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Cosmic microwave background observations are used to constrain reheating to standard model (SM)
particles after a period of inflation. As a light spectator field, the SM Higgs boson acquires large field values
from its quantum fluctuations during inflation, gives masses to SM particles that vary from one Hubble patch
to another, and thereby produces large density fluctuations. We consider both perturbative and resonant decay
of the inflaton to SM particles. For the case of perturbative decay from coherent oscillations of the inflaton
after high scale inflation, we find strong upper bounds on the reheat temperature for the inflaton decay into
heavy SM particles. The strongest bounds arise in the case of reheating to top quarks where we find
Treh ≲Oð1012Þ GeV for an inflaton mass of 1013 GeV. For the case of resonant particle production
(preheating) to (Higgsed) SM gauge bosons, we find temperature fluctuations larger than observed in the
cosmic microwave background for a range of gauge coupling that includes those found in the SM and
conclude that such preheating cannot be the main source of reheating the Universe after inflation.
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I. INTRODUCTION

Inflation [1–3] is a period of accelerated expansion that
occurred in the very early epoch of our Universe. It was first
proposed to explain the homogeneity, isotropy, and flatness
observed in the cosmic microwave background (CMB)
radiation [4,5], as well as the lack of relic monopoles. A
mechanism for driving the dynamics of inflation comes in
the form of a rolling scalar field, the inflaton [6,7]. In this

framework, the density perturbations that are observed in the
CMB are explained by the quantum fluctuations of the
inflaton field. It is these perturbations that later develop into
the large scale structure observed in the Universe [8,9]. The
most stringent constraints to the theory of inflation come
from the observations of the CMB by the Planck satellite,
including the power spectrum [10] and bispectrum [11] of
temperature anisotropies.
The inflationary period must end by successfully

reheating the Universe, which marks the transition into
the radiation dominated cosmological era before big bang
nucleosynthesis (BBN) occurs. If inflation is driven by a
rolling scalar field, reheating can occur through the decay
of the inflaton into light degrees of freedom in the
standard model (SM) or an intermediate sector. Typical
mechanisms for reheating are perturbative decay of the
inflaton [12,13] and resonant particle production [14]. In
particular, the inflaton field ϕ might have decayed due to
the presence of interaction terms in the Lagrangian such as
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ψ̄ψϕ and ϕFμνF̃μν. The former term is a Yukawa-type
coupling to a fermion ψ and the latter is a Chern-Simons
coupling to gauge bosons with a field strength Fμν, as
found in models of natural inflation [15]. Other scenarios
for reheating include the decay of the inflaton condensate
into its own quanta, which must ultimately decay into SM
particles, or through gravitational interactions [16].
In this paper we consider reheating via inflaton decay

to SM particles coupled to the Higgs boson. We note that
the inflaton in this paper is not the Higgs boson; instead
the Higgs is a light spectator that plays an important role
in the reheating process. The scenario we consider is
minimal in the sense that no new particles beyond the SM
are introduced other than the inflaton itself. Along with
the inflaton flat direction which is the main component in
driving the expansion rate of the Universe during the
inflationary stage, the Higgs boson and other light fields
that are present at this epoch would act as spectators since
they would not directly affect the evolution of the back-
ground geometry. However, light spectator fields would
acquire large quantum fluctuations and thereby effective
masses that vary from one Hubble patch to another. If the
light spectators are also associated with the decay of
the inflaton field in each Hubble patch, their stochastic
dynamics can cause spatial fluctuations in the reheat
temperature and large density perturbations.
Inhomogeneous reheating due to the stochastic behavior

of a light spectator field is known as modulated reheating
[17–21]. Examples of light spectators can include the SM
Higgs boson, with mass ∼Oð125 GeVÞ [22,23] and the
hypothetical axion, with a mass typically well below the
MeV range (see Ref. [24] for a recent review). In this paper
we focus on modulated reheating caused by coupling of the
inflaton decay products to the SM Higgs boson [25–28],
which is taken to be a light spectator during inflation. We
assume that the inflaton couples primarily to SM particles
that develop masses when the Higgs field acquires a vacuum
expectation value (VEV). If the inflaton were instead to
decay to a massless gauge mode in the broken phase (the
analog of the photon at lower temperatures) or to un-Higgsed
neutrinos, then the effective Higgs mass during inflation
would be irrelevant to the reheating process, since the SM
Higgs does not couple to these particles.1

Enqvist et al. [29] showed that during inflation, due to the
quantum fluctuations of the Higgs field, the Higgs can
develop a mass so that electroweak (EW) symmetry can be
treated as effectively broken [30–32]. The expectation value
of the Higgs amplitude over the entire inflating patch is
vanishing hhIi ¼ 0 due to the symmetric potential (where
the subscript I is used to indicate the initial value at the onset

of inflaton oscillations, i.e. at the end of inflation). However,
due to the quantum fluctuations, the variance is nonzero.
Thus, the typical Higgs amplitude, i.e. the effective VEV, in a
typical Hubble patch at the end of inflation is given by a root
mean square value hI ¼

ffiffiffiffiffiffiffiffiffi
hh2i

p
∝ HI, where HI is the

Hubble scale at the onset of inflaton oscillations. Even
assuming that the energy density of the Higgs field is always
subdominant to that of the inflaton, its effective VEV would
be driven by the stochastic dynamics to relatively large
values. The effective nonzero Higgs VEV during inflation
then gives mass to all SM particles that couple to the Higgs.
In turn, this would affect the decay of the inflaton to SM
particles. Although usually considered to be much lighter
than the inflaton, SM particles with masses due to the Higgs
boson condensate which develops during inflation [29,33]
can have several interesting effects.
In our previous paper (Ref. [34] hereafter referred to as

FSSV), we studied the effects of Higgs blocking, i.e. the
delay in the reheating process due to the large particle masses
acquired during inflation due to the effective Higgs VEV. As
long as the particle masses exceed the inflaton mass,
reheating cannot occur. Only once the Higgs condensate
decays do the particle masses vanish and reheating can
proceed. We studied Higgs blocking for the cases of both
perturbative decay and resonant particle production. We also
briefly discussed the potential for generating large temper-
ature fluctuations due to the stochastic nature of the Higgs
blocking, with variation from one Hubble patch to another.
Subsequently, Ref. [35] calculated signatures for the effects
of the Higgs on reheating in the cosmological collider
framework and Ref. [36] showed the potentially large
temperature fluctuations which can arise due to Higgs
blocking when the inflaton decays to fermions with rela-
tively large Yukawa couplings to the SM Higgs. In our
present work we extend our previous results of FSSV and
treat both Higgs blocking and Higgs modulation to derive
the corresponding density fluctuations that arise during
reheating. For the case of perturbative inflaton decays,
our previous work in FSSV found Higgs blocking to be
negligible for SM fermions with Yukawa couplings y < 1;
here we will show that, even for this case, Higgs modulation
alone can indeed generate large temperature anisotropies.
In this work we consider a simple reheating scenario

where the inflaton (in the postinflationary epoch) pro-
ceeds along a single field direction with a potential
approximated by that of a massive scalar field. We do
not further specify any particular inflationary potential.
We must again stress that the inflaton field in this study is
not the Higgs [37] field, which is taken to behave as a
spectator field. We treat the decay rate of the inflaton Γϕ

as a time- and space-dependent quantity because of its
relation to the value of the Higgs field. Perturbations in the
Higgs field lead to variations in Γϕ, similar to those
discussed for example in Ref. [17]. We use the perturbed
Einstein equations introduced by Ref. [17] to derive the

1We note that the direction of the Higgs VEV may or may not
coincide with the direction of spontaneous symmetry breaking at
low temperatures, hence the massless direction during inflation is
not necessarily the same as today’s photon.
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temperature fluctuations induced by the spatial depend-
ence of the Higgs field. While Ref. [36] has a similar
parameterization of Higgs effects on reheating, the ampli-
tudes of temperature fluctuations we calculate in this work
are notably larger for equivalent choices of parameters and
we are able to show that large temperature fluctuations are
even possible in the case of perturbative reheating without
the full effects of Higgs blocking.2 Furthermore, in our
framework it is straightforward to extend our analysis to
the case of nonperturbative preheating, for which we use a
similar set of equations to calculate the density fluctua-
tions induced by the spatial dependence of (Higgsed) SM
gauge boson masses.
In Sec. II A we present equations which describe the

evolution of energy densities in different Hubble patches
which are characterized by different inflaton decay rates in
each patch. In Sec. II B we show the corresponding perturbed
equations describing the evolution of adiabatic matter and
metric perturbations after the end of inflation. After elabo-
rating on the dynamics of the Higgs field in Sec. II C, we
explain our methods for calculating the comoving curvature
perturbation in the cases of perturbative and resonant inflaton
decays, as well as its connection to the temperature anisot-
ropies observed in the CMB in Secs. II D, II E, and II F,
respectively. Our numerical results are presented in Sec. III
for perturbative inflaton decays and Sec. IV for the case of
reheating via resonant decays of the inflaton into gauge
bosons. We summarize our findings and offer our prospects
for future work in Sec. V.
To guide the reader to our main results: our primary

results for the case of (spatially dependent) perturbative
inflaton decay to SM particles can be found in Fig. 9. This
figure shows constraints on the parameters (inflaton
decay rate to SM fermions when masses are negligible,
Yukawa coupling of SM decay products with the SM
Higgs boson, and self-coupling of the Higgs during
inflation) obtained by requiring that the amplitude of
temperature fluctuations do not exceed CMB observa-
tions. By inspecting Fig. 9 one can immediately see the
parts of parameter space that lead to temperature fluctua-
tions from reheating that exceed what is observed in the
CMB and thus are excluded (red regions). Equation (38)
approximates the dependence of the reheating-induced
temperature fluctuations on the Yukawa coupling and the
(unblocked) inflaton decay rate for a fixed Higgs

self-coupling λI ¼ 0.01. We then apply Eq. (38) to
calculate the maximum allowed reheat temperature for
concrete examples where the inflaton decays predomi-
nately to top quarks or tau leptons in Eqs. (40) and (41),
respectively. For the case of resonant preheating to SM
Higgsed gauge bosons, our main results can be seen in
Fig. 10; one can see that for all reasonable parameter
choices the density fluctuations (shown in terms of the
Bardeen potential) are too large.

II. REHEAT PROCESSES

A. Unperturbed equations

We work using a flat Friedmann-Lemaître-Robertson-
Walker metric, described by the line element

ds2 ¼ dt2 − a2ðtÞdx2; ð1Þ

where aðtÞ is the scale factor, x are spatial coordinates, and
t is cosmic time. We assume that towards the end of the
inflationary period, the inflaton field begins to oscillate
about the minimum of its potential, behaving as a massive
scalar field with energy density ρϕ. We consider a collection
of n Hubble patches, each of which is characterized by a
different inflaton decay rate Γj

ϕ, for j ∈ f1; 2;…; ng. The
perturbative decay of the inflaton field into radiation at the
rate Γj

ϕ in the jth Hubble patch is described by the coupled
first-order equations

dρjϕ
dNj ¼ −3ρjϕ −

Γj
ϕ

Hj ρ
j
ϕ; ð2Þ

dρjr
dNj ¼ −4ρjr þ

Γj
ϕ

Hj ρ
j
ϕ; ð3Þ

where ρjϕ, ρjr are the respective energy densities of
the inflaton and of radiation, both in the same patch.
The independent variable Nj in Eqs. (2)–(3) is the number
of e-folds since the beginning of the reheating stage in
patch j at time ti, defined as

Nj ¼
Z

t

ti

Hjdt0; ð4Þ

where the Hubble rate is Hj ¼ _aj=aj with aj as the scale
factor. The Hubble rate is related to the total energy
density at the patch we are considering through the
Friedmann equation

ðHjÞ2 ¼ 8πG
3

ðρjϕ þ ρjrÞ; ð5Þ

where G is Newton’s constant.

2We note our calculations are broadly consistent with those in
Ref. [17], which dynamically track the growth of density
perturbations on superhorizon scales from the end of inflation.
We have also compared our results with those obtained via a
numerical implementation of the δN formalism, similarly ac-
counting for the growth of perturbations on superhorizon scales,
and the results of the two methods agree up to Oð1Þ factors. As
the perturbation spectrum in Ref. [36] is, alternatively, calculated
using the δN formalism at the time of inflaton decay (approxi-
mated to be instantaneous), a detailed comparison is beyond the
scope of this work.
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At this point it is also useful to define the background
energy densities, with respect to which perturbations are
calculated in Sec. II B. These background quantities are
not evaluated at a particular Hubble patch like the ones
mentioned above, but are in fact averaged over all Hubble
patches (spatially independent) and only evolve with time.
Their definitions are similar to those of Eqs. (2)–(3) but
include a decay rate Γ̄ϕ, also averaged over all Hubble
patches, as follows

dρ̄ϕ
dN

¼ −3ρ̄ϕ −
Γ̄ϕ

H
ρ̄ϕ; ð6Þ

dρ̄r
dN

¼ −4ρ̄r þ
Γ̄ϕ

H
ρ̄ϕ: ð7Þ

The Hubble parameter in this case is given by

H2 ¼ 8πG
3

ðρ̄ϕ þ ρ̄rÞ; ð8Þ

and the number of e-folds is

N ¼
Z

t

ti

Hdt0: ð9Þ

B. Perturbed equations

In this section we consider the evolution of the adiabatic
matter and metric perturbations over the background
quantities defined above.
Working in the Newtonian gauge, we perturb the metric

of Eq. (1) in the absence of anisotropic pressure perturba-
tions

ds2 ¼ ð1þ 2ΦÞdt2 − a2ðtÞð1 − 2ΦÞdx2; ð10Þ

where we introduced the gravitational potential perturba-
tion Φ. We also write the perturbations in the energy
density of the inflaton and radiation components at a
Hubble patch j as

ρjϕ ¼ ρ̄ϕð1þ δjϕÞ; ρjr ¼ ρ̄rð1þ δjrÞ; ð11Þ

where δjϕ; δ
j
r ≪ 1 are small perturbations over the aver-

aged background quantities ρ̄ϕ and ρ̄r, respectively, at
the particular patch. Despite the fact that, in principle, the
perturbations themselves are dependent on the patch at
which they are calculated, in the following we are going to
refrain from using the j superscript in our Equations. That
is because, as we will explain in Sec. II D, in our
calculation we will only trace a characteristic value of
the perturbations and not their actual distributions. This
way we are later on able to constrain parameter space in a
much more computationally efficient way. The actual

perturbation distributions are calculated in our companion
paper [38] with the purpose of deriving the corresponding
non-Gaussianity of the temperature anisotropy spectrum.
The gravitational potential perturbation Φ couples to the

energy density perturbations through

dΦ
dN

¼ −Φ −
4πG
3H2

ðρ̄ϕδϕ þ ρ̄rδrÞ: ð12Þ

We now turn to the first order perturbations to the
Boltzmann Eqs. (2)–(3), allowing also for fluctuations
δΓϕ in the inflaton decay rate. We follow the method used
in Ref. [17] to assess the effects of such a perturbation. On
superhorizon scales k ≪ aH, the expressions describing
perturbations in the matter and radiation energy densities
read

dδϕ
dN

¼ 3
dΦ
dN

−
Γ̄ϕ

H
ðδΓ þΦÞ; ð13Þ

dδr
dN

¼ 4
dΦ
dN

þ ρ̄ϕ
ρ̄r

Γ̄ϕ

H
ðδΓ þΦþ δϕ − δrÞ; ð14Þ

where δΓ ≡ δΓϕ=Γ̄ϕ is the perturbation in the inflaton
decay rate. The background Eqs. (2)–(3) together with
Eqs. (12)–(14) form a set of five coupled differential
equations.
In the standard scenario where δΓ ¼ 0, superhorizon

perturbations remain frozen until they re-enter the hori-
zon (dΦ=dN ¼ 0). In this work, where there is modulated
reheating, on the other hand, δΓ ≠ 0 leading to
dΦ=dN ≠ 0; thus superhorizon perturbations evolve with
time. In fact, the decay rate becomes time and space
dependent once the effects of Higgs modulation and
Higgs blocking (as defined in Sec. I and discussed in
FSSV) are taken into account during the reheating
process. An alternative way of understanding the super-
horizon evolution of the potential perturbation is to
consider the isocurvature perturbations temporarily pro-
duced by the inhomogeneous transfer of energy between
the inflaton and the radiation bath across different Hubble
patches. We elaborate more on this topic in Sec. II F.

C. Higgs field dynamics

Having defined a framework for inhomogeneous
reheating in previous sections, we now consider the
dynamics of the Higgs boson during and after inflation,
which determine the evolution of density perturbations
produced during Higgs-modulated reheating. In this
section, we summarize the aspects of the Higgs dynamics
most relevant for Higgs-modulated reheating, while a
more comprehensive discussion can be found in FSSV.
We assume the SM Higgs is minimally coupled to gravity
and is a light spectator field during inflation.
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We take the background value of the Higgs doublet and
its potential to be3

Φ ¼ 1ffiffiffi
2

p
�
0

h

�
; ð15Þ

VHðhÞ ¼ λ

�
Φ†Φ −

ν2

2

�
2

≈
λ

4
h4; ð16Þ

where ν ¼ 246 GeV and λ is the quartic self-coupling,
which is taken to be positive during inflation. Here h is a
real scalar field.
During inflation, the Higgs field initially rolls classically

down its potential and soon reaches a regime dominated by
quantum fluctuations. The result is that the superhorizon
modes of the Higgs follow a random walk during the final
stages of inflation. After a sufficient number of e-folds, the
probability density function (PDF)4 describing the Higgs
field at the end of inflation is [40]

f̃eqðhÞ ¼
�
32π2λI
3H4

I

�
1=4 1

Γð1=4Þ exp
�
−
2π2λIh4

3H4
I

�
: ð17Þ

In the previous equation, λI and HI are the Higgs quartic
self-coupling and the Hubble scale at the end of inflation,
respectively. Furthermore, the Gamma function has the
value Γð1=4Þ ≃ 3.625.
Due to the stochastic dynamics mentioned above, each

Hubble patch at the end of inflation has a different effective
Higgs VEV. The probability to find a particular Higgs VEV
in a given Hubble patch at the end of inflation is given by
the equilibrium PDF of Eq. (17). The reheating dynamics
within each Hubble patch (after inflation has ended) are
completely deterministic, once we specify the initial Higgs
VEV value sampled from Eq. (17). The dynamics of the
Higgs field’s VEV after inflation has ended in a Hubble
patch j reads

d2hj

dðNjÞ2 þ
�
3þ 1

Hj

dHj

dNj

�
dhj

dNj þ
λI

ðHjÞ2 ðh
jÞ3 ¼ 0; ð18Þ

where the derivative of the Hubble rate with respect to the
number of e-folds is

dHj

dNj ¼
1ffiffiffiffiffiffi
Hj

p 4πG
3

�
dρjϕ
dNj þ

dρjr
dNj

�
: ð19Þ

For the moment, we have neglected the backreaction of the
SM gauge bosons on the Higgs field dynamics, which is
considered in Sec. III B. Equations (18)–(19) describe the
damped oscillations which the Higgs experiences during
the reheating period [34].
Using the distribution of Higgs values at any point in

time, we can define a characteristic value of the Higgs. The
mean value of the Higgs VEV hhi across the observable
Universe is zero, since for every patch with a positive value
hj > 0 there will be another patch where the Higgs VEV
has the value−hj. We therefore take the characteristic value
of the Higgs within a typical patch to be the standard
deviation

h̃ ¼
ffiffiffiffiffiffiffiffiffi
hh2i

q
≡

�Z
h2f̃ðhÞdh

�
1=2

: ð20Þ

Here h̃ is not the second moment of the equilibrium Higgs
distribution in Eq. (17). Instead, it is a time dependent
quantity and must be evaluated from the actual Higgs
distribution at every point in time. Specifically we will
compute h̃ðNÞ as a function of the number of e-folds N
after inflation. Henceforth we will use the language
“characteristic Higgs VEV” for this quantity h̃ (although
not actually a VEV itself, but rather a typical value within a
given patch).
At this point we should comment on the validity of

Eq. (17) as the Higgs distribution at the end of inflation. f̃eq
represents the equilibrium PDF of any light spectator field
present during inflation with a quartic self-interaction term
dominating its potential at large field values (in our case the
Higgs). The equilibrium PDF has been derived under two
main assumptions. First, the calculation assumes a de Sitter
spacetime during inflation even though the small scale
variation of the observed CMB power spectrum suggests a
slight deviation from the pure de Sitter limit. We also
assume there is a sufficient number of e-folds during
inflation Nequil ∼Oðλ−1=2Þ for the Higgs PDF to evolve
towards equilibrium.
While Eq. (17) is sufficient to both demonstrate the

important effects of Higgs dynamics on reheating and
derive interesting constraints, a more thorough stochastic
analysis of the Higgs dynamics could provide further
insight and even better (possibly model-dependent) con-
straints. Recent analysis of stochastic dynamics of light
spectator fields has uncovered interesting results; for
example Ref. [41] showed that light spectator fields can
acquire larger field displacements during inflation when

3We neglect operators such as ϕϕhh in order to demonstrate
how the Higgs can induce large density perturbations during
reheating without direct couplings to the inflaton, although the
effects of such couplings could be interesting to investigate in
future work. For example, operators directly coupling the Higgs
to the inflaton can be radiatively generated even if they are absent
at tree level in the Lagrangian and can possibly destabilize the
electroweak vacuum during reheating [39].

4Note that f̃eqðhÞ has units of ½mass�−1, such that the
cumulative distribution function [CDF≡ R

f̃eqðhÞdh] is dimen-
sionless and equals unity when integrated over the entire domain
−∞ < h < ∞. For example, see the axes of Fig. 1.
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accounting for deviations from the de Sitter approximation.
If applied to our calculations, the parameter space of
reheating models could be more tightly constrained than
what is shown in Figs. 9 and 10.
Furthermore, the existence of four degrees of freedom in

the Higgs field (ignoring gauge bosons for a moment),
means that the Higgs random walk will be four dimen-
sional, leading to larger VEVs than its one-dimensional
counterpart. The existence of gauge fields complicate the
actual calculation, but as shown in Ref. [42], the end result
for the Higgs VEV is closer to that of a four-dimensional
random walk than the one-dimensional system leading to
Eq. (17). Taking a conservative viewpoint, we use Eq. (17)
as the basis of our calculations, keeping in mind that
incorporating a more realistic PDF for the Higgs field will
result in even tighter constraints.
One other concern we should address is the stability of

the SM Higgs potential at large field values. The value of
the Higgs quartic self-coupling λ≡ λðμÞ depends on the
renormalization parameter μ and can become negative at a
high scale μinst ∼ 1011 GeV due to its renormalization
group (RG) evolution, possibly leading to an instability
in the potential. The random walk of the Higgs field during
inflation could thus send the Higgs into an anti–de Sitter
minimum [43–46]. This instability is sensitive to the value
of the top quark massmt which, for its best fit values, leads
to a negative Higgs potential above a (gauge-dependent)
instability scale Λinst ≈ 1011 GeV. For simplicity, we
assume that any possible instability in the Higgs potential
is cured either by new physics decoupled from the inflation
scale or by displacing the value of mt below its best fit
value, within its significant experimental and theoretical
uncertainties [47].

D. Perturbative decay: Patch-by-patch Higgs evolution

In the previous sections we defined both the background
and the perturbation equations which govern the growth of
inhomogeneities in the case of an inflaton decay rate which
varies between different Hubble patches. Furthermore, we
showed how the VEV of the Higgs field can differ from
patch to patch due to its random walk during inflation. We
now move on to explain the dependence of the inflaton
decay rate on the Higgs VEV, which causes variation in
reheating between Hubble patches. In this subsection, we
consider the case of perturbative decay of the inflaton. In
Sec. II E we will turn to nonperturbative decay.
For simplicity, in computing the decay rate, we assume a

Yukawa-type coupling between the inflaton and the fer-
mion to which it decays. In this case, the decay rate of the
inflaton at patch jwas shown in our previous work in FSSV
to be

Γj
ϕ ¼ Γ0

�
1 −

4ðmj
fÞ2

m2
ϕ

�3=2
Θ½m2

ϕ − 4ðmj
fÞ2�; ð21Þ

where mϕ is the inflaton mass and Γ0
5 is the inflaton decay

rate in the absence of the Higgs modulation/blocking (the
massless fermion limit). The Heaviside function, defined as
ΘðxÞ ¼ 1 for x ≥ 0 and ΘðxÞ ¼ 0 for x < 0, accounts for
the phase-space blocking due to large effective fermion
masses. Although our calculations specifically assume a
Yukawa-type coupling between the inflaton and SM
fermions, the results we present in the case of perturbative
inflaton decay should remain basically the same for any
final state particles that become massive due to the SM
Higgs and given any type of coupling for which the
associated perturbative decay width is not directly propor-
tional to the final state masses. The details of the phase
space of the decay products would vary for different
inflaton-SM interactions or choice of final states but would
not substantially change our results. For example a ϕfγ5f̄
coupling would lead to a power of 1=2 instead of 3=2 in the
phase space factor of Eq. (21).
The mass that the fermion acquires due to the Higgs

mechanism in a patch with Higgs VEV hj is6

mj
f ¼

yffiffiffi
2

p hj; ð22Þ

where y is the Yukawa coupling for a given SM fermion.
Although SM Yukawa couplings are technically scale
dependent parameters, the RG evolution is typically insig-
nificant between the electroweak and inflation scales for the
minimal field content we consider in our analysis (i.e. the
inflaton is the only new particle in addition to the SM).
While we do consider the nontrivial RG evolution of other
relevant SM parameters, in particular that of the Higgs
quartic coupling λ (as discussed in Secs. II C and III), we

5Assuming the inflaton is a SM singlet, Yukawa-type couplings
to SM fermions must arise from nonrenormalizable operators
generated by some additional dynamics which can be integrated
out of the effective Lagrangian at the inflation scale. For example,
an effective operator could arise at dimension-5 through an
interaction term of the form ϕSf̄f=Λ, where S is a new scalar
field which acquires a VEV hSiabove the inflation scale and has the
SM charges necessary to preserve gauge invariance. The effective
Yukawa coupling would then be yϕ ∝ hSi=Λ, where Λ is the scale
associated with the new UV dynamics. One can infer from the
associated expression for the decay width in the massless fermion
limit, Γ0 ¼ y2ϕmϕ=ð8πÞ, that yϕ would range in from ∼10−2 to ∼1
for the decay widths considered here, Γ0=mϕ ¼ 10−5–10−1.

6In principle, a Yukawa-like coupling of the inflaton to SM
fermions could yield an additional mass contribution to the
fermions while also providing for the inflaton decay channel
necessary for reheating. However, in the analysis that follows,
the inflaton will have typically gone through many oscillations
by the time the density perturbations of interest begin to grow.
Since the inflaton is rapidly oscillating around a vanishing field
value when the perturbations are generated, we assume any
mass contribution to the fermions associated with the Yukawa-
like coupling of the inflaton is negligible.
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assume the SM Yukawa couplings at the inflation scale are
equivalent to the corresponding values at the electroweak
scale. We thus present our results in terms of a generalized
Yukawa coupling but make specific interpretations based
on the hierarchy of Yukawa couplings relevant for the
pattern of electroweak symmetry breaking in the SM.
Figure 1 presents the PDFs of the binned Higgs and

inflaton decay rate values across all Hubble patches at
N ¼ 0, 1, 2.5, and 6.5e-folds after the end of inflation
(from top to bottom), for HI ¼ mϕ, y ¼ 1, Γ0=mϕ ¼ 0.1
and λI ¼ 10−3. Note that the scales of the (left panel’s)
horizontal axes have been chosen to vary in going from the
top to the bottom panels of the figure to accommodate the
decreasing width of the Higgs PDF as a function of
increasing N.7 The decrease in the width of the Higgs
PDF is due to the decreasing amplitude of the damped
Higgs oscillations; according to Eq. (18) the Higgs VEV
becomes negligible within a few e-folds after the Higgs
condensate begins to oscillate as a massive field.
At the same time, the damping of Higgs oscillations causes

the decay rates Γj
ϕ in the right panel to approach their

unblocked value of Γ0 ¼ Γj
ϕðhj ¼ 0Þ. There are two effects

that take place as the Higgs VEV hj in a Hubble patch
decreases. First, the argument of the Heaviside function in
Eq. (21) becomes positive and Higgs blocking is lifted. After
the lifting of Higgs blocking the decay rates are within the
range 0 < Γj

ϕ=Γ0 < 1. Also, Higgs modulation due to the
second factor of Eq. (21) (which we subsequently refer to as
the phase space factor) approaches unity when the Higgs
VEV has become much smaller than the mass of the inflaton.
After both Higgs blocking and modulation are extinguished
the decay rates are given by Γj

ϕ=Γ0 ¼ 1. Because Higgs
modulation/blocking are lifted at different times in different
Hubble patches, in Fig. 1 we can see some patches with
0 < Γj

ϕ=Γ0 < 1, as well as others with Γj
ϕ=Γ0 ¼ 1 at

N ¼ 6.5 e-folds. In the following we will show that, even
in the absence of Higgs blocking, Higgs modulation from the
phase-space factor in the decay rate can lead to the production
of large density perturbations.
Furthermore, it is worth noting that the Higgs PDFs in

the left panel of Fig. 1 lose their original shape and become
irregular after a sufficient amount of e-folds has passed.
The reason is that Higgs oscillations proceed at different
frequencies for different Higgs initial values jhjIj. However,
since the oscillation frequency is the same for initial
conditions with the same absolute value jhjIj, the Higgs
PDFs remain symmetrical with respect to the vertical axis.
The “average” value of the decay rate Γ̄ϕ is obtained by

using the characteristic value of the Higgs VEV h̃ from
Eq. (20) and plugging into Eqs. (21) and (22). We find

Γ̄ϕ ¼ Γ0

�
1 −

2y2h̃2

m2
ϕ

�
3=2

Θðm2
ϕ − 2y2h̃2Þ

¼ Γ0

�
1 −

2y2hh2i
m2

ϕ

�
3=2

Θðm2
ϕ − 2y2hh2iÞ: ð23Þ

In principle, we could also define Γ̄ϕ in terms of hhi ¼ 0,
which would give the constant value Γ0. However, we are
interested in calculating the density perturbations arising
from the relative effects of Higgs modulation/blocking
between different Hubble patches. Associated perturbations
to the decay rate should thus be calculated with respect to
the decay rate given by Eq. (23) rather than the unblocked
decay rate Γ0, which would fail to capture any of the
relevant modifications to the reheating dynamics.
The general expression for the perturbation of the decay

rate relative to the average Γ̄ϕ can be calculated as

δΓϕ

Γ̄ϕ
¼

8<
:

− 6y2hδh
m2

ϕ

�
1 − 2y2h2

m2
ϕ

�
−1
; m2

ϕ > 4m2
f

0; m2
ϕ ≤ 4m2

f

; ð24Þ

where δh is a variation of the Higgs VEV. We take δh ¼ffiffiffiffiffiffiffiffiffi
hh2i

p
(corresponding to half of the distribution’s width)

and plug it into Eq. (24). The resulting characteristic
perturbation is

δΓ ¼ δΓϕ

Γ̄ϕ

����
h→h̃

δh→
ffiffiffiffiffiffi
hh2i

p

¼
8<
:

− 6y2hh2i
m2

ϕ

�
1 − 2y2hh2i

m2
ϕ

�
−1
; m2

ϕ > 4m2
f

0; m2
ϕ ≤ 4m2

f

: ð25Þ

Our calculations to determine the decay rate perturbation
δΓðNÞ at every time slice (labeled by the number of e-folds
N) after the end of inflation proceed as follows. We consider
a number of n ¼ 200 Hubble patches, solving the equations
independently for each patch. Moreover, we have checked
that increasing the number of Hubble patches considered in
our computation to 1000 only causes a relative difference of
∼10−7 in our calculation of the amplitude of temperature
inhomogeneities. Hence, we conclude that 200 Hubble
patches are indeed sufficient. To obtain initial values for
the Higgs field in multiple patches, we begin by drawing a
sample of n values of the Higgs field from the Higgs PDF in
Eq. (17), obtaining a collection of initial conditions hjI with
j ∈ f1;…; ng. Each value of the Higgs field corresponds to
a different Hubble patch. Each value of hjI is used as the
initial condition for solving the system of four coupled
differential Eqs. (18)–(19), (2)–(3) describing the Higgs and
energy density evolution, respectively. This results in a
collection of n solutions for the Higgs field hj ¼ hjðNÞ,

7See also Fig. 7, where the blue solid line corresponds to
δh ¼

ffiffiffiffiffiffiffiffiffi
hh2i

p
.
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FIG. 1. Probability density function of the Higgs (left panel) and, for the case of perturbative inflaton decay, the inflaton decay rate Γϕ

(right panel) at N ¼ 0, 1, 2.5, and 6.5e-folds after the end of inflation from top to bottom. The dashed red and green lines correspond to
the mean and root-mean-squared (standard deviation) values of the Higgs PDFs, respectively. Both the Higgs (left panel) and the decay
rate (right panel) values are binned. This figure is for HI ¼ mϕ, y ¼ 1, Γ0=mϕ ¼ 0.1, and λI ¼ 10−3. Note that the scale of the x axis
changes for different values of N (top to bottom panels). One can see that the standard deviation value of the Higgs PDF decreases with
increasing N, while the decay rates approach the unblocked value Γ0 as blocking is lifted in more and more Hubble patches.
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from which we calculate the value of
ffiffiffiffiffiffiffiffiffi
hh2i

p
ðNÞ that

characterizes the Higgs distribution at every time slice.
Given h̃ðNÞ ¼

ffiffiffiffiffiffiffiffiffi
hh2i

p
ðNÞ, we determine Γ̄ϕðNÞ and

δΓðNÞ8 from respective Eqs. (23) and (25) at every time
slice (labeled by the number of e-folds N). To obtain the
resultant density fluctuations, we then plug these functions
Γ̄ϕðNÞ and δΓðNÞ into the background Eqs. (6)–(7) and the
perturbation Eqs. (12)–(14). Finally, we solve the system of
five coupled differential Eqs. (6)–(7), (12)–(14) for the
evolution of the gravitational potential ΦðNÞ.
To reiterate, in this section we introduced a method in

which different Higgs VEVs in different Hubble patches
evolve separately and are averaged at every time-slice in
order for us to define the averaged background quantities and
the corresponding perturbations. The benefit of this method
is that it allows us to directly use Eqs. (21)–(25) in
conjunction with Eqs. (13)–(14), to compute the density
perturbations in matter (inflaton) and radiation during
reheating. In other words, we are able to determine the
time evolution of the inflaton decay rate and its perturbation,
both of which are necessary components of the perturbed
Einstein equations introduced in Ref. [17]. Results of
applying this method to the case of perturbative inflaton
decay will be presented in Sec. III below.

E. Resonant decay: Patch-by-patch energy densities

The approach used in Sec. II D to calculate the gravita-
tional perturbation Φ is not applicable in cases where the
inflaton decays nonperturbatively through parametric or
tachyonic resonance. The reason is that in these cases we
cannot define the decay rate Γϕ as we did in the case of
perturbative decay. Several models of parametric resonance
have been studied since early works on the subject [48,49].
Recent models include tachyonic preheating in α attractors
[50–52], Higgs inflation and related models [53–57], as well
as the formation of structures (such as oscillons) during
preheating and their gravitational wave signatures [58]. To
demonstrate the effects of Higgs modulation/blocking on
preheating, we will consider the example of a model
exhibiting tachyonic resonance [59,60], specifically the case
of an inflaton coupled to an Abelian gauge field through a
Chern-Simons term [61]. This paradigm is inspired by
natural inflation [15], where the inflaton is an axion,

possessing a shift symmetry. Recent attention has focused
on gauge field couplings to the inflaton potentially generat-
ing large scale magnetic fields [62] and a significant amount
of gravitational waves [63–65].
The effective Lagrangian for the system we consider is

L ¼ −
1

2
∂μϕ∂μϕ − VðϕÞ

−
1

4
FμνFμν þ 1

4f
ϕFμνF̃μν þ

M2

2
AμAμ; ð26Þ

where ϕ is the inflaton and f is proportional to the breaking
scale of the associated Uð1Þ symmetry, expressed in units of
the Planck massmPl. For the electromagnetic four-vector Aμ,
we have Fμν ¼ ∂μAν − ∂νAμ and F̃μν ¼ ϵμνβγFβγ with the
totally antisymmetric tensor ϵμνβγ. We did not explicitly
introduce the Higgs field in the above Lagrangian, but its
effects are included through the gauge field mass, which is
determined by M ¼ gjhj=2, where g is the gauge coupling.
We use Abelian gauge fields as a proxy for the full
electroweak SM sector, as explained in detail in FSSV,
and leave a full analysis of non-Abelian effects (see e.g.
Ref. [66]) for future work. Note that we refer to 1=f as the
Chern-Simons coupling which is typically also proportional
to theUð1Þ charge of the inflaton and the square of the gauge
coupling.
For the calculation of the gravitational perturbations in

the case of resonant decay we follow a slightly different
method, focusing on the transfer of energy from the inflaton
to the gauge fields. We numerically solve the linearized
equation of motion for the gauge field modes A�

k ,

Ä�
k þH _A�

k þ
�
k2

a2
∓ k

a

_ϕ

H
þM2

�
A�
k ¼ 0; ð27Þ

where the superscript � denotes the two helicities. Here
Ak ¼ χ1=2k a1=2, where χk is the Fourier transform of the
transverse component of the gauge field. As discussed in
our previous work FSSV, we consider the point where
the energy density of the linearized fluctuations equals the
energy density of the unperturbed inflaton background
to be indicative of complete preheating. Although this
approximation does not account for the backreaction on
gauge boson production, lattice simulations have shown
that tachyonic resonance of this form can efficiently preheat
the Universe [62].
Since tachyonic resonance is strong enough for the

parameters chosen to completely preheat the Universe
within Oð1Þ e-folds, we neglect the evolution of the
Higgs condensate, taking it to be fixed at the value it
has at the end of inflation in each Hubble patch. By starting
with a distribution of Higgs values among different Hubble
patches we define a similar distribution of gauge field
masses M. By computing the energy density in radiation

8An alternative way of determining these two functions would
be to separately calculate the time evolution of the decay rates Γj

ϕ
(j ∈ f1;…; ng) in n Hubble patches. We could, then, define the
average background decay rate as Γ̄ϕðNÞ ¼ hΓϕi and the decay

rate perturbation as δΓ ¼
ffiffiffiffiffiffiffiffiffi
hΓ2

ϕi
q

=Γ̄ϕ. A similar method is used in

the case of resonant inflaton decay, as discussed in Sec. II E. In
the present section we choose to make the dependence on the
distribution of Higgs VEVs manifest in order to highlight the role
of the Higgs field in the perturbation dynamics. We have,
however, verified that the two methods give results which agree
within Oð10%Þ.

LARGE DENSITY PERTURBATIONS FROM REHEATING TO … PHYS. REV. D 104, 123546 (2021)

123546-9



(gauge fields) and matter (inflaton condensate) in each
patch (see Fig. 2), we define the averaged values ρ̄ϕ ¼ hρϕi
and ρ̄r ¼ hρri over all patches and the corresponding

fluctuations δρϕ ¼
ffiffiffiffiffiffiffiffiffi
hρ2ϕi

q
and δρr ¼

ffiffiffiffiffiffiffiffiffi
hρ2ri

p
at each time

slice. Finally, the inflaton and radiation perturbations are
given by the definitions δϕ ¼ δρϕ=ρ̄ϕ and δr ¼ δρr=ρ̄r.
Having calculated the energy density perturbation func-
tions for the inflaton and radiation, we insert them into
Eq. (12) to obtain the gravitational potential perturbationΦ.
The results of this method are shown in Sec. IV.

F. Calculation of temperature anisotropies

In order to constrain the allowed parameter space for
reheating, taking the effects of Higgs modulation/blocking
into account, we must connect our results to the temperature
inhomogeneities observed in the CMB. We expect those to
directly depend on the gauge-invariant comoving curvature
perturbation, R. On superhorizon scales, R is equivalent to
the Bardeen parameter ζ, defined as [17,67–71]9

ζ ≡ −Φþ ρ̄ϕδϕ þ ρ̄rδr
3ρ̄ϕ þ 4ρ̄r

: ð28Þ

Here, Φ is the gravitational potential of Eq. (10), while ρ̄ϕ
(ρ̄r) and δϕ (δr) are the energy density background and
perturbation on the background for the inflaton (radiation),
respectively.
In most models of inflation, the curvature perturbations

are adiabatic and, thus, constant on superhorizon scales.
However, in the case of modulated reheating, the situation is
different. The curvature perturbations grow with time on
superhorizon scales due to the spatial dependence of the
inflaton decay. In order to gain intuition for this superhorizon
growth, one can construct an unusual type of temporary
isocurvature perturbation for superhorizon scales during
reheating—the relative isocurvature perturbations between
the inflaton and the radiation bath—as different amounts of
energy are transferred from the inflaton to radiation in
different Hubble patches,

S ¼ −3H
�
δρϕ
_̄ρϕ

−
δρr
_̄ρr

�
: ð29Þ

The associated time evolution of the Bardeen parameter is
given by [72]

_ζ

H
¼ 1

3

_̄ρr _̄ρϕ
ð _̄ρr þ _̄ρϕÞ2

S: ð30Þ

Note that these are not the usual isocurvature perturba-
tions that lead to observables in the CMB (for example, the
relative perturbations between radiation and matter that
survive after the end of inflation). Instead, these are to be
thought of as short-lived isocurvature perturbations that
exist only during the reheating period. Furthermore, these
isocurvature perturbations become rather ill-defined as the
energy density of the inflaton vanishes in each Hubble
patch. However, as mentioned above, it is informative to
study their evolution during reheating to provide a better
understanding for the way the Bardeen parameter grows on
superhorizon scales.
In Fig. 3 we plot the time evolution of S (solid lines)

and _ζ=H (dashed lines) calculated from respective
Eqs. (29) and (30) for the case of perturbative inflaton
decay. Both S and _ζ=H are shown as functions of the
number of e-folds after the end of inflation (the beginning
of the inflaton oscillations). One can see the rapid initial
increase of S (near the characteristic time of perturbative
inflaton decay described in the following section) fol-
lowed by decay once energy is transferred to radiation.
The time derivative of the Bardeen parameter rescaled by
the Hubble rate, _ζ=H, rapidly decreases, approaching
zero shortly after the end of inflation. As discussed
further in Sec. III A, we have checked that taking the

FIG. 2. For the case of resonant inflaton decay, the energy density
budget as a function of e-foldsN after inflation for f ¼ 0.1 mPl and
gauge field mass M=mϕ ¼ 0, 1 (blue and red, respectively). We
work in the linear fluctuation approximation, in which we neglect
backreaction effects. The solid curves correspond to the energy
density in the produced gauge fields (radiation) ρr. The black-
dotted curve shows how the energy density of the inflaton would
evolve without any transfer of energy to radiation from resonant
particle production, ρbg. The colored dashed lines show our
approximation of the true inflaton energy density ρϕ when we
take into account the energy loss due to gauge field production. We
approximate this as ρϕ ≡ ρbg − ρr. The blue and red dots show our
estimation for the time of complete preheating.

9Note that we have changed the overall sign of the definition
by Ref. [17] so that it exactly corresponds to the comoving
curvature perturbation R. The sign of the definition does not
affect our results whatsoever, since in the following sections we
are only tracking a characteristic value of the Bardeen parameter,
rather than a distribution of perturbations which would include
both overdensities and underdensities corresponding to hot spots
and cold spots of the CMB.
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derivative of the Bardeen parameter in Eq. (28) gives the
same result as the value of _ζ shown in Fig. 3. From either
perspective, we can see that we are left with only
adiabatic perturbations once every Hubble patch has
completely reheated after inflation. Thus, the isocurva-
ture fluctuations play no role in the calculation of CMB
temperature anisotropies. While for simplicity we have
discussed the temporary isocurvature perturbations asso-
ciated with Higgs-modulated reheating in the case of
perturbative inflaton decay, similar qualitative conclu-
sions can be drawn in the case of reheating through
resonant particle production.
The exact relation between the temperature fluctuations

and the gravitational potential or Bardeen parameter must
also account for dynamics taking place at later times and, in
particular, during the decoupling of CMB photons from the
primordial plasma. On scales that remain outside of the
horizon at the time of last scattering, the geodesics of CMB
photons are altered by the distortions of spacetime due to
matter perturbations in what is know as the Sachs-Wolfe
effect. Apart from the gravitational potential contributions,
the full Sachs-Wolfe effect is calculated by taking into
account perturbations intrinsic to the radiation plasma at
the moment of photon decoupling. At linear order in the
perturbations, the final result is expressed as [73,74]

ΔT
T

¼ 1

3
Φf ¼ 1

5
ζf; ð31Þ

where Φf and ζf refer to the final values of the gravitational
potential and Bardeen parameter, respectively, at the time of
CMB decoupling. We are only interested in the largest scales
observable in the CMB, which reenter the horizon well into
the matter dominated epoch. Thus, we approximate that the

amplitude of superhorizon perturbations calculated through
the end of reheating are conserved through last scattering.

III. RESULTS FOR THE CASEOF PERTURBATIVE
INFLATON DECAY

In this section we discuss the temperature fluctuations
produced by Higgs-modulated reheating in the case of
perturbative inflaton decay, derived using the method
described in Secs. II D and II F. Again, we assume a decay
rate given by Eq. (21), corresponding to a Yukawa-type
coupling between the inflaton and the fermion to which it
decays. In Sec. III A we start with the simplest scenario in
which we make the following two approximations: gauge
bosons produced by the resonant decay of the Higgs
condensate do not backreact on the Higgs evolution, as
well as the assumption that the frequency of oscillations by
Higgs the condensate is much slower than the Hubble rate.
The effects of backreaction on the Higgs evolution and
assuming the opposite limit of rapid Higgs oscillations will
be investigated in Secs. III B and III C, respectively. Finally,
in Sec. III D we present constraints on a generalized
parameter space for perturbative reheating by requiring that
the amplitude of temperature fluctuations not exceed that
observed in the CMB and then describe how our results
could be extrapolated to models with a lower inflation scale
in Sec. III E.
Before proceeding, we will briefly comment on the value

of Higgs self-coupling at the inflation scale λI. Assuming
no new physics couples to SM Higgs, RG evolution of
λ between the electroweak and the inflation scale will yield
λI ≃ 10−2 at the end of high scale inflation [75]. In this
context high-scale inflation is taken to mean Hend ∼mϕ∼
10−5MPl. This is strictly true for quadratic inflation, where
V ¼ m2ϕ2=2 is around the GUT scale during inflation.
While quadratic inflation is observationally ruled out, other
models with a similarly high inflationary scale tend to follow
the relation Hend ∼mϕ ∼ 10−5MPl, as long as they are
quadratic near the origin, for jϕj≲MPl. In the following
sections we will primarily use λI ¼ 10−3 since a smaller λI
causes the production of slightly larger adiabatic density
perturbations and intensifies effects such as the backreaction
of gauge bosons on the Higgs dynamics. After assuming
λI ¼ 10−3 in order to more clearly demonstrate various
aspects of density perturbations produced by Higgs modu-
lation/blocking, we will use λI ¼ 10−2 as a benchmark when
constraining the parameter space of reheating.

A. Simplest perturbative reheating case

As mentioned above, we start with the simplest scenario
in which we ignore the effect of gauge boson backreaction
on the evolution of the Higgs condensate and assume the
frequency of the Higgs oscillations is slower than the
Hubble rate. In Fig. 4 we present the Bardeen parameters ζ
as a function of the number of e-folds after the end of

FIG. 3. The absolute value of the isocurvature perturbation, jSj
(solid), and the time derivative of the Bardeen parameter rescaled
by the Hubble rate, _ζ=H (dashed), as a function of the number of
e-folds after the end of inflation for the case of perturbative
inflaton decay to fermions with Yukawa couplings y ¼ 0.01
(blue), y ¼ 0.1 (red), and y ¼ 1 (green). We have used
Γ0=mϕ ¼ 0.1, HI ¼ mϕ, and λI ¼ 10−3.
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inflation. We have equated the Hubble scale at the end of
inflation to the inflaton mass HI ¼ mϕ and used the value
λI ¼ 10−3 for the Higgs self-coupling.
As noted above, we see the growth of the Bardeen

parameters coincide with that of the corresponding isocur-
vature perturbations in Fig. 3. More specifically, we can see
the Bardeen parameter ζ of Fig. 4 stabilizes at the same time
that its derivative _ζ=H in Fig. 3 approaches zero. We have
also checked that numerically differentiating the Bardeen
parameters of Fig. 4 with respect to time yields the same
values of _ζ as those shown in Fig. 3. Thus, we conclude that
the growth of adiabatic density perturbations on super-
horizon scales can indeed be described as the temporary
generation of isocurvature modes during the inhomogeneous
reheating process.
We find two main results, which are clearly demon-

strated in the simplest case of perturbative reheating but
also generally hold under more complicated assumptions
discussed in subsequent sections. First, we find that the
perturbations caused by Higgs modulation/blocking,
ΔT=TjH ∼ ζ=5, are larger for larger values of the
Yukawa coupling y and the decay rate Γ0. In fact, they
can exceed the temperature fluctuations observed in the
CMB ΔT=TjCMB ∼ 10−5 by several orders of magnitude
for certain parameter combinations. For example, we find
ΔT=TjH ≳Oð10−4Þ for λI ¼ 10−3, y≳Oð10−1Þ and
Γ0=mϕ ≳Oð10−4Þ. An extensive examination of the full
parameter space ðΓ0; y; λIÞ and bounds from the CMB will
be presented in Sec. III D.
Second, we see that Higgs blocking of the inflaton decay

into fermions takes place only for y≳ 1. In Fig. 4, we
observe that the Bardeen parameter in the case of y ¼ 1
grows sharply only after N ≃ 3 e-folds, whereas for smaller
values of y the growth happens much sooner and more
gradually. This trend is consistent with the results of FSSV,

where we showed that large Yukawa couplings are needed
to cause a significant delay of the reheating process. In that
paper we showed that the reheat temperature could be
suppressed by up to an order of magnitude compared to the
unblocked case.
In Fig. 4 one can see that larger values of the inflaton

decay rate lead to more rapid increase of the Bardeen
parameter. This trend can be understood by comparing
the timescale relevant for Higgs blocking to that of
reheating, which can only be completed when Γϕ ≳H.
For example, at large values of y ¼ 1 and Γ0=mϕ ¼ 0.1,
the decay rate of the inflaton is already larger than the
Hubble rate by the time Higgs blocking has been lifted.
Hence, after blocking is no longer an obstacle, reheating
takes place instantaneously and ζ increases sharply. On
the other hand, for y ¼ 1 and smaller decay rates (right
panel, with Γ0=mϕ ¼ 10−3; 10−4), the expansion rate is
still larger than the decay rate when Higgs blocking is
lifted. As a result, reheating requires more time and the
increase of ζ happens more gradually.
For cases where y≲ 0.1, there is never any Higgs

blocking; yet substantial density perturbations may still
result simply due to Higgs modulation. In other words,
the Yukawa couplings are not sufficiently high to make the
argument of the Heaviside function in Eq. (21) negative, and
thus do not block reheating (or block reheating only at an
exponentially suppressed number of rare Hubble patches).
However, whether or not Higgs blocking is ever significant,
there is always a residual dependence of the phase space
factor on h, which creates differences between decay rates at
different Hubble patches. This Higgs modulation can thus
still lead to the production of large density perturbations.
It might be possible that, due to the deviation from a pure

de Sitter spacetime during inflation, the equilibrium distri-
bution of Higgs VEVs given by Eq. (17) is not a valid

FIG. 4. For perturbative inflaton decay, the Bardeen parameter ζ is plotted as a function of the number of e-folds after the end of
inflation N for three different values of the fermion Yukawa coupling: y ¼ 10−2 (blue), y ¼ 10−1 (red), and y ¼ 1 (green). Different line
styles correspond to different values of the unblocked decay rate: in the left panel Γ0 ¼ 10−1 mϕ (solid), Γ0 ¼ 10−2 mϕ (dashed), and in
the right panel Γ0 ¼ 10−3 mϕ (dot dashed) and Γ0 ¼ 10−4 mϕ (dotted). We have set the Hubble scale at the end of inflation at HI ¼ mϕ

and the Higgs self-coupling at λI ¼ 10−3.
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approximation and larger field values could be expected
from the quantum fluctuations of the spectator Higgs field
[41]. For larger Higgs VEVs across a significant number of
Hubble patches, smaller Yukawa couplings would be suffi-
cient to produce the same results calculated under the
assumption of a de Sitter equilibrium distribution. More
specifically, the curves shown in Fig. 4 for a given
combination of ðΓ0; y; λIÞ can be approximately reinter-
preted as corresponding to the evolution of the Bardeen
parameter with ðΓ0; y0; λIÞ, where the rescaled Yukawa
coupling is given by y0 ¼ ðh̃=h̃0Þy for the modified charac-
teristic Higgs VEV h̃0. While a detailed analysis of the
changes to our results for deviations of the Higgs PDF from
Eq. (17) are beyond the scope of this work, the possibility of
larger Higgs VEVs across a sufficient number Hubble
patches would imply that the constraints on the parameter
space of reheating in this paper should be considered
conservative.

B. Including the effects of backreaction
on perturbative reheating

The results discussed in the previous section were
obtained by neglecting the effects of the gauge bosons
which are produced resonantly from the decay of the Higgs
condensate [29]. These gauge bosons can potentially
backreact on the dynamics of the Higgs boson. In this
section, we summarize the treatment of backreaction
discussed in FSSV and show that the associated effects
on the density fluctuations produced during Higgs-modu-
lated reheating may be neglected.

1. Gauge boson production

The induced mass of the SM W bosons mW ¼ gjhj=2
vanishes when the oscillating Higgs field crosses zero,
leading to a substantial production of gauge boson particles
[40,75]. During the oscillations of the Higgs field, the
transverse components of the SM gauge fields oscillate
with a time dependent frequency ωk depending on the
mode with wave number k, and with a corresponding
occupation number nk [29,49]. The backreaction associated
with the resonant production of the gauge bosons on the
Higgs dynamics manifests as an effective mass squared
term in the Higgs equation of motion, Eq. (18), given by

m2
hðWÞ ¼

g2

4

Z
d3k

ð2πaÞ3
nk
ωk

; ð32Þ

where g is the coupling constant appearing in the covariant
derivative of the Higgs to the gauge field. The resonant
production of the gauge bosons is governed by the quantity
qW ≡ g2=ð4λÞ, see the Appendix for further discussion. We
ignore the non-Abelian self-interactions of the gauge fields
[76], which may change the Higgs condensate decay time
but would not drastically affect our overall results.

2. Backreaction

The backreaction from gauge bosons takes effect when
the effective mass squared of the gauge bosons m2

hðWÞ is of
the same order as the effective mass squared m2

hðλÞ of the
Higgs field given by its self-coupling [29],

m2
hðWÞ ≃m2

hðλÞ ≡ 3λh2: ð33Þ

When the condition in Eq. (33) is met, we assume the Higgs
field instantaneously decays away and the inflaton decay
rate—no longer blocked—becomes equal to Γ0. The full
decay rate of the inflaton, accounting for the effects of
backreaction (BR), is therefore [34]

ΓBR ¼ Γ̄ϕΘð3λIh2 −m2
hðWÞÞ

þ Γ0Θðm2
hðWÞ − 3λIh2Þ: ð34Þ

The expression for ΓBR above imposes that Higgs blocking
only affects the dynamics during the time period when
backreaction can be neglected, m2

hðWÞ ≤ 3λIh2. Following

the analysis in FSSV, the time from the end of inflation
when the Higgs condensate decays away due to back-
reaction effects reads

tdec ¼ tosc þ
1

mϕ

�
ln nk¼0

μ0

�
2

; ð35Þ

where the factor μ0 ¼ 0.185 is obtained from a numerical
fit to the exact solution for the time dependence of nk [34]
and the occupation number at wave number k ¼ 0 is

nk¼0 ¼
9π

ffiffiffi
2

p

λI

�
2π2

qW

�
5=4

: ð36Þ

In the following we point out the conditions for which
backreaction can impact the calculation of the density
perturbations produced by Higgs-modulated reheating.
First, the unblocked decay rate of the inflaton field Γ0

must be low enough to ensure that the Higgs condensate
will decay before reheating has been completed. In other
words, since the “seed” of the perturbations from Higgs-
modulated reheating is the difference in decay rates
between different Hubble patches, only further modifica-
tions to the decay rates will cause the calculation of
perturbations to change. The effects of backreaction can
only modify the decay rate in a given Hubble patch if the
Higgs field is given sufficient time to decay before
reheating has been completed and the decay rate has
become the same (equal to Γ0) in every patch. More
specifically, the relation between the unblocked inflaton
decay rate Γ0 and the Hubble parameter at the time of the
Higgs condensate decay Hdec, should be Γ0 ≲Hdec.

LARGE DENSITY PERTURBATIONS FROM REHEATING TO … PHYS. REV. D 104, 123546 (2021)

123546-13



The second condition for the effects of backreaction to be
important requires that the Yukawa coupling y is high
enough, such that the decay rate of the inflaton does not
become immediately equal to Γ0 after inflation has ended.
As mentioned earlier, if Higgs blocking never occurs the
only source of the perturbations is the phase space factor
causing slight differences in the decay rates of different
patches. The smaller the Yukawa coupling is, the smaller the
deviations from Γ0 caused by the phase space factors are. As
a result, for Yukawa couplings small enough such that the
transition from Γ̄ϕ to Γ0 is immediate once Higgs blocking is
lifted, the effects of backreaction do not cause considerable
modification of the decay rates. Therefore, the density
perturbations calculated for small y when accounting for
the effects of backreaction, are not considerably different
compared to those calculated in Sec. III A ignoring the
effects of backreaction.
We demonstrate the conditions under which the effects

of backreaction are relevant in Fig. 5, where we plot the
fractional difference between perturbations with and with-
out backreaction ðζ − ζBRÞ=ζ as a function of the
unblocked decay rate Γ0, for the values of the Yukawa
coupling y ¼ 0.1 (blue dotted), y ¼ 0.5 (red dashed), and
y ¼ 1 (green solid), while setting λI ¼ 10−3. It is evident
that changes to the size of density perturbations due to the
effects of backreaction increase for larger Yukawa cou-
plings and decrease for larger decay rates Γ0, thus verifying
our intuitive understanding described above. More specifi-
cally, deviations between the two methods approach zero
for Γ0=mϕ ≳ 10−2. Furthermore, the largest differences
between the perturbations with and without backreaction,
in the case of Yukawa couplings y≳ 1, are well below an
order of magnitude and require extremely small decay rates
to become significant.

Figure 6 compares the evolution of density perturbations
with and without including the effects of backreaction. In
order for the effects to be visible by eye, we only show
examples with relatively low decay rates Γ0 ¼ 10−3mϕ and
Γ0 ¼ 10−4mϕ. We plot the ratio of the Bardeen parameters
calculated when including the effects of backreaction to
those in the right panel of Fig. 4 where backreaction was
ignored. As expected from Fig. 5, the largest modification
of the perturbations occurs for the combination of the
largest Yukawa coupling y ¼ 1 with the smallest decay rate
Γ0 ¼ 10−4mϕ. Since Yukawa couplings as large as y ¼ 1

are only relevant for the case of the inflaton decaying into
the SM through a coupling to the top quark and the
associated perturbations are much larger than observed
in that part of our reheating parameter space, we choose to
ignore effects of backreaction in the following sections.10

The conclusions about the effects of backreaction drawn so
far have been based on calculations assuming a rather small
value of the Higgs quartic coupling λI ¼ 10−3. However, the
approximation we make by ignoring backreaction holds for
larger self-couplings because the second term of Eq. (35)
contains a contribution proportional to the logarithm lnðλIÞ
[34]. Thus, larger couplings λI > 10−3 result in longer decay
times for the Higgs condensate, tdec. The effects of back-
reaction for larger quartic couplings are, according to the first

FIG. 5. For the case of perturbative inflaton decay, the frac-
tional difference between perturbations, ðζ − ζBRÞ=ζ, with (ζBR)
and without (ζ) including the effects of backreaction, as a
function of the unblocked decay rate Γ0, for three different
Yukawa couplings y ¼ 0.1 (blue dotted), y ¼ 0.5 (red dashed),
and y ¼ 1 (green solid). We assume HI ¼ mϕ and λI ¼ 10−3.

FIG. 6. For the case of perturbative inflaton decay, the ratio
ζBRðNÞ=ζðNÞ of Bardeen parameter calculated with and with-
out including the effects of backreaction as a function of the
number of e-folds after the end of inflation for Yukawa
couplings y ¼ 0.01 (blue), 0.1 (red), and 1 (green). Note the
quantity ζ is plotted in the right panel of Fig. 4 without
considering backreaction. The dash-dotted lines correspond to
Γ0 ¼ 10−3 mϕ, while the dotted lines to Γ0 ¼ 10−4 mϕ. We
assume HI ¼ mϕ and Higgs self-coupling λI ¼ 10−3.

10As we will see below there is a small portion of allowed
parameter space with Yukawa couplings equal to 1 for extremely
small decay rates. However, considering the small size of this
region in parameter space and the insignificance of the back-
reaction effect in any case, ignoring it remains a very good
approximation.
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condition described above, only relevant for even smaller
values of Γ0 in order for the Higgs field to decay before
reheating is completed. Choices of λI > 10−3 further limit the
portion of parameter space where the effects of backreaction
are relevant, and we are therefore justified in ignoring the
effects of backreaction for cases with larger quartic couplings
subsequently considered in this paper.

C. The case of rapid Higgs oscillations
in perturbative reheating

After inflation has ended, the Higgs experiences damped
oscillations. For simplicity, we calculate the Higgs evolu-
tion in each Hubble patch by considering two limiting cases
where the oscillation period of the Higgs field τHiggs is
either much longer or much shorter than the Hubble time,
H−1. In the work presented so far, we have assumed the
limit τHiggs ≫ H−1, which allows for the resolution of the
zero crossings in the oscillations of the Higgs that gradually
cause Higgs modulation/blocking to be lifted [34]. Under
such an assumption, it is sufficient to directly sample values
of the Higgs field from the distribution of Higgs VEVs
computed at every time slice, as described in Sec. II D.
If, however, many Higgs oscillations occur during one

Hubble timescale τHiggs ≪ H−1, then the oscillations can-
not be accurately resolved. We thus define an effective
value of the Higgs field as

hjeffðtÞ≡ ρ1=4hj ¼
�
1

2
ð _hjÞ2 þ VHðhjÞ

�
1=4

; ð37Þ

in a patch denoted by j, where ρhj is the energy density in the
Higgs condensate at the particular patch. A comparison
between the time evolution of the Higgs PDF width δh under
the assumption of rapid oscillations (τHiggs ≪ H−1) and our
standard scenario (where τHiggs ≫ H−1) is shown in Fig. 7.
For rapid oscillations, the width corresponds to the standard
deviation of a PDF of effective Higgs values heff , as defined
in Eq. (37), and is given by δhrapid ¼

ffiffiffiffiffiffiffiffiffiffiffi
hh2effi

p
. In our

standard scenario, the width is calculated using the PDF
of Higgs VEVs h presented in Fig. 1, as δhslow ¼

ffiffiffiffiffiffiffiffiffi
hh2i

p
.

Since hhi ¼ hheffi ¼ 0 for a symmetrical Higgs distribution,
this figure also describes the evolution of the characteristic
Higgs values h̃ ¼ hhi þ δhslow and h̃eff ¼ hheffi þ δhrapid,
which governs both Γ̄ϕ and δΓ. We can see that in the rapid
oscillation case δhrapid and hence h̃eff decrease more slowly.
As a result, Higgs blocking is lifted somewhat later under the
assumption of rapid Higgs oscillations when compared to
the scenario studied in Sec. II D with τHiggs ≫ H−1.
More typically, the Higgs oscillations would take place in

the intermediate regime τHiggs ≃H−1, so that the actual
perturbation values lie between the results derived in the two
limiting scenarios mentioned above. In Fig. 8 we present a
comparison between results derived in the two regimes for

Yukawa couplings y ¼ 0.01, y ¼ 0.1, and y ¼ 1. Similarly
to the backreaction comparison, we plot the ratio of Bardeen
parameters calculated in the rapid Higgs oscillation scenario
(τHiggs ≪ H−1) to those shown in Fig. 4 for the slowly
oscillating Higgs. For the case of y ¼ 1 (green lines), the
initial value of the ratio begins at 0 instead of 1 due to the
effect of Higgs blocking [34], which is effective for a longer
time when assuming rapid Higgs oscillations. Also when
assuming τHiggs ≪ H−1, sampling heff instead of h causes
Higgs blocking to be lifted slightly later, as explained
above. As a result, ζ becomes nonzero, while ζrapid is still
blocked, thus leading to the ratio ζrapid=ζ smoothly increas-
ing from zero.
We also observe in Fig. 8 that the importance of how we

treat the Higgs oscillations is largely dependent on the decay
rate of the inflaton. More specifically, smaller decay rates
amplify the differences between the perturbations calculated
in standard and rapid oscillation scenarios because reheating
takes place later. As a result, for lower Γ0 the Bardeen
parameters increase the most between N ¼ 2 and N ¼ 5

e-folds, during which the widths δh differ the most between
the two cases (cf. Fig 7). If, on the other hand, the decay rate
is larger then the Bardeen parameters increase most during
the first 2e-folds, when δh is the same in both cases.
Therefore, the differences between the associated perturba-
tions are smaller for larger Γ0.
More generally, we find that the Bardeen parameters

calculated assuming rapid Higgs oscillations (τHiggs ≪ H−1)
do not differ from the standard case (τHiggs ≫ H−1) by more

FIG. 7. For the case of perturbative inflaton decay, time
evolution of the Higgs PDF width δh assuming rapid oscillations
(red dashed line, τHiggs ≪ H−1) and our standard scenario
assuming slow oscillations (blue solid line, τHiggs ≫ H−1). In
the case of the former, the width corresponds to the standard
deviation of a PDF formed by the effective Higgs values heff
defined in Eq. (37) and is given by δhrapid ¼

ffiffiffiffiffiffiffiffiffiffiffi
hh2effi

p
. In the case

of the latter, the width is calculated using the PDF of Higgs VEVs
h presented in Fig. 1, as δhslow ¼

ffiffiffiffiffiffiffiffiffi
hh2i

p
. We use HI ¼ mϕ,

y ¼ 1, Γ0=mϕ ¼ 0.1, and λI ¼ 10−3.
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than Oð1Þ factors, i.e. ζrapid=ζ ∼ 1 in Fig. 8. Since, as
mentioned above, the Bardeen parameters calculated under
the more realistic assumption of τHiggs ≃H−1 should lie in
between those calculated in the two limiting cases, reason-
ably good agreement between both calculations allows us to
confidently ascertain the corresponding constraints from
temperature anisotropies in the CMB (see Sec. III D).

D. Comparison of temperature fluctuations from space-
dependent perturbative reheating with CMB data

In this section we compare results of our calculations of
the Bardeen parameter at the end of reheating with the
value of the temperature anisotropy measured in the CMB,
ΔT=TjCMB ≈ 10−5. Since the predictions of the temper-
ature fluctuations in our scenario depend on several
parameters, we may use the CMB bounds to place
constraints on the associated parameter space shown in
Fig. 9. Specifically we examine the dependence of
the temperature fluctuations on the Higgs self-coupling
λI, the Yukawa coupling y of the fermions to the Higgs,
and the unblocked decay rate of the inflaton Γ0. In the top
panels of the figure, we depict the three-dimensional
parameter space ðλI; y;Γ0Þ, and in the bottom panels we
depict two-dimensional slices at the value λI ¼ 10−2

which is typical for the SM in high scale inflation. We
explore a wide range of different values for the unblocked
decay rate 10−5 ≤ Γ0=mϕ ≤ 10−1 and the Yukawa cou-
pling 10−3 ≤ y ≤ 1.
In all diagrams, red regions correspond to parameter

combinations that lead to Higgs-modulated fluctuations
in excess of what is observed in the CMB (ΔT=TjH≳
ΔT=TjCMB); and green regions correspond to Higgs-induced

fluctuations that are below the CMB values (ΔT=TjH≲
ΔT=TjCMB). The white region indicates Higgs-induced
fluctuations of the same size as those of CMB observations
ΔT=TjH ≈ 10−5. Hence both white and green regions are in
principle allowed by the CMB, while the red region is
certainly excluded.
We assume CMB observations are not sensitive to

Higgs-induced perturbations with ΔT=TjH ≲ 0.01ΔT=
TjCMB ∼ 10−7. The reason is that such small temperature
anisotropies are below theOð1%Þ sensitivity of Planck. Then
the observed anisotropies of the CMB ΔT=TjCMB ≈ 10−5

must be produced via some other mechanism, e.g. the
standard density fluctuations arising from quantum fluctua-
tions of the inflaton field. The regime for the Higgs-induced
fluctuations ΔT=TjH ≲ 10−7 is indicated by the hatched
region of Fig. 9.
The left (right) panels of Fig. 9 are for the cases of slow

(rapid) Higgs oscillations. Sampling the effective Higgs
values of Eq. (37) (rapid oscillations, right panels of Fig. 9)
leads to slightly larger overall perturbations than the case of
slow oscillations. However, one can see by comparing the
left and right panels that the observed differences are very
small and much below an order of magnitude. As explained
in Sec. III C, the true period of the Higgs oscillations could
in fact be in the intermediate regime between the two
limiting cases we investigate, with τHiggs ≃H−1. In the
intermediate case, the amplitude of temperature fluctua-
tions would lie in between those calculated in the slow- and
rapid-oscillation approximations, which are in reasonably
close agreement.
Let us now summarize the basic parameter dependencies

of Fig. 9. The Higgs quartic self-coupling λI at the end of
inflation only appears in the three-dimensional plots in the

FIG. 8. For the case of perturbative inflaton decay: the ratio of the Bardeen parameter ζrapidðNÞ calculated under the assumption of
rapid Higgs oscillations (τHiggs ≪ H−1) to the Bardeen parameter ζ in the right panel of Fig. 4, calculated assuming slow oscillations
(τHiggs ≫ H−1). Results are shown as a function of the number of e-folds N after inflation for three different values of the Yukawa
coupling, y ¼ 0.01 (blue), 0.1 (red), and 1 (green). Different line styles correspond to different values of the unblocked decay rate
Γ0 ¼ 0.1 mϕ (solid, left panel), Γ0 ¼ 0.01 mϕ (dashed, left panel), Γ0 ¼ 10−3 mϕ (dash dot, right panel) and Γ0 ¼ 10−4 mϕ (dotted,
right panel). We have taken HI ¼ mϕ and λI ¼ 10−3. The ratio of Bardeen parameters is at most Oð1Þ, implying good agreement
between the results of the two regimes. Thus, we can trust that the calculation of perturbations under the more realistic assumption of
τHiggs ≃H−1 would yield similar results.
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top panels of Fig. 9. It is evident that the size of temperature
fluctuations decreases as λI increases from 10−3 to 10−1.
This effect can be explained by the width of the Higgs PDF
at the end of inflation, given by Eq. (17), decreasing for

larger λI. In other words, Higgs PDFs with a larger value of
λI are peaked around smaller values of the Higgs field h and
give smaller probabilities for larger values of h to exist in a
given Hubble patch. Since the Higgs modulation that causes

FIG. 9. For the case of perturbative (space-dependent) inflaton decay to SM particles, constraints on parameters obtained by requiring
that temperature fluctuations do not exceed CMB observations. Here Γ0=mϕ is the unblocked inflaton decay rate in units of inflaton
mass, y is the Yukawa coupling of the SM particles to the Higgs and λI is the Higgs self-coupling at the scale of inflation. In the top
panels of the figure, we depict the three-dimensional parameter space ðλI ; y;Γ0Þ, and in the bottom panels we depict two-dimensional
slices at the value λI ¼ 10−2, which is typical in the SM for inflation at high scales. We see that a larger Yukawa coupling and a larger
(unblocked) inflaton decay rate lead to larger reheating-induced temperature anisotropies. For inflaton decay into a given species of
fermions (in essence fixing the Yukawa coupling), we can deduce the maximum allowed inflaton decay rate and thus the maximum
allowed reheat temperature. The left (right) panels show results derived in the τHiggs ≫ H−1 (τHiggs ≪ H−1) regime of slow (rapid) Higgs
oscillations. The red and green regions show Higgs-induced temperature inhomogeneities ΔT=TjH which are larger and smaller than
those observed in the CMB, respectively. Hence the white and green regions are allowed as they satisfy ΔT=TjH ≤ 10−5. The hatched
region at ΔT=TjH ≤ 10−7 indicates the untested regime where the temperature fluctuations ΔT=TjH are smaller than Planck’s Oð1Þ%
sensitivity (e.g. if we assume that the origin of the temperature anisotropies observed by Planck arise from the quantum fluctuations of
the inflaton itself). For the intermediate regime of Higgs oscillations with τHiggs ≃H−1, the amplitude of temperature fluctuations would
lie somewhere in between the values shown for the slow- (left panels) and rapid-oscillation (right panels) approximations. We should
however note that the results of the two approximations do not differ significantly for the majority of the parameter space.
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the temperature fluctuations is more pronounced for larger
values of the Higgs field h, a larger λI leads to smaller
overall ΔT=TjH.
The unblocked decay rate Γ0 of the inflaton to fermions

and of the Yukawa coupling y of the same fermions to the
Higgs appear in both the three- and the two-dimensional
plots of Fig. 9. We can see larger overall temperature
fluctuations arise for larger y and for larger Γ0. Larger y
leads to larger fermion masses and, as a result, to more
significant Higgs modulation of the decay rate. Since Higgs
modulation is the seed of the temperature fluctuations we
examine, larger y will also lead to larger overall temperature
fluctuations. The effects of increasing the decay rate are
more subtle, but can be understood from Fig. 4. The inflaton
decays at earlier times in each Hubble patch for larger Γ0.
Values of the Higgs VEV in each patch, evolving according
to Eq. (19), are larger at earlier times. Thus, larger Γ0 leads to
larger fermion masses when the inflaton decays, also causing
larger overall temperature fluctuations.
Here we note several caveats in our calculations due to

some of the other approximations we have made. First,
when deriving the perturbations we only treat the largest
observable scales in the CMB. This simplification is
inevitable since our method uses the one-point PDF of
the Higgs field, which lacks any information regarding
scale dependence. Therefore, our results are consistent with
the assumption of a scale-invariant power spectrum of
Higgs fluctuations and remain a very good approximation
[up to factors of ∼Oð1Þ] for mild scale dependencies.
In a related approximation mentioned in previous sec-

tions, our calculations assume a purely de Sitter spacetime
when the largest observable scales exit the horizon during
inflation and that the PDF of the superhorizon modes of the
spectator Higgs field has reached its equilibrium. Without
this assumption we would not be able to sample the
equilibrium distribution function of Eq. (17) for the initial
condition of the Higgs in each Hubble patch. We leave a
more detailed treatment of the Higgs fluctuations for future
work, noting in particular that calculations valid at smaller
angular scales could allow for constraints in the (unhatched)
green region of Fig. 9.
In order to more clearly demonstrate the parameter

dependence of the temperature fluctuations ΔT=TjH
produced by Higgs modulated reheating, we estimate a
fitting function in terms of the Yukawa coupling y and the
unblocked decay rate Γ0 based on parameter space data
shown in the bottom left panel of Fig. 9,

log10

�
ΔT
T

����
H
ðy;Γ0Þ

�
¼ 1.41log10ðyÞ − 0.14½log10ðyÞ�2

− 0.07½log10ðΓ0=mϕÞ�2 − 0.8

− 0.05log10ðyÞlog10ðΓ0=mϕÞ
þ 0.37log10ðΓ0=mϕÞ: ð38Þ

Using this fitting function, we can constrain parameter
values for each SM particle separately based on its
Yukawa coupling, provided that the inflaton decay channel
we are examining is the dominant one during reheating.11 As
a reminder, the inflaton can always decay into massless
photons without the Higgs influencing the size of the
produced temperature fluctuations. Furthermore, while there
is a running of the fermionic Yukawa couplings between the
electroweak and the inflation scale, we do not expect them to
be significantly modified and, thus, we choose to use their
standard EW values.
We compare the Higgs-induced temperature fluctuations

[calculated from Eq. (38)] produced for different Yukawa
couplings with the CMB value of ΔT=TjCMB ≈ 10−5 and
place upper bounds on the quantity Γ0=mϕ where Γ0 is the
unblocked decay rate. For the cases with Yukawa coupling
y < 1, we previously showed in FSSV that Higgs blocking
is minimal and we can approximate the time of reheating by
Γ0 ∼H. The reheat temperature Treh is then given directly
in terms of Γ0 as

Treh ¼
�

5

4π3g�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffi

Γ0mPl

p
≈ 0.14

�
100

g�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffi

Γ0mPl

p
;

ð39Þ

where g� ≈ 106.75 is the number of relativistic degrees of
freedom of the radiation bath. The same relation applies even
for cases with y ¼ 1 where Higgs blocking is present,
provided that the unblocked decay rate Γ0 is sufficiently
low. This condition ensures that blocking will be lifted
before Γ0 ∼H. When this condition is not fulfilled, Eq. (39)
gives a reheat temperature larger than its actual value since it
does not take the delays due to Higgs blocking into
consideration. In Sec. III A we explained how Fig. 4 shows
that for y ¼ 1 and Γ0=mϕ ≲ 10−2 Higgs blocking is lifted
before Γ0 ∼H. In the following we will see that our upper
bound for Γ0 in the case of the top quark (yt ¼ 1) is
Γ0=mϕjmaxtop ≪ 10−2 and, thus, Eq. (39) still applies.12 Hence,
by setting upper bounds on the decay rate Γ0 we can
immediately constrain the reheat temperature for inflaton
decays to all SM fermions.
We assume the maximum allowed value of the unblocked

decay rate to be Γ0 ≲ 10−1 ×mϕ in order to ensure that the
decay of the inflaton does not arise from a strongly coupled
theory. A corresponding lower bound does not exist,
provided that reheating is complete by the time of electro-
weak symmetry breaking (EWSB) or, at the latest, BBN,

11The values mentioned depend on the error of our fit. For
more accuracy see Figs. 4 and 9.

12Section III A uses λI ¼ 10−3, whereas here we use
λI ¼ 10−2. However, for larger values of the self-coupling λI >
10−3 blocking is lifted even sooner and, thus, our statement
remains accurate. Additionally we have made sure that blocking
is lifted before Γ0 ∼H for Γ0 ¼ Γ0=mϕjmax

top numerically.
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whose energy scale is much lower than the inflationary one
[77]. According to Eq. (39), the temperature of EWSB
TEWSB ≈ 160 GeV corresponds to Γ0jEWSB ≈ 10−24 ×mϕ,
which is much below any of the limits we are setting.
Stronger lower bounds on Treh would apply if we wanted
(vanilla) thermal leptogenesis to provide the origin of today’s
matter/antimatter asymmetry; then the bounds would be
Treh > 109–11 GeV depending on the model (for example,
see Ref. [78]).
Let us consider the potentially most constrained case, i.e.

where the inflaton primarily decays to the top quark, the
most massive of the fermions with the largest SM Yukawa
coupling yt ≈ 1. We find that the upper bound on the decay
rate is Γ0=mϕjtop < 3 × 10−6 corresponding to a bound on
the reheat temperature

Trehjtop < 2.4 × 1012 GeV

�
mϕ

1013 GeV

�
1=2

: ð40Þ

This bound may be in conflict with models of thermal
leptogenesis, depending on the mass of the inflaton and the
lightest right-handed neutrino, but will never be in conflict
with EWSB or BBN.
For the electron and the muon, with ye ≈ 3 × 10−6 and

yμ ≈ 6 × 10−4, respectively, any value of the unblocked
decay rate yields temperature fluctuations which are
unconstrained by CMB observations and lie within the
hatched region of Fig. 9 (bottom panels). For inflaton
decays to the tau lepton, with yτ ≈ 10−2, we find the
constraint Γ0=mϕjτ < 0.04 corresponding to

Trehjτ < 2.8 × 1014 GeV

�
mϕ

1013 GeV

�
1=2

: ð41Þ

E. Lowering the scale of inflation

In the previous sections we have explored the temper-
ature fluctuations arising from Higgs modulation/block-
ing of reheating after high-scale inflation, by setting the
Hubble parameter at the end of the inflationary epoch
equal to the mass of the inflaton HI ¼ mϕ. However, it is
also useful to look into cases where the Hubble parameter
HI takes much smaller values and, thus, investigate what
our perturbations would look like if inflation were to
occur at a lower scale.
Upon examination of the equations which govern the

production of the gravitational and Bardeen parameters, as
well as numerically solving the same system of equations
for various different combinations of the input parameters,
we see that inflation at a lower scale can produce the same
perturbations as those of high-scale inflation. Rescaling of
our results for the amplitude of temperature fluctuations is
possible provided that the free parameters are chosen such
that

½Γ0HIy2�ls ¼
�
mϕjls
mϕjhs

�
2

½Γ0HIy2�hs; ð42Þ

where the subscripts “hs” and “ls” refer to high and lower-
scale inflation, respectively. Another necessary condition for
the applicability of our results to inflation at lower scales is
that the unblocked decay rate Γ0 should be smaller than the
value of the Hubble parameterHI by the same amount as for
inflation at high scales,

�
Γ0

HI

�
ls
¼

�
Γ0

HI

�
hs
: ð43Þ

Inserting Eq. (43) into Eq. (42) gives

½HIy�ls ¼
mϕjls
mϕjhs

½HIy�hs; ð44Þ

and, therefore, Eqs. (43) and (44) are the two independent
conditions for high-scale and lower-scale inflation to result
in the same perturbations.
The rescaling of the results of our paper as a function of

inflation scale can be understood by examining the role of
these two conditions. Going back to Eqs. (2)–(3) for the
background evolution, we see that the factor setting different
Hubble patches apart is

Γ̄ϕ

HI
¼

�
Γ0

HI

��
1 −

2y2h2

m2
ϕ

�
3=2

Θðm2
ϕ − 2y2h2Þ: ð45Þ

We notice that the two important quantities Γ0=HI and
yh=mϕ ∝ yHI=mϕ are the same regardless of the infla-
tionary scale if the parameters are chosen such that they
match the conditions in Eqs. (43)–(44). In Eqs. (12)–(13),
which govern the growth of perturbations in our model, the
term of importance which essentially fuels the potential
production, is

Γ̄ϕ

HI
δΓϕ

∝
Γ0HI

m2
ϕ

y2
�
1 −

2y2H2
I

m2
ϕ

�
1=2

Θðm2
ϕ − 2y2H2

I Þ; ð46Þ

for h ∝ HI. Again, we notice that the factor Γ0HIy2=m2
ϕ is

set to be the same regardless of the inflationary scale if we
choose parameters satisfying Eq. (42), while the term
yHI=mϕ is determined by Eq. (44) for appropriately chosen
parameters.
We, therefore, conclude that a lower inflation scale HI

will lead to a rescaling of the parameter space introduced in
Fig. 9 and allow larger values of the Yukawa couplings y. In
other words, the green region of the same figure will move
further up to larger values of logðyÞ and our constraints will
be relaxed.
Table I presents the largest Yukawa couplings allowed by

observations for certain choices of the unblocked decay rate
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Γ0 and of the inflation scaleHI . We can see that as the scale
of inflation goes down the allowed values of y increase,
provided that Γ0 is chosen such that Eq. (43) is satisfied.
For example, for inflation scale HI ¼ 10−4mϕ (four orders
of magnitude lower than our canonical case), and taking
decay rate Γ0=mϕ ¼ 10−5 to match the condition in
Eq. (43), the Yukawa coupling y can be as large as 100
without violating CMB constraints.13 In order to derive
these results we have takenmϕ to be the same both for high
scale inflation and in the case of a lower inflationary scale,
even though it could in principle vary between the two.
A commonly used example in the literature for con-

structing models with a low inflationary scale consistent
with the CMB are α-attractor models, like the T model [79],
whose single-field potential is

VðϕÞ ¼ μ2α tanh2
�

ϕffiffiffiffiffiffi
6α

p
�
: ð47Þ

The mass scale μ ¼ Oð10−6Þ MPl is chosen to set the
amplitude of curvature perturbations ζ ∼ 10−5, in line with
the results of the Planck collaboration [10]. The parameter α
controls the tensor-to-scalar ratio and the scale of inflation,
which scales as H ∝

ffiffiffi
α

p
. This potential shows a simple

realization of a model where lowering the inflationary scale
does not affect the inflaton mass close to the minimum of the
potential, m2

ϕ ¼ μ2=3. It has nevertheless been shown that
the T model at low α preheats efficiently both through self-
resonance and through parametric resonance of a companion
spectator field [50,52,80].
In general, keeping a large inflaton mass while low-

ering the energy scale of inflation will likely introduce
significant nonlinear terms to the potential that will lead
to significant self-resonance. This is required, since
low-scale single-field slow-roll inflation requires a flat
“plateau” in the potential and the transition from a large
inflaton mass at low field values to a flat plateau at large

field values requires nonlinear terms in the potential.
Keeping this in mind, a more thorough investigation of
Higgs blocking effects in low-scale inflationary models
must take self-resonance into account. Assuming that
self-resonance occurs efficiently, the Universe at the end
of low-scale inflation will be populated by scalar (infla-
ton) particles whose mass will be much larger than the
Hubble scale, at least for the α-attractor potential of
Eq. (47). The momentum of these particles will be of the
order of their mass, thus they will be either nonrelativistic
or slightly relativistic. We leave a detailed (and somewhat
model-dependent) analysis of Higgs-modulated reheating
effects in low-scale inflation for future work.

IV. RESULTS FOR THE CASE OF RESONANT
INFLATON DECAY

We now present the effects of Higgs blocking and
modulation on the generation of perturbations during gauge
preheating, as a representative case of resonant decay of the
inflaton. In FSSV we explored the effects of Higgs blocking
on gauge preheating and found that complete preheating is
only possible when the mass of the gauge bosons isM ≲HI ,
with the exact threshold depending on the Chern-Simons
coupling strength. The upper panel of Fig. 10 shows the
probability distribution of gauge field masses M ¼ gjhj=2
for two values of the gauge coupling g ¼ 0.8, g ¼ 0.1 and
two values of the Higgs self-coupling λ ¼ 10−2; 10−3, based
on the probability distribution of Higgs values, given
in Eq. (17).
For the case of λ ¼ 10−3, there is a wider range of gauge

field masses in different patches, reaching up toM ≃ 2HI for
g ¼ 0.8. Those Hubble patches in which the gauge field
mass satisfies M ≲HI will successfully preheat resonantly;
on the other hand those Hubble patches in which the gauge
field masses are larger (M > HI) will not have successful
resonant preheating and must reheat later through e.g. per-
turbative decay of the inflaton through the same coupling to
gauge bosons. In the case of efficient preheating, the reheat
temperature will be Treh ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mPlHI

p
, while for perturbative

decays the reheat temperature can be lowered by orders of
magnitude [34]. This range of behaviors from one Hubble
patch to another will lead to large temperature fluctuations
ΔT=T ∼ 1 for the case of λ ¼ 10−3.
We thus restrict our analysis to λ ¼ 10−2, where the

gauge field masses predominantly satisfyM ≲HI (as seen

TABLE I. For the case of perturbative inflaton decay, values of the Yukawa couplings y above which parameter space is excluded for
certain choices of unblocked decay rate Γ0=mϕ and inflation scaleHI=mϕ. When considering a lowered inflationary scale, for simplicity
we keep the value of the inflaton mass mϕ equal to that in the case of high-scale inflation. We choose λI ¼ 10−2.

High-scale inflation Lowering the scale of inflation

Inflation scale HI ¼ mϕ HI ¼ 10−1 mϕ HI ¼ 10−2 mϕ HI ¼ 10−3 mϕ HI ¼ 10−4 mϕ

Decay rate Γ0=mϕ ¼ 10−1 Γ0=mϕ ¼ 10−2 Γ0=mϕ ¼ 10−3 Γ0=mϕ ¼ 10−4 Γ0=mϕ ¼ 10−5

Yukawa coupling y ¼ 10−2 y ¼ 10−1 y ¼ 1 y ¼ 10 y ¼ 100

13While values of the Yukawa coupling y ≳ ffiffiffiffiffi
4π

p
are larger than

what is typically permitted by perturbative unitarity, as discussed in
FSSV the relevant parameter is actually the mass of the fermion
given by Eq. (22) and, thus, such large Yukawa couplings can
be considered representative of cases with y≲ ffiffiffiffiffi

4π
p

and propor-
tionally larger Higgs field values (cf. discussion at the end of
Sec. III A).
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in the upper panel of Fig. 10), and assume the Chern-
Simons coupling is large enough such that the entirety of
the observable Universe can completely preheat through
parametric resonance of gauge bosons. Although these
assumptions prevent the generation of manifestly large
temperature fluctuations associated with incomplete pre-
heating in a significant number of Hubble patches, each
patch will nevertheless preheat at a slightly different time.

We thus explore how the distribution of gauge boson
masses leads to inhomogeneous preheating and determine
if the amplitudes of the associated perturbations are in
agreement with CMB observations.
Following the discussion of Sec. II E we solve Eq. (27),

the linearized evolution equation of the gauge field modes,
for a grid of comoving wave numbers k, starting enough
e-folds before the end of inflation, so that we can reliably
initialize each mode in its Bunch-Davies vacuum state. The
middle and lower panels of Fig. 10 show the results of using
the linearized analysis of fluctuations until the point when
the radiation energy density equals the inflaton background
energy density in each patch. In order to extend the energy
density evolution beyond the point of complete preheating,
we assume that the entire energy density of each patch
subsequently red shifts like radiation, ρ ∝ a−4. This intro-
duces a sharp “knee” around N ≃ 1.2 e-folds, which is
evident in the evolution of the Bardeen parameter ζ.
In order to validate the approximation which assumes an

instantaneous transfer of energy into radiation, we repeat the
calculation of the Bardeen parameter but numerically
smooth the transition from the inflaton dominated epoch
to radiation domination. The evolution of the Bardeen
parameters are shown using both approximations in the
middle and lower panels of Fig. 10. It is clear that the final
amplitudes of the perturbations are largely independent of
how we treat the transition between matter and radiation
domination. The bulk of the evolution of the perturbations
occurs within the first e-fold after inflation, when the gauge
fields are amplified enough to account for a non-negligible
part of the energy density of the Universe, at the percent level
or above. Smoothing the transition between epochs does
indeed make the evolution of ζ smoother, but altering the
precise details of the energy densities will not significantly
change the amplitudes of the perturbations.
Furthermore, the middle and lower panels of Fig. 10 show

that, in the case of parametric resonance, the effects of Higgs
modulation lead to perturbations that are significantly larger
than those observed in the CMB for both g ¼ 0.8 and
g ¼ 0.1. Despite the uncertainty in the exact running of the
SM couplings to the inflation scale, gauge couplings within
the range 0.1 ≤ g ≤ 0.8 can represent a wide variety of
different models. As a result, preheating into Higgsed gauge
bosons cannot be the main source of reheating the Universe,
at least given the fairly generic assumptions described in
Sec. II. If the inflaton couples to both a massless gauge
boson (photon) and to massive ones (W� and Z), the
problem becomes highly parameter dependent, as it depends
crucially on the strength of the Chern-Simons coupling to
each gauge boson. We expect the effect to still be present in
the full electroweak sector, but suppressed compared to our
current analysis. A key factor in this process will be the ratio
of the energy density of the inflaton that ends up in massive
and massless gauge bosons. We leave a detailed computation
of such a scenario for future work.

FIG. 10. Density perturbations generated by Higgs-modulated
reheating in the case of resonant inflaton decay. Upper panel: the
distribution of gauge field masses for fg; λg ¼ f0.8; 10−3g;
f0.8; 10−2g; f0.1; 10−3g; f0.1; 10−2g (red, blue, green, and black,
respectively). The solid curves correspond to the PDF and the
dashed curves correspond to the associated cumulative distribution
function. The PDF for the mass is one sided, since m ∝ jhj, and
thus the overall normalization differs from the expression which
would be derived from Eq. (17) by a factor of 2. Middle panel:
the Bardeen parameter ζ for perturbations generated by Higgs-
modulated gauge preheating with f ¼ 0.1mPl, λ ¼ 10−2 and
g ¼ 0.8. Lower panel: the corresponding Bardeen parameter ζ
for f ¼ 0.1mPl, λ ¼ 10−2, and g ¼ 0.1.

LARGE DENSITY PERTURBATIONS FROM REHEATING TO … PHYS. REV. D 104, 123546 (2021)

123546-21



V. DISCUSSION AND CONCLUSIONS

If the Higgs field effective VEV has large nonzero
fluctuations during inflation, then it could imprint consid-
erable effects on the subsequent stages of reheating, namely
resonant particle production (preheating) and perturbative
decays from coherent oscillations of the inflaton field. The
quantum oscillations in the Higgs field give it a location-
dependent effective VEV, imparting mass to any SM
particles to which it couples. If the particle mass exceeds
the inflaton mass in some Hubble patch, then reheating
there may be delayed, a phenomenon known as Higgs
blocking [34].
Adiabatic fluctuations arise because the Universe exhibits

a space-dependent reheat temperature, due to the corre-
spondingly space-dependent Higgs-induced particle masses.
Consequently, density perturbations are created that later
source CMB fluctuations as well as potentially seed large
scale structure. Our scenario differs from the standard
paradigm for the generation of density fluctuations in the
following way: unlike the standard case where curvature
perturbations for a given scale k are generated at one time
and are constant on superhorizon scales, in our case inflaton
decay continues to source the perturbations through the end
of reheating, leading to growth of perturbations even on
superhorizon scales. Here, we have considered two cases:
(i) the case of a single-field inflation model in which the
inflaton (not a SM field) decays into SM particles coupled
through a Yukawa interaction and (ii) the effects of a nonzero
Higgs effective VEVon the nonperturbative inflaton decay.
For the case of nonperturbative decay, we considered an
Abelian gauge field coupling to the inflaton through a
Chern-Simons term, as found in models of natural inflation
[15,81,82].
For perturbative inflaton decay to SM particles (with

masses determined by the Higgs VEV), we find that, for high
scale inflation with mϕ ∼HI , fermions with SM Yukawa
couplings larger than y≳ 0.1 would overproduce temper-
ature fluctuations in the CMB (see Fig. 9), unless one
considers low values of the inflaton decay rate Γ0 ≲ 10−4mϕ

and correspondingly lowered values of the reheat temper-
ature. For reheating into the top quark, the reheat temperature
must be lower than 2.5 × 1012 GeV for an inflaton mass of
1013 GeV. This can cause tension with certain thermal
leptogenesis models. For scenarios in which the inflaton
decays primarily to one of the majority of SM fermions with
smaller Yukawa couplings, a variety of upper bounds can be
set on the inflaton decay width similar to those indicated by
Eq. (38). However, such constraints can vanish when
reheating into the lightest SM fermions and can be signifi-
cantly relaxed when the scale of inflation is lowered, as
shown in Table I. In the case of parametric resonance, the
effects of Higgs modulation lead to density perturbations that
are significantly larger than those observed in the CMB, even
when assuming relatively small couplings, g ¼ 0.1, for SM
gauge bosons at the inflation scale. As a result, preheating

into Higgsed gauge bosons cannot be the main source
of reheating the Universe. If the inflaton couples to
both a massless gauge boson (photon) and to massive ones
(W� and Z), the problem becomes highly parameter
dependent and is left for future work.
In summary, Higgs-modulated reheating can significantly

constrain the parameter space for inflationary models where
reheating occurs by inflaton decay to SM particles. Even
though quantum fluctuations of the inflaton may produce the
observed spectrum of temperature anisotropies in the CMB,
any realistic model must also provide for a mechanism to
reheat the Universe. Typically considered as independent
challenges, we have demonstrated that Higgs modulated
reheating could potentially ruin the spectrum of density
perturbations produced by quantum fluctuations of the
inflaton. We note that specific models of inflation which
reheat preferentially into either photons or the lightest SM
fermion species are unaffected. Without a concrete infla-
tionary model which is demonstrably able to avoid the series
of constraints we have calculated under a set of relatively
generic assumptions, the most straightforward way to avoid
the effects of Higgs modulated reheating is to introduce
additional dynamics into the Higgs sector which stabilize its
quantum fluctuations during inflation. Thus, Higgs modu-
lated reheating can also be used as a window into the
dynamics of the Higgs during inflation and, potentially, as a
probe into physics beyond the SM.
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APPENDIX: HIGGS DECAY THROUGH
RESONANT BOSON PRODUCTION

We review the resonant production mechanism of gauge
bosons responsible for the decay of the Higgs condensate,
as described in Sec. III B. The dynamics of the Higgs field
doublet coupled to the gauge field Wa

μ is described by the
Lagrangian term

LΦþW ¼ ðDμΦÞ†DμΦ − VHðΦÞ þ 1

4
Gμν

a Ga
μν; ðA1Þ

where the covariant derivative of the Higgs to the gauge
field is DμΦ ¼ ð∂μ − igτaWa

μÞΦ, g is a coupling constant,
τa is a set of generators for the gauge group, and the field
strength is defined as Ga

μν ≡ ∂μWa
ν − ∂νWa

μ þ gϵabcWb
μWc

ν.
During the (p)reheating stage, the gauge couplings of

the Higgs can be neglected, giving rise to the expression
for the dynamical evolution of the Higgs field in Eq. (19).
In terms of the conformal time τ and setting φ ¼ ffiffiffi

λ
p

ah,
the evolution of the Higgs field reads

φ00 þ φ3 −
a00

a
φ ¼ 0; ðA2Þ

where a prime indicates a derivative with respect to
conformal time. During reheating, the inflaton field ϕ
behaves as a massive scalar field of energy density ρϕ, so
that a ∝ τ2 and a00 ¼ 4πGa3ρϕ=3 ≈ const. Thus, the latter
term in Eq. (A2) is important in the first stages of the
preheating, while the cubic term takes over at later stages.
The Higgs field sources the resonant particle production
of gauge bosons through the dynamics obtained from
Eq. (A1), as [29]

W 00
k þ ω2

kWk ¼ 0; ðA3Þ

where ω2
k ¼ k2 þ qWφ2 − a00=a with qW ¼ g2=ð4λÞ and

Wk ¼ aWk where Wk is the Fourier transform of the
transverse component of the gauge field in Eq. (A1). We
ignore the non-Abelian self-interactions of the gauge
fields, which may change the Higgs condensate decay
time somewhat, but should not drastically affect our
overall results.
The gauge bosons are then produced resonantly through

the oscillations of the Higgs field appearing in the term ωk
in Eq. (A3). This is similar to the production of the massive
modes from the resonant oscillations of the inflaton field
discussed in Sec. II E.
We solve Eqs. (A2) and (A3) numerically during

reheating. We find that various resonant bands exist where
the W bosons are produced resonantly, for different values
of qW . The corresponding occupation number is then [49]

nk ¼
1

2ωk
ðj _Wkj2 þ ω2

kjWkj2Þ −
1

2
; ðA4Þ

from which we calculate the effective Higgs mass term
induced by W bosons using an approximate expression for
the expectation value hW2i as in Eq. (32).
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