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The spherical Fourier-Bessel (SFB) decomposition is a natural choice for the radial/angular separation
that allows extraction of cosmological information from large volume galaxy surveys, taking into account
all wide-angle effects. In this paper we develop a SFB power spectrum estimator that allows the
measurement of the largest angular and radial modes with the next generation of galaxy surveys. The code
measures the pseudo-SFB power spectrum, and takes into account mask, selection function, pixel window,
and shot noise. We show that the local average effect (or integral constraint) is significant only in the
largest-scale mode, and we provide an analytical covariance matrix. By imposing boundary conditions at
the minimum and maximum radius encompassing the survey volume, the estimator does not suffer from the
numerical instabilities that have proven challenging for SFB analyses in the past. The estimator is
demonstrated on simplified but realistic Roman-like, SPHEREx-like, and Euclid-like mask and selection
functions. For intuition and validation, we also explore the SFB power spectrum in the Limber
approximation. We release the associated public code written in JULIA.
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I. INTRODUCTION

One of the aims of future galaxy surveys such as the
Nancy Grace Roman Space Telescope, SPHEREx, Euclid,
DESI, and PFS [1–5] is to answer questions that require
measurement of the galaxy overdensity power spectrum
on very large cosmological scales. Chief among those is the
study of modified theories of gravity, e.g., [6] and the
measurement of primordial non-Gaussianity that manifests
itself in the power spectrum as a scale-dependent galaxy
bias ∝ k−2 in the simplest models [7–10]. However, the
measurement of these large scales is not without challenge.
Large angular scales are difficult to exploit fully with a

standard 3D power spectrum analysis due to line-of-sight
(LOS) effects such as redshift-space distortions (RSD).
When the angular separation between galaxies is large, the
assumption that a single line of sight can be used for both
galaxies breaks down, which results in a loss of information
from the measurement. For example, for a full-sky survey, a
fixed LOS estimator is expected to measure a vanishing
quadrupole. On medium large scales the problem can be
mitigated by choosing a common line of sight for each pair
of galaxies [11–13]. However, on very large angular scales,
we expect that the Yamamoto estimator suffers from the
same problem as a fixed-LOS estimator, because at least
one of the lines of sight for each galaxy pair is being
projected, and that projection likely leads to a loss of
information. An optimal power spectrum measurement,

therefore, needs to allow for a different line of sight for
every galaxy in the survey.
Large radial scales pose a different kind of challenge,

and in the past have mostly been treated by splitting surveys
into redshift bins; e.g., [14]. The advantage is that it makes
the analysis simple. However, modes larger than the red-
shift bin are not measured in the radial direction, and that
information is lost by such an analysis; see [15] however.
In this paper, we study and implement a method that

enables accurate measurements of the largest radial and
angular scales mapped by coming surveys. It relies on the
spherical Fourier-Bessel (SFB) transform. Most past mea-
surements of the galaxy overdensity power spectrum rely on
Fourier decomposition as it decreases the computation cost
of near optimal statistical estimators. While a standard
Fourier transform decomposes a field into a linear compo-
sition of eigenfunctions to the Laplacian in Cartesian
coordinates, the SFB transform we consider does the same
but in spherical coordinates. Not only does it maintain the
statistical and computational (except for speed) advantages
of Fourier methods, but it is also the natural coordinate
system for the angular/radial separation over the sphere. The
radial line of sight for every single galaxy is built into the
method, and themodeling of redshift evolution of galaxy bias
and growth factor is straightforward.Anoverviewof the SFB
power spectrum is given in Pratten and Munshi [16] and a
mathematical treatment clarifying the relation between the
configuration-space correlation function, Fourier space cor-
relation function, SFB correlation function, andmixed-space
correlation functions can be found in Reimberg et al. [17].*henry.s.gebhardt@jpl.nasa.gov
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The spherical Fourier-Bessel transform for the analysis
of galaxy surveys has been considered multiple times in the
past. Binney and Quinn [18] used a SFB decomposition to
characterize overdensities deep in the nonlinear regime.
Lahav [19] applied the SFB analysis to local galaxies on
larger scales. Heavens and Taylor [20] applied the SFB
analysis to the IRAS 1.2-Jy galaxy catalog, Tadros et al.
[21] applied it to the PSCz galaxy catalog, and Percival
et al. [22] use it in the context of the 2dF Galaxy Redshift
Survey. Leistedt et al. [23] have provided a public SFB
code, 3DEX, which performs the SFB decomposition first in
the radial direction for each galaxy individually, then
performs the angular transform using HEALPIX. More
recently, Wang et al. [24] have built a combined
SFB=PðkÞ estimation code that uses SFB on very large
scales, and a Cartesian multipole power spectrum estimator
on smaller scales.
SFB power spectrum measurements tended to be

plagued by numerical instabilities and computational com-
plexity. The source of the numerical instability is the
incomplete coverage of the analysis volume by the survey.
For example, typically a boundary condition is applied at
some distance rmax, and the analysis is performed for the
entire volume inside a sphere of radius rmax. However, most
surveys will leave most of that volume unexplored, and the
de-convolution of the window function or the inversion of
the covariance matrix become numerically unstable; e.g.,
see [24] for a solution. The numerical complexity stems
from the large number of modes that need to be calculated
even when a large fraction of the analysis volume remains
empty. Another source of computational complexity is the
combined estimation of the real-space power spectrum and
redshift-space distortion parameters that requires repeated
estimations of the power spectrum [24].
The spherical Fourier Bessel decomposition code pre-

sented in this paper, SUPERFAB, combines several
approaches to address these problems. For the first time,
we limit the redshift range by introducing a boundary
condition at rmin as suggested by Samushia [25]. We also
use the 3DEX approach by Leistedt et al. [23] that does not
suffer from pixel window effects in the radial direction. The
3DEX approach also allows separation of the angular and
radial transforms, and for the angular transform we use
HEALPIX [26,27]. Our bandpower binning is done similar to
that for CMB measurements [28,29], should a window-
decoupled SFB power spectrum be desired, e.g., for
comparison with other surveys. We test our code on
Roman-like, SPHEREx-like, and Euclid-like survey simu-
lations with ∼6 to ∼70 million galaxies per simulation.
In our approach the SFB power spectrum is measured

directly, and parameter estimation is left as a second step in
the analysis pipeline (to be developed in a future paper).
Evolution with redshift of parameters or the power spec-
trum is encoded in the SFB power spectrum itself. Thus,
our vision is to construct the likelihood with parameters

modeling the deviations from a reference cosmology.
For example, the deviation of the distance-redshift rela-
tion would be modeled as a low-order polynomial relative
to the reference rrefðzÞ so that the true distance is
rtrueðzÞ ¼ ða0 þ a1rrefðzÞÞrrefðzÞ, and parameters a0 and
a1 are to be measured.
An alternative to the SFB analysis that also naturally

performs the angular/radial separation is spherical har-
monic tomography (SHT), see e.g., [30,31], where an
angular spherical harmonic analysis is performed on
shells of redshift bins. Lanusse et al. [32] conclude that
SFB yields similar constraints as SHT, but when it comes
to marginalizing over systematic biases such as evolving
scale-dependent galaxy bias, SFB performs better.
Additionally, Castorina and White [33] developed various
approaches to incorporating wide-angle effects in
Fourier based estimators. Beutler et al. [34] implement a
small-angle expansion for the standard multipole power
spectrum.
Another point to be made about the choice of the SFB

basis is that RSD are readily modeled [see Eq. (16) in [20]],
because they are ultimately sourced by the gravitational
potential described by Poisson’s equation.
In Sec. II we review the SFB power spectrum and

develop intuition in the Limber approximation. III details
the approach taken for the SFB decomposition, window
deconvolution, shot noise, bandpower binning, local
average effect, and covariance matrix. We show compar-
isons with log-normal simulations in Sec. IV for Roman,
SPHEREx, and Euclid, and we conclude in Sec. V. We
leave to the Appendices a collection of useful formulas in
Appendix A, review the Laplacian in an expanding uni-
verse in Appendix B, derive the radial potential boundary
conditions in Appendix D, and simplify the covariance
matrix in Appendices E and F. Our SUPERFAB code is
publicly available [35].

II. SFB POWER SPECTRUM

In this section we briefly review the SFB formalism. We
start with the basic transformation between configuration
space and SFB space as well as between Fourier space and
SFB space. We then briefly show the power spectrum in a
completely homogeneous and isotropic universe before
adding in selection function, linear growth factor, galaxy
bias, and RSD. We develop intuition by applying Limber’s
approximation.
The spherical Fourier-Bessel decomposition expresses a

field δðrÞ in terms of eigenfunctions of the Laplacian in
spherical coordinates. For more details, we refer the reader
to Sec. III A. We define the spherical Fourier-Bessel modes
δlmðkÞ by

δðrÞ ¼
Z

dk
X
lm

� ffiffiffi
2

π

r
kjlðkrÞYlmðθ;ϕÞ

�
δlmðkÞ; ð1Þ
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δlmðkÞ ¼
Z

d3r

� ffiffiffi
2

π

r
kjlðkrÞY�

lmðr̂Þ
�
δðrÞ; ð2Þ

where r ¼ rr̂ is the position vector, r is the comoving
angular diameter distance from the origin, and r̂ is the
direction on the sky. Here, we assume that the universe is
approximately flat. If the curvature is significant, then the
spherical Bessels need to be replaced by ultraspherical
Bessels [36–38]. The orthogonality relations Eqs. (A4) and
(A5) for the spherical Bessel functions and spherical
harmonics are used to prove that Eqs. (1) and (2) are
inverses of each other. The factor 2k2=π can be split
between Eqs. (1) and (2) as pleased. Here we use the
convention in Nicola et al. [31], because for a nonevolving,
homogeneous, and isotropic universe the SFB power
spectrum then equals PðkÞ, see Eq. (7) below.
The relation between the SFB coefficients δlmðkÞ and the

Fourier modes δðkÞ is obtained by expressing δðrÞ in terms
of its Fourier transform in Eq. (2),

δlmðkÞ ¼
ffiffiffi
2

π

r
k
Z

d3rjlðkrÞY�
lmðr̂Þ

Z
d3q
ð2πÞ3 e

iq·rδðqÞ: ð3Þ

With Rayleigh’s formula Eq. (A8) this turns into

δlmðkÞ ¼
Z

d3q
ð2πÞ3

ffiffiffiffiffiffiffi
π

2q2

r
4π

X
l0m0

il
0
Y�
l0m0 ðq̂ÞδðqÞ

×
2kq
π

Z
drr2jlðkrÞjl0 ðqrÞ

×
Z

d2r̂Y�
lmðr̂ÞYl0m0 ðr̂Þ

¼ k

ð2πÞ32 i
l

Z
d2k̂Y�

lmðk̂ÞδðkÞ; ð4Þ

where the orthogonality relations Eqs. (A4) and (A5) were
used. Equation (4) shows that SFB is a spherical harmonic
transform of Cartesian Fourier modes with an additional
phase factor il. Also,

δðkÞ ¼ ð2πÞ32
k

X
lm

i−lYlmðk̂ÞδlmðkÞ ð5Þ

is the inverse of Eq. (4).

A. The homogeneous and isotropic universe

In a homogeneous and isotropic universe in real space
(with no line-of-sight effects), we have

hδðkÞδ�ðk0Þi ¼ ð2πÞ3δDðk − k0ÞPðkÞ: ð6Þ

Therefore, applying Eq. (4) gives the SFB power spec-
trum as

hδlmðkÞδ�l0m0 ðk0Þi ¼ δDðk − k0ÞδKll0δKmm0PðkÞ; ð7Þ

where we used Eq. (A2) for the three-dimensional Dirac-
delta function in spherical coordinates. That is, in a
homogeneous and isotropic universe with no observational
effects the SFB power spectrum equals the 3D power
spectrum PðkÞ.

B. The linear universe

We now generalize to include line-of-sight effects, a
linearly evolving power spectrum, and a radial window
function. The galaxy density contrast we consider is

δobsg ðrÞ ¼ WðrÞDðrÞ
Z

d3q
ð2πÞ3 e

iq·rÃRSDðμ; qμ; rÞ

× bðr; qÞδðqÞ; ð8Þ

where δðqÞ is the matter density contrast in Fourier space,
WðrÞ is the survey window function, DðrÞ is the linear
growth factor, bðr; qÞ is the possibly scale-dependent linear
galaxy bias, μ ¼ q̂ · r̂, and the redshift-space distortions are
encoded in, e.g., [39,40]:

ÃRSDðμ; qμ; rÞ ¼ ð1þ βμ2ÞÃFoGðqμÞ; ð9Þ

with β ¼ f=b, where f ¼ d lnD=d ln a is the linear growth
rate, and we assume a Gaussian fingers-of-God (FoG)
term [41]

ÃFoGðqμÞ ¼ e−
1
2
σ2uq2μ2 ; ð10Þ

with σu ¼ σv=aH the pairwise velocity dispersion in units
of length. The tilde on ARSD signifies that it is a Fourier-
space function.
The RSD term ÃRSD in Eq. (8) can be expressed as a

function of derivatives on the complex exponential. That is,
by performing a Taylor series expansion we can replace
μ → −i∂qr, or

ÃRSDðμ; qμ; rÞeiq·r ¼
X
n

anðq; rÞ
n!

μneiqrμ

¼
X
n

anðq; rÞ
n!

�
−i

∂
∂ðqrÞ

�
n
eiqrμ

¼ ÃRSDð−i∂qr;−iq∂qr; rÞeiq·r: ð11Þ

Furthermore, the complex exponential is expanded using
Rayleigh’s formula Eq. (A8) so that the derivatives in ÃRSD
only act on the spherical Bessel function from Rayleigh’s
formula. Further expressing the Fourier-space density
contrast in terms of its SFB modes Eq. (5), the observed
density contrast Eq. (8) now becomes
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δobsg ðrÞ ¼ WðrÞDðrÞ
Z

d3q
ð2πÞ3 bðr; qÞ

�
ÃRSDð−i∂qr;−iq∂qr; rÞ4π

X
L1M1

iL1jL1
ðqrÞY�

L1M1
ðq̂ÞYL1M1

ðr̂Þ
�

×
ð2πÞ32
q

X
LM

i−LYLMðq̂ÞδLMðqÞ ð12Þ

¼ WðrÞDðrÞ
ffiffiffi
2

π

r Z
dqq2bðr; qÞ

�
ÃRSDð−i∂qr;−iq∂qr; rÞ

X
LM

jLðqrÞYLMðr̂Þ
�
1

q
δLMðqÞ: ð13Þ

Using Eq. (2) to transform into SFB space,

δg;obslm ðkÞ ¼
Z

dq
X
LM

WLM
lm ðk; qÞδLMðqÞ; ð14Þ

where

WLM
lm ðk; qÞ ¼

Z
d2r̂YLMðr̂ÞY�

lmðr̂ÞWL
lðk; q; r̂Þ; ð15Þ

and

WL
lðk; q; r̂Þ ¼

2qk
π

Z
drr2WðrÞDðrÞbðr; qÞjlðkrÞ

× ÃRSDð−i∂qr;−iq∂qr; rÞjLðqrÞ: ð16Þ

The SFB correlation function is, therefore,

hδg;obslm ðkÞδg;obs;�l0m0 ðk0Þi

¼
Z

dq
X
LM

WLM
lm ðk; qÞWLM;�

l0m0 ðk0; qÞPðqÞ; ð17Þ

where we used Eqs. (7) and (14).
Here we will only consider a radial selection function, as

the angular mask will be handled in the estimator. Then,

WðrÞ ¼ ϕðrÞ; ð18Þ

and we define the simplification of Eq. (16):

Wlðk; qÞ ¼ Wl
lðk; q; r̂Þ; ð19Þ

which is then independent of the direction r̂. Equations (15)
and (17) then simplify to

hδg;obslm ðkÞδg;obs;�l0m0 ðk0Þi ¼ δKll0δ
K
mm0Clðk; k0Þ; ð20Þ

with the SFB power spectrum defined as

Clðk; k0Þ ¼
Z

dqWlðk; qÞW�
lðk0; qÞPðqÞ: ð21Þ

Equations (16), (19), and (21) show that RSD and linear
growth can be taken into account by a change in the radial
window function.
Equation (20) shows that the SFB power spectrum is

nonzero only when l ¼ l0, m ¼ m0, and it is independent
of m. This is a consequence of the isotropy on the sky, or
the rotational invariance around the observer, as can be
easily shown in general for spherical harmonic transforms.
For a homogeneous and isotropic universe without

selection function, WðrÞ¼DðrÞ¼ ÃRSD¼1 and bðr; qÞ ¼
const, the window becomes Wlðk; qÞ ∝ δDðk − qÞ, and
Eq. (7) is reproduced. Also, Wlðk; qÞ is real, because the
imaginary arguments to ÃRSD are only ever raised to even
powers.
To develop some intuition for Eq. (21) we evaluate the

SFB power spectrum in a Limber-like approximation.
However, we defer to Appendix C in order not to distract
from the main content of this paper. Other treatments are in
Munshi et al. [6] and Yoo and Desjacques [42].

III. SFB DECOMPOSITION

This section describes our SFB decomposition for a
galaxy survey with mask and selection function. We largely
follow Samushia [25] for the radial basis functions and
Leistedt et al. [23] for the angular/radial split in the
estimator.
We start by giving a review of the basis functions, then we

add window and selection functions, we model the discrete
galaxy distribution, and estimate the covariance matrix.

A. Spherical Fourier-Bessel basis with potential
boundary conditions

We choose the eigenbasis of the Laplacian as it captures
the rotational invariance of the observed large-scale struc-
ture, and that leads to a compressed summary statistic which
is also rotationally invariant while including all wide-angle
effects. Here, we lay out the boundary conditions we
consider similar to Samushia [25]. However, as observers
fixed in one location, using light that travels at a finite speed,
it is more natural to use spherical polar coordinates that
separate the radial and angular observations. Then, the
Laplacian on a scalar function f becomes
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∇2f ¼ 1

r2
∂
∂r

�
r2
∂f
∂r

�
þ 1

r2 sin θ
∂
∂θ

�
sin θ

∂f
∂θ

�

þ 1

r2 sin2 θ
∂2f
∂ϕ2

; ð22Þ

where r, θ, and ϕ are the comoving angular diameter
distance, zenith angle, and azimuthal angle, respectively
(seeAppendixB for a derivation). The eigenbasis to Eq. (22)
that satisfies

∇2f ¼ −k2f ð23Þ

for some mode k is of the form (see, e.g., [25])

flμðk; r; θ;ϕÞ ¼ ½cjjlðkrÞ þ cyylðkrÞ�
× ½cpPμ

lðcos θÞ þ cqQ
μ
lðcos θÞ�

× ½cþeiμϕ þ c−e−iμϕ�; ð24Þ

where the ci are constants, and jl and yl are spherical Bessel
functions of the first and second kind, and Pμ

l and Qμ
l are

Legendre functions of the first and second kind.
The constants ci are set by boundary conditions. First,

the spherical Bessel of the second kind, yl diverges with
vanishing argument; hence, typically cy ¼ 0. Typically, the
functions also need to be periodic about the azimuthal angle
ϕ; therefore, μ ¼ 0; 1; 2;… is an integer. Then, the func-
tions also need to be finite for cos θ ¼ �1, typically;
therefore, cq ¼ 0, and l ¼ 0; 1; 2;… is an integer, and
−l ≤ μ ≤ l.
Effectively, the preceding paragraph imposed boundary

conditions at rmin ¼ 0 and assumed coverage of the whole
sky. Typically (e.g., [20–22,43]), one would then go ahead
and also impose boundary conditions at some rmax such that
the survey volume is contained within a sphere of radius
rmax. This restricts the SFB volume, i.e., the volume on
which the SFB transform is performed, as the region from
0 ≤ r ≤ rmax. Demanding the basis functions to be orthogo-
nal then leads to a discrete spectrum of modes k ¼ knl.
Realistic galaxy surveys do not occupy the entire SFB

volume, but are restricted in both redshift and angular area,
and, therefore, they leave large fractions of the SFB volume
unobserved. This leads to the deconvolution of the window
function to be numerically unstable. It also results in wasted
computational resources if the survey covers only a
(potentially thick) shell at high redshift. The analogous
picture for a standard Fourier transform would be to have a
transform box that is much larger than the survey volume.
Therefore, the selection function will vanish for part of the
SFB volume, and, because in that case some modes are not
well constrained, the inversion of the window function
becomes numerically unstable.
In this paper, we employ two strategies to deal with this

problem. First, we follow Hivon et al. [28], Alonso et al.
[29] and bin the pseudo-SFB power spectrum into

bandpowers. This combines several poorly constrained
modes into one well-constrained mode. We rely on this
strategy especially for the angular mask so that we can
leverage the full-sky spherical harmonic algorithms from
the HEALPY software [26,27].
For the second strategy, we follow Samushia [25] and

move the boundary at the origin to some rmin so that the
SFB volume extends from rmin ≤ r ≤ rmax. For galaxy
surveys that start at some minimum redshift this eliminates
from the SFB transform volume a hole around the origin.
As a result, the inversion of the window function is
numerically well behaved even without resorting to band-
power binning. Furthermore, the number of SFB modes is
reduced not just by the boundary condition at rmax, but the
boundary condition at rmin also reduces the number of
modes further by the fraction r3min=r

3
max. In all cases

considered in this paper, this eliminates the need for
bandpower binning in the radial direction.
We differ from Samushia [25] in that we use potential

boundary conditions [43] that ensure the field represented
by the SFB decomposition is continuous and smooth at the
boundary. These boundary conditions lead to a spectrum of
modes knl, as shown in Appendix D. In the Appendix we
also derive that the radial basis functions with such
boundary conditions become a linear combination of
spherical Bessels of the first and second kind,

gnlðrÞ ¼ cnljlðknlrÞ þ dnlylðknlrÞ; ð25Þ

which satisfy an orthonormality relation

Z
rmax

rmin

drr2gnlðrÞgn0lðrÞ ¼ δKnn0 ; ð26Þ

where δKnn0 is a Kronecker delta, and the coefficients cnl and
dnl are derived in Appendix D. With Eq. (26), the Fourier
pair Eqs. (1) and (2) remains a Fourier pair with the discrete
knl spectrum, and the pair becomes

δðrÞ ¼
X
nlm

½gnlðrÞYlmðr̂Þ�δnlm; ð27Þ

δnlm ¼
Z

d3r½gnlðrÞY�
lmðr̂Þ�δðrÞ; ð28Þ

where the integral goes over the volume within
rmin ≤ r ≤ rmax. Note that our choice to normalize
gnlðrÞ as in Eq. (26) changes the units of δnlm compared
to Eqs. (1) and (2). In effect, this choice of units takes into
account the survey volume at this stage rather than at the
stage of forming the correlation function.
Examples of the resulting basis functions and modes knl

are shown in Fig. 1. We point out that the l ¼ 0 modes are
closely related to taking the average of the transformed
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field δðrÞ. Also, a larger rmin results in a smaller volume,
and, therefore, fewer modes that can be constrained.

B. Window and selection function

The observed number density nðrÞ of galaxies is subject
to the window and selection function WðrÞ of the survey,
which we define as the fraction of galaxies observed at
position r. For a random catalog subject to the same
window function, with density nrðrÞ, and with 1=α as
many galaxies as the survey, we then have

αhnrðrÞi ¼ WðrÞn̄; ð29Þ

where hnrðrÞi ¼ α−1n̄ðrÞ is the average number density of
the ensemble of random catalogs, and n̄ is the average
number density in the survey. Note that Eq. (29) can
equivalently be expressed in terms of the limit
limα→0 αnrðrÞ ¼ n̄ðrÞ ¼ WðrÞn̄. With this definition of
the window function, we define the effective volume as

Veff ¼
Z

d3rWðrÞ; ð30Þ

so that the average number density n̄ becomes

n̄ ¼ Nobs
gal

Veff
; ð31Þ

and Nobs
gal is the observed number of galaxies in the survey.

Any variation across the survey in the actual average
number density, e.g., due to an evolving luminosity
function, is absorbed into WðrÞ. Our treatment is in line
with Taruya et al. [44], and our WðrÞ takes the role of the
function GðrÞ in Feldman et al. [45], except that we do not
at present include a weighting scheme.

In a sense, there are two window functions here: first, the
one defined by the SFB procedure and limited by
rmin ≤ r ≤ rmax, and second, WðrÞ, which defines the
geometry and selection of the survey. However, the first
one should be irrelevant as long as the survey volume is
entirely inside rmin ≤ r ≤ rmax and as along as a sufficient
number of modes are included in the SFB analysis.
The observed density fluctuation field is, then,

δobsðrÞ ¼ nðrÞ − αnrðrÞ
n̄

¼ nðrÞ
n̄

−WðrÞ; ð32Þ

where Eq. (29) was used in the limit that the random
catalog has an infinite number of galaxies, or α → 0.
Because the observed density nðrÞ is also subject to the
window function WðrÞ, the observed and true density
contrasts are related by

δobsðrÞ ¼ WðrÞδAðrÞ; ð33Þ

where we attach the superscript “A” to refer to the local
average effect (see Sec. III H below). Transforming to SFB
space and expressing δAðrÞ in terms of its SFB decom-
position Eqs. (27) and (28), we get

δobsnlm ¼
X
n0l0m0

Wn0l0m0
nlm δAn0l0m0 ; ð34Þ

where

Wn0l0m0
nlm ¼

Z
drr2gnlðrÞgn0l0 ðrÞ

×
Z

d2r̂Y�
lmðr̂ÞYl0m0 ðr̂ÞWðr; r̂Þ: ð35Þ

FIG. 1. Left: the radial basis functions for potential boundary conditions as a function of r. Color indicates the modes n, line style
indicates l as shown in the legend. Here, rmin ¼ 500h−1 Mpc and rmax ¼ 1000h−1 Mpc. Right: knl for potential boundary conditions as
a function of rmin when l ¼ 10. The gray lines are for rmin ¼ 0, and we fix rmax ¼ 1000h−1 Mpc.
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1. Properties and implementation

From Eq. (35) follows the symmetry

Wn0;l0;−m0
n;l;m ¼ ð−1Þmþm0

Wn0;l0;m0;�
n;l;−m ; ð36Þ

and the Hermitian property

Wn0l0m0
nlm ¼ Wnlm;�

n0l0m0 : ð37Þ

In the special case that WðrÞ ¼ 1 everywhere,

Wn0l0m0
nlm ¼ δKnn0δ

K
ll0δKmm0 ; ð38Þ

which follows from Eqs. (26) and (A5).
In all generality, Eq. (35) can be simplified for computa-

tional convenience by expressing the window function in
terms of an angular transform. That is, introduce

WLMðrÞ ¼
Z

d2r̂Y�
LMðr̂ÞWðr; r̂Þ: ð39Þ

Then,

Wn0l0m0
nlm ¼ ð−1Þm

X
L

Gll0L
−m;m0;m−m0

×
Z

drr2gnlðrÞgn0l0 ðrÞWL;m−m0 ðrÞ; ð40Þ

where we used Eq. (A10) and introduced the Gaunt factor
Eq. (A12). In writing Eq. (40) we performed the angular
transform of the window function only as that leads to a
computationally suitable form. Had we performed a full
SFB transform, we would have been left with an infinite
sum over n that converges slowly, in addition to the need of
computing integrals over three spherical Bessel functions.

C. Discrete points

Now we specialize the SFB decomposition to the case
that we have galaxies represented by discrete points. That
is, we assume the number density is given by

nðrÞ ¼
X
p

δDðr − rpÞ; ð41Þ

where the sum is over all points (galaxies) in the survey.
In the 3DEX approach [23], which we adopt here,

Eq. (28) is decomposed into its radial and angular integrals,
and the radial integration is performed first. That is,

δobsnlm ¼
Z

d2Ωr̂Y�
lmðr̂Þδobsnl ðr̂Þ; ð42Þ

where

δobsnl ðr̂Þ ¼
Z

rmax

rmin

drr2gnlðrÞδobsðr; r̂Þ ð43Þ

represents an angular field for each n and l, and gnl is
defined in Eq. (25). For the density contrast Eq. (32) with
number density Eq. (41),

δobsnl ðr̂Þ ¼
1

n̄

X
p

δDðr̂ − r̂pÞgnlðrpÞ −Wnlðr̂Þ; ð44Þ

where

Wnlðr̂Þ ¼
Z

rmax

rmin

drr2gnlðrÞWðrÞ: ð45Þ

Equation (44) is an exact expression for the observed
density contrast δobsnl ðr̂Þ. However, for the angular transform
we wish to make use of the fast HEALPIX scheme,1,2 and we
need the density contrast in pixel i averaged over the pixel
area ΔΩi,

δ̄obsnl ðr̂iÞ ¼
1

ΔΩi

Z
ΔΩi

dΩr̂δ
obs
nl ðr̂Þ ð46Þ

¼ 1

n̄ΔΩi

X
p∈ΔΩi

gnlðrpÞ −Wnlðr̂iÞ; ð47Þ

where we assumed that Wnlðr̂Þ varies slowly over the
size of an angular pixel. Then, the angular transform is
performed:

δ̄obsnlm ¼
X
i

ΔΩiY�
lmðr̂iÞδ̄obsnl ðr̂iÞ: ð48Þ

In what follows we will generally drop the bar indicating
the angular-pixel averaging.

D. Power spectrum estimation

Wandelt et al. [46] and Hivon et al. [28] use a pseudo-Cl
method to estimate the power spectrum. Translating to the
SFB decomposition, the pseudo-Cl method assumes that
much of the information about the power spectrum is
contained in the pseudo-power spectrum

Ĉobs
lnn0 ¼

1

2lþ 1

X
m

δobsnlmδ
obs;�
n0lm: ð49Þ

That is, we ignore off-diagonal terms L ≠ l and M ≠ m,
and average over m. The effect of the window is then
described by a mixing matrix between the Ĉobs

lnn0 and ĈA
lnn0 ,

1https://healpix.jpl.nasa.gov/index.shtml
2https://healpy.readthedocs.io/en/latest/
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Ĉobs
lnn0 ¼

X
LNN0

MLNN0
lnn0 Ĉ

A
LNN0 ; ð50Þ

where we used Eq. (34) and defined

MLNN0
lnn0 ¼ 1

2lþ 1

X
mM

WNLM
nlm WN0LM;�

n0lm ; ð51Þ

and the index “A” on CA
lnn0 indicates the local average

effect, see Sec. III H. Next, with Eqs. (39) and (40) we get

MLNN0
lnn0 ¼ 2Lþ 1

4π

X
L1

�
l L L1

0 0 0

�
2X
M1

×
Z

drr2gnlðrÞgNLðrÞWL1M1
ðrÞ

×
Z

dr0r02gn0lðr0ÞgN0Lðr0ÞW�
L1M1

ðr0Þ; ð52Þ

and we used the orthogonality of the Gaunt factor
Eqs. (A13) and (A14). (The sum over M1 could be
performed first. However, that approach is much more
memory intensive, so that computing the integrals first
ends up being faster. We have also avoided expressing the
result in terms of a full SFB transform, as that would
require a slowly converging sum over n.) Note that the
matrix ð2Lþ 1Þ−1MLNN0

lnn0 is symmetric under exchange of
the set of indices ðLNN0Þ and ðlnn0Þ, but M by itself
is not.

1. Separable mask and radial selection

It is quite common that the window function is separable
into a radial and an angular term,

WðrÞ ¼ ϕðrÞMðr̂Þ: ð53Þ

If the flux limit in a blind survey is near L�, then the
selection could change dramatically as a function of
angular depth variations that are due to, e.g., atmospheric
variations, and the separation of angular and radial selec-
tion would be a poor approximation. However, eBOSS, for
example, had more targets selected in regions where two or
more plates overlapped; e.g., [47]. Similarly, PFS will have
higher target numbers where pointings overlap [48].
When the window function is separable, then Eq. (39) is

separable as well,

WLMðrÞ ¼ ϕðrÞWLM; ð54Þ

where

WLM ¼
Z

d2r̂Y�
LMðr̂ÞMðr̂Þ; ð55Þ

and Eq. (52) becomes

MLNN0
lnn0 ¼ 2Lþ 1

4π

X
L1

�
l L L1

0 0 0

�
2X
M1

jWL1M1
j2

×
Z

drr2gnlðrÞgNLðrÞϕðrÞ

×
Z

dr0r02gn0lðr0ÞgN0Lðr0Þϕðr0Þ; ð56Þ

which is also separable, and therefore significantly reduces
computation cost. Equation (40) simplifies in a similar
manner.
In the special case thatWðrÞ ¼ 1 everywhere, we recover

the unit matrix

MLNN0
lnn0 ¼ δKlLδ

K
nNδ

K
n0N0 ; ð57Þ

as expected.
We give two further examples in Fig. 2. In the left panel,

we show the mixing matrix for a mask covering half the
sky, and this leads to coupling of neighboring l modes. On
the right, we add a radial selection decreasing with redshift,
and this additionally leads to the coupling of neighboring
n modes.

E. Shot noise

The sampling of the density field by a limited number of
points leads to a shot noise component in the power
spectrum. To estimate the shot noise, we start with [45,49]

hnðrÞnðr0Þi¼ n̄ðrÞn̄ðr0Þ½1þξðr;r0Þ�þ n̄ðrÞδDðr−r0Þ; ð58Þ

hnðrÞnrðr0Þi ¼ α−1n̄ðrÞn̄ðr0Þ; ð59Þ

hnrðrÞnrðr0Þi ¼ α−2n̄ðrÞn̄ðr0Þ þ α−1n̄ðrÞδDðr − r0Þ: ð60Þ

The density contrast is given by Eq. (32), and the ensemble
average becomes

hδobsðrÞδobsðr0Þi ¼ WðrÞWðr0Þξðr; r0Þ

þ ð1þ αÞWðrÞδDðr0 − rÞ
n̄

; ð61Þ

where we used Eq. (29). Therefore, the SFB transform of
the shot noise term becomes [see Eq. (28)]

Nobs ¼ 1

n̄
SFB2½WðrÞδDðr0 − rÞ� ð62Þ

¼ 1

n̄
Wn0l0m0

nlm ; ð63Þ

in the limit α → 0, and the W matrix is defined in Eq. (35).
The window-corrected shot noise, therefore, is, in matrix
form, W−1=n̄.
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For the pseudo-SFB-power-spectrum estimator the shot
noise simplifies significantly. Averaging over the modes
m ¼ m0 and assuming l ¼ l0, Eq. (63) becomes

Nobs
lnn0 ¼

1

n̄
1ffiffiffiffiffiffi
4π

p
Z

drr2gnlðrÞgn0lðrÞW00ðrÞ; ð64Þ

where we used Eq. (40). Equation (64) can be implemented
very efficiently.

F. Pixel window

The pixel window refers to a distortion of the power
spectrum due to binning galaxies into pixels. In the radial
direction, we do not bin the galaxies, see Eq. (44), and,
therefore, we do not have a radial pixel window [23].
However, the signal in Eq. (49) is still affected by the

pixel window from the spherical harmonic transform. We
correct this by subtracting the shot noise from the observed
power spectrum, then using the PIXWIN function of HEALPY
to correct for the pixel window. We confirm the accuracy of
this procedure with simulations in Sec. IV.

G. Bandpowers

We use a similar approach as Hivon et al. [28] and
Alonso et al. [29] to bin the SFB power spectrum into
bandpowers. This is necessary if one wants to estimate the
SFB power spectrum itself, as the mixing matrices in
Eqs. (35) and (50) are, in general, not invertible with finite-
precision arithmetic. Compared to those authors our sit-
uation is complicated, but not significantly changed, by the
fact that we may need to bin not only in l, but also in the k
modes n and n0.
We define the bandpower-binned pseudo-Cl SFB power

spectrum as a weighted sum over modes,

B̂obs
LNN0 ¼

X
lnn0

w̃lnn0
LNN0Ĉobs

lnn0 ; ð65Þ

where w̃lnn0
LNN0 is typically a rectangular sparse matrix that

takes the average of neighboring modes ðlnn0Þ ∼ ðLNN0Þ.
The operation Eq. (65) is a type of compression, where the
compression matrix w̃ must satisfy the normalization

X
lnn0

w̃lnn0
LNN0 ¼ 1: ð66Þ

In matrix notation, we write the compression operation
Eq. (65) and the corresponding decompression operation

BW ¼ w̃CW; CW ≃ ṽBW; ð67Þ

B ¼ wC; C ≃ vB; ð68Þ

where w̃ and ṽ are rectangular matrices operating on
window-convolved power spectra, and w and v are rec-
tangular matrices operating on cleaned power spectra. We
use the index “W” to indicate that we are only considering
the window convolution. That is,

CW ¼ MC; BW ¼ NB; ð69Þ

where M is given by Eq. (51), and we can use the first of
Eq. (67), the first of Eq. (69), and the last of Eq. (68) to get

N ¼ w̃Mv: ð70Þ

The compression matrix w is obtained by inverting the
second of Eq. (69), using the first of Eq. (67), and the first
of Eq. (69) to get

FIG. 2. In the left panel we show the mixing matrix MLNN0
lnn0 for a half-sky mask, and in the right panel we add a radial selection

function. The ordering of the ðlnn0Þmodes is such that n ¼ n0 increases first from 1 to 10, and l increases by one for every ten n-modes.
The half-sky mask in the left panel exhibits couplings between neighboring lmodes. On the right, the radial selection function decreases
with distance, which leads to neighboring n modes being coupled as well.
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B ¼ N −1BW ¼ N −1w̃CW ¼ N −1w̃MC; ð71Þ

or [29],

w ¼ N −1w̃M: ð72Þ

Similarly, we find

ṽ ¼ MvN −1: ð73Þ

Equation (70) then implies that

wv ¼ w̃ ṽ ¼ I: ð74Þ

Equation (74) is equivalent to assuming that a decom-
pression-then-recompression cycle is lossless. That is, the
compressed representation is unaffected by decompression.
The opposite, compression-then-decompression, however,
will in general incur losses in the compression step, so that
vw ≠ I except in special cases.
Furthermore, once the information is lost, repeated

compression-then-decompression cycles do not lose more
information. That is, ðvwÞn ¼ vw for integer n ≥ 1.
Note that w and ṽ must be calculated via Eqs. (72) and

(73), because in the general case we have ðvwÞ† ≠ vw, and,
therefore, they are not unique in satisfying Eq. (74). That is,
they are not the unique Moore-Penrose inverses of the
matrices v and w̃ [50,51].
Since w and ṽ can be expressed in terms of w̃, v, and the

window mixing matrix, our procedure consists of choosing
a compression matrix w̃ and a decompression matrix v.
How to choose w̃ and v is somewhat arbitrary. For w̃ we

have already suggested that its operation on a power
spectrum shall weigh neighboring modes equally and
satisfy the normalization Eq. (66). Since the modes n
and n0 refer to modes knl, their spacing is not independent,
and we need to bin four modes, nine modes, or similar at a
time. In this paper, our binning strategy is completely
specified by the two numbers Δl and Δn.
A natural choice for the decompression v is, then, as the

Moore-Penrose inverse of w̃. Indeed, for the aforemen-
tioned choice for w̃ that takes the average of neighboring
modes, this means that v is a step function that assigns the
same value or a value proportional to lðlþ 1Þ to all modes
within a bin [28,29].
Finally, to compare the binned power spectrum with a

theoretical estimate the first of Eq. (68) must be applied to
the theoretical prediction.

H. Local average effect

In this section we recognize that the average number
density n̄ in Eq. (32) must in practice be measured from the
survey itself. This is often called the integral constraint
[52,53] or the local average effect [54,55], and here we

show that it suppresses the largest measured SFB mode in
the survey.
Measuring the average number density is accomplished

by dividing the total number of galaxies in the survey by the
effective volume. However, the total number of galaxies in
the survey is a stochastic quantity such that the average
number density is given by

n̄ ¼ ð1þ δ̄Þn̄true; ð75Þ
where n̄true is the underlying density contrast in the whole
universe, and the average density contrast in the survey
volume is

δ̄ ¼ 1

Veff

Z
d3rWðrÞδðrÞ; ð76Þ

with the effective volume defined in Eq. (30). Therefore,
with our model in Eq. (32), the measured density contrast
is [44]

δobsðrÞ≡ δW;AðrÞ ¼ WðrÞ δðrÞ − δ̄

1þ δ̄
; ð77Þ

where δðrÞ is the true density contrast, the superscript “A”
refers to the local average effect, and the superscript “W”
refers to the effect of the window convolution.
The SFB transform of Eq. (77) is

δW;A
nlm ¼

X
n0l0m0

Wn0l0m0
nlm

δn0l0m0 − dn0l0m0 δ̄

1þ δ̄
; ð78Þ

where we used Eqs. (28) and (34), and we defined

dn0l0m0 ¼
ffiffiffiffiffiffi
4π

p
δKl00δ

K
m00

Z
drr2gn00ðrÞ: ð79Þ

Using Eqs. (27), (28) and (34), Eq. (76) can be written

δ̄ ¼ 1

Veff

X
n0l0m0

dW;�
n0l0m0δn0l0m0 ; ð80Þ

where we used Eq. (37) to define dWn0l0m0 as

dWn0l0m0 ¼
X
nlm

Wnlm
n0l0m0dnlm: ð81Þ

Then, expanding Eq. (78) for small δ̄ we get

δW;A
nlm ¼

X
n0l0m0

Wn0l0m0
nlm ½δn0l0m0 − dn0l0m0 δ̄ − δn0l0m0 δ̄

þ dn0l0m0 δ̄2 þ δn0l0m0 δ̄2 þOðδ̄3Þ�: ð82Þ

Since dnlm ∼
ffiffiffiffi
V

p
and δ̄ ∼ 1=

ffiffiffiffi
V

p
we expand in the

volume V. We also assume Clnn0 ≪ Veff . Then, the
correlation function becomes
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hδW;A
NLMδ

W;A;�
N0L0M0 i

¼
X
nlm

Wnlm
NLM

X
n0l0m0

Wn0l0m0;�
N0L0M0

× ½hδnlmδ�n0l0m0 i − hδnlmδ̄idn0l0m0 − dnlmhδ�n0l0m0 δ̄i
þ dnlmdn0l0m0 hδ̄2i þOðV−1

2Þ�; ð83Þ

where we assume the field δ to be Gaussian. The two-point
terms entering this expression are

hδnlmδ�n0l0m0 i ¼ δKll0δ
K
mm0Clnn0 þ

1

n̄
ðW−1Þn0l0m0

nlm ; ð84Þ

hδnlmδ̄i ¼
1

Veff

X
n00

dWn00lmClnn00 þ
1

n̄Veff
dnlm; ð85Þ

hδ̄2i ¼ 1

V2
eff

X
l1n1n2

DW
l1n1n2

Cl1n1n2

þ 1

n̄V2
eff

X
n1l1m1

dn1l1m1
dWn1l1m1

; ð86Þ

where we included the shot noise term Eq. (63), and we
defined the unnormalized power spectrum of a constant field

DW
l1n1n2

¼
X
m1

dWn1l1m1
dW;�
n2l1m1

ð87Þ

¼ ð2l1 þ 1Þ
X
n0
1

X
n0
2

M
0n0

1
n0
2

l1n1n2
dn0

1
00dn0

2
00; ð88Þ

and Eq. (51) was used in the last line. Now the correlation
function becomes

hδAnlmδA;�n0l0m0 i ¼ δKll0δ
K
mm0Clnn0 þ

1

n̄
ðW−1Þn0l0m0

nlm − dn0l0m0
1

Veff

X
n00

dWn00lmClnn00 − dnlm
1

Veff

X
n00

dW;�
n00l0m0Cl0n0n00

þ
�
− 2

n̄Veff
þ hδ̄2i

�
dnlmdn0l0m0 þOðV−1

2Þ; ð89Þ

where we corrected for the window function. Only the first and fifth terms are proportional to δKll0δ
K
mm0 , and so we cannot take

the pseudo-Clnn0 power spectrum at this stage.3 To do so, we now add back the two window functions in Eq. (83) to get a
prediction for the observed pseudo-power spectrum

CW;A
LNN0 ¼

X
lnn0

Mlnn0
LNN0Clnn0 þ Nobs

LNN0 −
1

Veff

1

2Lþ 1

X
M

dW;�
N0LM

X
nlm

Wnlm
NLM

X
n00

dWn00lmClnn00

−
1

Veff

1

2Lþ 1

X
M

dWNLM

X
n0l0m0

Wn0l0m0;�
N0LM

X
n00

dW;�
n00l0m0Cl0n0n00 þ

X
lnn0

Mlnn0
LNN0δKl0dn00dn000

�
− 2

n̄Veff
þ hδ̄2i

�

þOðV−1
2Þ; ð90Þ

where we used Eq. (64). The third and fourth terms are the same except forN ↔ N0. To simplify these two terms, we express
them in terms of chains of window functionsWk that we define in Eq. (F1) and study in Appendix F. We use Eq. (81) and get

X
M

dW;�
N0LM

X
nlm

Wnlm
NLM

X
n00

dWn00lmClnn00 ¼
X
M

X
n0l0m0

X
nlm

X
n00

X
n1l1m1

Wn0l0m0;�
N0LM Wnlm

NLMW
n1l1m1

n00lm dn0l0m0dn1l1m1
Clnn00

¼
X
lnn00

X
l0n1n0

X
Mmm0

WN0LM
n0l0m0Wnlm

NLMW
n1l0m0
n00lm δKl00dn000dn100Clnn00

¼
X
l0n1n0

δKl00dn000dn100
X
lnn00

Clnn00W3

0
B@

L l l0

N0 n n1
N n00 n0

1
CA; ð91Þ

where W3 is defined in Eq. (F1). Equation (90) now becomes

3If dWnlm ∝ δKl0δ
K
m0 would be a good approximation, which is the case in the absence of a window function, then the pseudo-Cl

approach works well. This is an argument for using eigenfunctions tailored to the survey geometry. That is, if the window effects are
already captured by the eigenfunctions, then the calculation here would simplify dramatically.
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CW;A
LNN0 ¼

X
lnn0

Mlnn0
LNN0

�
Clnn0 þ δKl0dn00dn000

�
− 2

n̄Veff
þ hδ̄2i

��
þ Nobs

LNN0

−
1

Veff

1

2Lþ 1

X
l0n1n0

δKl00dn100dn000
X
lnn00

Clnn00

2
664W3

0
BB@

L l l0

N0 n n1
N n00 n0

1
CCAþ hN ↔ N0i

3
775: ð92Þ

The window deconvolved power spectrum is then CA ¼
M−1CW;A.
In the absence of a window function and assuming

Clnn0 ∝ δKnn0 , as well as using Eq. (79), we get

CA
lnn0 ≃

�
1þ 3AC011

Veff

�
Clnn0 − δKl0

dn00dn000
Veff

Bnn0 ; ð93Þ

where we included further terms from the expansion
Eq. (83), and we defined

A ¼
X
n1

d2n100
Veff

C0n1n1

C011

; ð94Þ

Bnn0 ¼ C0nn þ C0n0n0 − AC011 −
6C0nnC0n0n0

Veff
: ð95Þ

To a good approximation A ≃ 1, and the last term in Bnn0

can be neglected if the effective volume is sufficiently
large and the shot noise sufficiently low. Furthermore, a
good approximation is dn00 ∝ δKn1. Therefore, only the
ðl; n; n0Þ ¼ ð0; 1; 1Þ mode is significantly affected. That
is, the main effect of supersample variance on the measured
power spectrum is to reduce the power in the largest mode.

I. Covariance matrix of power spectrum

In this section we provide a covariance matrix for the
SFB power spectrum. Several approaches have been used
previously. Percival et al. [22] andWang et al. [24] trace the
likelihood function either on a grid or using Markov chain
Monte Carlo techniques. Wang et al. [24], e.g., used
simulations to measure the covariance matrix from suites
of mock catalogs. An analytical approach for the 3D power
spectrum multipoles is presented by Wadekar and
Scoccimarro [56]. In this paper, we get an analytical
estimate for the SFB power spectrum assuming that the
density contrast is Gaussian, and we compare to 100 log-
normal simulations. Non-Gaussian terms in the form of the
disconnected trispectrum could be included similarly to
Taruya et al. [44] and Sugiyama et al. [57].
Supersample variance, e.g., [54,58,59], can have a

significant impact on the covariance matrix. Beat coupling
is mode mixing due to the window function with correla-
tion between pairs of nonlinear modes and one large mode.
The local average effect is due to the large-scale mode
modulating the average number density inside the survey

volume. Both of these effects can be treated in the manner
of Sec. III H and Eq. (77).
The covariance matrix on the observed SFB power

spectrum is

VLNN0;obs
lnn0 ≡ hĈobs

lnn0Ĉ
obs
LNN0 i−Cobs

lnn0C
obs
LNN0

¼ 1

ð2lþ1Þð2Lþ1Þ
X
mM

½hδW;A
nlmδ

W;A
NLMihδW;A;�

n0lm δW;A;�
N0LMi

þhδW;A
nlmδ

W;A;�
N0LMihδW;A

NLMδ
W;A;�
n0lm i�; ð96Þ

where we used Wick’s theorem for a Gaussian density
contrast. We simplify Eq. (96) in Appendix E. However, an
analytical calculation remains computationally expensive.
To get the covariance matrix for the window-corrected

power spectrum, we write the matrix equation

V ¼ N −1VobsN −1;T ; ð97Þ

whereN is the bandpower-binned window coupling matrix
given in Eq. (70), and the binning of the covariance matrix
is implied.
A reasonably precise estimate can be obtained by

counting modes and assuming the covariance matrix is
diagonal. That is,

VLNN0
lnn0 ≃

δKlL
Nmodes

½Cbinned
lnN Cbinned

Ln0N0 þ Cbinned
lnN0 Cbinned

Ln0N �; ð98Þ

where the power spectrum includes the shot noise,
Cbinned
lnn0 ¼ Csignal

lnn0 þ Nshot
lnn0 , and

Nmodes ¼ fvolð2lþ 1ÞΔlΔn; ð99Þ

whereΔl andΔn are the bin widths for modes knl, and fvol
is the fraction of the SFB transform volume that is occupied
by the survey, defined by

fvol ≡ 1

VSFB

Z
d3rτ½WðrÞ −Wthreshold�; ð100Þ

where τðxÞ is a step function andWthreshold is a threshold of
the window function.
The shot noise takes into account the variation of the

number density across the survey, and it enters in Eq. (98)
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as part of the power spectrum. The incomplete volume
coverage enters as a reduction in the number of modes, and
it is needed for the stability of the window deconvolution
when there are large unobserved regions in the SFB
volume.
In Fig. 3 we show the covariance matrices for a set of

simulations that contain only shot noise (top left) as well as
for a set of simulations with a physical galaxy power
spectrum with bias b ¼ 1.5 at effective redshift zeff ¼ 2
(top right). In the figure we also show the analytical result
from Eq. (96) (bottom panels).
The colorbar in the figure is nonlinear. As a result, small

elements appear amplified. To provide a more useful
comparison, we introduce the difference between two
covariance matrices, scaled to the center diagonal. That
is, we introduce the relative difference

Δρij ¼
CA
ij − CB

ijffiffiffiffiffiffiffiffiffiffiffiffiffi
CB
iiC

B
jj

q ; ð101Þ

and we choose CB to refer to the analytic result. Δρ does
not suffer from amplification of small differences far from
the diagonal.
Therefore, in Fig. 4 we show the relative difference

between the covariance matrix as obtained from simula-
tions and the analytical result. However, in the figure we
remove the largest mode, since we have not included the
local average effect in the analytical calculation. All other
modes are statistically essentially equal between simulation
result and analytics.
To show this more clearly, we present Fig. 5, where we

compare the main diagonal and the l ¼ Lþ 1 diagonal of

FIG. 3. The panels show the covariance matrix V defined in Eq. (97). Top row: VA as measured from 100 simulations, including the
local average effect. Bottom row: the analytical prediction, without local average effect. Left column: shot noise only. Right column:
linear power spectrum with shot noise. Here we use a simulation with 50% sky coverage and bandpower binning with Δl ¼ 2. The
order of the ðlnn0Þ indices is such that each block of ten indices is for one l bin starting with l ¼ 0, 1 for the block starting with index 0
and ending with l ¼ 8, 9 for the block starting at index 40. Within each block n ¼ n0 increases from 1 to 10. Note that the nonlinear
color scheme amplifies small elements.
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the covariance matrices using the same statistic Eq. (101).
Within the noise, we find good agreement between sim-
ulations and analytical result.

J. Performance scaling

In this section we give a brief overview of the perfor-
mance behavior of the code. We consider the scaling of the
SFB decomposition, the coupling matrix, and the number
of modes with the parameters of the SFB power spectrum
estimation.
Typically, it is desirable to calculate all modes up to some

kmax. The total number of modes can be estimated in the

same way as for a standard Fourier transform by estimating
the fundamental frequency from the volume that is being
transformed, i.e., VSFB≃4π

3
ðr3max−r3minÞ and kF ≃ 2π=V1=3

SFB.
Then, the total number of modes is approximately
Nmodes ≃ 4π

3
k3max=k3F ≃ 1

18π k
3
maxðr3max − r3minÞ. These are the

modes that need to be calculated for transform.
However, as shown in Fig. 6, the boundary at rmin

changes the structure about which modes need to be
calculated. In the figure, modes with k ≤ kmax are in the
shaded region when, for illustration, rmin ¼ 500h−1 Mpc,
and all the modes below the solid black curves need to be
calculated if rmin ¼ 0. The figure shows that fewer low-l

FIG. 5. Comparison of the diagonal and the l ¼ Lþ 1 off-diagonal window-corrected covariance between simulations and analytical
result. The left part shows the shot noise only, and the right includes shot noise and a nonzero power spectrum. In the analytical result we
do not include local average effect. Thus, the first mode in the simulations is suppressed compared to the analytical result. The black
dashed and dash-dotted lines show the approximate result from mode counting Eq. (98).

FIG. 4. Relative comparison between the covariance matrices as in Eq. (101). This avoids amplifying small deviations far from the
center diagonal, and it shows that the analytic result largely agrees with the simulations. The very largest mode is set to zero, because it is
affected by the local average effect that is not included in the analytical result (see Fig. 5).
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modes are needed when rmin is finite. However, most
modes are at large l, and, therefore, this is only a small
computational reduction.
The algorithm now scales as follows. First, the sum in

Eq. (44) is performed, and then for each ðn;lÞ combination
the spherical harmonic transform Eq. (48) is performed.
Hence, the execution time of the transform scales as

T ∼O½nmaxlmaxðNgal þ NHealpix
l Þ�; ð102Þ

where NHealpix
l ∼ N3=2

pix is the number of operations needed
for the spherical harmonic transform, and Npix is the
number of HEALPIX pixels.
To estimate Npix ¼ 12n2side, we need to estimate nside,

which we do by considering the angular resolution.
Recommended4 is lmax ≃ 2nside. However, our algorithms
dealing with the window function will need to go to
L ¼ 2lmax. Hence, we estimate

nside ¼ 2ceilðlog2 ðlmaxþ1
2
ÞÞ; ð103Þ

where ceilðxÞ is the smallest integer greater than x.
Equation (103) guarantees that nside is a power of 2.
The angular resolution is determined by lmax, which is

determined by kmax and rmax by Limber’s relation
Eq. (C16). However, we note that the actual number
needed for lmax tends to be smaller by a few percent.
For the three surveys in Sec. IV below, the SFB analysis

takes ∼10 CPU-min per simulation for the Roman- and
SPHEREx-like surveys, and ∼1.5 CPU-hour for the Euclid-
like survey. Calculation of the mixing matrix M for the
three surveys is on the order of a few CPU-minutes,
exploiting the angular/radial split, and would take several
CPU-hours without that split. At present, the analytical
covariance matrix is only feasible for the largest scales.

IV. FUTURE APPLICATIONS

In this section wewill test the SFB estimator presented in
this paper for several use cases. First, we will consider
simplistic simulations of surveys similar to the High-

Latitude Spectroscopic Survey (HLSS) of the Nancy
Grace Roman Space Telescope which will benefit from
large radial modes, and we will consider SPHEREx and
Euclid for wide-angle surveys.
We bin into bandpowers by selecting

Δl ≃
1

fsky
; ð104Þ

and then we round to the nearest integer. Equation (99) then
suggests

Δn ≃
fsky
fvol

: ð105Þ

For all cases in this paper, this results in Δn ¼ 1.
To do the window deconvolution, it is important to

ensure that all modes are complete. For the angular power
spectrum, Leistedt et al. [60] and Alonso et al. [29] suggest
estimating up to 2lmax, and then discarding all the modes
above lmax. Wang et al. [24] argue that (in our notation) the
sum Eq. (50) only converges with the inclusion of modes
knl > kmax, and they do numerical experiments to estimate
the maximum k needed.
We take a similar approach, which is demonstrated in

Fig. 7, where in the left panel the relative contribution of
window-convolved modes to a physical mode near kmax is
shown. That is, we plot the relative contributions of all
observed modes ðlnn0Þ that contribute to the physical
mode ðLNN0Þ using Eq. (50). Assuming a flat power
spectrum and summing the absolute values of the coupling
matrix M−1, then, allows us to estimate the contribution
from all modes above some klarge. This is shown in the right
panel of Fig. 7.
Next, we iteratively increase klarge until the contribution

from knl > klarge to the most affected mode kNL ≤ kmax is
less than 1%. The results for klarge are the dashed vertical
lines in either panel of Fig. 7.
That is, by including all modes up to klarge > kmax in the

SFB power spectrum estimation, we get reasonable con-
fidence that all modes k < kmax can be fully deconvolved
by the inversion of Eq. (50).

A. Roman

In this section we apply the SFB power spectrum
estimator to a log-normal simulation for the High-
Latitude Spectroscopy Survey (HLSS) of the Nancy
Grace Roman Space Telescope [1]. The notional survey
area is currently planned as ∼6% of the sky. Our main
objective here, however, is to exploit the large radial
selection that Roman will provide.
The grism spectroscopy of the HLSS will yield observed

wavelengths 1–1.93 μm,5 which for the Hα line at

FIG. 6. Here we show the modes that are required to achieve a
given kmax for the given radial boundaries. The solid black curves
are constant-k contours for rmin ¼ 0.

4https://healpix.jpl.nasa.gov/ 5https://roman.ipac.caltech.edu/sims/Param_db.html#wfi_grism
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6562.8 Å results in a redshift range 0.523 ≤ z ≤ 1.94, and
for the simulations we round this to the range
1370–3540h−1 Mpc. The radial selection for our simula-
tion is shown in the left panel of Fig. 8 [61].
The right panel of Fig. 8 shows the HEALPIX projection of

our log-normal simulation [62], where we use an approxi-
mate binary Roman mask. The window function is then
constructed as the multiplication of the radial selection and
mask, normalized so that the maximum is unity.
Our log-normal simulation assumes a nonevolving linear

power spectrum at redshift 1.5 and linear galaxy bias

b ¼ 1.5. The number of galaxies is ∼6.6 × 106. We use
a flat ΛCDM Planck cosmology.
The results of the SFB analysis are shown in Fig. 9. The

top left panel shows the shot noise from a simulation with
vanishing power spectrum as well as the theoretical shot
noise prediction from Eq. (64). The bottom left shows the
average over 50 simulations.
For a simulation with signal, we show the SFB meas-

urement from our log-normal simulation in the top right of
Fig. 9. Here, we have subtracted the theoretical shot noise.
The theory points and the input PðkÞ differ due to

FIG. 7. This figure shows the relative contributions from hi-k observed (window-convolved) modes to physical modes close to
kmax ¼ 0.05h Mpc−1 (vertical black line). The left panel shows a histogram of the contributions to a single physical mode. Since there
are modes above kmax that are contributing in the deconvolution of the window [the inversion of Eq. (50)] we include all the modes up to
the dashed lines at klarge, which are colored by survey. The specific physical mode chosen is the one that has the most contribution from
modes above klarge (the dashed line), and the dashed lines are chosen so that their cumulative contribution is less than 1%. The right panel
shows the cumulative contribution from observed modes k > klarge for each physical mode kNL. The vertical lines are the same as in the
left plot, the horizontal line marks our target maximum contribution of 1%.

FIG. 8. The plots show the approximate Roman radial selection function and angular mask. In addition one realization of a log-normal
simulation is shown.
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application of Eq. (72) to account for the bandpower
binning with Δl ¼ 18. The bottom right panel shows
the same as an average over our ensemble of simulations.
We get good agreement between the ensemble meas-

urement and theory power spectra if we restrict ourselves to
the blue modes in Fig. 9. There are 213 modes with a
χ2ν ¼ 1.033 in one simulation. The grayed-out modes
cannot be fully deconvolved due to the possibility of
high-k contributions, as explained at the beginning of
Sec. IV. Clearly, our estimations there were conservative,
because high-k contributions vary in sign and can cancel
each other.
The black curves in the lower left panel of Fig. 9 connect

theory points with the same l. For a given l, then, the
Limber ratio Eq. (C16) suggests that higher k corresponds
to lower redshift. Since the number density tends to be
higher at lower redshift, we expect the shot noise to

decrease with k given constant l. This effect is much
more pronounced for SPHEREx below.

B. SPHEREx

In this section we aim to show the feasibility of applying
our estimator to SPHEREx6 [2].
For the radial selection, we use the SPHEREx public

products,7 and for demonstration we limit ourselves to the
range 0 ≤ r ≤ 2000h−1 Mpc, corresponding to a maximum
redshift of 0.83. We impose this limit due to our current
lack of a large number of better simulations. The radial
selection is shown in Fig. 10. SPHEREx is able to go down
to essentially z ¼ 0 since it is not limited by the detection of

FIG. 9. SFB power spectrum measurement from uniform shot noise only (left column) and log-normal (right column) simulations with
Roman window function. The top row is for a single simulation, the bottom shows the average over 50 simulations, and in the top panels
the error bars are for a single simulation, while in the bottom panels the error bars are divided by

ffiffiffiffiffi
50

p
. In each panel, the gray-painted

modes near kmax are incomplete bandpower bins, and we show them for illustration only. On the right panels, the theory points take into
account the bandpower binning with Δl ¼ 18. The horizontal line in each plot is 1

n̄. The local average effect suppresses the largest-scale
mode in the simulations. For better comparison between the average measured power spectrum and the theory points, we show the
fractional difference of each mode at the bottom of the lower panels. Note that here we only consider an Hα sample of Roman.

6http://spherex.caltech.edu
7https://github.com/SPHEREx/Public-products

FABULOUS CODE FOR SPHERICAL FOURIER-BESSEL … PHYS. REV. D 104, 123548 (2021)

123548-17

http://spherex.caltech.edu
http://spherex.caltech.edu
http://spherex.caltech.edu
https://github.com/SPHEREx/Public-products
https://github.com/SPHEREx/Public-products


a single emission line but measures galaxy redshifts with
102 narrow photometric bands.
For the mask we use the HFI GAL080 mask with no

apodization from the Planck Collaboration.8 This cuts
out the galactic plane, as shown in Fig. 10. The binning
strategy in Eqs. (104) and (105) yields no binning, or
Δl ¼ Δn ¼ 1. The number of galaxies per simulation
is ∼24 million.
Since our log-normal simulations do not take into

account redshift-evolution effects, we choose a fixed
effective redshift zeff ¼ 0.5 and galaxy bias b ¼ 1.5.
The estimation of the SFB shot noise and power

spectrum is shown in Fig. 11. The “dotted curves” of

the theory shot noise that rise quickly and then settle on an
approximately constant value are curves of constant n, and
each dot along a curve signifies the increase of l by one.
That is, lines of constant l start on the first of these curves,
and then decrease rapidly, as expected from the Limber
ratio Eq. (C16) in conjunction with a high number density
at low redshifts.
Figure 11 shows that we get good agreement between

our measured SFB power spectrum with the theory power
spectrum. There are 1345 modes with a χ2ν ¼ 1.020 in one
simulation. It is only in the grayed-out modes that are not
fully deconvolved that a spurious oscillatory pattern is
introduced, and measuring those modes accurately is
simply a matter of increasing klarge.
Furthermore, since in this paper we are primarily

interested in testing the SFB estimator, Fig. 11 shows
every mode by itself. A more intuitive visualization of the

FIG. 10. The plots show the approximate radial selection function and angular mask for our SPHEREx-like survey.

FIG. 11. The plot on the left shows the shot noise and the plot on the right the SFB power spectrum similar to Fig. 9, but now for a full-
sky mission like SPHEREx, averaged over 50 simulations with error bars divided by

ffiffiffiffiffi
50

p
. Note that while the mask and selection are

realistic, we only consider a small part of the full SPHEREx volume due to limitations of our mocks.

8https://irsa.ipac.caltech.edu/data/Planck/release_2/ancillary-
data/previews/HFI_Mask_GalPlane-apo0_2048_R2.00/index
.html
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constraining power of the survey should bin the informa-
tion from neighboring modes, and this would bring the
error bars down significantly. We leave such visualization
to a future paper. For now, every mode for itself.

C. Euclid

As a final test for a realistic mask and selection, in this
section we apply the SFB estimator to make a forecast for
the spectroscopic survey of Euclid, which is an all-sky
mission that covers approximately 40% of the sky. For
the number density, we adopt the reference case given
by Amendola et al. [3]. We use the radial range
1645 ≤ r

h−1 Mpc ≤ 3650, shown in Fig. 12. Also shown in

the figure is the mask that cuts the galactic and ecliptic
planes [63]. The number of galaxies per simulation is
∼68 million.

As our primary purpose is to show the applicability of
the SFB estimator, we have not updated our simulations
with the parameters in the Euclid collaboration [64].
Our simulation results are shown in Fig. 13, for both shot

noise only and with a power spectrum signal and galaxy
bias b ¼ 1.6.
As for the other surveys, once we ignore the modes that

are not fully deconvolved, we get good agreement for both
cases, with χ2ν ¼ 0.983 for 1744 modes of one simulation.

V. CONCLUSION

In this paper we present a new pseudo-SFB power
spectrum estimator, SUPERFAB. The estimator analytically
accounts for shot noise, mask, and selection effects. We
also investigate the impact of the local average effect and
the covariance matrix.

FIG. 12. The plots show the approximate radial selection function and angular mask for our Euclid-like survey with one log-normal
simulation.

FIG. 13. The plot on the left shows the shot noise and the plot on the right the SFB power spectrum similar to Fig. 9, but now for a full-
sky mission like Euclid, averaged over 20 simulations, and error bars divided by

ffiffiffiffiffi
20

p
.
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SUPERFAB works by performing the radial transform
before the angular transform, similar to Leistedt et al. [23].
In the radial direction the galaxies are treated as point
particles so that no radial pixel window needs correction.
The angular transform is performed using HEALPIX [26,27].
Furthermore, we derive the radial eigenmodes with

potential boundary conditions at rmin and rmax, as suggested
by Samushia [25]. The boundary at rmin ≠ 0 eliminates the
need for bandpower binning in the radial direction, the
boundary at rmax discretizes the measured modes knl for
integer n and l.
We demonstrate that SUPERFAB will be able to analyze all

large-scale modes of upcoming wide and deep galaxy
surveys such as Roman, SPHEREx, and Euclid.
We also review the SFB power spectrum theory and

provide intuition using the Limber approximation. Notably,
redshift dependence of the power spectrum and bias factors
primarily enter as the interplay between k and l modes,
such that r ∼ ðlþ 0.5Þ=k is an approximation for the
angular diameter distance. We leave a more precise and
detailed analysis for the projection of the 3D power
spectrum to SFB space and the connection with cosmo-
logical parameters for a future paper.
We also leave for a future paper the extension of the

estimator to cross-correlations between samples with differ-
ing selection functions.
Since the SFB power spectrum is uniquely suited for all-

sky surveys, we expect a particularly intriguing application
of SUPERFAB will be intensity mapping at high redshift, and
we look forward to this possibility.
For surveys covering a compact area on the sky we can

introduce boundary conditions to the angular basis func-
tions as well, as pointed out by Samushia [25]. This would
significantly reduce the size of the computational problem
in these cases.
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APPENDIX A: USEFUL FORMULAS

For any function fðkÞ,
Z

k2dkd2k̂δDðk − k0ÞfðkÞ

¼
Z

dkδDðk − k0Þ
Z

d2k̂δDðk̂ − k̂0ÞfðkÞ: ðA1Þ

Therefore,

δDðk − k0Þ ¼ k−2δDðk − k0ÞδDðk̂ − k̂0Þ: ðA2Þ

Furthermore,

1

r
δD

�
1

r
−

1

r0

�
¼ rδDðr − r0Þ: ðA3Þ

Spherical Bessel functions and spherical harmonics
satisfy orthogonality relations

δDðk − k0Þ ¼ 2kk0

π

Z
∞

0

drr2jlðkrÞjlðk0rÞ; ðA4Þ

δKll0δ
K
mm0 ¼

Z
dΩr̂Ylmðr̂ÞY�

l0m0 ðr̂Þ: ðA5Þ

Spherical harmonics can be expressed in terms of a
complex exponential and real associated Legendre func-
tions Pml ðxÞ as

Ylmðr̂Þ ¼ eimϕ

�ðl −mÞ!ð2lþ 1Þ
4πðlþmÞ!

�1
2

Pml ðcos θÞ: ðA6Þ

The completeness relation is

X
lm

Ylmðr̂ÞY�
lmðr̂0Þ ¼ δDðr̂ − r̂0Þ: ðA7Þ

Rayleigh’s formula decomposes the plane waves into
spherical Bessels and spherical harmonics,

eiq·r ¼ 4π
X
l0;m0

il
0
jl0 ðqrÞY�

l0m0 ðq̂ÞYl0m0 ðr̂Þ: ðA8Þ

Legendre polynomials can be expressed as a sum over
spherical harmonics as

Plðk̂ · r̂Þ ¼
4π

2lþ 1

X
m

Ylmðk̂ÞY�
lmðr̂Þ: ðA9Þ

Flipping the sign of the component angular momentum or
the direction of the argument to spherical harmonics gives
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Y�
lmðr̂Þ ¼ ð−1ÞmYl;−mðr̂Þ; ðA10Þ

Ylmð−r̂Þ ¼ ð−1ÞlYl;mðr̂Þ: ðA11Þ

The Gaunt factor is

GlLL1

mMM1
¼

Z
d2r̂Ylmðr̂ÞYLMðr̂ÞYL1M1

ðr̂Þ; ðA12Þ

and it can be expressed in terms of Wigner-3j symbols,

GlLL1

mMM1
¼

�ð2lþ 1Þð2Lþ 1Þð2L1 þ 1Þ
4π

�1
2

�
l L L1

0 0 0

�

×

�
l L L1

m M M1

�
: ðA13Þ

The Wigner 3j symbols obey an orthogonality relation,

X
mM

�
l L L1

m M M1

��
l L L2

m M M2

�

¼ δKL1L2
δKM1M2

δTðl; L; L1Þ
2L1 þ 1

; ðA14Þ

where δTðl; L; L1Þ enforces the triangle relation that is also
obeyed by the 3j symbols. That is, the Gaunt factor is only
nonzero when

mþM þM1 ¼ 0; ðA15Þ

jl − Lj ≤ L1 ≤ lþ L: ðA16Þ

Assuming the triangle condition is satisfied, for even
J ¼ lþ Lþ L1 we have

�
l L L1

0 0 0

�
¼ ð−1Þ12J

�ðJ − 2lÞ!ðJ − 2LÞ!ðJ − 2L1Þ!
ðJþ 1Þ!

�1
2

×
ð1
2
JÞ!

ð1
2
J − lÞ!ð1

2
J −LÞ!ð1

2
J −L1Þ!

; ðA17Þ

for odd J ¼ lþ Lþ L1, those 3j’s vanish when
m ¼ M ¼ M1 ¼ 0.

APPENDIX B: THE LAPLACIAN IN AN
EXPANDING UNIVERSE

We use the SFB decomposition because that correlates
radial and angular modes of the same scale. Here we show
that the Laplacian in a flat expanding universe takes the
form of Eq. (22).
The flat Robertson-Walker metric is

ds2 ¼ −dt2 þ a2½dr2 þ r2dθ2 þ r2 sin2 θdϕ2�; ðB1Þ

where r is the comoving coordinate, and the metric has the
nonzero Christoffel symbols:

Γ0
11 ¼ a2H; Γ0

22 ¼ a2r2H; Γ0
33 ¼ a2r2 sin2 θH;

Γ1
01 ¼ Γ1

10 ¼ H; Γ1
22 ¼ −r; Γ1

33 ¼ −r sin2 θ;

Γ2
02 ¼ Γ2

20 ¼ H; Γ2
12 ¼ Γ2

21 ¼
1

r
; Γ2

33 ¼ − cosθ sinθ;

Γ3
03 ¼ Γ3

30 ¼ H; Γ3
13 ¼ Γ3

31 ¼
1

r
; Γ3

23 ¼ Γ3
32 ¼

cosθ
sinθ

:

Therefore,

gμνΓ0
μν ¼ 3H; ðB2Þ

gμνΓ1
μν ¼ −2a−2r−1; ðB3Þ

gμνΓ2
μν ¼ −a−2r−2

cos θ
sin θ

; ðB4Þ

gμνΓ3
μν ¼ 0: ðB5Þ

The d’Alembertian operator for a scalar f is

□f ¼ gμνf∶μν

¼ gμνð∂μ∂ν − Γσ
μν∂σÞf

¼
�
−∂2

0 þ a−2∂2
1 þ a−2r−2∂2

2 þ a−2r−2sin−2θ∂2
3 − 3H∂0 þ 2a−2r−1∂1 þ a−2r−2

cos θ
sin θ

∂2

�
f

¼
�
−∂2

0 − 3H∂0 þ a−2
�
∂2
1 þ r−2∂2

2 þ r−2sin−2θ∂2
3 þ 2r−1∂1 þ r−2

cos θ
sin θ

∂2

��
f: ðB6Þ
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Identifying the term in parentheses as given by Eq. (22),
we get

□f ¼ ½−∂2
0 − 3H∂0 þ a−2∇2�f ðB7Þ

in a flat expanding universe. We can also write Eq. (B7) as

□f ¼ ½−a−3∂tða3∂tÞ þ a−2∇2�f: ðB8Þ

The eigenfunctions to the d’Alembertian are, therefore,
separable. If we write an eigenfunction

fðt; r; r̂Þ ¼ pðtÞgðrÞhðr̂Þ ðB9Þ

with

∇2½gðrÞhðr̂Þ� ¼ −k2gðrÞhðr̂Þ; ðB10Þ

then

0 ¼ a−3∂tða3∂tpÞ þ ½a−2k2 − λ2�p; ðB11Þ

where −λ2 is the eigenvalue of the d’Alembertian. Since ar
is the angular diameter distance and r is the comoving
distance (also comoving angular diameter distance), we can
call k a comoving mode.

APPENDIX C: LIMBER’s APPROXIMATION

In this section we aim to gain some intuition for the SFB
power spectrum in Eq. (21) by applying a type of Limber
approximation. We stress that the approximation used here
is inadequate as a precise model and is only intended for the
purpose of gaining intuition, especially for how redshift
evolution is encoded in the SFB power spectrum at high l.
To do so, we will also approximate the effect of the FoG.
We write Eqs. (9) and (10) acting on a spherical Bessel
function as

ÃRSDð−iq∂qr;−i∂qr; rÞjlðqrÞ
¼ e

1
2
σ2uq2∂2qrð1 − β∂2

qrÞjlðqrÞ: ðC1Þ

The second derivative is obtained exactly via a recursion
relation for the derivative of Spherical Bessel function,

ð1 − β∂2
qrÞjlðqrÞ ¼ ð1 − βfl0ÞjlðqrÞ − βfl−2jl−2ðqrÞ

− βfl2jlþ2ðqrÞ ðC2Þ

¼
X
Δl

ðδKΔl;0 − βflΔlÞjlþΔlðqrÞ; ðC3Þ

where the only nonzero flΔl are

fl−2 ¼
lðl − 1Þ

ð2l − 1Þð2lþ 1Þ ; ðC4Þ

fl0 ¼ −
2l2 þ 2l − 1

ð2l − 1Þð2lþ 3Þ ; ðC5Þ

fl2 ¼ ðlþ 1Þðlþ 2Þ
ð2lþ 1Þð2lþ 3Þ : ðC6Þ

The FoG term acting on the spherical Bessel function is a
convolution

ÃFoGð−iq∂qrÞjlðqrÞ ¼
Z

dk
2π

eikqrÃFoGðqkÞj̃lðkÞ

¼
Z

dyAFoGðr − yÞjlðqyÞ ðC7Þ

¼
Z

dy
1ffiffiffiffiffiffi
2π

p
σu

e
−ðr−yÞ2

2σ2u jlðqyÞ; ðC8Þ

where the tildes signify Fourier transforms, and we took the
inverse transform of Eq. (10), see e.g., [40]. As a first
approximation, if the frequency q is low, then the con-
volution will have little effect. If the frequency is high, the
convolution will erase the oscillations to vanish. That is, we
approximate

ÃFoGð−iq∂qrÞjlðqrÞ ≈ e−
1
2
σ2uq2jlðqrÞ: ðC9Þ

We are now in a position to apply a version of Limber’s
approximation. The first-order result from LoVerde and
Afshordi [65] can be written as

JνðkrÞ ≃ δDðkr − νÞ; ðC10Þ

where JνðxÞ is the Bessel function. Therefore, for a
spherical Bessel function jlðxÞ ¼

ffiffiffiffiffiffiffiffiffiffi
π=2x

p
Jlþ1

2
ðxÞ we get

jlðkrÞ ≃
ffiffiffiffiffiffiffi
π

2rk

r
1

k
δD

�
r −

lþ 1
2

k

�
ðC11Þ

to first order. Equation (C11) is valid only when all other
functions are slowly varying compared to the frequency of
the spherical Bessel, and the integration should be over a
wide interval. However, in the special case that one has two
spherical Bessel functions, applying Eq. (C11) reproduces
Eq. (A4), and that leads to the Limber approximation in the
context of smooth power spectra integrated over a redshift
bin; also see Appendix C of [66]. For simplicity we will
refer to this as the Limber approximation. The Limber
approximation Eq. (C11) needs to be used with care, and
we will list some of the caveats throughout this section.
Then, Eqs. (16) and (19) become
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Wlðk; qÞ ¼
2qk
π

Z
drr2ϕðrÞDðrÞbðr; qÞjlðkrÞ

× e−
1
2
σ2uq2

X
Δl

ðδKΔl;0 − βflΔlÞjlþΔlðqrÞ ðC12Þ

¼
ffiffiffi
q
k

r
ϕ

�
lþ 1

2

k

�
D

�
lþ 1

2

k

�
b

�
lþ 1

2

k
; q

�

× e−
1
2
σ2uq2

X
Δl

ðδKΔl;0 − βflΔlÞ

× δD
�
q −

lþ Δlþ 1
2

lþ 1
2

k

�
: ðC13Þ

Since the Limber approximation is only applicable for large
l, we further assume Δl ≪ l. Then,

Wlðk; qÞ ¼ δDðq − kÞϕ
�
lþ 1

2

k

�
D

�
lþ 1

2

k

�
b

�
lþ 1

2

k
; k

�

× e−
1
2
σ2uk2

X
Δl

ðδKΔl;0 − βflΔlÞ: ðC14Þ

Therefore, the SFB power spectrum Eq. (21) in the Limber
approximation is

FIG. 14. Top left: linear growth factor DðrÞ, linear growth rate fðrÞ, velocity dispersion σ2u ¼ σ2v=ðaHÞ2, galaxy bias bðrÞ ¼ b0=DðrÞ
where b0 ¼ 1, and selection function ϕðrÞ defined in Eq. (18). Top right: the SFB power spectrum in the Limber approximation closely
traces the 3D power spectrum. However, for a given perpendicular mode l and redshift range, only a part of the power spectrum is
measured. The horizontal lines show the range of k modes that a given l mode is able to measure for a survey within
1000 ≤ r

h−1 Mpc ≤ 4000, and the shaded bands show an estimate for the 1σ measurement uncertainty for that particular l mode.

Bottom left: here, each line fixes the redshift, and all lmodes are used. The Kaiser effect is not visible due to the Limber approximation
becoming invalid on large scales. Bottom right: here we show the SFB power spectrum on a grid of l-k modes. Within the Limber
approximation, the SFB power spectrum can be measured within a band such that r ≃ ðlþ 1

2
Þ=k is within the survey. Outside this band

we expect the Limber approximation to be too inaccurate even for the qualitative reasoning that is our objective here, and we leave a
detailed treatment to a future paper.
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Clðk; k0Þ ¼ PðkÞe−σ2uk2δDðk − k0Þ

× ϕ2

�
lþ 1

2

k

�
D2

�
lþ 1

2

k

�
b2
�
lþ 1

2

k
; k

�

× ½1 − βðfl−2 þ fl0 þ fl2Þ�2: ðC15Þ

The exponential is the suppression due to the FoG. The
Dirac-delta function shows that even with redshift evolu-
tion most of the power is on the diagonal k ¼ k0, as for a
nonevolving universe. Redshift evolution manifests itself
mainly through the interplay between l and k such that in
the Limber approximation the ratio

r ¼ lþ 1
2

k
ðC16Þ

is the comoving angular diameter distance. For example, if
the scale k is fixed, then changing the angular scale l

corresponds to changing the redshift. However, we caution
the reader that Eq. (C16) comes from the approximation
Eq. (C11), and a detailed treatment especially at high k is
needed in general. We note that primordial non-Gaussianity
will lead to a scale-dependent bias that will be absorbed
directly in the bias term on the second line. Finally, the last
line in Eq. (C15) accounts for the linear Kaiser effect.
In Fig. 14 we show the SFB power spectrum in the

Limber approximation. We define ClðkÞ such that
Clðk; k0Þ ¼ δDðk − k0ÞClðkÞ. For the galaxy bias we
choose bðr; kÞ ¼ b0=DðrÞ with b0 ¼ 1 so that the bias
and linear growth factor cancel, and our selection function
is a constant ϕðrÞ ¼ 1 for illustration. The top left panel
shows the inputs to our calculation.
The top right panel of Fig. 14 shows the SFB power

spectrum for several fixed l modes. The shaded areas
correspond to the 1σ measurement uncertainty estimated
via [16]

FIG. 15. Same as Fig. 14, except that the linear galaxy bias is now constant bðrÞ ¼ 1.8. As a result, the redshift evolution of the linear
growth factor DðrÞ is no longer canceled by the bias. Top right: at a fixed l, larger-scale modes are probed at higher redshift where the
growth factor is smaller. Thus, compared to Fig. 14, each l segment appears tilted. Bottom left: the redshift evolution of the linear
growth factorDðrÞ causes a shift in the power spectrum amplitude with the Limber ratio r ¼ ðlþ 1

2
Þ=k. Bottom right: high-lmodes are

suppressed because they primarily probe the high redshifts.
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ΔClðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2lþ 1

r �
ClðkÞ þ

1

n̄

�
: ðC17Þ

Since l corresponds to perpendicular wave modes, at small
r the corresponding k modes are large, and at large r the
corresponding k modes are small. Therefore, at a constant
l, the SFB power spectrum as a function of k sweeps
through both redshift and k modes, measuring a redshift
corresponding to r ≃ 4000h−1 Mpc at lower k, and a
redshift corresponding to r ≃ 1000h−1 Mpc at higher k.
Consequently, in the l-k plane, only a band of modes can

be measured, as illustrated in the bottom right plot of
Fig. 14. Fixing the redshift, which is possible in the Limber
approximation, results in a bona fide power spectrum
measurement, as illustrated in the bottom left panel.
In the Limber approximation, the SFB power spectrum

does not exhibit a strong Kaiser effect. We attribute this to
our approximations being inadequate for such analysis, and
we refer the reader to Munshi et al. [6], Yoo and Desjacques
[42] for further details.
Because Eq. (C16) relates the l and kmodes to a definite

redshift, we can only measure a band of modes. We
illustrate this in the bottom right panel of Fig. 14. More
generally, Eq. (C16) is valid only approximately, and the
detailed treatment outside this band is dependent on the
exact choice of basis functions.
The choice bðr; qÞ ∝ D−1ðrÞ results in linear bias and

linear growth canceling each other. In general, this may not
be the case, and we illustrate redshift evolution by setting
the bias constant, bðr; qÞ ¼ 1.8, in Fig. 15. Because for
fixed l larger-scale modes k correspond to higher redshift,
the linear growth evolution tilts each l segment of the
power spectrum in the top right panel. The bottom left
panel shows the power spectrum at fixed redshift according
to the Limber ratio Eq. (C16), sweeping through l.

Each segment in the top right panel of Fig. 15 crosses the
lines in the bottom left panel. We illustrate this further
in Fig. 16.
We hope that this Appendix gives some insight into how

the SFB power spectrum works. However, we stress again
that the approximations made here are inadequate for a full
cosmological analysis, and the reader should keep this
caveat in mind.

APPENDIX D: RADIAL SPHERICAL
FOURIER-BESSEL MODES WITH

POTENTIAL BOUNDARY CONDITIONS

In this Appendix we derive the radial basis functions of
the Laplacian with potential boundary conditions at rmin
and rmax.
We first isolate the radial part of Eq. (22). Writing

fðrÞ ¼ gðrÞhðr̂Þ; ðD1Þ

we require

−k2gh ¼ h
r2

∂
∂r

�
r2
∂g
∂r

�
þ g∇2h: ðD2Þ

Given the spherical harmonic solution for the angular
term h,

∇2h ¼ −
lðlþ 1Þ

r2
h; ðD3Þ

we get

0 ¼ d
dr

�
r2

dglðkrÞ
dr

�
þ ½ðkrÞ2 − lðlþ 1Þ�glðkrÞ; ðD4Þ

where we now added that the function g depends on l. Our
first aim is to derive the discrete spectrum of k modes for a
given l. We then use that to derive the form of the gl.
Following Fisher et al. [43], we demand that the orthogon-
ality relation Eq. (26) is satisfied. However, we modify the
approach in Fisher et al. [43] to integrate from rmin to rmax.
Equation (D4) multiplied by glðkrÞ then yields

Z
rmax

rmin

dr
d
dr

�
r2
dglðkrÞ

dr

�
glðk0rÞ

¼
Z

rmax

rmin

dr½lðlþ 1Þ − ðkrÞ2�glðkrÞglðk0rÞ: ðD5Þ

Subtract from this equation the same equation with k and k0
interchanged,

10−4 10−3 10−2 10−1

k in h Mpc−1

102

103

104

C
�(

k
)

in
[h

−1
M

p
c]

3

=
0

=
1 =

2 =
4 =

8 =
16 =

32

=
64

=
12

8
=

25
6

= 512

= 1024

1000 ≤ r
Mpc/h ≤ 4000

r = 1000 h−1Mpc

r = 4000 h−1Mpc

FIG. 16. Here we combine the top right and bottom left plots in
Fig. 15 to show the region that the SFB power spectrum probes in
the Limber approximation for a given redshift range and linear
power spectrum evolution.
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½k02 − k2�
Z

rmax

rmin

drr2glðkrÞglðk0rÞ

¼
Z

rmax

rmin

dr

�
d
dr

�
r2
dglðkrÞ

dr

�
glðk0rÞ

−
d
dr

�
r2
dglðk0rÞ

dr

�
glðkrÞ

�
: ðD6Þ

Partial integration with the terms on the right-hand side
(rhs) yields

Z
dr

d
dr

ðkr2g0lðkrÞÞglðk0rÞ

¼ kr2g0lðkrÞglðk0rÞjrmax
rmin

− kk0
Z

drr2g0lðkrÞg0lðk0rÞ: ðD7Þ

Then, Eq. (D6) becomes

½k02 − k2�
Z

rmax

rmin

drr2glðkrÞglðk0rÞ

¼ kr2g0lðkrÞglðk0rÞjrmax
rmin

− k0r2g0lðk0rÞglðkrÞjrmax
rmin

: ðD8Þ

The rhs will vanish for any k whenever

0 ¼ Akr2maxg0lðkrmaxÞ − Br2maxglðkrmaxÞ
− akr2ming

0
lðkrminÞ þ br2minglðkrminÞ; ðD9Þ

for any constants a, b, A, and B.
To choose a, b, A, and B, we note that the representable

field δðrÞ is written as a sum of the solutions to Eq. (D4)
inside the SFB volume, and we have some freedom to
choose the desired behavior outside of it. Since the field
inside the SFB volume satisfies the Poisson equation, it is
natural to have it satisfy Laplace’s equation9 outside it, and
demand that the solution is continuous and smooth at the
boundaries. That is,

δðrÞ ¼

8>>>>>><
>>>>>>:

P
lm

h
alm

	
r

rmin



l þ blm

	
rmin
r



lþ1

i
Ylmðr̂Þ; for r < rmin;

P
nlm

½cnljlðknlrÞ þ dnlylðknlrÞ�Ylmðr̂Þδnlm; for rmin ≤ r ≤ rmax;

P
lm

h
Alm

	
r

rmax



l þ Blm

	
rmax
r



lþ1

i
Ylmðr̂Þ; for r > rmax;

ðD10Þ

where we defined the constants alm, blm, cnl, dnl, Alm,
and Blm, and we explicitly wrote

glðkrÞ ¼ cnljlðkrÞ þ dnlylðkrÞ; ðD11Þ

and we anticipate that the function gl will also depend on n.
Continuity at the boundaries requires

alm þ blm ¼
X
n

glðknlrminÞδnlm; ðD12Þ

Alm þ Blm ¼
X
n

glðknlrmaxÞδnlm: ðD13Þ

Smoothness further requires

l
alm
rmin

− ðlþ 1Þ blm
rmin

¼
X
n

knlg0lðknlrminÞδnlm; ðD14Þ

l
Alm

rmax
− ðlþ 1ÞBlm

rmax
¼

X
n

knlg0lðknlrmaxÞδnlm: ðD15Þ

Now requiring δðrÞ to be finite at r ¼ 0 and r ¼ ∞ sets
blm ¼ Alm ¼ 0, and requiring continuity and smoothness
for any δnlm, we get

lglðknlrminÞ ¼ knlrming0lðknlrminÞ; ðD16Þ

−ðlþ 1ÞglðknlrmaxÞ ¼ knlrmaxg0lðknlrmaxÞ: ðD17Þ

These choices lead to a ¼ 1, b ¼ l=rmin, A ¼ 1, and B ¼
−ðlþ 1Þ=rmax in Eq. (D9), which shows that the con-
ditions Eqs. (D16) and (D17) on knl lead to an orthogon-
ality relation for the gl.
Both jl and yl satisfy the two recurrence relations:

j0lðkrÞ ¼ −jlþ1ðkrÞ þ
l
kr

jlðkrÞ; ðD18Þ

j0lðkrÞ ¼ jl−1ðkrÞ −
lþ 1

kr
jlðkrÞ: ðD19Þ

Then, Eqs. (D16) and (D17) simplify to

cnljlþ1ðknlrminÞ þ dnlylþ1ðknlrminÞ ¼ 0; ðD20Þ

cnljl−1ðknlrmaxÞ þ dnlyl−1ðknlrmaxÞ ¼ 0: ðD21Þ
9Laplace’s equation is Poisson’s equation without a source

term.

HENRY S. GRASSHORN GEBHARDT and OLIVIER DORÉ PHYS. REV. D 104, 123548 (2021)
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The normalization of gl is obtained by dividing Eq. (D8) by
k02 − k2, and taking the limit k0 → k ¼ knl,

1 ¼
Z

rmax

rmin

drr2g2lðkrÞ

¼ lim
k0→k

kr2g0lðkrÞglðk0rÞjrmax
rmin

− k0r2g0lðk0rÞglðkrÞjrmax
rmin

k02 − k2
:

ðD22Þ

When kr ¼ knlrmin as in Eq. (D16),

krg0lðkrÞglðk0rÞ − k0rg0lðk0rÞglðkrÞ
¼ k0rglðkrÞ½cnljlþ1ðk0rÞ þ dnlylþ1ðk0rÞ�; ðD23Þ

and when kr ¼ knlrmax as in Eq. (D17),

krg0lðkrÞglðk0rÞ − k0rg0lðk0rÞglðkrÞ
¼ −k0rglðkrÞ½cnljl−1ðk0rÞ þ dnlyl−1ðk0rÞ�: ðD24Þ

The terms in brackets vanish in the limit k0 → k ¼ knl as
per Eqs. (D20) and (D21). That is, we need limits

lim
q0→q

cnljlþ1ðq0Þ þ dnlylþ1ðq0Þ
q02 − q2

¼ glðqÞ
2q

; ðD25Þ

lim
q0→q

cnljl−1ðq0Þ þ dnlyl−1ðq0Þ
q02 − q2

¼ −
glðqÞ
2q

; ðD26Þ

for q ¼ krmin and q ¼ krmax, respectively. Then, Eq. (D22)
becomes

1 ¼ r3max

2
g2lðknlrmaxÞ −

r3min

2
g2lðknlrminÞ: ðD27Þ

Choosing knl, cnl, and dnl that satisfy Eqs. (D20), (D21)
and (D27) guarantees the orthonormality of the gl,

Z
rmax

rmin

drr2glðknlrÞglðkn0lrÞ ¼ δKnn0 : ðD28Þ

Note that the condition l ¼ l0 is not enforced by the gl.
Instead, l ¼ l0 comes from the spherical harmonics,
i.e., Eq. (A5).

1. Phase factor

We are free to introduce a phase factor for the gnlðrÞ, and
we choose it so that the sign of gnlðrminÞ alternates with n,
but stays constant with l,

gnlðrÞ ¼ ð−1Þ½1−floorð 1
lþ1

Þ�½1−floorð1nÞ�g̃nlðrÞ; ðD29Þ

where the tilde indicates that we have not included the
phase factor. This flips the sign unless either l ≠ 0 or
n ≠ 1. Thus, the basis functions in Fig. 1 are obtained.

2. Numerical concerns

To calculate knl, solve each of Eq. (D20) and (D21) for
the ratio dnl=cnl, and set them equal to get

0 ¼ jl−1ðknlrmaxÞylþ1ðknlrminÞ
− yl−1ðknlrmaxÞjlþ1ðknlrminÞ: ðD30Þ

Examples for the resulting zeros and the first few basis
functions are shown in Fig. 1. The ratio dnl=cnl then
follows from Eq. (D20) or (D21). Finally, the overall
normalization is fixed by Eq. (D27) up to a sign.
When rmax is large and rmin is small, the knl may need to

be computed using arbitrary precision floats, and the gnl
may need to be calculated with arbitrary precision as well.
Caching the result in double precision should then provide
for sufficient speed for the actual transform.

APPENDIX E: COVARIANCE MATRIX SIMPLIFICATION

In this Appendix we simplify the covariance matrix Eq. (96). For simplicity we ignore the local average effect. We
explicitly treat the shot noise Eq. (63) because it is inhomogeneous and anisotropic. We get

hδW;A
NLMδ

W;A;�
N0L0M0 i ¼

X
n1l1m1

Wn1l1m1

NLM

X
n2l2m2

Wn2l2m2;�
N0L0M0

�
δKl1l2δ

K
m1m2

Cl1n1n2 þ
1

n̄
ðW−1Þn2l2m2

n1l1m1

�
ðE1Þ

¼
X
l1n1n2

Cl1n1n2

X
m1

Wn1l1m1

NLM WN0L0M0
n2l1m1

þ 1

n̄
WN0L0M0

NLM ; ðE2Þ

where we used Eq. (37). Similarly, when neither density contrast has the complex conjugate attached,
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hδW;A
NLMδ

W;A
N0L0M0 i ¼ ð−1ÞM0 X

l1n1n2

Cl1n1n2

X
m1

Wn1l1m1

NLM WN0L0;−M0
n2l1m1

þ ð−1ÞM0

n̄
WN0L0;−M0

NLM ; ðE3Þ

where we used Eq. (A10). Therefore, both terms in Eq. (96) are of the form

1

ð2lþ 1Þð2Lþ 1Þ
X
mM

hδW;A
nlmδ

W;A;�
NLM ihδW;A

n0lmδ
W;A;�
N0LMi

¼ 1

ð2lþ 1Þð2Lþ 1Þ
X
mM

� X
l1n1n2

Cl1n1n2

X
m1

Wn1l1m1

nlm WNLM
n2l1m1

þ 1

n̄
WNLM

nlm

�

×

� X
l3n3n4

Cl3n3n4

X
m3

Wn3l3m3;�
n0lm WN0LM;�

n4l3m3
þ 1

n̄
WN0LM;�

n0lm

�
ðE4Þ

¼ 1

ð2lþ 1Þð2Lþ 1Þ
X
mM

� X
l1n1n2

Cl1n1n2

X
m1

Wn1l1m1

nlm WNLM
n2l1m1

X
l3n3n4

Cl3n3n4

X
m3

Wn3l3m3;�
n0lm WN0LM;�

n4l3m3

þ 1

n̄
WNLM

nlm
1

n̄
WN0LM;�

n0lm þ 1

n̄
WN0LM;�

n0lm

X
l1n1n2

Cl1n1n2

X
m1

Wn1l1m1

nlm WNLM
n2l1m1

þ hn ↔ n0; N ↔ N0i�
�

ðE5Þ

¼ A1
LNN0
lnn0 þ A2

LNN0
lnn0 þ A2

LN0N
ln0n þ A3

LNN0
lnn0 : ðE6Þ

Using Eq. (37), we get

A1
LNN0
lnn0 ¼ 1

ð2lþ 1Þð2Lþ 1Þ
X
l1n1n2

Cl1n1n2

X
l3n3n4

Cl3n3n4W4

0
B@

l1 L l3 l

n1 N n4 n0

n2 N0 n3 n

1
CA; ðE7Þ

and

A2
LNN0
lnn0 ¼ 1

n̄
1

ð2lþ 1Þð2Lþ 1Þ
X
l1n1n2

Cl1n1n2W3

0
B@

l1 L l

n1 N n0

n2 N0 n

1
CA; ðE8Þ

and

A3
LNN0
lnn0 ¼ 1

n̄2
1

ð2lþ 1Þð2Lþ 1ÞW2

0
B@

L l

N n0

N0 n

1
CA ¼ 1

n̄2
1

2lþ 1
MLNN0

lnn0 : ðE9Þ

The Wk symbols are defined in Eq. (F1) and discussed in Appendix F. Then Eq. (96) becomes

VWLNN0
lnn0 ¼ A1

LNN0
lnn0 þ A2

LNN0
lnn0 þ A2

LN0N
ln0n þ A3

LNN0
lnn0 þ hN ↔ N0i: ðE10Þ

The A1 term dominates if the power spectrum is much larger than the shot noise, and A3 dominates if shot noise is larger.

APPENDIX F: CHAINS OF WINDOW FUNCTIONS

Throughout the paper, we find that traces of density-contrast window coupling matricesW appear with summations over
the azimuthal modes m. That is, we find tensors Wk of the form
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Wk

0
B@

l1 l2 � � � lk

n1 n2 � � � nk
n01 n02 � � � n0k

1
CA

¼
X

m1m2���mk

Wn1l1m1

n0klkmk
Wn2l2m2

n0
1
l1m1

� � �Wnklkmk
n0k−1lk−1mk−1

: ðF1Þ

This starts with a single window function Eq. (64) (k ¼ 1)
for shot noise, two window functions Eqs. (51) and (E9)
(k ¼ 2) for the pseudopower spectrum mixing matrix and
shot noise covariance, three window functions Eqs. (91)
and (E8) for part of the local average effect and covariance
calculations, four window functions Eq. (E7). If we were to
include the local average effect in the covariance, then
k ¼ 5 and k ¼ 6 would also occur.
TheWk are real, which is trivially shown by substituting

each window with its definition Eq. (35) and using
Eq. (A9). Also, cyclical permutations of the argument
columns leave Wk invariant, and anticyclical permutations
leave it invariant if all ni and n0i are switched as well.
That is,

Wk

0
B@

l1 l2 � � � lk

n1 n2 � � � nk
n01 n02 � � � n0k

1
CA ¼ Wk

0
B@

lk l1 � � � lk−1

nk n1 � � � nk−1
n0k n01 � � � n0k−1

1
CA

¼ Wk

0
B@

lk lk−1 � � � l1

n0k n0k−1 � � � n01
nk nk−1 � � � n1

1
CA:

ðF2Þ

The first equality trivially follows from the definition
Eq. (F1), and the second from applying Eq. (37) to all
the windows.

1. Evaluation for separable window function

For a separable window WðrÞ ¼ ϕðrÞWðr̂Þ, Eq. (40)
becomes

Wnlm
n0l0m0 ¼ Inln0l0W

lm
l0m0 ; ðF3Þ

where

Inln0l0 ¼
Z

rmax

rmin

drr2gn0l0 ðrÞgnlðrÞϕðrÞ; ðF4Þ

Wlm
l0m0 ¼ ð−1Þm0X

LM

Gl0lL
−m0;m;MWLM; ðF5Þ

where WLM was defined in Eq. (55). Thus, Eq. (F1) is

Wk

0
B@

l1 l2 � � � lk

n1 n2 � � � nk
n01 n02 � � � n0k

1
CA

¼ In1l1n0klk
In2l2n0

1
l1
� � � Inklkn0k−1lk−1

X
m1m2���mk

Wl1m1

lkmk
Wl2m2

l1m1
� � �Wlkmk

lk−1mk−1
:

ðF6Þ

Equation (F6) contains OðlkÞ terms.

[1] D. Spergel, N. Gehrels, C. Baltay, D. Bennett, J.
Breckinridge, M. Donahue, A. Dressler, B. S. Gaudi, T.
Greene, O. Guyon et al., arXiv:1503.03757.
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