 1=V
[see for example Eq. (3.27)]. Therefore, at long time the
unitarity condition (5.9) yields

Z
d3p
ð2π3Þ jC̃

φ;χ

p⃗;k⃗
ðηfÞj2 ¼

1

V
: ð5:18Þ

This is the statement that there is one φ and also one χ
particle in the volume V in the final state. We discuss this
aspect in Sec. VI.
For the case of fermionic fields Yukawa coupled to the

ultralight scalar field, using the field equations for the
Dirac field [56], the energy momentum tensor is given by
[59,80–83]

Tμν ¼ i
2
ðΨ̄γμDν

↔
ΨÞ þ μ ↔ νþ ∂μπ∂νπ −

1

2
gμνgαβ∂απ∂βπ:

ð5:19Þ

In terms of conformal time and the conformally rescaled
fields (4.7) and using again the field equations for the Dirac
field [56] to restore the Yukawa interaction term, the energy
density T0

0 is given by

T0
0ðx⃗; ηÞ ¼

1

a4ðηÞ
�
ψ†ðx⃗; ηÞð−iα⃗ · ∇⃗þ γ0MaðηÞÞψðx⃗; ηÞ

þ 1

2

�
χ0 −

a0ðηÞ
aðηÞ χ

�
2

þ 1

2
∇χ ·∇χ þ Yψ†χψ

�
:

ð5:20Þ

As in the bosonic case, we pass to the interaction picture
and obtain the energy density corresponding to the time-
evolved state jΨIðηÞi now given by Eq. (4.60) as in
Eq. (5.13) and follow the same steps as in the bosonic
case. Again, considering a long-time ηf after which the
amplitude of the initial single fermion state has decayed,
the time-evolved state is given by

P
p⃗;β C

ψ ;χ

p⃗;β;k⃗
ðηfÞj1ψp⃗;β; 1χq⃗i;

hence, to leading order in the coupling the expectation
value of the Yukawa interaction term in this asymptotic
state vanishes because in the interaction picture the field
χ ≃ cþ c†, whose expectation value vanishes in this state.
The fermion fields in the interaction picture are expanded

as in Eq. (4.13) where the spinors are the solutions of the
Dirac equations (4.14) and (4.15) with normalization given
by Eq. (4.23). To leading adiabatic order they are given by
(4.28) and (4.29) and obey ∂ηUλðk⃗; ηÞ ¼ ΩkðηÞUλðk⃗; ηÞ;
∂ηVλðk⃗; ηÞ ¼ −ΩkðηÞVλðk⃗; ηÞ. Since the expectation value
of the Yukawa interaction in the interaction picture vanishes
in the asymptotic state, to leading order in Yukawa
coupling and adiabatic expansion the energy density
associated with this asymptotic state is a sum of the free
fermion and free bosonic fields energy densities. In turn
these contributions are determined by the corresponding
reduced density matrices. For the fermionic term we need
the reduced density matrix ϱ̂ψr ðηÞ ¼ Trχϱ̂ðηÞ obtained by
tracing the χ degrees of freedom, whereas the bosonic one
inputs the reduced density matrix ϱ̂χrðηÞ ¼ Trψ ϱ̂ðηÞ
obtained by tracing over the fermionic degree of freedom.
We finally find that the energy density associated with the
asymptotic state is given by

ρΨðηÞ¼
1

a4ðηÞV
X
p⃗;λ

ΩpðηÞTrfϱ̂ψr ðηÞðb†p⃗;λbp⃗;λþd†p⃗;λdp⃗;λþ1Þg

þ 1

a4ðηÞV
X
q⃗

jq⃗jTr
�
ϱ̂χrðηÞ

�
c†p⃗cp⃗þ

1

2

��
: ð5:21Þ

Just as in the bosonic case, the terms ð1; 1=2Þ inside
the parentheses yield the zero-point energy which is
subtracted away with an appropriate renormalization
scheme yielding

ρΨðηÞ ¼
1

a3ðηÞ
Z

d3p
ð2π3ÞEpðηÞjC̃ψ ;χ

p⃗;k⃗
ðηfÞj2

þ 1

a4ðηÞ
Z

d3q
ð2π3Þ jqjjC̃

ψ ;χ

k⃗−q⃗;k⃗
ðηfÞj2

≡ ρMðηÞ þ ρRðηÞ: ð5:22Þ

Asymptotically at long time the single-particle amplitude of
the heavy field has decayed, and jC̃ψ ;χ

p⃗;k⃗
ðηfÞj2 becomes a

nonthermal frozen distribution function. The energy den-
sity (5.22) again describes two independent fluids: ρMðηÞ is
identified with the energy density of a massive, fermionic
nonthermal frozen species, and the second ρRðηÞ with a
massless, ultrarelativistic nonthermal frozen species, both
obeying covariant conservation, as in the bosonic case
(5.16) and (5.17) but with jC̃φ;χ

k⃗−q⃗;k⃗
ðηfÞj2 → jC̃ψ ;χ

k⃗−q⃗;k⃗
ðηfÞj2.

Both fluids share the same frozen distribution function
jC̃ψ ;χ

k⃗−q⃗;k⃗
ðηfÞj2 and entanglement entropy,

SvNðηÞ ¼ −
�X

p⃗

jC̃ψ ;χ

p⃗;k⃗
ðηfÞj2 ln½jC̃ψ ;χ

p⃗;k⃗
ðηfÞj2�

�
; ð5:23Þ
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since as in the bosonic case, each component in the energy
momentum tensor emerges from tracing the complemen-
tary field.
It is noteworthy that the entanglement entropy of the

asymptotic state from infrared dressing is very different
from that of cosmological particle production, which leads
to a squeezed state [85,86].

VI. DISCUSSION

A. Gravitational particle production

Gravitational particle production is negligible in the
cases that we have considered in this study for the
following reasons. The adiabatic approximation relies on
the mass of the heavy field being much larger than the
Hubble expansion rate; the terms in the (time-dependent)
Hamiltonian that would yield gravitational production are
of second or higher order in the adiabatic expansion,
therefore subleading. This is explicit in the terms with
ak⃗b−k⃗; b†

−k⃗
a†
k⃗
in the Hamiltonian for the bosonic case,

Eq. (2.40). These terms would lead to particle production
but they are multiplied by a function which is of second or
higher adiabatic order [49,50] which can be neglected to
the leading adiabatic order implemented in this study.
Furthermore, we considered the light scalar field to be
(nearly) massless, and a massless scalar field is conformally
coupled to gravity in a radiation-dominated cosmology
because the Ricci scalar vanishes. Therefore, there is not
gravitational production of the light scalar field either
during the radiation era.

B. Dressing vs decay

Consider the case of two massive fields ϕð1;2Þ with
masses M1 > M2, and a massless field χ with a coupling

λϕð1Þϕð2Þχ and the decay process ϕð1Þ
k⃗

→ ϕð2Þ
p⃗ þ χq⃗. At time

much longer than the lifetime of ϕð1Þ the asymptotic final
state is given by

P
q⃗ Cq⃗;k⃗j1ϕk⃗−q⃗; 1

χ
q⃗i; this is kinematically

entangled two-particle state and unitarity leads toP
q⃗ jCq⃗;k⃗j2 ¼ jC1

kðtiÞj2 where C1
kðtiÞ is the amplitude of

the single-particle initial state [46]. This state is qualita-
tively similar to (3.71) asymptotically whenCφ

k ðηÞ ≃ 0. The
only differences are (a) in particle decay the amplitude of
the single-particle state decays exponentially but with a
decay law modified by the cosmological expansion [49],
whereas for infrared dressing it decays with a power law
with anomalous dimension, and (b) in the case of decay, the
final two-particle state does not contain the initial particle,
whereas in the case of infrared dressing, the initial massive
particle is part of the entangled final state. These
differences notwithstanding, particle decay leads to the
production of daughter particles in a kinematically
entangled final state. The expectation value of the energy
momentum tensor in the asymptotic final state will feature

independent contributions from the daughter particles with
negligible contribution from the interaction term because
the final state does not contain the particle in the initial
state. Again, final-state entanglement implies that both
contributions have the same frozen distribution function.
Hence, the analogy with the final asymptotic state from
infrared dressing is compelling and indicates that this latter
mechanism also leads to the production of the massless
particle in the final state. This interpretation is confirmed by
the expectation value of the energy momentum tensor in
the asymptotic state obtained in the previous section.
The important aspect is that in both cases the amplitude
of the initial state vanishes at long time and by unitarity, the
total probability flows entirely from the initial state to the
final entangled state. Furthermore, in both cases, entangle-
ment in the asymptotic state implies that the daughter
particles share the frozen distribution and entanglement
entropy.

C. Dressing of entangled pairs

In this article we focused on studying the time evolution
of an initial single-particle state and obtained the time-
evolved state to leading order in the adiabatic and weak
coupling approximations. However, we did not specify
the mechanism by which the initial state has been prepared.
Heavy massive particles can be produced gravitationally
prior to the radiation era; however, these are described
by an entangled squeezed state (see for example
Refs. [69,85,86] and references therein) not as independent,
single-particle states. Squeezed states are highly correlated,
and it is an open question, relegated to future study,
whether pair correlations modify the dynamics of infrared
dressing, and if so how the pair correlations in the initial
state are manifest in the asymptotic entangled state.

D. Single particle vs density matrix

We have focused on studying the dynamics of infrared
dressing for a single heavy particle. As a result the
distribution function for the asymptotic state is given by
Eq. (5.18), namely ∝ 1=V, indicating that in the final state
there is only one massless and one massive particle.
Therefore, although the fundamental study of infrared
dressing in the single-particle case provides a “proof of
principle” of a mechanism of production of ultralight dark
matter or dark radiation, obviously it is not very cosmo-
logically relevant yet because a cosmologically relevant
dark matter or radiation candidate requires a finite density
in the infinite volume limit. The next step is to consider an
ensemble of heavy particles described by a density matrix
in terms of a distribution function for the heavy degrees of
freedom. The time evolution of such density matrix would
be determined by a Boltzmann-like equation that should
follow from the dynamical resummation method imple-
mented in this study. This next step in the program will be
the focus of forthcoming studies.
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E. Distribution function of ULDM

In Minkowski space-time the results of Ref. [45] showed
that the pair probability or distribution function for the
bosonic case of the asymptotic entangled state is
jC̃φ;χ

k⃗;q⃗
ð∞Þj2 ∝ ½Ek þ q − Ep�2Δ−2, with a similar result for

the fermionic case. Although we did not calculate it
explicitly in the cosmological case, based on the similarities
between the cosmological result and that in Minkowski
space-time at leading adiabatic order, we expect a similar
result for the distribution to leading adiabatic order with the
energies replaced by the local energies depending on the
scale factor at a timescale when the amplitude of the initial
state becomes negligible. Although this expectation is
motivated by the results obtained in the previous sections
and the similarity with Minkowski space-time at leading
adiabatic order, it must be confirmed by a detailed analysis.
Such calculation is technically involved and neither very
illuminating nor relevant for the question of dark matter
because it is associated with an initial single-particle state;
hence, its contribution to the energy momentum tensor is
∝ 1=V [see Eq. (5.18)] and hence negligible in the infinite
volume limit, and not relevant to dark matter. Our goal with
this study is to provide a proof of principle of infrared
dressing as a possible production mechanism and to pave
the way towards a future study of an initial state described
by a finite-density ensemble of heavy fields described by an
appropriate density matrix. Undoubtedly the asymptotic
distribution function obtained from the time evolution of
this density matrix will reflect the finite-density aspects of
the initial distribution yielding a finite contribution to the
energy momentum tensor in the infinite volume limit. This
will be the subject of a forthcoming study, which is now
motivated by this proof of principle.

F. On axions

The study of Ref. [45] in Minkowski space-time revealed
that in the case of fermions coupled to pseudoscalar fields,
such as the axion, the spectral density vanishes faster than
linear at threshold. As a result these types of couplings do
not yield infrared divergences in Minkowski space-time. In
this case the amplitude of the initial single-particle case
does not vanish asymptotically and the unitarity condition
is satisfied at long time, with the amplitude of the initial
state being nearly the same as that at the initial time with a
perturbatively small probability for axion production from
infrared dressing.
This result discouraged a similar study in cosmology

suggesting that infrared dressing may not be an important
mechanism of production of axions during the radiation
era. Nevertheless a derivative-type coupling such as
gμν∂μAðxÞΨðxÞγνðxÞγ5ΨðxÞ, with AðxÞ the pseudoscalar
field, may lead to some interesting phenomena which,
however we postpone to further study.

G. Radiative corrections to ultralight mass

Masses of scalar or pseudoscalar fields are in general
subject to large radiative corrections unless there are
symmetries that lead to their cancellations. Otherwise the
small values are the result of some fine-tuning. Ultralight
scalar particles as originally envisaged in the form of fuzzy
dark matter [10–13] would be subject to (divergent)
radiative corrections if not protected by a symmetry as
for example (pseudo-) Goldstone bosons. Therefore, the
question of radiative corrections in principle apply to
generic fuzzy dark matter models. In our study, focused
on the fundamental aspects of infrared dynamics, we have
simply assumed that the (nearly) massless scalar degree of
freedom remains (nearly) massless after radiative correc-
tions. Therefore, the application of our results to any
phenomenological extension beyond the Standard Model
must assess whether the (near) masslessness of this ultra-
light dark matter or dark radiation candidate remains robust
under radiative corrections.

H. Caveats: Very weak couplings

There is an important caveat in the results obtained in the
previous section; namely, we assumed that the amplitude of
the initial state becomes negligible during RD (or the early
stages in the matter-dominated era). However, unlike
particle decay where the amplitude of the initial state
decays (nearly) exponentially [49], infrared dressing yields
to a power-law decay, which is much slower. The anoma-
lous dimension Δ in the decay law (3.67) is proportional to
the square of the coupling, hence very small for very weak
coupling. Therefore, it is possible that for very weak
couplings, the amplitude of the initial state remains sub-
stantial near the end of the RD era and the contribution of
the initial state dominates the energy momentum tensor,
and only later during the matter era the ultralight or dark
radiation component begins to contribute appreciably to the
relativistic component of the energy momentum tensor. If
the heavy bosonic or fermionic species are suitable dark
matter candidates, this scenario introduces the possibility of
a dark radiation component to be produced during the
matter era. Clearly these possibilities must be studied in
detail within a phenomenologically viable model, which
goes well beyond the scope of this initial study.

VII. CONCLUSIONS AND FURTHER QUESTIONS

The main objectives of this article are to study the
fundamental aspects of infrared phenomena in a radiation-
dominated cosmology, and to provide a proof of principle
of infrared dressing as a hitherto unexplored possible
production mechanism of ultralight dark matter or dark
radiation. Infrared dressing describes the cloud of massless
quanta that dresses the heavy particle as a consequence of
emission and absorption of nearly on-shell massless quanta.
Infrared aspects of these processes are ubiquitous in gauge
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theories and in gravity arising from the emission and
absorption of massless gauge bosons or gravitons.
We focused on a bosonic and a fermionic theory of heavy

fields coupled to a nearly massless scalar field as prototypes
of nongauge quantum-field theories featuring infrared
divergences.
We combined an adiabatic approximation valid for

wavelengths much smaller than the Hubble radius with a
nonperturbative dynamical resummation method to study
the time evolution of an initial single-particle state. This
method is manifestly unitary and consistently describes the
time-evolved state.
The massless (or nearly-) massless scalar field may be

associated with an ultralight dark matter or dark radiation
candidate in extensions beyond the Standard Model.
However, we are neither proposing nor endorsing par-
ticular phenomenological extensions beyond the Standard
Model, focusing solely on the fundamental aspects of
infrared dynamics and their possible cosmological
consequences.
We showed that as a result of infrared divergences the

amplitude of the initial single-particle state decays in time
with a power law ∝ ½EkðtÞt�−Δ, with EkðtÞ being the local
energy depending on the scale factor as a consequence of
the cosmological redshift, entailing a crossover from t−Δ=2

during the relativistic regime to t−Δ upon becoming
nonrelativistic. This decay law is common to bosonic
or fermionic degrees of freedom suggesting certain
universality for infrared phenomena in cosmology. The
anomalous dimension Δ is determined by the behavior of
the spectral density near threshold. The quantum state that
emerges in the asymptotic long-time limit after the initial
state has decayed is an entangled state of the heavy boson
or fermion and the massless scalar, with amplitudes that
are completely determined by unitary time evolution and
yield the frozen distribution function of the final state.
Quantum entanglement is confirmed by obtaining the

von Neumann entanglement entropy by tracing either
degree of freedom. The time evolution of the entangle-
ment entropy is completely determined by the dynamical
resummation equations; it increases during time evolution
and describes the flow of information from the initial
single particle to the asymptotic entangled many particle
states.
We argued that infrared dressing as a production mecha-

nism is qualitatively similar to that of particle decay in that
the amplitude of the initial state vanishes at long time and
the asymptotic state is an entangled state of the daughter
particles. The mayor difference is that in the decay process
the initial amplitude vanishes exponentially (or nearly
exponentially in an expanding cosmology [49]) rather than
with a power law with anomalous dimension as is the case
of infrared dressing.
To leading order in the adiabatic expansion and in weak

coupling, the expectation value of the energy momentum

tensor in the asymptotic state describes two independent
fluids, one associated with the heavy boson or fermion and
another associated with a relativistic degree of freedom,
namely either the ultralight dark matter or dark radiation.
Both fluids fulfill the covariant conservation equation
independently. An important consequence of entanglement
in the asymptotic state is that both fluids share the same
nonthermal frozen distribution function and entropy.
Gathering these results together this study suggests that

infrared dressing is a possible production mechanism of
ultralight dark matter and or dark radiation with basic
features that are qualitatively similar to production via
particle decay. Because we have considered a simple
initial state and the study provides a proof of principle of
the fundamental and ubiquitous phenomenon of infrared
dressing as a viable production mechanism, many ques-
tions remain that merit further and deeper study. Among
them is the extrapolation of the single-particle case to that
of an ensemble of heavy degrees of freedom coupled to
(nearly-) massless scalars and, in particular if this ensem-
ble is a result of gravitational production of the heavy
degrees of freedom with a particular distribution function.
We also recognized important caveats in the case of very
weak couplings. Furthermore, while discouraged by the
results in Minkowski space-time [45], whether a pseudo-
vector coupling in a cosmological setting yields to
interesting infrared phenomena remains an open question.
This study also paves the way towards understanding of
infrared phenomena associated with massless gauge
bosons or gravitons. However, the issue of gauge invari-
ance and concomitant fulfillment of Ward identities
during the dynamical evolution remains to be understood
for a consistent treatment. The possibility that this
mechanism may contribute to the understanding of dark
matter or dark radiation production thus motivates further
studies along these avenues.
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APPENDIX A: CONTRIBUTIONS FROM Γð2;3Þ
k ðηÞ

FOR THE BOSONIC CASE

With the definition (3.59), the change of variables (3.60)
and taking η ≫ ηi the contribution from Γð2Þ

k yieldsZ
η

ηi

Γð2Þ
k ðη0Þdη0 ¼2Δb

Z
1=ϵkðηÞ

0

dx
Z

1

0

dsσ̃ðs;η0Þ ssin½sx�
1þ ϵ̃kðxÞx

;

ðA1Þ

where η0 depends implicitly on x via (3.60). Writing
sin½sx� ¼ − 1

s d cos½sx�=dx and integrating by parts in x,
the integral in (A1) becomes
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Z
1

0

ds

�
σ̃ðs;ηiÞ−

σ̃ðs;ηÞ
1þ 1

γ2kðηÞ
cos½s=ϵkðηÞ�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

þ
Z

1=ϵkðηÞ

0

dx
Z

1

0

ds
d
dx

�
σ̃ðs;η0Þ

ð1þ ϵ̃kðη0ÞxÞ
�
cos½sx�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B

: ðA2Þ

In the first term (A) the cosine term averages out in the
long-time limit ϵkðηÞ → 0. Using the following identities:

dϵ̃kðη0Þ
dx

¼dϵ̃kðη0Þ
dη0

dη0

dx
¼ d
dη0

�
Ω0

kðη0Þ
Ω2

kðη0Þ
�

1

Ωkðη0Þð1þ ϵ̃kðη0ÞxÞ
;

ðA3Þ

1

Ωkðη0Þ
d
dη0

�
Ω0

kðη0Þ
Ω2

kðη0Þ
�

¼ Ω00
kðη0Þ
Ω3

− 2

�
Ω0

kðη0Þ
Ω2

kðη0Þ
�

2

; ðA4Þ

this latter term being second-order adiabatic, and

d
dx

�
1

γ2kðη0Þ
�

¼ d
dη0

�
1

γ2kðη0Þ
�

1

Ωkðη0Þð1þ ϵ̃kðη0ÞxÞ
; ðA5Þ

along with the identity

1

Ωkðη0Þ
d
dη0

�
1

γ2kðη0Þ
�

¼ 2ϵkðη0Þ
γ2kðη0Þ

�
1 −

1

γ2kðη0Þ
�
; ðA6Þ

using all these identities, we find that the contribution (B) is
infrared and ultraviolet finite and at least of first adiabatic
order (OðϵkÞ); hence, it can be safely neglected to leading
adiabatic order. Therefore, to leading adiabatic order we findZ

η

ηi

Γð2Þ
k ðη0Þdη0 ¼ 2Δb

Z
1

0

σ̃ðs; ηiÞ ds: ðA7Þ

Following the same steps for the third contribution, we find

Z
η

ηi

Γð3Þ
k ðη0Þdη0 ¼ λ2

4

Z
1=ϵkðηÞ

0

dx

×
Z

∞

1

ds
ρ̄ðs; η0Þ

s
a2ðη0Þ
Ω2

kðη0Þ
sin½sx�

ð1þ ϵ̃kðη0ÞxÞ
:

ðA8Þ

Implementing the same steps for the integrals as for the
second contribution yields the following result for the
integrals in (A8):

Z
∞

1

�
ρ̄ðs;ηiÞÞ

a2ðηiÞ
Ω2

kðηiÞ
− ρ̄ðs;ηÞ a

2ðηÞ
Ω2

kðηÞ
cos½s=ϵkðηÞ�
1þ 1

γ2kðηÞ

�
ds
s2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

þ
Z

1=ϵkðηÞ

0

dx
Z

∞

1

ds
s2

d
dx

�
ρ̄ðs;η0Þa2ðη0Þ

Ω2
kðη0Þð1þ ϵ̃kðη0ÞxÞ

�
cos½sx�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

B

:

ðA9Þ

The oscillatory cosine term in (A) averages out in the long-
time limit, and implementing the same steps and definitions
as for the second contribution, the (B) term is found to be
both infrared and ultraviolet finite and of (at least) first
adiabatic order, hence subleading and averaging out in the
long-time limit. Therefore, we find in the long-time limit
ΩkðηÞη ≫ 1 (η ≫ ηi) and to leading adiabatic orderZ

η

ηi

Γð3Þ
k ðη0Þdη0 ¼ Δb

γ2kðηiÞ
Z

∞

1

2þ s
1

γ2kðηiÞ
þ 2sþ s2

ds
s
; ðA10Þ

which is an infrared and ultraviolet finite constant.

APPENDIX B: CONTRIBUTIONS FROM Γð2;3Þ
k ðηÞ

FOR THE FERMIONIC CASE

For the fermionic case Γð2;3Þ
k are given, respectively, by

Eqs. (4.53) and (4.54). With the definition (4.56) and the
change of variables (3.60) we findZ

η

ηi

Γð2Þ
k ðη0Þdη0 ¼2Δf

Z
1=ϵkðηÞ

0

dx
Z

1

0

dsσ̃fðs;η0Þ
ssin½sx�
1þ ϵ̃kðxÞx

:

ðB1Þ

Implementing the same steps as for the bosonic case in the
previous section, we find to leading adiabatic order and at
long timeZ

η

ηi

Γð2Þ
k ðη0Þdη0 ¼ 2Δf

Z
1

0

σ̃fðs; ηiÞ ds; ðB2Þ

which is infrared and ultraviolet finite andZ
η

ηi

Γð3Þ
k ðη0Þdη0 ¼ Δf

4

Z
∞

1

ρ̄ðs; ηiÞ
ΩkðηiÞ

ds
s2

; ðB3Þ

which however diverges logarithmically because ρ̄ðs; ηÞ ∝
s as s → ∞, reflecting the renormalizability of the Yukawa
coupling to a scalar field.
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