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The bispectrum is the leading non-Gaussian statistic in large-scale structure, carrying valuable information on
cosmology that is complementary to the power spectrum. To access this information, we need to model the
bispectrum in theweakly nonlinear regime. In thisworkwepresent the first two-loop, i.e. next-to-next-to-leading
order perturbative description of the bispectrum within an effective field theory (EFT) framework. Using an
analytic expansion of the perturbative kernels up toF6wederive a renormalized bispectrum that is demonstrated
to be independent of the UV cutoff. We show that the EFT parameters associated with the four independent
second-order EFToperators known from the one-loop bispectrum are sufficient to absorb the UV sensitivity of
the two-loop contributions in thedouble-hard region. In addition,we employa simplified treatment of the single-
hard region, introducing one extra EFT parameter at two-loop order. We compare our results to N-body
simulations using the realization-based grid perturbation theory method and find good agreement within the
expected range, aswell as consistent values for theEFT parameters. The two-loop terms start to become relevant
at k ≈ 0.07h Mpc−1. The range of wave numbers with percent-level agreement, independently of the shape,
extends from 0.08 to 0.15h Mpc−1 when going from one to two loops at z ¼ 0. In addition, we quantify the
impact of using exact instead of Einstein–de-Sitter kernels for the one-loop bispectrum, and discuss in how far
their impact can be absorbed into a shift of the EFT parameters.
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I. INTRODUCTION

Large-scale structure (LSS) surveys will extend to increas-
ingly larger scales as well as higher redshifts in the near
future, thereby moving more and more into the weakly
nonlinear regime of structure formation. Perturbative meth-
ods augmented with models that capture uncertainties from
the impact of strongly nonlinear effects already play an
important role for extracting information on cosmology from
survey data, and will become increasingly powerful with the
ongoing observational progress and advance in theoretical
understanding. Present and near future surveys such as
eBOSS [1], Euclid [2], DES [3], DESI [4], HETDEX [5],
HSC [6], KiDS [7], the Vera C. Rubin Observatory (LSST)
[8], 4MOST [9], PFS [10], eROSITA [11], SPHEREx [12],
VIPERS [13], and the Nancy Grace Roman Space Telescope
(WFIRST) [14] are allowing for data comparisons that will
provide unprecedented levels of precision in our knowledge
of fundamental physical parameters.
Within the framework of standard perturbation theory

(SPT), the evolution of the density contrast δ is described

as a pressureless perfect fluid governed by a continuity and
Euler equation [15]. The equations can be viewed as a
truncation of the coupled hierarchy of moments of the
phase-space distribution function at the first order, i.e.
following the evolution of the density and velocity fields.
Within SPT, the contribution from the second moment, the
velocity dispersion tensor, to the Euler equation is neglected.
This is motivated by its initial smallness for cold dark matter.
Nevertheless, it is well known that nonlinear evolution
generates a significant velocity dispersion [16], which in
turn backreacts on the velocity and density fields. As a
consequence, SPTbecomes inaccurate on small scales,which
then impacts the observable modes in the range of baryon
acoustic oscillations (BAO) due to nonlinear mode coupling.
This inaccuracy shows up in practice as a certain dependence
of powerspectra and bispectra predictions at higher order in
perturbation theory on fluctuations with largewave numbers,
known as UV sensitivity. This UV sensitivity becomes
increasingly dominant at higher orders in the perturbative
expansion [17,18] and signals the breakdown of the perfect
pressureless fluid description.
Over the last decade an effective field theory (EFT)

approach has been proposed to systematically parametrize
the impact of small-scale, nonperturbative effects onto
larger, perturbative scales [19–21]. The EFT description
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is obtained by coarse graining the density and velocity field
with a smoothing scale Λ, such that fluctuations on smaller
scales are “integrated out”. The evolution of the smoothed
fields can be described by a modified Euler equation that
contains an effective stress tensor [22]. The latter is treated as
a functional that depends on (gradients of) the smoothed
fields as well as stochastic terms, in close analogy to the
formalism developed to describe biased tracers [23–29]. The
effective stress tensor has in general the form of a sum of
“operators”, being products of gradients of the smoothed
gravitational potential and velocity fields that are compatible
with Galilean symmetry [22]. Each operator is multiplied by
an a priori unknown coefficient. These parameters of the
EFT, which are also referred to as low-energy constants or
Wilson coefficients, are treated as free parameters that need
to be calibrated in simulations or marginalized over when
constraining physically relevant parameters.
In general, since both large and small scales evolve on

Hubble timescales, the operators furnishing the EFT expan-
sion of the effective stress tensor are nonlocal in time, and
contain an integral over the past evolution of the system [22].
Alternatively, one may include a set of operators encom-
passing an arbitrary number of time derivatives. Due to the
absence of a separation of timescales for the large and small
scales, adding time derivatives does not in general lead to a
suppression of the operator [30]. Obviously, including an
infinite set of operators that all contributewith a comparable
magnitude would render the EFT expansion useless.
Nevertheless, under certain conditions, it is possible to
express the effective stress tensor in terms of a finite number
of local-in-time operators, when working to a certain order
in perturbation theory [22,29,30]. This is strictly the case if
the time dependence of the hard modes that are being
integrated out can be expressed purely in powers of the linear
growth factor, such as occurs in SPT when adopting the
Einstein–de-Sitter (EdS) approximation. In reality, apart
from deviations from the EdS approximation, theUVmodes
are subject to complex nonlinear processes such as feedback
from baryonic processes, leading to the appearance of
additional timescales. Nevertheless, in practice, choosing
a subset of operators that are designed to correct for the UV
sensitivity of SPT, it has been shown that perturbative
predictions of the power spectrum can be brought into
closer agreement with simulation measurements.
Beyond the power spectrum, the bispectrum provides

complementary information and is instrumental in disen-
tangling bias from the impact of fundamental parameters
[31–41]. Within an EFT framework the matter bispectrum
has been studied in [42,43]. Recently, precision tests of the
one-loop bispectrum [44,45] have pointed out that the range
of validity of the one-loop EFT is much more restricted than
expected by initial studies. This is in line with findings for
the two-loop power spectrum [46] and expectations based on
theoretical errors [47]. In [44] it was also pointed out that the
common EdS approximation for the nonlinear F2 kernel

leads to errors that exceed the size of the one-loop bispec-
trum on large scales. Finally, cubic interactions in the matter
trispectrum [48] were studied in [49,50] based on the
covariance matrix and more recently by [51] in explicit
measurements of the trispectrum.
In this work we present the first study of the two-loop, i.e.

next-to-next-to-leading order (NNLO), bispectrum includ-
ing EFT corrections that account for the spurious UV
sensitivity of SPT to this order in perturbation theory. In
addition, we evaluate the effect of the exact ΛCDM non-
linear F4 kernel on the one-loop contribution to the
bispectrum for the first time. We evaluate the perturbative
predictions in two different ways: based on a direct compu-
tation using Monte Carlo integration with the algorithm
outlined in [17,52,53], that accounts for the cancellation of
infrared-enhanced contributions on the integrand level, as
well as using a realization-based approach (known as
gridPT) [54–56]. The latter is used to compare to numerical
N-body simulations, and calibrate the EFT corrections.
A summary of our results is shown in Fig. 1, where we

compare EFT one- and two-loop bispectra with N-body
simulations results at z ¼ 0. The EFT bispectra involve in
total four (five) free parameters at one- and two-loop order,
respectively. To obtain the EFT parameters we used a set of
configurations Bðk1; k2; k3Þ, and we present the detailed
setup and procedure below. Figure 1 shows the χ2 per degree
of freedom when taking our full set of configurations into
account, with each of the three wave numbers below a
maximal value kmax.We find that χ2=d:o:f: is belowunity for
kmax ≲ 0.08h Mpc−1 for the EFT one-loop result, and for
kmax ≲ 0.15h Mpc−1 for the EFT two-loop approximation
that comprises the main result of this work.

FIG. 1. χ2 per degree of freedom [as defined in (113)] obtained
from a fit of the one-(two-)loop bispectrum to N-body results at
z ¼ 0 involving four (five) EFT parameters. The fit encompasses
a full set of configurations Bðk1; k2; k3Þ with ki ≤ kmax, and uses
the gridPT method to alleviate cosmic variance on large scales.
The range of scale for which χ2=d:o:f: < 1 increases from
0.08h Mpc−1 to 0.15h Mpc−1 when including two-loop (NNLO)
contributions.
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This work is structured as follows. After reviewing the
logic of the effective field theory approach in Sec. II as well
as its application to the one-loop bispectrum in Sec. III, we
present results for the one-loop bispectrum with exact
ΛCDM nonlinear kernels in Sec. IV. The two-loop bispec-
trum as well as our treatment of EFT corrections is
discussed in Sec. V, while a comparison to N-body data
is presented in Sec. VI. We conclude in Sec. VII.

II. REVIEW: EFFECTIVE FIELD THEORY SETUP

While the Universe is seeded by almost perfectly
Gaussian initial conditions, the growth of structure even-
tually leads to nonlinear mode coupling. Within the EFT
treatment, the evolution of the coarse-grained density and
velocity fields is described by a continuity and Euler
equation, including a source term in the form of an
effective stress tensor. In Fourier space the dynamical
equations for the density contrast δ and velocity diver-
gence θ ¼ ∂ivi are thus given by

δ0ðkÞ þ θðkÞ ¼ −
Z

d3qαðq; k − qÞθðqÞδðk − qÞ; ð1Þ

θ0ðkÞ þHθðkÞ þ 3

2
ΩmH2δðkÞ

¼ −
Z

d3qβðq; k − qÞθðqÞθðk − qÞ − τθðkÞ; ð2Þ

where αðq; k − qÞ ¼ q · k=q2 and βðq; k − qÞ ¼
q · ðk − qÞk2=ð2q2ðk − qÞ2Þ are the mode coupling func-
tions, Ωm is the time-dependent matter density parameter,
H ¼ aH is the conformal Hubble rate, and the prime
denotes a derivative with respect to conformal time τ.
The effective stress term

τθ ¼ ∂i
1

1þ δ
∂jτ

ij; ð3Þ

where τij is the effective stress tensor, provides EFT
corrections to capture the short wavelength deviations
from the pressureless perfect fluid assumed in the SPT
treatment. The factor of 1=ð1þ δÞ in the EFT source term
τθ defined in (3) ensures that the density contrast scales
with total wave number squared in the large-scale limit, as
required by momentum conservation [22]. This can also be
seen directly by taking a time-derivative of the continuity
equation, and using the Euler equation, giving

δ00 þHδ0 −
3

2
ΩmH2δ ¼ ∂i∂j½ð1þ δÞvivj þ τij� þ ∂iðδ∂iϕÞ;

ð4Þ

where the factor 1=ð1þ δÞ has canceled, and ϕ is the
gravitational potential. The two derivatives acting on τij

ensure the required scaling with wave number squared

when going to Fourier space.1 We stress that this property
holds independent of the assumed form of τij.
The EFT expansion of the effective stress tensor τij has

the schematic form

τij ¼
X
O

cO ×O; ð5Þ

where the sum runs over effective “operators” O, being
products of the coarse-grained fields, multiplied by pre-
factors cO, known as Wilson coefficients. The expansion is
in close analogy to the generalized bias expansion, with the
Wilson coefficients taking the role of the bias parameters.
Within the large-scale structure literature, it is customary to
denote the Wilson coefficients as “counterterms”, despite
the fact that they capture the (finite) impact of nonpertur-
bative small-scale dynamics on the evolution at large
scales, in addition to correcting for the spurious UV
sensitivity of SPT. We refer to them as EFT parameters.
The form of the operators is constrained by the sym-

metries of the system [22,57]. They are composed of the
elementary Galilean-invariant building blocks

∂i∂jΦ; ∂iuj; ð6Þ

where Φ ¼ 2ϕ=ð3ΩmH2Þ is the rescaled gravitational
potential satisfying ΔΦ ¼ δ, and u ¼ v=ð−HfÞ, where
f ¼ d lnD1=d ln a and D1 is the linear growth factor.
Taking a trace over the tensor indices yields the density
contrast and rescaled velocity divergence, respectively,
while the traceless projection is related to the tidal tensor

sij ¼ ð∂i∂j − δij∂2=3ÞΦ; ð7Þ

and velocity shear tensor

ηij ¼ ∂iuj þ ∂jui −
2

3
δij∇ · u; ð8Þ

respectively.
Since perturbations both below and above the coarse-

graining scale evolve on comparable time-scales, the EFT
is in general nonlocal in time [22]. In particular, the
effective stress tensor can depend on the entire past
evolution along the Lagrangian trajectory xflðτ; τ0; x0Þ
of a fluid element that is at position x0 at time τ0, i.e.
satisfies the boundary condition xflðτ0; τ0; x0Þ ¼ x0 and
dxfl=dτ ¼ vðτ; xflðτ; τ0; x0ÞÞ. In addition, since the oper-
ators depend on products of the elementary building
blocks, one needs to integrate over the past trajectory
for each of the building blocks. The most general structure
of the EFT expansion therefore takes the form

1Note that ∂iðδ∂iϕÞ ¼ ∂i∂jð∂iϕ∂jϕ − ϕð∂i∂jϕ − δij∂2ϕÞÞ=
ð3ΩmH2Þ.
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τij¼
X
O

Z
τ
dτ1 �� �dτnOcOðτ;fτkgÞOðτ;x;fτkgÞ;

Oðτ;x;fτkgÞ≡
YnO
k¼1

Okðτk;xflðτk;τ;xÞÞ; ð9Þ

where each Ok is given by spatial gradients of either
∂i∂jΦ or ∂iuj, respectively. Furthermore, all possibilities
to combine the vector indices among the Ok need to be
treated as possible operators that may appear in the sum
over all O.
The operators O can be classified by the lowest order in

perturbation theory at which they contribute, as well as the
total number of spatial gradients contained in them. In
Fourier space, operators with a higher number of gradients
are suppressed by higher powers of k=Λ, where k is the
typical magnitude of external wave numbers that the
observables of interest depend on, and Λ is related to
the nonlinear scale. The effective theory therefore provides
a systematic method to compute corrections to SPT in a
power series in k=Λ by taking all possible operators up to a
given order into account.
Note that there are other well-known examples of

effective theories that are nonlocal, for example soft
collinear effective theory (SCET) [58,59], that is nonlocal
along the light-cone direction of energetic particles
involved in high-energy particle collisions, and possesses
a somewhat analogous EFT expansion, see e.g. [60].
The operators with nO ¼ 1 and at lowest order in

gradients are

O ⊃ fδijδ; sij; δij∇ · u; ηijg; ð10Þ

with δij being the Kronecker symbol. The associated
Wilson coefficients correspond to the effective pressure,
anisotropic stress, bulk- and shear viscosity, respectively,
generalized to a nonlocal time dependence. Operators with
nO ¼ 2 appear starting at second order,

O ⊃ fδijδτ1δτ2 ; sijτ1δτ2 ; sikτ1skjτ2 ; δijslkτ1sklτ2g; ð11Þ

where the subscript denotes the argument, e.g.
δτk ¼ δðτk; xflðτk; τ; xÞÞ, and we omitted analogous terms
involving velocity fields for brevity.
Using

d
dτk

fðτk;xflðτk;τ;xÞÞjτk¼τ¼ð∂τþvðτ;xÞ ·∇Þfðτ;xÞ; ð12Þ

it is possible to Taylor expand each building block Ok
around τk ¼ τ. In particular,

Okðτk; xflðτk; τ; xÞÞ

¼
X
n

1

n!
ðD1ðτkÞ −D1ðτÞÞn

×

�
1

HfD1ðτÞ
ð∂τ þ vðτ; xÞ ·∇Þ

�
n
Okðτ; xÞ; ð13Þ

where D1ðτÞ is the linear growth factor. Inserting this
Taylor expansion into (9) yields a local-in-time EFT
expansion of τij. However, this comes at the price of
introducing for each nonlocal-in-time operator an infinite
tower of local-in-time operators with successively higher
powers of convective time derivatives. Unlike spatial
gradients, that are suppressed by powers of k=Λ, higher
time derivatives yield factors of order one, such that higher-
order terms in the Taylor expansion are in general not
suppressed. It is therefore necessary to keep the infinite
series of higher-time-derivative operators, which is equiv-
alent to adopting the nonlocal-in-time formulation.
Nevertheless, under certain conditions only a finite

number of terms in the Taylor expansion is linearly
independent when working at a finite order in perturbation
theory. This happens in particular when assuming that the
only source of time-dependence are powers of the linear
growth factor D1, as occurs for example in SPT in the EdS
approximation. This property is also inherited by the EFT
provided the EFT terms are introduced to correct for the
UV sensitivity of SPT only. Assume for example that Ok
can be written as a polynomial in D1ðτÞ up to order N,
when expanding to order N in perturbation theory. Then
only terms with n ≤ N need to be considered in the Taylor
series,2 leading to a finite set of local-in-time operators
when working to a finite order in perturbation theory. Note
that, since each occurrence of v adds at least one order, this
argument applies also to the convective derivative when
expanding the result up to terms of the desired order N. A
convenient basis of operators can be constructed from the
set of building blocks Π½n�, defined recursively by [30]

Π½n� ¼ 1

ðn − 1Þ!
��

1

Hf
ð∂τ þ vðτ; xÞ · ∇Þ

�
Π½n−1�

− ðn − 1ÞΠ½n−1�
�
;

Π½1� ¼ ∂i∂jΦ; ð14Þ

and an analogous set constructed starting from Π½1�
v ¼ ∂iuj.

The superscript indicates that the operator is of order n in
perturbation theory or higher. The operatorsO contributing
to the local-in-time EFT expansion consist of products of
these building blocks, and the expansion has the simplified
form

2Note that 1
HfD1ðτÞ ð∂τ þ vðτ; xÞ · ∇Þ ¼ ∂

∂D1ðτÞ −
1

D1ðτÞ
v

ð−HfÞ ·∇.
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τij ¼
X
O

cOðτÞOðτ; xÞ: ð15Þ

At the first and second order, possible O are [22],

1st 1trΠ½1�;

2nd 1ðtrΠ½1�Þ2;Π½1�trΠ½1�; 1trðΠ½1�Þ2: ð16Þ

Here 1 ¼ δij and e.g. trðΠ½1�Þ2 ¼ Π½1�klΠ½1�lk. We omitted

analogous operators involving Π½n�
v , which yield redundant

contributions to τθ at second order. In addition, the same
applies to possible operatorsΠ½1�, ðΠ½1�Þ2;Π½2�, and 1trðΠ½2�Þ
[22,30]. In addition, the second-order terms obtained from
expanding 1=ð1þ δÞ in (3) are redundant at this order.
Therefore there is one operator starting at first order, and
three starting at second order. Using the freedom to choose
a basis, we follow [42] and use the following equivalent
operator basis for τθ at second order,

Δδ; Δδ2; Δs2; ∂i½sij∂jδ�: ð17Þ

The four operators from above are sufficient to absorb the
dominant UV sensitivity of the one-loop power and bispec-
trum, related to terms scaling as k2

R Λ d3qP11ðqÞ=q2, as we
briefly review below. Here k stands for an external wave
number that is assumed to be in the BAO range, q is the loop
integration variable, and P11ðqÞ is the usual linear power
spectrum. In Sec. V we show that the four operators absorb
also the dominant UV sensitivity of the two-loop bispectrum
coming from the region where both loop wave numbers are
large, related to terms scaling as

k2
Z

Λ
d3q1

Z
q1
d3q2P11ðq1ÞP11ðq2Þ=q21: ð18Þ

In addition, we discuss how to extend the EFT treatment to
account for the region where only one of the two wave

numbers becomes large, related to “nested divergences”with
an effective one-loop UV sensitivity ∝

R Λ d3qP11ðqÞ=q2. In
this work we do not take into account higher-gradient
operators, that involve more spatial derivatives, and are
suppressed by higher powers of k=Λ relative to the dominant
UV sensitive contributions given above. In addition, we omit
contact terms involving (derivatives of) the Dirac delta

δð3ÞD ðx − yÞ that arise when performing the EFT expansion

for products of fields, e.g. τθðxÞτθðyÞ ⊃ cΔΔδ
ð3Þ
D ðx − yÞ, and

are known as noise terms. They are irrelevant when focusing
on the dominant UV sensitivity as defined above.
Nevertheless, a classification of noise terms and an estimate
of higher gradient contributions is presented in Secs. V C
and V F, respectively.

III. REVIEW: ONE-LOOP BISPECTRUM AND EFT
DESCRIPTION

A. One-loop SPT bispectrum

We first discuss the SPT expressions for the one-loop
bispectrum before discussing the corresponding EFT terms
arising from the effective stress tensor. The leading order
contribution is the tree-level bispectrum induced by the
quadratic coupling kernel FðsÞ

2 [15],

Btreeðk1; k2; k3Þ ¼ B211ðk1; k2; k3Þ þ 2 permutations; ð19Þ

where

B211ðk1; k2; k3Þ ¼ 2FðsÞ
2 ðk2; k3ÞP11ðk2ÞP11ðk3Þ; ð20Þ

and P11 denotes the usual linear power spectrum. The one-
loop contribution to the bispectrum is given by [31]

B1L ¼ Bs
411 þ Bs

321 þ B222; ð21Þ

where

B411ðk1; k2; k3Þ ¼ 12P11ðk2ÞP11ðk3Þ
Z
q
FðsÞ
4 ðk2; k3; q;−qÞP11ðqÞ; ð22Þ

BI
321ðk1; k2; k3Þ ¼ 6P11ðk3Þ

Z
q
FðsÞ
3 ðk3; k2 − q; qÞFðsÞ

2 ð−k2 þ q;−qÞP11ðqÞP11ðjk2 − qjÞ; ð23Þ

BII
321ðk1; k2; k3Þ ¼ 6P11ðk2ÞP11ðk3Þ

Z
q
FðsÞ
3 ð−k3; q;−qÞFðsÞ

2 ðk2; k3ÞP11ðqÞ; ð24Þ

B222ðk1; k2; k3Þ ¼ 8

Z
q
FðsÞ
2 ð−k3 − q; qÞFðsÞ

2 ðk3 þ q; k2 − qÞÞFðsÞ
2 ð−k2 þ q;−qÞ

× P11ðqÞP11ðjk2 − qjÞP11ðjk3 þ qjÞ; ð25Þ

and the symmetrized versions (denoted by the superscript s) are obtained by adding two permutations to B411 and five
permutations to B321 ≡ BI

321 þ BII
321, respectively. We use the shorthand notation

R
q≡

R
d3q.
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B. Hard limit

The reason for introducing EFT parameters is that the
contribution to the loop integrals from large wave numbers
are affected by strongly nonlinear effects that cannot be
treated perturbatively. Therefore, the EFT needs to be set up
such as to correct for these uncertainties. In order to identify
the corresponding terms that need to be added, it is
instructive to investigate the asymptotic form of the SPT
integrals for a large loop wave number. We refer to the
corresponding integration domain q ≫ k1; k2; k3 as hard
limit, for which the dependence of the SPT one-loop
bispectrum on the external wave numbers ki is given by [42]

B1Lðk1; k2; k3Þ → Bh
1Lðk1; k2; k3Þσ2dðΛÞ

þOðk4PLðkÞ2; k4PLðkÞ; k6Þ; ð26Þ

where we expanded for k1=q ∝ k2=q ∝ k3=q ∝ k=q → 0,
and the displacement dispersion

σ2dðΛÞ ¼
1

3

Z
q<Λ

d3q
P11ðqÞ
q2

; ð27Þ

captures the leading dependence of the loop integration on a
UV cutoff Λ. In addition,

Bh
1Lðk1; k2; k3Þ ¼ bh1Lðk2; k3ÞP11ðk2ÞP11ðk3Þ

þ 2 permutations; ð28Þ

describes the dependence on the external wave numbers,
given by the one-loop SPT shape function

bh1Lðk; pÞ ¼ 3

�
12f4ðk; pÞ − 6

61

1890
f3ðk; pÞ

�
: ð29Þ

The two terms in the bracket correspond to the contributions
from B411 and BII

321, respectively, based on the asymptotic
behavior of the symmetrized SPT kernels for q → ∞ [42]

Z
dΩq

4π
FðsÞ
3 ðk; q;−qÞ → −

61

1890

k2

q2
þOðk=qÞ4; ð30Þ

Z
dΩq

4π
FðsÞ
4 ðk; p; q;−qÞ → 1

q2
f4ðk; pÞ þOðmaxðk; pÞ=qÞ4;

ð31Þ

where we defined the two shape functions

f3ðk; pÞ ¼ ðk2 þ p2ÞFðsÞ
2 ðk; pÞ;

f4ðk; pÞ ¼ −
49636μ3kpþ 58812ðk2 þ p2Þ þ 114624μ2ðk2 þ p2Þ þ μkpð32879ðk2p2 þ p2

k2Þ þ 231478Þ
4074840

; ð32Þ

with μ ¼ cosðk; pÞ. Note that the hard limit of BII
321 is

related to the hard limit of the one-loop power spectrum,

P1LðkÞ ¼ 2P13 þ P22 → Ph
1LðkÞ

¼ −2 × 3 × 3 ×
61

1890
k2σ2dðΛÞP11ðkÞ: ð33Þ

The shape functions can be written as a linear combination

fiðk; pÞ ¼
X5
j¼1

fðjÞi bðjÞðk; pÞ; ð34Þ

of the basis shape functions

bð1Þðk; pÞ ¼ k2 þ p2;

bð2Þðk; pÞ ¼ k · p;

bð3Þðk; pÞ ¼ k · p

�
k2

p2
þ p2

k2

�
;

bð4Þðk; pÞ ¼ μ2ðk2 þ p2Þ;
bð5Þðk; pÞ ¼ μ3kp: ð35Þ

For the numerical coefficients fðjÞi we refer to Table I below.
Due to momentum conservation, it is well known that the
SPT kernels vanish when the sum of all arguments goes to
zero. This implies that fiðk;−kÞ ¼ 0, and leads to a
condition on the coefficients,

2fð1Þi − fð2Þi − 2fð3Þi þ 2fð4Þi − fð5Þi ¼ 0; ð36Þ

which is indeed satisfied. Therefore, only four of the five
coefficients are independent, and the hard limit can be
completely specified by four parameters. The four inde-
pendent shape functions precisely correspond to the EFT
terms for the bispectrum given in (17), as we will review
next.

C. One-loop EFT terms

The EFT modeling of the one-loop bispectrum was first
presented in [42,43]. Here we follow the approach and
notation presented in [42,44]. The EFT contribution to the
one-loop bispectrum can be written in the form
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Bctr
1Lðk1; k2; k3Þ ¼B2̃11ðk1; k2; k3Þþ 2permutations

þB21̃1ðk1;k2; k3Þþ 5permutations ð37Þ

where

B2̃11ðk1; k2; k3Þ ¼ 2F̃2ðk2; k3ÞP11ðk2ÞP11ðk3Þ;
B21̃1ðk1; k2; k3Þ ¼ 2FðsÞ

2 ðk2; k3ÞP1̃1ðk2ÞP11ðk3Þ; ð38Þ

with P1̃1 ¼ F̃1P11ðkÞ and

F̃1 ¼ −c2sk2: ð39Þ

The EFT parameter c2s is known from the one-loop power
spectrum,

Pctr
1L ¼ 2P1̃1 ¼ 2F̃1P11 ¼ −2c2sk2P11; ð40Þ

and can be viewed to originate from a contribution to the
effective stress tensor τθ proportional to

Δδ1; ð41Þ

where δ1 is the linear density field.
The kernel F̃2ðk2; k3Þ can be written as a linear combi-

nation of the basis shape functions (35). As usual, the EFT
enjoys the same symmetry as the underlying theory, and
therefore momentum conservation requires that also
F̃2ðk; pÞ becomes zero for kþ p → 0. This means the
linear combination of basis shape functions needs to satisfy
the constraint (36), which implies that it can be fully
specified by four independent coefficients. Following [44],
we parametrize these four coefficients by ϵ1;2;3 and γ1−loop,

3

F̃2ðk1; k2Þ ¼ −
�X3
i¼1

ϵiEiðk1; k2Þ þ γ1−loopΓðk1; k2Þ
�
; ð42Þ

where [44]

E1ðk1; k2Þ ¼ ðk1 þ k2Þ2;

E2ðk1; k2Þ ¼ ðk1 þ k2Þ2
�ðk1 · k2Þ2

k21k
2
2

−
1

3

�
;

E3ðk1; k2Þ ¼ −
1

6
ðk1 þ k2Þ2 þ

1

2
k1 · k2

�ðk1 þ k2Þ · k2
k22

þ ðk1 þ k2Þ · k1
k21

�
;

Γðk1; k2Þ ¼ðk1 þ k2Þ2FðsÞ
2 ðk1; k2Þ þ

2

11

�
10

21
E1ðk1; k2Þ −

5

7
E2ðk1; k2Þ − 3E3ðk1; k2Þ

�
: ð43Þ

TABLE I. Expansion coefficients of the shape functions relevant for the double-hard limit of the two-loop
bispectrum (f6;i for B611 and f3 for B521), as well as, for comparison, for the hard limit at one-loop (f4 for B411 and
f3 for B321). The five basis functions are defined in (35). The lower table shows the expansion coefficients in the
equivalent basis of E1;2;3 and Γ.

j 1 2 3 4 5

fðjÞ6;1
− 1394259753263

1811404542543750
− 70647110404331

23548259053068750
− 11191

38697750
− 9685830431171

7849419684356250
− 10098786522983

23548259053068750

fðjÞ6;2
104211446312

11774129526534375
− 78591466504

3924709842178125
0 − 80969969032

3924709842178125
− 41622522056

11774129526534375

fðjÞ3
5=7 1 1=2 2=7 0

fðjÞ4
− 4901

339570
− 115739

2037420
− 61

7560
− 1592

56595
− 12409

1018710

e1 e2 e3 γ

f6;1 − 158092425677
336403700758125

− 5853641823383
47096518106137500

− 28205520799243
23548259053068750

− 11191
19348875

f6;2 664042208
336403700758125

− 20811261028
11774129526534375

− 34169022472
905702271271875

0
f3 − 97

231
− 12

77
− 68

77
1

f4 − 1733
436590

− 1457
407484

− 6997
339570

− 61
3780

3The parameter γ1−loop is denoted by γ2 in [44], and the parameter c2s appearing in B21̃1 by γ1.
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The shape functions E1, E2, E3 correspond to the kernels
obtained from the second-order position space operators
given in (17),

Δδ21;Δs2; ∂i½sij∂jδ1�; ð44Þ

respectively, where sij is the tidal tensor, and s2 ¼ sijsij.
The kernel Γ contains a combination of contributions from

Δδ2; ð45Þ

where δ2 is the second-order density field, as well as
second-order terms obtained when solving the continuity
and Euler equations in presence of a term Δδ1 within the
effective stress tensor.4 Here and below we consider the
EFT parameters as being free parameters at a given, fixed
redshift of interest. One may view these parameters as
being given by a convolution of the time-dependent terms
multiplying the various contributions to the effective stress
tensor with the linear propagator of the density field [44].
The most important property for our purposes is that the

E1; E2; E3;Γ shapes form a basis of shape functions.
Indeed, one realizes that it is related to the shape functions
bð1Þ − bð5Þ introduced in (35) by a basis transformation,
when eliminating one of the five shapes in (35) by
assuming the constraint (36) from momentum conservation
holds. Concretely, we have

X5
j¼1

fðjÞbðjÞðk; pÞ ¼
X3
i¼1

eiEiðk; pÞ þ γΓðk; pÞ; ð46Þ

with the mapping of coefficients given by

fð1Þ ¼ e1 − e2=3 − e3=6þ 72γ=77;

fð2Þ ¼ 2e1 − 2e2=3þ 2e3=3þ 179γ=77;

fð3Þ ¼ γ=2;

fð4Þ ¼ e2 þ e3=2þ 68γ=77;

fð5Þ ¼ 2e2 þ 24γ=77: ð47Þ

Consequently, we note that the shape functions f3;4ðk; pÞ
defined above, as well as the hard limit bh1Lðk; pÞ, can
equivalently be expanded in the Ei=Γ basis. The corre-
sponding coefficients are given in Table I.

1. Symmetry-based approach

Within the symmetry-based approach [44], we use four
independent EFT parameters for the one-loop bispectrum,
which can be taken to be ϵ1;2;3 and γ1−loop, as well as one
parameter c2s for the one-loop power spectrum. The EFT
power- and bispectrum can be written as

Pren
1L ðkÞ ¼ P11 þ P1L þ Pctr

1L ¼ P11 þ 2P13

þ P22 − 2k2c2sP11;

Bren
1L ðk1; k2; k3Þ ¼ Btree þ B1L þ Bctr

1L; ð48Þ

with B1L being the SPT one-loop contribution to the
bispectrum, and Bctr

1L obtained from combining B2̃11 and
B21̃1. After noting that the latter can be expanded in the
basis of shape functions as well, the EFT contribution can
be brought into the form

Bctr
1Lðk1;k2;k3Þ¼−2

�X3
i¼1

ϵ̂iEiðk1;k2Þþ γ̂1−loopΓðk1;k2Þ
�

×P11ðk2ÞP11ðk3Þþ2permutations; ð49Þ

where

ϵ̂1 ¼ ϵ1 −
97

231
c2s ;

ϵ̂2 ¼ ϵ2 −
12

77
c2s ;

ϵ̂3 ¼ ϵ3 −
68

77
c2s ;

γ̂1−loop ¼ γ1−loop þ c2s : ð50Þ

We note that, since, for the symmetry-based approach, all
four parameters are allowed to vary freely, one could
equivalently use the shifted values (with a hat) as input
parameters. This argument also makes it apparent that the
one-loop EFT bispectrum within the symmetry-based
approach depends on exactly four independent input
parameters. In addition, we note that the bispectrum Bren

1L
is independent of the chosen value of c2s after fitting ϵi and
γ1−loop to simulation or observation data. In practice,
throughout this work, we use the numerical value of c2s ¼
c2s jP1L

determined by fitting the one-loop power spectrum
spectrum to simulation data, and treat the following
parameters as free,

fγ1−loop;ϵ1;ϵ2;ϵ3g 1Lsymmetry-basedapproach: ð51Þ

We will see below that the symmetry-based approach can
be extended to two-loop order.

4Here we evaluated Γ for m ¼ 1 in the notation of [44]. A
different choice of m would lead to a different basis. Since it is
spanning the same space of functions, one obtains identical
results for the EFT bispectrum irrespective of m, when properly
transforming the coefficients multiplying the basis functions as
well. Also note that the operator Δθ2 is redundant, which can be
seen using ðk1 þ k2Þ2ðGðsÞ

2 − FðsÞ
2 Þ ¼ − 4

21
E1 þ 2

7
E2.
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2. UV-inspired approach

The so-called UV-inspired approach makes additional
assumptions on the relative contributions of the basis of
shape functions, motivated by the linear combination in
which they appear in the hard limit of the SPT one-loop
bispectrum. In particular, the hard limit of B411 is propor-
tional to the shape function f4ðk; pÞ, which is a particular
linear combination of the Ei and Γ basis functions. The UV-
inspired approach assumes that it is sufficient to parametrize
B2̃11 by a single free EFT parameter, which can be taken to
be γ1−loop, such that F̃2ðk; pÞ ∝ γ1−loopf4ðk; pÞ. Noting that
f4ðk; pÞ can be written as a particular linear combination of
the shape basis functions, this corresponds to fixing the ϵi
parameters in terms of γ1−loop as

ϵ1 ¼
3466

14091
γ1−loop; ϵ2 ¼

7285

32879
γ1−loop;

ϵ3 ¼
41982

32879
γ1−loop: ð52Þ

Assuming that the value of c2s is fixed by the one-loop
power spectrum, the UV-inspired approach therefore
introduces only one additional free parameter, γ1−loop,
for the bispectrum.
An even more restrictive ansatz can be obtained by

noticing that, at one-loop order, all terms with leading UV
sensitivity are in the hard limit proportional to the same
moment of the linear power spectrum, given by σ2d. One
may then investigate the hypothesis that UVeffects correct

this moment in a universal manner in all one-loop con-
tributions. If this is the case, the correction from small-scale
nonlinearities can be taken into account by correcting the
contribution from the hard region according to the universal
replacement

σ2d ↦ σ2d þ Δσ2d ð53Þ

with a single unknown parameter Δσ2d. The EFT correction
term is in this approach obtained by formally replacing σ2d
by Δσ2d in the hard limit of the bispectrum Bh

1L given in
(26), as well as in the hard limit of the power spectrum Ph

1L,
see (33). By comparing with the usual parametrization of
the one-loop EFT correction Pctr

1L from (40), one can
identify

Δσ2d ≡ 61

210
c2s : ð54Þ

Furthermore, from (26) it follows that in this zero-param-
eter approach the bispectrum EFT parameter is chosen to be

γ1−loop ¼ c2s : ð55Þ

Various combinations of possibilities for determining the
EFT terms in either the one- or zero-parameter UV-inspired
approach or the symmetry-based approach have been
discussed in detail for the one-loop bispectrum in [44].
Here we consider the following possibilities

fγ1−loopg 1LUV-inspired 1-parameter with ϵi=γ1−loop fixed; ð56Þ

∅ 1LUV-inspired 0-parameter with ϵi=γ1−loop fixed and γ1−loop ¼ c2s jP1L
: ð57Þ

As we will see, and as may be expected, the UV-inspired
approach can strictly speaking not be extended to the two-
loop bispectrum. Nevertheless, we will consider a naive
extension and compare it to the symmetry-based approach
at two-loop order further below.

IV. ΛCDM VERSUS EdS TIME DEPENDENCE

Before discussing the two-loop bispectrum, we scruti-
nize the commonly adopted EdS approximation for the
nonlinear kernels. The exact time dependence within
ΛCDM can be taken into account by replacing the usual
SPT-EdS kernels Fn andGn by time-dependent kernels that
obey the set of coupled, ordinary differential equations

ð∂η þ nÞFnðq1;…; qn; ηÞ − Gnðq1;…; qn; ηÞ ¼
Xn
m¼1

αðq1 þ � � � þ qm; qmþ1 þ � � � þ qnÞ

×Gmðq1;…; qm; ηÞFn−mðqmþ1;…; qn; ηÞ;

ð∂η þ nþ xðηÞ − 1ÞGnðq1;…; qn; ηÞ − xðηÞFnðq1;…; qn; ηÞ ¼
Xn
m¼1

βðq1 þ � � � þ qm; qmþ1 þ � � � þ qnÞ

×Gmðq1;…; qm; ηÞGn−mðqmþ1;…; qn; ηÞ; ð58Þ
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where xðηÞ≡ 3
2
Ωm
f2 , η ¼ lnðD1Þ, f ¼ d lnðD1Þ=d ln a,

Ωm ¼ Ωm0a−3H2
0=H

2, and D1 is the usual linear growth
factor. The kernels still need to be symmetrized with
respect to arbitrary permutations of the wave numbers.
The conventional EdS approximation is recovered by
approximating x ↦ 3

2
, in which case the equations possess

an analytic solution with time-independent kernels. Indeed,
the usual algebraic EdS-SPT recursion relation is obtained
by setting ∂η ↦ 0, x ↦ 3

2
and taking suitable linear

combinations of both equations.
Even though xðηÞ deviates from 3

2
by about 15% at z ¼ 0

for a realistic ΛCDM cosmology, the EdS approximation is
known to work relatively well for the one-loop matter
power spectrum [61–64]. One reason is that x-dependent
terms enter only via the decaying mode, whose contribution
to the kernels is non-negligible but somewhat suppressed.
Analytic solutions to (58) for general xðηÞ have been

derived in the literature up to third order [15,61,62,64], in
which the time and wave-number dependence of the kernels
are factorized. For e.g. the F3 kernel, the time dependence
can be captured by three parameters ν2, ν3, and λ3 each
multiplying a wave-number dependent function [15]. The

factorization implies that given a cosmology with a nontrivial
xðηÞ, one only needs to determine the parameters in order to
obtain the kernels. Nonetheless, solving (58) analytically
becomes increasingly more difficult at higher orders due to
the recursive structure of the equations.
The approach of [63] is instead to solve the set of

equations (58) numerically for each configuration of wave
vectors that is needed in the analysis. While this method
entails numerous integrations of the kernel equations, it is
easily extended to higher orders. In particular, the two-loop
power spectrum (involving F5) with exact time dependence
was computed in [63], finding a deviation of 1% at k ¼
0.2h Mpc−1 compared to the EdS approximation.
In order to assess the impact of using EdS kernels we

compute the one-loop bispectrum with exact time depend-
ence following the method developed in [63]. The result is
shown in Fig. 2 for three different shapes (black lines), as
compared to the EdS approximation (orange dotted lines).
Apart from an approximately k-independent shift, that is
due to the impact of exact time dependence at tree-level,
there is a k-dependent difference arising from the one-loop
contribution. The relative size of tree and loop-contribu-
tions is shown in Fig. 3. The k-independent offset at tree-

FIG. 2. Comparison of the one-loop bispectrum computed with EdS kernels (orange dotted lines) with the case taking the exact time-
dependence into account (black lines). Note that the exact kernels are taken into account both in the tree-level as well as the one-loop
piece. For comparison we show the impact at tree-level only in gray. All lines are normalized to the tree-level EdS bispectrum, and we
show three different shapes as indicated above the panels.

FIG. 3. Relative change of the one-loop contribution to the bispectrum computed with exact or EdS kernels (black lines), as well as the
best-fit EFT contribution (49) to the bispectrum in the UV-inspired approach (blue lines) or symmetry-based approach (green lines).
Gray points show the relative difference between exact and EdS kernels at tree-level for comparison.
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level is of order 0.5%, while the difference between exact
and EdS results at one-loop increases with k, and crosses
the 1% threshold at k ≃ 0.1h Mpc−1 for the shapes con-
sidered here.

A. Degeneracy with the EFT parameters

Within the effective theory approach, one may ask to
which extent the difference between the bispectrum
obtained in the EdS approximation and for the exact
time-dependence can be absorbed by a shift in the EFT
parameters. Clearly, the impact of exact time dependence
on the tree-level bispectrum is not degenerate with EFT
parameters, since the former yields a difference that persists
even on large scales, while the EFT contributions are
suppressed by factors of order k2 in that limit. However,
since the exact F2 kernel can easily be implemented for the
tree-level spectrum, the question that is in practice more
relevant is the extent to which the error made by the EdS
approximation is degenerate with EFT parameters at the
loop level.
To illustrate this point, we first review the case of the

one-loop power spectrum. For k → 0, it scales as

P1LðkÞ ¼ 2P13 þ P22 → −2ck2σ2dP11; ð59Þ

and furthermore P13 dominates in that limit. These proper-
ties are not changed when using the exact kernels, as
F3ðk; q;−qÞ ∝ k2=q2 for k → 0 is guaranteed by momen-
tum conservation arguments. However, the value of the

proportionality constant c≡ limk→0 9
R dΩq

4π F3ðk; q;−qÞ q
2

k2

changes. In the EdS approximation it is given by
cEdS ¼ 61=210 ≃ 0.2905. When using the parametrization
of the exact F3 kernel from [15] one finds

c ¼ 1

30
ð−121 − 16λ3 þ 162ν2 − 36ν3Þ; ð60Þ

where ν2, ν3, and λ3 are related to generalized second- and
third-order growth functions [15]. Their values in the EdS
approximation are 34=21 ≃ 1.6191; 682=189 ≃ 3.6085;
1=6 ≃ 0.1667. For a ΛCDM model (with Ωm0 ¼ 0.272)
one finds 1.6217,3.6233,0.1700, respectively at z ¼ 0,
giving cΛCDM ¼ 0.2853. Therefore, for k → 0,

P1L;ΛCDM − P1L;EdS → −2ðcΛCDM − cEdSÞσ2dk2P11: ð61Þ

Thus, in the large-scale limit, the difference between
approximate EdS and correct LCDM growth factors can
be absorbed into a change of the speed of sound of the
leading power spectrum EFT parameter,

Δc2s ¼ ðcΛCDM − cEdSÞσ2d: ð62Þ

For the cosmology under consideration, this corresponds
to a shift of about Δc2s ≈ −0.2h−2 Mpc2, which is about
20% of the total amplitude of the speed-of-sound term (see
also [62]).
For the bispectrum, on large scales the leading order

difference between the exact ΛCDM and approximate EdS
time-dependence is given by B211. This difference is at the
level of k0 and thus cannot be absorbed by the one-loop
EFT parameters.5

At the loop level, the growth factor corrections can be
absorbed into a change of the EFT parameters in the limit
of large scales. In Fig. 3 we show the relative change of the
bispectrum when using exact ΛCDM time-dependence
versus the EdS approximation. In addition, we show by
the blue and green dotted lines the part that can be
absorbed into a shift of the EFT parameters, for the
UV-inspired as well as symmetry-based approaches,
respectively. For the UV-inspired ansatz the shift in the
γ1−loop parameter is similar to the one observed for c2s in
the power spectrum. We find that most, but not all of the
difference can be absorbed by the EFT terms. In addition,
it is apparent that the modification of B211 (gray points)
cannot be absorbed by EFT corrections, in line with the
theoretical expectation.

V. THE TWO-LOOP BISPECTRUM

A. Two-loop SPT bispectrum

Up to two loops, the equal time bispectrum within SPT is
given by

BSPT ¼ Btree þ B1L þ B2L; ð63Þ

where

B2L ¼ Bs
611 þ Bs

521 þ Bs
422 þ Bs

431 þ Bs
332: ð64Þ

The diagrams for the two-loop SPT bispectrum are shown
in Fig. 4 and correspond to the expressions

5However, the tree-level correction is somewhat degenerate
with the numerical correction factor ðΔD2 þ 2ΔD1ÞB211, see
Sec. VI.
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FIG. 4. Diagrams of the two-loop bispectrum contributions. The daisy loops, i.e. loops that are only connected to a single Fn kernel,
are the leading sources of UV sensitivity of the loop.
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B611ðk1; k2; k3Þ ¼ 90P11ðk2ÞP11ðk3Þ
Z
q1;q2

FðsÞ
6 ðk2; k3; q1;−q1; q2;−q2ÞP11ðq1ÞP11ðq2Þ;

BI
521ðk1; k2; k3Þ ¼ 60P11ðk2Þ

Z
q1;q2

FðsÞ
5 ðk2; q1;−q1; q2;−q2 þ k3ÞFðsÞ

2 ð−q2; q2 − k3ÞP11ðq1ÞP11ðq2ÞP11ðjq2 − k3jÞ;

BII
521ðk1; k2; k3Þ ¼ 30P11ðk2ÞP11ðk3Þ

Z
q1;q2

FðsÞ
5 ð−k2; q1;−q1; q2;−q2ÞFðsÞ

2 ðk2; k3ÞP11ðq1ÞP11ðq2Þ;

BI
431ðk1; k2; k3Þ ¼ 36P11ðk3Þ

Z
q1;q2

FðsÞ
4 ð−q1; q1 − k1; q2;−q2ÞFðsÞ

3 ðk3; q1;−q1 þ k1ÞP11ðq1ÞP11ðq2ÞP11ðjq1 − k1jÞ;

BII
431ðk1; k2; k3Þ ¼ 36P11ðk2ÞP11ðk3Þ

Z
q1;q2

FðsÞ
4 ðk2; k3; q1;−q1ÞFðsÞ

3 ð−k2; q2;−q2ÞP11ðq1ÞP11ðq2Þ;

BIII
431ðk1; k2; k3Þ ¼ 24P11ðk3Þ

Z
q1;q2

FðsÞ
4 ðk2 þ q1 þ q2; k3;−q1;−q2ÞFðsÞ

3 ð−k2 − q1 − q2; q1; q2Þ

× P11ðq1ÞP11ðq2ÞP11ðjk2 − q1 − q2Þ;

BI
332ðk1; k2; k3Þ ¼ 36

Z
q1;q2

FðsÞ
3 ðq1; q2;−k1 − q1 − q2ÞFðsÞ

3 ð−q2; k1 þ q1 þ q2; k3 − q1ÞFðsÞ
2 ð−k3 þ q1;−q1Þ

× P11ðq1ÞP11ðq2ÞP11ðjk1 þ q1 þ q2jÞP11ðjk3 − q1jÞ

BII
332ðk1; k2; k3Þ ¼ 18P11ðk1ÞP11ðk2Þ

Z
q1;q2

FðsÞ
3 ð−k1; q1;−q1ÞFðsÞ

3 ð−k2; q2;−q2ÞFðsÞ
2 ðk1; k2ÞP11ðq1ÞP11ðq2Þ;

BIII
332ðk1; k2; k3Þ ¼ 18P11ðk1Þ

Z
q1;q2

FðsÞ
3 ð−k1; q1;−q1ÞFðsÞ

3 ðk1; k3 þ q2;−q2ÞFðsÞ
2 ðq2;−q2 − k3Þ

× P11ðq1ÞP11ðq2ÞP11ðjq2 þ k3jÞ;

BI
422ðk1; k2; k3Þ ¼ 48

Z
q1;q2

FðsÞ
4 ðq1;−q1; q2;−q2 þ k2 þ k3ÞFðsÞ

2 ð−q2; q2 − k2ÞFðsÞ
2 ð−q2 þ k2; q2 − k2 − k3Þ

× P11ðq1ÞP11ðq2ÞP11ðjq2 − k2jÞP11ðjq2 − k2 − k3jÞ;

BII
422ðk1; k2; k3Þ ¼ 48

Z
q1;q2

FðsÞ
4 ðq1; q2; k2 − q1; k3 − q2ÞFðsÞ

2 ð−q1; q1 − k2ÞFðsÞ
2 ð−q2; q2 − k3Þ

× P11ðq1ÞP11ðq2ÞP11ðjq1 − k2jÞP11ðjq2 − k3jÞ: ð65Þ

The symmetrized expressions are obtained by

Bs
611 ¼ B611 þ 2 permutations;

Bs
521 ¼ ðBI

521 þ BII
521Þ þ 5 permutations;

Bs
431 ¼ ðBI

431 þ BII
431 þ BIII

431Þ þ 5 permutations;

Bs
332 ¼ ½ðBI

332 þ BII
332Þ þ 2 permutations� þ ½BIII

332 þ 5 permutations�;
Bs
422 ¼ ðBI

422 þ BII
422Þ þ 2 permutations: ð66Þ

For the computation of the two-loop bispectrum we follow
the algorithm outlined in the appendix of [53] (see also
[65]). This in particular encompasses a suitable combina-
tion of all individual contributions, which makes sure that
all leading and subleading infrared-enhanced contributions
cancel at the integrand level. The numerical integration is

then performed using the Monte Carlo integration package
CUBA [66]. We performed numerous conversion tests and
checked the result based on two independent implementa-
tions. Furthermore, we also compute the two-loop based on
the gridPT technique, for a given realization of the density
field (see below).
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The SPT result for the (unrenormalized) two-loop
bispectrum is shown in Fig. 5 for three different shapes.
As expected, the result depends on contributions from large
wave numbers. The EFT program is precisely designed to
take care of this UV dependence and encapsulate the
uncertainties in EFT parameters. Before describing this
procedure for the two-loop bispectrum, we briefly review
the case of the power spectrum.

B. Brief review of the EFT for the two-loop power
spectrum

At two-loop order, one has to discriminate two types of
UV limits: the single-hard limit with one of the two loop
wave numbers being large compared to the external wave
number, and the double-hard limit, where both loop wave
numbers become large compared to the external scales. In
[46] it was pointed out that in the two-loop power spectrum
the double-hard contributions lead to a k2P11ðkÞ contribu-
tion that is degenerate with the one-loop EFT parameter
c2sk2P11ðkÞ, whereas the single-hard contributions require
new EFT parameters beyond the one-loop power spectrum.
The leading single-hard contributions are proportional to
the displacement dispersion σ2d in the k ≪ q limit, and arise
from daisy diagrams. This analogy to the hard limit of the
P13 contribution was explored in [46] to propose a one-
parameter ansatz for the EFT parameter, in which the
degenerate double-hard limits of the two-loop expressions
were absorbed into the leading c2sk2P11ðkÞ EFT correction,
and the single-hard limit proportional to σ2d is used as
additional EFT parameter upon replacing σ2d ↦

210
61

c2s
(see Sec. III).
For the two-loop bispectrum a straightforward applica-

tion of this procedure fails because the double-hard limit of
the two-loop bispectrum is not proportional to the hard
limit of the one-loop bispectrum, i.e. the hard regions lead
to a different shape dependence at one- and two-loop
respectively. We will present the analysis of the double-
hard region next, and then discuss the single-hard limit as

well as a generalization of the EFT approach to the two-
loop bispectrum.

C. Double-hard limit

The EFT description at two-loop order requires to
consider the limit of the SPT two-loop expressions when
either both or one of the loop wave numbers tend to infinity,
denoted as double and single hard limit, respectively.
Below we present analytical results for the double-hard
limit, and discuss their properties.
We consider the limit where both loop wave numbers

tend to infinity such that their ratio remains finite,
q1 ∝ q2 ∝ q → ∞, for fixed external wave numbers ki.
Equivalently, this correspond to the limit k1 ∝ k2 ∝ k3 ∝
k → 0 with fixed qi. In order to discuss the parametric
dependence in this limit, we denote the scale of the
loop wave numbers by q, and the scale of the external
wave numbers by k. Due to momentum conservation,
the symmetrized SPT kernels satisfy the decoupling
property [67]

FðsÞ
n ∼ k2=q2; k=q → 0; ð67Þ

if the sum of all arguments scales as k ∝ ki, while
(a subset of) the arguments of the kernels scales para-

metrically as q ∝ qi, such as for example for FðsÞ
6 ðk1; k2;

q1;−q1; q2;−q2Þ. The relation above can be used to
estimate the parametric scaling, while the precise expres-
sion involves an in general complicated dependence on
the ratios ki=kj (or equivalently on k1, k2 and the angle
between the corresponding wave vectors) as well as on
q1=q2, see below. For now, we use (67) to estimate the
parametric scaling in the double-hard limit, which is
schematically given by

FIG. 5. Unrenormalized tree-level, one- and two-loop approximation to the bispectrum in SPTwith exact time dependence for the tree
and one-loop contribution, and EdS-SPT kernels for the two-loop. All loop integrals are cut off at 0.6h Mpc−1 (the cutoff dependence is
removed by renormalization, see below).
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Bhh
611 ∼ k2P11ðk2ÞP11ðk3Þ ×

Z
q1;q2

P11ðq1ÞP11ðq2Þ=q2;

BI;hh
521 ∼ k4P11ðk2Þ ×

Z
q1;q2

P11ðq1Þ½P11ðq2Þ�2=q4;

BII;hh
521 ∼ k2P11ðk2ÞP11ðk3Þ ×

Z
q1;q2

P11ðq1ÞP11ðq2Þ=q2;

BI;hh
431 ∼ k4P11ðk2Þ ×

Z
q1;q2

P11ðq1Þ½P11ðq2Þ�2=q4;

BII;hh
431 ∼ k4P11ðk2ÞP11ðk3Þ ×

Z
q1

P11ðq1Þ=q21 ×
Z
q2

P11ðq2Þ=q22;

BIII;hh
431 ∼ k4P11ðk2Þ ×

Z
q1;q2

P11ðq1ÞP11ðq2ÞP11ðjq1 þ q2jÞ=q4;

BI;hh
332 ∼ k6 ×

Z
q1;q2

½P11ðq1Þ�2P11ðq2ÞP11ðjq1 þ q2jÞ=q6;

BII;hh
332 ∼ k4P11ðk2ÞP11ðk3Þ ×

Z
q1

P11ðq1Þ=q21 ×
Z
q2

P11ðq2Þ=q22;

BIII;hh
332 ∼ k6P11ðk2Þ ×

Z
q1

P11ðq1Þ=q21 ×
Z
q2

½P11ðq2Þ�2=q42;

BI;hh
422 ∼ k6 ×

Z
q1;q2

P11ðq1Þ½P11ðq2Þ�3=q6;

BII;hh
422 ∼ k6 ×

Z
q1;q2

½P11ðq1Þ�2½P11ðq2Þ�2=q6: ð68Þ

The leading UV dependence arises from B611 and BII
521,

carrying a single factor of k2=q2, analogously to P15 for the
power spectrum. Indeed, BII

521 is exactly proportional to
P15ðk2Þ, while for B611 only the scaling is identical, but not
the precise form. These leading terms will be discussed in
detail next. Before that, we briefly comment on the
contributions with subleading UV dependence, and their
EFT counterpart. The terms with the smallest UV depend-
ence are those where all input power spectra P11 are
evaluated for wave numbers that become large in the
double-hard limit, i.e. for the loop wave vectors q1, q2,
or some linear combination of them. There are three
contributions of this type, being BI

422, B
II
422, and B

I
332. They

carry a k6=q6 suppression factor, and would correspond to
pure noise terms in the EFT setup. BIII

332 is also proportional
to k6, but arises from a product of a one-loop P13

propagator term as well as a one-loop noise term. Never-
theless, due to the k6 scaling, it is extremely suppressed in
the double-hard limit. Finally, among the remaining terms,
that are all involving a k4 factor, one can discriminate two
categories: BI

521, B
I
431, and BIII

431 correspond to cross terms
between stochastic noise and propagator EFT corrections,
which may be considered as a stochastic contribution to c2s
[68], while BII

431 and BII
332 have the form of a “propagator

correction squared”. One may expect these last contribu-
tions to feature the largest UV sensitivity apart from the
leading terms B611 and BII

521. In the following we consider
EFT corrections only for the leading UV sensitive con-
tributions, B611 and BII

521, and comment on the impact of
subleading terms in Sec. V F.
Let us now turn to the contributions with leading UV

sensitivity at two-loop order. We start with B611 which
contains the F6 kernel. Using the SPT recursion relations
and a sequential Taylor expansion algorithm, we find that
the double-hard limit q1 ∝ q2 → ∞ of the sixth-order SPT
kernel is given by

Z
dΩq1

4π

dΩq2

4π
FðsÞ
6 ðk1; k2; q1;−q1; q2;−q2Þ

→
1

q1q2
ðf6;1ðk1; k2ÞS1ðq1=q2Þ þ f6;2ðk1; k2ÞS2ðq1=q2ÞÞ:

ð69Þ

To our knowledge this analytical limit has not been presented
in the literature yet. The dependence on the external wave
numbers is encapsulated in the two shape functions
f6;1ðk; pÞ and f6;2ðk; pÞ, multiplying two functions S1ðxÞ
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and S2ðxÞ that we specify further below. The shape functions
can be written as a linear combination of five basis functions
bðjÞðk; pÞ, j ¼ 1;…; 5, introduced in (35),

fiðk; pÞ ¼
X5
j¼1

fðjÞi bðjÞðk; pÞ; ð70Þ

or equivalently in the E1;2;3 and Γ basis. Our analytical result
for the coefficients for the two shape functions f6;1ðk; pÞ and
f6;2ðk; pÞ are given in Table I. As shown in Sec. III, the
function f4ðk; pÞ appearing in the hard limit of the one-loop
bispectrum can also be decomposed in the same way. The

corresponding coefficients are also given in Table I. In Fig. 6
we show the dependence of f6;1ðk; pÞ and f6;2ðk; pÞ on μ. It
is apparent that these two shape functions are not propor-
tional to f4ðk; pÞ. As we will argue below, this implies that
the UV-inspired approach cannot be extended to two-loop
order. On the other hand, the symmetry-based approach
contains already all basis shapes E1;2;3 and Γ that are also
required to absorb the double-hard limit of B611.
Let us now return to the missing part in the discussion of

the double-hard limit of the sixth-order kernel in (69). The
dependence on the ratio of the two “hard” loop wave
numbers r ¼ q1=q2 is given by the two functions

S1ðrÞ ¼ −
1

716224r6

�
4rð1þ r2Þð5760þ 13605r2 − 128258r4 þ 13605r6 þ 5760r8Þ;

þ 15ðr2 − 1Þ4ð384þ 2699r2 þ 384r4ÞLðrÞ
�
;

S2ðrÞ ¼ −
1

512r6

�
4rð1þ r2Þð105 − 340r2 þ 406r4 − 340r6 þ 105r8Þ þ 15ðr2 − 1Þ4ð7þ 10r2 þ 7r4ÞLðrÞ

�
; ð71Þ

with LðrÞ ¼ logððr − 1Þ2=ðrþ 1Þ2Þ. Due to symmetry
under exchange of q1 and q2, the functions S1 and S2 satisfy

SiðrÞ ¼ Sið1=rÞ: ð72Þ

The normalization is chosen such that Sið1Þ ¼ 1. For
r → 0,

S1ðrÞ →
120424r
78337

þOðr3Þ; S2ðrÞ →
64r3

21
þOðr5Þ:

ð73Þ

Note that S1 appears also in the double-hard limit of FðsÞ
5 ,

known from the two-loop power spectrum [46],

Z
dΩq1

4π

dΩq2

4π
FðsÞ
5 ðk; q1;−q1; q2;−q2Þ

→ −
11191

6449625

k2

q1q2
S1ðq1=q2Þ: ð74Þ

The expansion of the SPT kernels can be used to obtain
an analytical expression for the double-hard limit of the
two-loop bispectrum B2Lðk1; k2; k3Þ. Specifically, we are

FIG. 6. Shape functions f6;1=2ðk1;k2Þ related to the double-hard limit of FðsÞ
6 ðk1;k2;q1;−q1;q2;−q2Þ. We also show f4ðk1;k2Þ

derived from the hard limit of FðsÞ
4 ðk1;k2;q;−qÞ. Note that f4 is divided by a factor 10, and f6;2 is multiplied by 10 for better visibility.
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looking for contributions that are parametrically suppressed by a factor k2 compared to the tree-level bispectrum, in the limit
k1 ∼ k2 ∼ k3 ∼ k → 0. Only B611 and B521 yield such contributions, given by

Bhh
611ðk1; k2; k3Þ ¼ 90½f6;1ðk1; k2Þs1ðΛÞ þ f6;2ðk1; k2Þs2ðΛÞ�P11ðk1ÞP11ðk2Þ;

Bhh
521ðk1; k2; k3Þ ¼ 30

�
−

11191

6449625
ðk21 þ k22ÞFðsÞ

2 ðk1; k2Þs1ðΛÞ
�
P11ðk1ÞP11ðk2Þ; ð75Þ

where FðsÞ
2 ðk1; k2Þ denotes the usual SPT kernel. The

double-hard limits Bhh;s
611 and Bhh;s

521 are obtained by adding
two permutations in each case.6 Furthermore, note that Bhh

521

contains the shape function

f3ðk; pÞ ¼ ðk2 þ p2ÞFðsÞ
2 ðk; pÞ; ð76Þ

appearing also in Bh
321 at one-loop. As noted above, it can

also be decomposed into the basis functions, with coef-
ficients given in the third line of Table I for the bðjÞ or Ei
basis, respectively.
The coefficients siðΛÞ for i ¼ 1, 2 denote the UV-

sensitive two-loop integrals

siðΛÞ¼
Z
q1;q2<Λ

d3q1d3q2
Siðq1=q2Þ

q1q2
P11ðq1ÞP11ðq2Þ; ð77Þ

and encapsulate the dependence on the UV cutoff Λ. They
can easily be evaluated numerically, using the result for
SiðrÞ. Parametrically, the scaling with the cutoff can be
roughly estimated using the symmetry in q1 ↔ q2 and the
small/large-r limit of Si,

s1ðΛÞ ∼
Z

Λ

0

dq1P11ðq1Þ
Z

q1

0

dq2q22P11ðq2Þ

∼
Z

Λ

0

dqP11ðqÞ log4ðq=q0Þ;

s2ðΛÞ ∼
Z

Λ

0

dq1
P11ðq1Þ

q21

Z
q1

0

dq2q42P11ðq2Þ

∼
Z

Λ

0

dqP11ðqÞ log3ðq=q0Þ; ð78Þ

where the latter estimate applies to a ΛCDM linear input
power spectrum with asymptotic behavior P11ðqÞ →
q−3 log3ðq=q0Þ. Therefore, si are more sensitive to the
UV cutoff compared to the corresponding integral σ2d ∼RΛ
0 dqP11ðqÞ at one-loop, as for the power spectrum.
For the fiducial ΛCDM model considered in this work

one finds

s1 ≃ 52.51 ðMpc=hÞ2; s2 ≃ 29.55 ðMpc=hÞ2; ð79Þ

for Λ ¼ 0.6h Mpc−1.
The double-hard limit can be summarized as

B2Lðk1; k2; k3Þ → Bhh
2L;1ðk1; k2; k3Þs1ðΛÞ

þ Bhh
2L;2ðk1; k2; k3Þs2ðΛÞ

þOðk4PLðkÞ2; k4PLðkÞ; k6Þ; ð80Þ

where, for i ¼ 1, 2,

Bhh
2L;iðk1; k2; k3Þ ¼ bhh2L;iðk1; k2ÞP11ðk1ÞP11ðk2Þ

þ 2 permutations; ð81Þ

with

bhh2L;1ðk; pÞ ¼ 90f6;1ðk; pÞ −
11191

6449625
30ðk2 þ p2ÞFðsÞ

2 ðk; pÞ;
bhh2L;2ðk; pÞ ¼ 90f6;2ðk; pÞ: ð82Þ

Both of these shape functions can be written as linear
combinations of the five basis functions (35), or alter-
natively in the basis of E1;2;3 and Γ. The coefficients are
given in Table II.
For a ΛCDM spectrum and cutoff Λ≳ 0.5h Mpc−1, the

integrals s1ðΛÞ and s2ðΛÞ are of comparable size. Since the

coefficients bhh;ðjÞ2L;2 are much smaller in magnitude than for
the first shape,

jbhh;ðjÞ2L;2 j ≪ jbhh;ðjÞ2L;1 j; j ¼ 1…5; ð83Þ

the contribution of the second shape is suppressed com-
pared to the first one, and contributes at most at the few
percent level. We checked that, in practice, neglecting the
second shape does not lead to any sizeable differences, but
include it in our numerical analysis for completeness.
Let us now stress a difference in the renormalization of

the two-loop power versus bispectrum. For the two-loop
power spectrum, the double-hard contributions are pro-
portional to k2P11ðkÞ, and can therefore be absorbed into
the leading c2s EFT parameter. For the two-loop bispec-
trum, the double-hard limit is given by a particular linear
combination of either the basis functions bðjÞ defined in
(35), or equivalently of the four shapes E1;2;3 and Γ that

6Note that we multiplied Bhh
521 by a factor two compared to B521

from (65), accounting for the trivial permutation of k1 and k2 in
that limit. The symmetrized bispectrum is thus obtained by
adding two permutations to Bhh

521, and five permutations to
B521, respectively.
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were introduced in the context of one-loop bispectrum
renormalization.
However, the linear combination that appears for the

two-loop bispectrum is different from the linear combina-
tion obtained from the UV limit of the one-loop bispec-
trum. While this may be expected in general, it is
worthwhile to point out that this implies that the “UV-
inspired” ansatz cannot be carried over to two loops. On the
other hand, the “symmetry-based” approach is suited also
to absorb the double-hard UV contributions at two-loop,
since the coefficients of the E1;2;3 and Γ are treated as
independent free parameters.
In order to illustrate by how much the shape-dependence

of the double-hard limit at two-loop differs from the UV
limit at one-loop, we show the ratio of the corresponding
expressions in Fig. 7. Note that, in this figure, we include an
arbitrary normalization factor (see legend), since we are
interested only in the shape dependence. We show the ratio
both of the propagatorlike contributions Bhh

611=B
h
411, as well

as of the complete bispectrum, Bhh;s
2L =Bh;s

1L . The mismatch
between the one- and two-loop hard limit is about up to 25%
in the former case, and slightly smaller, at the ∼10% level,
for the latter. To further quantify the mismatch of the hard
limits, we include the expansion coefficients of Bh

1L in
Table II. They are approximately, but not exactly, propor-
tional to the ones of the dominant two-loop shape Bhh

2L;1.
In conclusion, we find that the two-loop bispectrum

should be renormalized using the coefficients of the E1;2;3
and Γ shapes as independent, free parameters, correspond-
ing to the “symmetry-based” approach. As we will discuss
in the next section, completely renormalizing the two-loop
bispectrum requires yet an additional parameter that
accounts for the single-hard limit.

D. Renormalization of the bispectrum

Renormalization at two-loop requires to consider the
double-hard (hh) as well as the single-hard (h) limit. The
hh contributions discussed above are proportional to a
linear combination of the shape functions (35), or equiv-
alently the basis functions E1;2;3 and Γ known from the one-
loop bispectrum renormalization.
The symmetry-based one-loop renormalization involves

four free EFT parameters related to these basis shapes. The
result for the hh limit implies that the two-loop bispectrum
can be renormalized by the same four EFT parameters. For
definiteness, we call these EFT parameters ci. We can
expand them as

ci ¼ c1Li þ c2Li þ…: ð84Þ

Following [46], we choose a renormalization condition
such that c2Li precisely cancel the hh contribution to the
bispectrum, while c1Li are determined by fitting to simu-
lations. In practice, this means we consider the “subtracted”
two-loop bispectrum, given by

Bsub
2L ðk1; k2; k3;ΛÞ≡ B2Lðk1; k2; k3;ΛÞ − Bhh

2Lðk1; k2; k3;ΛÞ;
ð85Þ

where

Bhh
2Lðk1; k2; k3;ΛÞ≡ Bhh

2L;1ðk1; k2; k3Þs1ðΛÞ
þ Bhh

2L;2ðk1; k2; k3Þs2ðΛÞ; ð86Þ

with the right-hand side defined in (81).

TABLE II. Expansion coefficients of the two independent shape functions (82) for the double-hard limit of the
complete two-loop bispectrum, as well as for the hard limit of the one-loop bispectrum. The coefficients in the upper
table refer to the basis given in (35), and the one in the lower table to the basis of E1;2;3 and Γ. We also provide
approximate numerical values rounded to five digits.

j 1 2 3 4 5

bhh2L;1 − 27853833395669
261647322811875

− 84266949648881
261647322811875

− 22382
429975

− 3660985992757
29071924756875

− 10098786522983
261647322811875

−0.10646 −0.32206 −0.052054 −0.12593 −0.038597
bhh2L;2

208422892624
261647322811875

− 157182933008
87215774270625

0 − 161939938064
87215774270625

− 83245044112
261647322811875

0.00079658 −0.0018022 0 −0.0018568 −0.00031816
bh1L − 52891

56595
− 148618

56595
− 61

105
− 66706

56595
− 24818

56595

−0.93455 −2.6260 −0.58095 −1.1787 −0.43852

e1 e2 e3 γ

bhh2L;1 − 152780472044
7475637794625

− 146227011253
47572240511250

− 1244431601311
20126717139375

− 44764
429975

−0.020437 −0.0030738 −0.061830 −0.10411
bhh2L;2

1328084416
7475637794625

− 41622522056
261647322811875

− 68338044944
20126717139375

0
0.00017766 −0.00015908 −0.0033954 0

bh1L
817
8085

− 2161
56595

− 12946
56595

− 122
105

0.10105 −0.038184 −0.22875 −1.1619
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In addition, at two-loop, we need to consider the renormalization of the single-hard limit. In principle, this should be
possible by considering one-loop diagrams with an insertion of a one-loop EFT operator. However, since an analytic
treatment of the single-hard limit appears even more complex as for the double-hard case, we restrict ourselves to a
numerical evaluation, and follow the approach proposed in [46], that has been demonstrated to work well for the
renormalization of the two-loop power spectrum. To obtain the leading UV sensitive contributions in the single-hard limit,
we consider the integrand of the two-loop bispectrum, which can be written in the form

B2Lðk1; k2; k3;ΛÞ ¼
Z
q1;2<Λ

d3q1d3q2b2Lðk1; k2; k3; q1; q2ÞP11ðq1ÞP11ðq2Þ: ð87Þ

Here b2L contains a sum of terms containing the SPT kernels as well as two further linear power spectra. The leading UV
dependence for q1 → ∞ arises from those contributions containing a kernel of the form Fnð…; q1;−q1;…Þ, which is
suppressed as 1=q21 in that limit. All other contributions to b2L scale as P11ðq1Þ=q41. To obtain the leading UV dependence,
we therefore define

bh2Lðk1; k2; k3;ΛÞ≡N × lim
q1→∞

q21

Z
jq2j<Λ

d3q2dΩq1b2Lðk1; k2; k3; q1; q2ÞP11ðq2Þ: ð88Þ

HereN is a normalization factor that we will specify shortly. The asymptotic scaling of the kernels guarantees that the limit
can be taken, and precisely accounts for the leading UV dependent contributions. In practice, we evaluate the right-hand
side numerically, using the same algorithm as for the full two-loop bispectrum, except that the magnitude of one of the loop
wave numbers is kept fixed at some large value (that is, much larger than Λ). We check that the choice for q1 does not
influence the result. The single-hard limit of the two-loop bispectrum is then given by

FIG. 7. Double-hard limit of the two-loop bispectrum, relative to the single-hard limit of the one-loop bispectrum. We show the ratio of
the symmetrized propagators Bhh;s

611 =B
h;s
411 as well as the full bispectra B

hh
2L=B

h
1L. In all cases, k1 ¼ 0.1h Mpc−1 and the ratio is normalized

to the value in the equilateral configuration (i.e. for k2=k1 ¼ 1 and μ ¼ −0.5).
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Bh
2Lðk1; k2; k3;ΛÞ ¼ 2 ×

3

N
σ2dðΛÞbh2Lðk1; k2; k3;ΛÞ; ð89Þ

where σ2dðΛÞ ¼ 1
3

R
q<Λ d

3qP11ðqÞ=q2. The factor 2 takes
into account that either q1 or q2 can become large.
Following [46], we assume that UV renormalization can
be taken into account effectively by a shift in the value of
σ2d. In particular,

σ2dðΛÞ ↦ σ2dðΛÞ þ
210

61
γ2−loopðΛÞ; ð90Þ

where γ2−loopðΛÞ corresponds to the EFT contribution (with
a conventional normalization factor related to the UV limit
of the one-loop power spectrum). Consequently, the
renormalization of the single-hard limit yields an additional
contribution to the bispectrum, of the form

2 ×
3

N
×
210

61
γ2−loopðΛÞbh2Lðk1; k2; k3;ΛÞ: ð91Þ

This corresponds to the mixed contribution with an EFT
parameter and a loop. In principle, we could add this term to
the two-loop result directly. However, one may notice that
part of it is still degeneratewith the double-hard contribution.
The reason is that for external wave numbers far belowΛ, the
remaining loop integration in (88) includes a hard region
with q2 ≫ k1;2;3. This region will yield contributions that are
again proportional to the shape functions (35) encountered in
the double-hard limit. According to the renormalization
condition introduced above, these contributions must be
canceled by an appropriate choice of c2Li . In practice, this
can be done by a subtraction analogous to that in (85). In
particular, the contribution to (88) in the limit q2 ≫ k1;2;3
can be obtained analytically from the double-hard limit
considered before. It is given by

bhh2Lðk1; k2; k3;ΛÞ ¼ Bhh
2L;1ðk1; k2; k3Þsh1ðΛÞ

þ Bhh
2L;2ðk1; k2; k3Þsh2ðΛÞ; ð92Þ

where

shi ðΛÞ≡N × lim
q1→∞

q21

Z
q2<Λ

d3q2dΩq1

Siðq2=q1Þ
q1q2

P11ðq2Þ:

ð93Þ

Using the analytical results (71), the limit can be taken. One
obtains

sh1ðΛÞ ¼ N × ð4πÞ × 120424

78337

Z
q2<Λ

d3q2P11ðq2Þ;

sh2ðΛÞ ¼ N × ð4πÞ lim
q1→∞

q21

Z
q2<Λ

d3q2
64

21

q22
q41

P11ðq2Þ ¼ 0:

ð94Þ

Thus, only the first line contributes in the limit q1 → ∞. We
note that, for the numerical evaluation, (88) is computed in
practice by fixing q1 to some large but finite value, as
mentioned above. Correspondingly, we compute shi ðΛÞ
numerically using (93) with the same large, fixed value of
q1. After all, we obtain the subtracted contribution

b̄h2Lðk1; k2; k3;ΛÞ≡ bh2Lðk1; k2; k3;ΛÞ − bhh2Lðk1; k2; k3;ΛÞ:
ð95Þ

This finally gives the mixed one-loop/EFT contribution to
the renormalized bispectrum,

Bctr
2Lðk1;k2;k3;ΛÞ≡2×

3

N
×
210

61
γ2−loopðΛÞb̄h2Lðk1;k2;k3;ΛÞ:

ð96Þ

The normalization factor drops out when using the definition
of b̄h2L, and can be chosen by convenience. In the following
we adopt the choice N ≡ 6 × 210

61
.

In summary, the total renormalized two-loop contribu-
tion to the bispectrum reads

Bren
2L ðk1;k2;k3;ΛÞ¼Bsub

2L ðk1;k2;k3;ΛÞþBctr
2Lðk1;k2;k3;ΛÞ:

ð97Þ

The only additional free parameter compared to the one-
loop bispectrum is γ2−loop. For illustration, we show the
renormalized two-loop contribution to the power spectrum
in Fig. 8, and compare it to the SPT tree-, one-, and two-
loop results. Note that the subtraction of the double-hard
contribution almost completely cancels with the bare
bispectrum for wave numbers below about 0.1h Mpc−1,
indicating that the SPT result within this regime is
dominated by UV sensitive contributions.

E. Cutoff independence

The renormalized bispectrum should be independent of
the cutoff Λ,

0 ¼ d
dΛ

Bren
2L : ð98Þ

Following the usual renormalization procedure, the explicit
dependence due to the cutoff in the loop integration should
be canceled by the EFT parameters. The condition that the
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total result is cutoff independent then leads to (Wilsonian)
renormalization group equations for the EFT parameters ci.
The parameters ci ∈ fϵi; γ1−loopg can be thought of as being
split into a one- and two-loop part. The former accounts for
the cutoff-dependence of the one-loop contribution, and
corresponds to the numerical values for these parameters as
quoted below. The latter is chosen implicitly to cancel the
double-hard two-loop contributions within the renormali-
zation scheme adopted here, and not needed explicitly.
After the subtraction of double-hard contributions, the
remaining cutoff-dependence at two-loop order is related
to the single hard limit only, i.e. (98) leads to

0 ¼ d
dΛ

ðB̄h
2L þ Bctr

2LÞ

¼ d
dΛ

�
6

N
σ2dðΛÞ þ γ2−loopðΛÞ

�
b̄h2Lðk1; k2; k3;ΛÞ; ð99Þ

where B̄h
2L is the bispectrum in the single-hard limit as

defined in (89), but with bh2L replaced by b̄h2L, see (95), i.e.
after subtracting remaining double-hard contributions. The
latter are already accounted for within our renormalization
scheme as explained above. Due to the subtraction, b̄h2L has
formally no cutoff dependence at leading power in gradients,

to which we are working here (we shall confirm this
numerically below). Consequently, we obtain the condition

0 ¼ d
dΛ

�
6

N
σ2dðΛÞ þ γ2−loopðΛÞ

�
: ð100Þ

Inserting the normalization factor N this yields a renorm-
alization group equation for γ2−loop,

dγ2−loopðΛÞ
dΛ

¼ −
61

210

4π

3
P11ðΛÞ: ð101Þ

Its solution reads

γ2−loopðΛÞ ¼ γ̄2−loop þ
61

210

4π

3

Z
∞

Λ
dqP11ðqÞ; ð102Þ

where γ̄2−loop is the EFT parameter obtained for Λ → ∞.
Since only the leading UV sensitive terms have been

accounted for in the renormalization procedure, it is an
important check to which extent the dependence on the
cutoff cancels in the numerical result. We find this to be the
case to very good accuracy within the expected regime
where all wavenumbers are far below the cutoff, ki ≪ Λ, see
Fig. 9. In particular, the dominant cutoff dependence of the

FIG. 8. Renormalized two-loop contribution to the bispectrum Bren
2L (orange). For comparison we also show the unrenormalized SPT

result (blue), as well as the one-loop (black) and tree-level (gray) contributions. The dot-dashed blue line shows the double-hard
contributions Bhh

2L. Here we use γ̄2−loop ¼ 1 ðMpc=hÞ2 for Bren
2L for illustration.

FIG. 9. Two-loop bispectrum for UV cutoff Λ ¼ 0.6h Mpc−1 (solid lines) and Λ ¼ 10h Mpc−1 (dotted lines). The renormalized
bispectrum Bren

2L ¼ Bsub
2L þ Bctr

2L (orange) is approximately independent of the UV cutoff. Blue lines show the (bare) SPT two-loop result
B2L, which strongly depends on the UV cutoff. Magenta lines show the two-loop bispectrum after subtracting the double-hard
contributions, Bsub

2L ¼ B2L − Bhh
2L. Red lines show Bctr

2L (for γ̄2−loop ¼ 1ðMpc=hÞ2) which renormalizes remaining single-hard
contributions.
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(bare) SPT result (blue lines) is already removed when
considering the subtracted bispectrum Bsub

2L (magenta lines).
Nevertheless, Bsub

2L shows a residual cutoff dependence
(magenta dotted versus solid lines). Only when adding
Bctr
2L, with an EFT parameter γ2−loopðΛÞ according to

(102), the dependence on Λ drops out in the renormalized
bispectrum (solid versus dotted orange lines). Note that this
cancellation occurs for any choice of the free parameter
γ̄2−loop on the right-hand side of (102), since the ratio
Bctr
2L=γ2−loopðΛÞ is a very good approximation, independent

of the cutoff. This observation is another consistency check,
and in particular justifies adopting a cutoff dependence of
γ2−loopðΛÞ as in (102). The parameter γ̄2−loop can be adjusted
to reflect the actual impact of small-scale modes on the
measurable large-scale bispectrum. For a consistent inter-
pretation, the renormalized bispectrum therefore has to be
cutoff independent for any value of γ̄2−loop. It is reassuring
that this property is indeed satisfied by the renormalization
procedure adopted here.

F. k4 terms

In our discussion we restricted ourselves to the leading
UV dependence, given by terms that are parametrically
suppressed by the factor k2σ2d relative to the lowest order for
small external wave numbers k ∝ ki → 0.
At one-loop, there are additional “noise” terms that scale

as k4=P11ðkÞ ×
R
d3qP11ðqÞ2=q4 relative to the lowest

order. The UV sensitivity of the corresponding integral
is extremely small for ΛCDM cosmologies, and therefore
they are expected to be well captured by SPT. This means,
while it would be possible to introduce EFT parameters
related to stochastic noise terms in the effective stress
tensor (that describe the generation of long-wavelength
perturbations from mode-coupling interactions of a pair of
small-scale modes with almost opposite wave number), this
contribution is in practice negligible [46].
At two-loop, there are two contributions that scale as k4,

but are not related to noise terms, given by BII
431 and BII

332.
These terms feature two loop integrals that are separated
from each other, and can therefore be related to the square
of two one-loop integrals. Each of them features a UV
sensitivity typical of a one-loop propagator term,
and therefore their hard limits can be treated on the

same footing, however involving “ðc2sk2Þ2” terms. In
particular,

BII
431ðk1; k2; k3Þ ¼ B411ðk1; k2; k3Þ × P13ðk2Þ=P11ðk2Þ;

BII
332ðk1; k2; k3Þ ¼ B211ðk1; k2; k3Þ × ½P13ðk2Þ=P11ðk2Þ�

× ½P13ðk3Þ=P11ðk3Þ�; ð103Þ

where P13ðkÞ=P11ðkÞ ¼ 3
R
q F

ðsÞ
3 ðk; q;−qÞP11ðqÞ. The UV

sensitivity arising from the single-hard limit of these
expressions is already captured by the EFT contribution
Bctr
2L introduced above. The double-hard limit is obtained by

replacing B411 → Bh
411 and P13 → Ph

13 ¼ − 61
210

k2σ2d. The
corresponding EFT contributions can be estimated by
replacing σ2d ↦ σ2d þ 210

61
c2s .

We have evaluated the double-hard contributions from
the B431 and B322 diagrams and find that they are extremely
small compared to the other EFT contributions for
k < 0.15h Mpc−1, see Fig. 10. Therefore, we do not
include “ðc2sk2Þ2” terms in our numerical analysis.

G. Summary

In summary, the one- and two-loop bispectrum including
leading EFT corrections are given by

Bren
1L ðk1;k2;k3;γ1−loop;ϵiÞ¼Btreeðk1;k2;k3ÞþB1Lðk1;k2;k3ÞþBctr

1Lðk1;k2;k3;γ1−loop;ϵiÞ;
Bren
2L ðk1;k2;k3;γ1=2−loop;ϵiÞ¼Bren

1L ðk1;k2;k3;γ1−loop;ϵiÞþBsub
2L ðk1;k2;k3ÞþBctr

2Lðk1;k2;k3;γ2−loopÞ; ð104Þ

where Bctr
1L depends on the EFT parameters ϵ1, ϵ2, ϵ3, and

γ1−loop, see (49). The new two-loop terms are

Bsub
2L ¼ B2L − Bhh

2L; ð105Þ

being the difference of the SPT two-loop result and the
double-hard limit, see (85), and Bctr

2L containing an additional
EFT parameter γ2−loop taking care of the UV sensitivity in the
single-hard limit, see (96). The free parameters are therefore

FIG. 10. Size of the “ðc2sk2Þ2” contributions BII
431 and BII

332,
compared to the one- and two-loop EFT contributions Bctr

1L and
Bctr
2L, normalized to the tree-level bispectrum, and evaluated for

the equilateral shape at z ¼ 0.
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fγ1−loop;ϵ1;ϵ2;ϵ3g 1Lsymmetry-basedapproach; ð106Þ

fγ1−loop;ϵ1;ϵ2;ϵ3;γ2−loopg 2Lsymmetry-basedapproach:

ð107Þ

Even though it is necessary to treat the EFT parameters as
independent in order to be able to absorb the hard one-loop as
well as single- and double-hard two-loop contributions into

them, we also consider a naive extension of the UV-inspired
ansatz that has been proposed for the one-loop bispectrum
[44] for comparison. Namely, we assume that ϵ1, ϵ2, ϵ3 are
related to γ1−loop in the sameway as for the UV-inspired one-
loopcase, see (52). In addition, as discussed inSec. III C 2, the
remaining EFT term may be linked to the c2s known already
from the power spectrum. Altogether, we consider also the
following UV-inspired cases,

fγ1−loopg 1LUV-inspired 1-parameter with ϵi=γ1−loop fixed; ð108Þ

∅ 1LUV-inspired 0-parameter with ϵi=γ1−loop fixed and γ1−loop ¼ c2s jP1L
; ð109Þ

fγ1−loopg 2LUV-inspired 1-parameter with ϵi=γ1−loop fixed and γ1−loop ¼ γ2−loop; ð110Þ

∅ 2LUV-inspired 0-parameter with ϵi=γ1−loop fixed and γ1−loop ¼ γ2−loop ¼ c2s jP1L
: ð111Þ

We emphasize that the EFT terms ϵ1, ϵ2, ϵ3, and γ1−loop
account for the UV sensitivity of both the one-loop as well
as the double-hard limit of the two-loop bispectrum. The
naive UV-inspired scheme therefore corresponds to the
assumption that the leading UV sensitivity is generated by
terms proportional to the hard limit bh1L of the one-loop
bispectrum, while hypothesizing that the shape functions
bhh2L;i corresponding to the double-hard limit do not con-
tribute significantly (or at least the part of them that are not
degenerate with bh1L). The UV-inspired approach is in-
cluded only for illustration, since independence of the UV
cutoff cannot in general be guaranteed within this approach.
We note that when using the symmetry-based approach,

one could equivalently replace the subtracted by the full
two-loop SPT bispectrum (i.e. omit the subtraction of Bhh

2L).
From our analytical results presented above, we find that
this would lead to a shift of the numerical values of the EFT
parameters ϵ1, ϵ2, ϵ3, and γ1−loop, but otherwise not change
the result.

VI. NUMERICS

A. Setup

We are using a realization-based calculation of the tree-
level and one-loop contributions to the bispectrum to cancel
cosmic variance and allow for an accurate fit of the EFT
parameters from a modest simulation volume. For this
purpose, the perturbative density fields are calculated order
by order in gridPT [44,54–56].
We consider a suite of 14 GADGET simulations,

following the gravitational evolution of 10243 particles
in a cubic box of dimension 1500h−1 Mpc. The nonlinear
matter density field is computed by assigning dark matter
particles to a cubic lattice using the cloud-in-cell (CIC)

assignment method and correcting for the CIC window in
Fourier space. We calculate the perturbative density fields
up to sixth order from the Gaussian initial conditions that
seeded the N-body simulations. To avoid aliasing, we cut
off the linear density field at Λ ¼ 0.3h Mpc−1 (but we also
explore Λ ¼ 0.6h Mpc−1 below). This wave number cutoff
is implemented consistently, and the ability of the EFT to
capture the cutoff dependence makes our final results cutoff
independent.
We bin the wave numbers up to 0.3h Mpc−1 into ten

linear bins and measure bispectra as a function of k1, k2,
and k3 using a fast Fourier transform based estimator
[42,44]. This bispectrum estimator is applied both to the
nonlinear density field as well as the perturbative density
fields.
We have compared the CUBA evaluations of the one-

and two-loop terms with the measurements on the grid and
find good agreement, see Fig. 11. As stated in [44], there
can be small-time integration errors in the GADGET
simulations which affect the subtraction of the leading
perturbative contributions to the bispectrum. These errors
are usually subdominant compared to cosmic variance, but
do matter in the realization-based comparison used here. In
addition to the EFT parameters we thus introduce growth
factor corrections ΔDi as free parameters in the SPT
modeling

δnðx; tÞ ¼ ð1þ ΔD1Þδ1ðx; tÞ þ ð1þ ΔD2Þδ2ðx; tÞ
þ δ3ðx; tÞ þ δ4ðx; tÞ: ð112Þ

We then determine the EFT parameters together with ΔDi
by minimizing
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χ2nnnðkmaxÞ ¼
Xkmax

k1;2;3¼kmin

1

ΔB2
nnnðk1; k2; k3Þ

�
Bnnnðk1; k2; k3Þ

− BSPT;regðk1; k2; k3;ΔD1;ΔD2Þ

− BEFTðk1; k2; k3; γ1=2−loop; ϵiÞ
�
2

; ð113Þ

where Bnnn stands for the N-body result and

BSPT;reg ¼ Btree þ B1L þ Bsub
2L ;

BEFT ¼ Bctr
1Lðk1; k2; k3; γ1−loop; ϵiÞ

þ Bctr
2Lðk1; k2; k3; γ2−loopÞ: ð114Þ

The growth-factor corrections ΔDi are taken into account
in the tree-level and one-loop contribution following [44]
[Eq. (59) therein]. The error ΔBnnn is estimated from the
variance of the bispectrum residual [44]. In practice, we
find a large degree of degeneracy among the ϵi contribu-
tions, and therefore fix ϵ1 ¼ 0 even when following the
symmetry-based approach. We checked that this restriction
has only a minor impact on our results.

B. Results

In Fig. 12 we show the χ2 per degree of freedom (d.o.f.)
obtained from the one- and two-loop EFT bispectrum using
the symmetry-based approach [see (106) and (107), respec-
tively] at z ¼ 0. We take our full set of configurations
ðk1; k2; k3Þ with ki ≤ kmax into account, and show χ2=d:o:f:
versus kmax. The number of degrees of freedom is computed
from the difference of the number of triangles contributing
for a given kmax, and the number of free parameters, being
four (five) for the one- and two-loop bispectrum, respec-
tively, as well as two for the growth factor corrections ΔDi.
For example for kmax ¼ 0.1ð0.2Þh Mpc−1, our set com-
prises 65(369) triangles.
The residual is less than unity, indicating a 1σ agree-

ment within the uncertainties, for kmax ≲ 0.08h Mpc−1

when adopting the one-loop approximation, consistent
with earlier results [44]. When adding the two-loop terms,

the 1σ agreement extends up to wave numbers
of kmax ≲ 0.15h Mpc−1.
As an important check of the EFT approach, we repeated

the analysis using a larger UV cutoff Λ ¼ 0.6h Mpc−1 for
comparison. Even through the SPT two-loop bispectrum
shows a significant cutoff dependence, the EFT terms are
able to absorb this UV sensitivity. This is demonstrated in
Fig. 12 by a good agreement between the χ2 values
obtained for two different choices of the UV cutoff.
The relative deviation of the SPT as well as EFT one- and

two-loop bispectra from N-body simulation results is shown
in Fig. 13, for three different shapes. For the EFT, the free
parameters are kept fixed at the best-fit values obtained
from the full set of triangles, for a pivot scale of
kpivot ¼ 0.115h Mpc−1. As expected, apart from accounting
for UV sensitivity, the EFT corrections extend the range of
wave numbers over which the perturbative result agrees well
with N-body data. In addition, we checked that the remain-
ing differences are consistent with the expected theoretical
uncertainty due to missing higher-order corrections (viz.

FIG. 12. χ2 for the EFT one- and two-loop bispectra computed
for a set of triangles ðk1; k2; k3Þ with side length up to kmax,
relative to N-body simulation results. The EFT terms account for
the UV sensitivity of the SPT two-loop integrals, leading to
consistent results when using a UV cutoff Λ ¼ 0.3h Mpc−1 or
Λ ¼ 0.6h Mpc−1, respectively.

FIG. 11. Comparison of the grid (symbols) and CUBA (lines) bispectrum calculations at one- and two-loops. The CUBA evaluations
are based on effective wave numbers whereas the grid calculation averages over bins in k1, k2, and k3, leading to small differences
between both approaches even at tree level. The loop results are consistent with being identical up to bin averaging effects.
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three-loop for the EFT two-loop result), as indicated by the
gray shaded area [47]. Furthermore, we indicate the remain-
ing variance in theN-body result by the red shaded area. The
improvement of two- versus one-loop EFT is particularly
relevant at relatively low wave numbers, where the uncer-
tainties are small. We note that also the SPT results tend to
agree better with N-body data when including the two-loop
piece, in particular for the squeezed configuration.
Nevertheless, SPT deviates by more than percent level
for wave numbers around 0.05h Mpc−1, while the EFT
two-loop result achieves this benchmark for wave numbers
below about 0.12h Mpc−1–0.17h Mpc−1, depending on the
configuration.
The best-fit values obtained for the EFT parameters are

shown in Fig. 14, as a function of kmax. The parameter
γ1−loop, that corresponds to the sound velocity correction at
second order in perturbation theory, shows only a mild
dependence over a rather wide range of values for kmax,
especially at two-loop. This indicates that the two-loop
terms indeed capture the shape dependence well as com-
pared to the N-body results, and allow for a reliable
calibration of the EFT parameter γ1−loop. In terms of the

χ2 fit, this parameter also shows the smallest uncertainty, as
indicated by the error bars in Fig. 14.
The EFT parameter γ2−loop is shown in the upper right

panel of Fig. 14. Its best-fit value is also rather stable over a
wide range of kmax. However, for small values of kmax it
cannot be reliably determined, since Bctr

2L is extremely
suppressed for small k. This is related to the subtraction
of the overlap between single- and double-hard contribu-
tions in (96), and the observation that the UV sensitivity of
the two-loop bispectrum is dominated by the double-hard
contributions in the limit ki → 0. In other words, for very
small wave numbers Bctr

2Lðk1; k2; k3Þ does not contribute to
the two-loop bispectrum in a sizeable amount, and there-
fore a calibration of the corresponding EFT parameter
γ2−loop requires to choose kmax ≳ 0.12h Mpc−1.
The EFT parameters ϵ2 and ϵ3 are shown in the lower left

and right panel of Fig. 14, respectively. They are related to
the operators Δsijsij and ∂i½sij∂jδ�, involving the tidal
tensor sij. For small kmax, they cannot be very precisely
determined by the fit, as indicated by the error bars. This
means in turn that they do not give a very large contribution
for small wave numbers. In addition, they are partially

FIG. 13. Difference between perturbative and N-body results, normalized to the tree-level bispectrum, for three different shapes:
equilateral ðk; k; kÞ, squeezed (Δk; k; k) with Δk ¼ 0.02h Mpc−1, and isosceles ðk=2; k; kÞ. The gray shaded region shows the expected
theoretical uncertainty at tree-level, one- and two-loop, from light to dark gray, respectively [47]. The red shading indicates the error of
the N-body simulation results.
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correlated with each other and with the γ1=2−loop parameters,
making an interpretation of their best-fit values difficult.
The drift in their values for kmax ≳ 0.2h Mpc−1 may be
interpreted as an indication that even higher-order (three-
loop) contributions would start to become important there.
This interpretation is also consistent with the estimate of the
theoretical errors discussed above, and shown in Fig. 13.
Nevertheless, within the region of validity of the two-loop
approximation (kmax ≲ 0.2h Mpc−1), and for values of
kmax ≳ 0.1h Mpc−1 that are large enough to allow for their
calibration, the best-fit values are reasonably well deter-
mined and consistent.
Note that the absolute values of the EFT parameters are

sensitive to the renormalization scheme, in particular our
choice to subtract the double-hard limit off the SPT two-
loop piece in (104), while including the unsubtracted one-
loop SPT contribution. Within this scheme, we find that
the value obtained from the EFT two-loop fit for γ1=2−loop
are close to the well-known c2s jP1L

EFT parameter, as
determined from the one-loop power spectrum, and
indicated by the light gray line in the upper panels of
Fig. 14. While this agreement is not necessary from a

theoretical point of view, it indicates that the dominant
EFT correction shows a certain degree of universality,
related to an approximately universal shift in the UV
sensitive one-loop integral

RΛ d3qP11ðqÞ=q2.
In order to further illustrate the impact of the two-loop

terms, we show in Fig. 15 the value of χ2=d:o:f: as a
function of kmax, but keeping the EFT parameters fixed for
all values of kmax (boxes). We use a pivot scale kpivot ¼
0.115h Mpc−1 in that case, and also show the previous
results with running EFT parameters in comparison
(triangles). Clearly, both agree for kmax ¼ kpivot, and the
χ2 with fixed parameters is necessarily worse as compared
to running EFT parameters for kmax ≠ kpivot. For small
kmax the number of triangles is relatively small, such that
the fit can account for possible fluctuations in the N-body
data. In addition, the growth factor corrections, that affect
also the tree-level bispectrum, tend to become more
important there. This explains why the χ2 values with
fixed parameters are significantly larger in that regime.
For wave numbers at which the two-loop correction gives
a sizeable contribution, but higher orders are not yet
important (around 0.1h Mpc−1 ≲ kmax ≲ 0.2h Mpc−1), the

FIG. 14. Best-fit values of the EFT parameters γ1−loop; γ2−loop, and ϵi. The error bars indicate 1σ uncertainties, and the gray shaded
lines show the values to which the parameters would be fixed in the UV-inspired approach. Note that we fix ϵ1 ¼ 0 to avoid numerical
degeneracies.
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χ2 values with fixed or running EFT parameters are
comparable, consistent with the finding that their running
is small within this regime in the two-loop case. On the
other hand, for the one-loop approximation the χ2

increases more strongly for kmax ≳ kpivot when using fixed
EFT parameters. The difference between the χ2 with fixed
and running EFT parameters (i.e. boxes versus triangles of
the same color) for kmax > kpivot can therefore be inter-
preted as the tendency of the fit to absorb missing higher-
order corrections into the EFT parameters. It is reassuring
that this difference is small for the two-loop approxima-
tion (in red) within the relevant range of wavenumbers. In
addition, one may argue that the difference in the χ2

between the one- and the two-loop approximation for
fixed EFT parameters (i.e. blue versus red boxes) is a more
faithful measure of the improvement when adding two-
loop terms as compared to the running case (blue versus
red triangles).
Altogether, we find that the symmetry-based approach is

able to describe the bispectrum with high precision up to
kmax ≲ 0.08ð0.15ÞhMpc−1 in the EFT one-(two-)loop
approximation, and that the relevant EFT parameters can
be reliably calibrated using the gridPT method within the
respective regime of validity.

C. Comparison to approximate UV-inspired approach

As discussed above, the rationale for using the UV-
inspired approach [see (108)–(111)] is its simplicity, being
described by either one or no extra EFT parameter
compared to the one-loop power spectrum. Indeed, our
analytical results for the double-hard limit of the bispec-
trum show that this reduction of free EFT parameters below
the number of independent operators as dictated by the
symmetry of the system is not appropriate. We compare the
χ2 values for the one- and zero-parameter UV-inspired
approach at one- and two-loop order, respectively, in

Fig. 16. It is apparent that χ2 is significantly larger for
all UV-inspired cases as compared to the proper symmetry-
based approach discussed previously, and shown again in
Fig. 16 for comparison.
The relative deviation of the bispectrum from N-body

data is shown in Fig. 17, for the same shapes as in Fig 13.
Apart from the symmetry-based approach (labeled EFT-1l/
2l), we show the results obtained for four UV-inspired cases
(108)–(111). We find that the UV-inspired ansatz does not
match the accuracy of the symmetry-based approach in all
cases. In addition, the deviation starts already at relatively
low wave numbers, where a better agreement would be
expected based on the estimated theoretical error, espe-
cially at two-loops (darkest gray shaded area).
The lower right panel of Fig. 17 shows the best-fit values

of the EFT parameter γ1−loop for the one-parameter UV-
inspired one- and two-loop ansatz (108) and (110), respec-
tively, shown by the circles and squares. The EFT parameter
shows a stronger running as compared to the proper
symmetry-based approach, especially for the two-loop
approximation (compare to upper left panel of Fig. 14).
For comparison, we also show the value of γ1−loop that is
obtained in a generalization of the UV-inspired two-loop
ansatz featuring two free parameters, i.e. allowing γ1−loop and
γ2−loop to vary independently (diamonds). The value is
consistent with the one obtained within the UV-inspired
one-parameter ansatz (110) (squares) for the range of
wavenumbers k≲ 0.15h Mpc−1 where the two-loop
approximation is expected to work well. Consequently, an

FIG. 16. χ2=d:o:f: for the UV-inspired one- and zero-parameter
ansatz for the one- and two-loop bispectrum, respectively.
Diamonds correspond to the one-parameter one-loop ansatz
(108), upward pointing triangles to the zero-parameter one-loop
case (109), downwards pointing triangles to the one-parameter
two-loop ansatz (110), and open circles to the zero-parameter
two-loop ansatz (111). The UV-inspired approach is included for
illustration only, and does not account for the full UV dependence
of the two-loop bispectrum. The proper symmetry-based EFT
results discussed previously are also shown for comparison (filled
circles and boxes).

FIG. 15. χ2=d:o:f: as a function of kmax for fixed (boxes,
kpivot ¼ 0.115h Mpc−1) and running (triangles) parameter con-
straints.
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extension of the UV-inspired ansatz from one to two free
parameters does not yield significant differences, and we
therefore do not show further results for the latter.
In summary, we find that the simplified UV-inspired one-

or zero-parameter ansatz for the bispectrum is not sufficient
at two-loop order, while the symmetry-based approach
discussed above yields a reliable EFT description of the
bispectrum independent of the configuration. Nevertheless,
we observe that the UV-inspired approach still yields a
considerable improvement over SPT (see Fig. 13), while
introducing a minimal set of free parameters, and could
therefore be useful when comparing to data with a finite
precision in practice.

VII. CONCLUSIONS

In this work we provide first results for the bispectrum at
NNLO (two-loop) order in perturbation theory within the
framework of an effective field theory description for the
weakly nonlinear modes in large-scale structure formation.
We compute the two-loop bispectrum directly using a

Monte Carlo integration scheme, as well as on the field
level, known as gridPT, allowing for a precise comparison
to N-body simulations. Adding the two-loop correction
increases the range of wave numbers over which perturba-
tion theory and N-body results agree at the percent level,
and independently of the configuration of wave numbers
entering the bispectrum, from about 0.08h Mpc−1 at one-
loop to 0.15h Mpc−1 at two-loop order. In particular, we
find that the two-loop terms in the bispectrum start to
become relevant already at k ≈ 0.07h Mpc−1.
The EFT description accounts for the UV sensitivity of

SPT, and we demonstrate independence of our results from
the choice of the UV cutoff. At two-loops, one needs to
consider the single- and double-hard limit of the loop
integrals, with one or both integration variables becoming
large, respectively. We provide analytical results for the
double-hard limit, including in particular an expansion
of the F6 kernel entering B611 for large loop wave
numbers. We show that the associated shape functions,
that describe the dependence of the double-hard limit on the
external wave numbers k1, k2, k3, can be mapped to the four

FIG. 17. Upper row and lower left panel: Relative deviation of the UV-inspired one- and zero-parameter ansatz for the one- and two-
loop bispectrum, respectively, from N-body simulation results. Labels are as in Fig. 16, and shaded regions as in Fig. 13. The proper
symmetry-based EFT results discussed previously are also shown for comparison. Lower right panel: Best-fit value of γ1−loop for the one-
parameter one- and two-loop UV-inspired approach, respectively. For illustration, the diamonds show γ1−loop for an extension to a two-
parameter ansatz, with γ1−loop and γ2−loop treated as independent parameters.
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second-order EFT operators known from the one-loop
bispectrum. As may be expected in general, we find that
the relative size of the coefficients of these four shapes are
different for the hard limit of the one-loop bispectrum and the
double-hard limit of the two-loop bispectrum, respectively.
This implies that, within the EFT approach, the EFT

parameters associated to the four second-order operators
must be treated as independent from each other in order to
be able to correct for the spurious UV sensitivity of SPT. In
addition, we introduce one more parameter to account for
the single-hard limit of the two-loop bispectrum. Our
numerical results suggest that this parametrization is
sufficient, while the most general EFT terms allowed by
symmetries would correspond to the full set of up to fourth
order EFT operators inserted into a one-loop bispectrum
diagram. An extension of the EFT to this order goes beyond
the scope of this work, and is left for future work.
Apart from the two-loop results, we also presented the

first evaluation of the one-loop bispectrum using nonlinear
kernels evaluated for the precise ΛCDM cosmology, i.e.
going beyond the EdS-SPT approximation for F4. The
corrections are comparable to the two-loop corrections, and
therefore should be taken into account when working at
NNLO level.

Altogether, our results demonstrate that EFT methods
allow for a systematic description of correlation functions
order by order in perturbation theory, with controlled
theoretical uncertainties. We find that the two-loop correc-
tions are quantitatively relevant for wave numbers that will
be probed in future galaxy surveys, motivating an extension
to the bispectrum of biased tracers.
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