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We study a generalized superconformal model that gives rise to a subcritical regime of D-term hybrid
inflation. Exhibiting the model both in a Jordan frame and in the Einstein frame, the effective potential of
the subcritical regime is derived in the Einstein frame. It turns out that the inflaton-waterfall field dynamics
leads to various types of inflaton potential. Consequently, the tensor-to-scalar ratio is found to range from
10−4 (10−3) to 0.1 for getting 60 (50) e-folds before the end of inflation.
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I. INTRODUCTION

Observations of the cosmic microwave background
(CMB) radiation have provided important clues to solving
the mysteries of the Universe. One of the prominent facts
revealed by CMB observations is the indication of inflation
at the early stages of the Universe. Inflation is a paradigm
that not only solves the horizon and flatness problems but
also gives the primordial curvature perturbation leading to
the large-scale structure of the present Universe (if dark
matter exists). Many inflation models have been proposed
so far, and some of them have already been excluded by the
CMB observations. The latest results by the Planck
Collaboration on the scalar spectral index ns, the tensor-
to-scalar ratio r, and the scalar amplitude As are [1,2]

ns ¼ 0.9649� 0.0042 ð68% C:L:Þ; ð1Þ

r < 0.10 ð95% C:L:Þ; ð2Þ

As ¼ 2.100� 0.030 × 10−9 ð68% C:L:Þ: ð3Þ

Among the inflation models, the R2 Starobinsky model
[3,4] is a traditional and representative model that has good
agreement with the observations. It is also known that
similar predictions for ns and r are obtained in the α
attractor model with small α [5].
Recently, D-term hybrid inflation in a supersymmetric

model has been revisited, and new features of this model
have been unveiled. It was found that the α attractor appears
in the superconformal version of the model [6], while a
chaotic regime was discovered in the subcritical regime,

where the inflaton field value gets smaller than the critical-
point value of the hybrid inflation [7,8].1 On top of that, the
superconformal version of the model has turned out to have
the subcritical regime, and it has both the feature of the α
attractor and natural inflation [12]. Such multiple character-
istics in the subcritical regime of D-term hybrid inflation
are controlled by (approximate) symmetries of the Kähler
potential and the superpotential. This may relate to the
geometry of the metric. The inflation model under con-
formal symmetry has recently been studied in metric-affine
geometry instead of Riemannian geometry. It was shown
that the α attractor and natural inflation emerge depending
on the global symmetry imposed on the model [13].
Furthermore, k-inflation is studied in the conformal metric-
affine geometry [14].
The subcritical hybrid inflation has other phenomeno-

logical features. It is free from the cosmic string problem
due to the fact that the inflation continues long enough
during the subcritical regime [7,8]. Besides, it can be
embedded to the minimal supersymmetric standard model
(and its extension) to give rich phenomenology, such as
producing baryon asymmetry and dark matter and a
characteristic pattern of neutrino masses [15]. Therefore,
it is worth investigating the subcritical regime in the broad
class of the inflation model.
In our paper, we study the subcritical regime of D-term

hybrid inflation in a generalized superconformal model.
While the model is formulated in the Einstein frame in the
framework of the supergravity model, we show that it can
be formulated in the extended form of the canonical
superconformal supergravity model. Then, we discuss
the dynamics of the inflaton and waterfall fields. It is
shown that the subcritical regime is found in a wide range
of parameter space, and that various forms of the effective
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1References [9–11] also point out that inflation lasts below the
critical point. In the model of the literature, the inflation is
induced by a slow-rolling waterfall field.
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potential for inflation are derived. Consequently, the tensor-
to-scalar ratio turns out to be larger thanOð10−4ð10−3ÞÞ for
60 (50) e-folds before the end of inflation. In addition, it is
found that the symmetry-enhanced points—namely, the
Kähler potential without an explicit superconformal break-
ing term or integer value for 3α that relates to the dimension
of the compactified space in superstring theory—are
consistent with the Planck observation.
The results indicate further possibility to build a more

phenomenologically viable model. One example is the
minimal supersymmetric standard model (MSSM) aug-
mented by the right-handed neutrinos, which was partly
analyzed in Ref. [15]. In this model, one of the right-handed
sneutrinos plays the role of an inflaton field, and the right-
handed (s)neutrino generates the baryon number of the
Universe. In the analysis of the reference, however, the
neutrino oscillation data are not fully taken into account;
meanwhile, the neutrino sector has been intensively studied
by neutrino oscillation experiments [16–21] and cosmologi-
cal observations [1,22]. Those data not only constrain such a
model but also may give important hints for the new
symmetry of the flavor. Non-Abelian discrete symmetry,
such as S3,A4, S4, andA5, is one of the viable possibilities in
that direction; it has been rigorously studied [23–29] to
explain the mysterious pattern of the neutrino mixing and
mass hierarchy. Thus, the results obtained in the presentwork
would give a hint towards unveiling the underlying sym-
metry among inflation, baryogenesis, and the neutrino sector.
This paper is organized as follows: In Sec. II, theD-term

hybrid inflation in the generalized superconformal model is
formulated in a Jordan frame and in the Einstein frame.
Dynamics of the inflaton and waterfall fields are discussed
in Sec. III, and consequently the effective inflaton potential
in the subcritical regime is derived. The cosmological
consequences are discussed in Sec. IV. Section V contains
our conclusions and discussion for future work.
Throughout this paper, we use the Planck unit, Mpl ¼ 1,
unless otherwise stated, and the metric tensor gμν that gives
ημν ¼ diagð−1; 1; 1; 1Þ in the flat limit.

II. THE MODEL

We consider a generalized version of the canonical
superconformal supergravity (CSS) model. The CSS model
is proposed in Ref. [30]. The model is characterized by two
components, the superconformal Kähler potential N and
superconformal superpotential W. In our paper, we intro-
duce an additional parameter αð> 0Þ in the superconformal
Kähler potential:

N ¼ −jX0j2
�
1 −

jSþj2 þ jS−j2 þ jNj2
jX0j2

−
χ

2jX0j2
�
N2X̄0

X0
þ N̄2X0

X̄0

��
α

; ð4Þ

where we have introduced a real constant2 χ. A similar form
of N , but with χ ¼ 0, is proposed in the context of the
superconformal α attractor [5]. Here X0, S�, and N are
chiral superfields that have the local U(1) charges 0, �q
(q > 0), and 0, respectively. In our paper, we use the same
symbol for a chiral superfield and its scalar field unless
otherwise noticed. (N and Sþ will be identified as the
inflaton and waterfall fields, respectively.) A nonzero χ
explicitly breaks the superconformal symmetry. For the
superconformal superpotential, on the other hand, we
consider a renormalizable Yukawa interaction,

W ¼ λSþS−N; ð5Þ

where λ is a dimensionless constant. Here we ignore
possible gauge-invariant and renormalizable terms, such
as SþS−X0, N3, X0N2, etc., and stick to the simple model.3

After gauge fixing X0 ¼ X̄0 ¼ ffiffiffi
3

p
of the superconformal

symmetry, the Lagrangian (in a Jordan frame) is obtained as

LJffiffiffiffiffiffiffiffi−gJ
p ¼N

�
−
1

6
RJ þA2

μ

�
−N ββ̄g

μν
J DμzβDνz̄β̄ −VJ; ð6Þ

where RJ is the Ricci scalar, N ββ̄ ≡ ∂2N =∂zβ∂z̄β̄
(zβ ¼ S�; N), gJμν is the metric tensor, and Dμ ≡ ∂μ −
igQAμ is the covariant derivative. Meanwhile, the auxiliary
gauge field Aμ defined in Refs. [30,31] has been intro-
duced, and Aμ can be taken to be zero when the scalar part
is discussed as described in the literature. Aμ, g, and Q are
the gauge field, the coupling, and the charge of the U(1)
gauge. VJ ¼ VF

J þ VD
J is the scalar potential in the Jordan

frame, where

VF
J ¼ N ββ̄WβW̄ β̄; ð7Þ

VD
J ¼ 1

2
ðRe fÞabPaPb: ð8Þ

Here, N ββ̄ is the ðβ; β̄Þ component of the inverse of N IJ̄

(XI ¼ X0; S�; N), which is defined before gauge fixing;
Wβ ≡ ∂W=∂zβ; f is the gauge kinetic function; and Pa ¼
−ηβaN β − ξ̃ (N β ≡ ∂N =∂zβ). ηβa is the Killing vector, and in
the present case ηβa ¼ Qgzβ and f ¼ 1. Since we consider U
(1) theory, we omit the index a hereafter. Note that we have
introduced the Fayet-Iliopoulos (FI) term ξ̃ by adopting the
procedure in Ref. [32]. According to the literature, an
additional term in the Lagrangian is considered:

2In general, the term proportional to χ can be a more
complicated form, as shown in Ref. [30].

3Such extension would be interesting from a phenomenologi-
cal point of view. For example, N can be identified as a right-
handed neutrino that has Majorana mass in Ref. [15] when α ¼ 1.
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ΔLJffiffiffiffiffiffiffiffi−gJ
p ¼ g

−N ξ

3
P; ð9Þ

where ξ is a constant. We take ξ > 0 without the loss
of generality. This term gives ξ̃ ¼ gN ξ=3 to get P ¼
−gQzβN β − gN ξ=3.
The Lagrangian in the Einstein frame is obtained by the

Weyl transformation,

gJμν ¼
�
−
N
3

�
−1
gEμν; ð10Þ

where gEμν is the metric in the Einstein frame. Then we
obtain

LEffiffiffiffiffiffiffiffi−gE
p ¼ 1

2
RE − Kββ̄g

μν
E DμzβDνz̄β̄ − VE; ð11Þ

where RE is the Ricci scalar in the Einstein frame, and

K ¼ −3α ln
�
−
Φ
3

�
; ð12Þ

Φ ¼ −3þ jSþj2 þ jS−j2 þ jNj2 þ χ

2
ðN2 þ N̄2Þ; ð13Þ

VE ¼
�
−
N
3

�
−2
VJ; ð14Þ

and Kββ̄ ≡ ∂2K=∂zβ∂z̄β̄.
Although we have derived it from a Jordan frame, one

can derive the Lagrangian in the Einstein frame starting
from the Kähler potential [Eq. (12)] and superpotential
[Eq. (5)] in the supergravity model. Then the F andD terms
are derived from them as

VF
E ¼ eKðKββ̄DβWDβ̄W̄ − 3jWj2Þ

¼
�
−
Φ
3

�
1−3α 1

α

�
δββ̄WβW̄ β̄ þ

1

Δ
jδββ̄WβΦβ̄ − 3αWj2

þ 9α

Φ
ð1 − αÞjWj2

�
; ð15Þ

VD
E ¼ 1

2
D2 ¼ g2

2
ðKβQzβ − ξÞ2

¼ g2

2

��
−
Φ
3

�
−1
αqðjSþj2 − jS−j2Þ − ξ

�
2

: ð16Þ

Here, Kββ̄ is the inverse of Kββ̄, DβW ≡Wβ þ KβW,

Wβ ≡ ∂W=∂zβ, Φβ ≡ ∂Φ=∂zβ, and Δ≡Φ − δββ̄ΦβΦβ̄.
We have explicitly checked that the sum of Eqs. (15)
and (16) coincides with Eq. (14). We note that when α ¼ 1,
this model reduces to the one studied in Refs. [6,32,33], as
expected.

From the scalar potential, the masses of the scalar part of
the canonically normalized S� are given by

m2
� ¼

�
−
Φ
3

�
2−3α λ2

α2
jNj2 ∓ qg2ξ: ð17Þ

As with canonical D-term hybrid inflation, Sþ acquires a
tachyonic instability depending on the value of N, while S−
is stabilized at the origin. Hereafter, we take S− ¼ 0. The
critical-point value of N where Sþ becomes tachyonic is
determined by mþ ¼ 0. Since both the real and imaginary
parts ofN can play the role of inflaton in the model, we take
ϕ≡ ffiffiffi

2
p

ReN as the inflaton field without the loss of
generality.4 In addition, since the scalar potential depends
on jSþj, we define a field s≡

ffiffiffi
2

p jSþj that we refer to as the
waterfall field. Then, defining Φðϕ; sÞ as

Φðϕ; sÞ≡Φj ffiffi
2

p
N¼ ffiffi

2
p

N̄¼ϕ;
ffiffi
2

p jSþj¼s;S−¼0

¼ −3þ 1

2
ðs2 þ ð1þ χÞϕ2Þ; ð18Þ

the critical-point value ϕc should satisfy

�
−
Φc

3

�
2−3α

ϕ2
c ¼

2α2

k
; ð19Þ

where Φc ≡Φðϕc; 0Þ and

k≡ λ2=qg2ξ: ð20Þ

The number of solutions of Eq. (19) depends on the values
of α and χ. If it has multiple solutions, the potential gets
complicated, and it becomes different from the potential in
the canonical hybrid inflation. In our study, we focus on the
case where there is one critical point. In that case, the valid
parameter space is5

� ðiÞ χ < −1 and ð0 <Þ α ≤ 1

ðiiÞ χ > −1 and α ≥ 2=3
: ð21Þ

In the parameter space, α ¼ 1 and 2=3 are special
values, since the critical-point values can be obtained
analytically as

4To be explicit, the results for the case where ImN is the
inflaton field are obtained by replacing χ with −χ. In contrast to
the previous studies [8,33], we do not restrict our present study to
the case of χ ≃ −1 (þ1) where ReN (ImN) has an approximate
shift symmetry. Here, “approximate” means that the shift sym-
metry in the Kähler potential is broken by the superpotential.
Therefore, the mass of N appears in general [see Eq. (24)].

5When χ ¼ −1, ϕ2
c ¼ 2α2=k for any value of α. This case

corresponds to the subcritical hybrid inflation with shift sym-
metry, which is already studied in Refs. [7,8].
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ϕc ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6=ð3kþ 1þ χÞp
for α ¼ 1

ð2=3Þ ffiffiffiffiffiffiffiffi
2=k

p
for α ¼ 2=3

: ð22Þ

It is obvious that k has a bound:

k >

�−ð1þ χÞ=3 for α ¼ 1 and χ < −1
4ð1þ χÞ=27 for α ¼ 2=3 and χ > −1

: ð23Þ

The latter is given by ϕc < ϕmax ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6=ð1þ χÞp

, where
ϕmax is determined by Φðϕmax; 0Þ ¼ 0.
For successful inflation, the stabilization of the imagi-

nary part of N, which we define as τ≡ ffiffiffi
2

p
ImN, should be

guaranteed in the subcritical region where ϕ < ϕc. The
mass of τ in the region is given by

m2
τ ¼

g2ξ2k
α2

�
−
Φ0

3

�
1−3α

ð1 −ΨðϕÞÞ

×

�
1 −

ϕ2

6
f3 − χ þ 3αðχ − 1Þg

�
; ð24Þ

where Φ0 ≡Φðϕ; 0Þ and

ΨðϕÞ≡
�
Φ0

Φc

�
2−3α ϕ2

ϕ2
c
¼ k

2α2

�
−
Φ0

3

�
2−3α

ϕ2; ð25Þ

which satisfies ΨðϕcÞ ¼ 1. Here s2 ≪ ϕ2 has been used,
which will be validated in the later discussion. To satisfy
m2

τ > 0 in the valid parameter space above, we find the
following preferred regions:

(i) χ < −1:

8<
:

1=3þ 2=3ð1 − χÞ < α ≤ 1

α < 1=3þ 2=3ð1 − χÞ;
depending on other parameters

: ð26Þ

(ii) χ > −1:

�
χ < 1

χ ≫ 1 and small α ðbut ≥ 2=3Þ : ð27Þ

In our numerical analysis, we will compute the cosmo-
logical consequences in the parameter space given in
Eqs. (21) and (22) and see consistency with the above
regions. We will see that m2

τ > 0 gives a constraint for the
χ ≳ 5 case. When τ is stabilized to the origin, the scalar
potential after the critical point is given by

V totðϕ; sÞ ¼ VF
E þ VD

E

¼
�
−
Φðϕ; sÞ

3

�
1−3α λ2

4α
ϕ2s2

þ g2

8

��
−
Φðϕ; sÞ

3

�
−1
αqs2 − 2ξ

�
2

: ð28Þ

Even if τ is stabilized at the origin, it has a quantum
fluctuation during inflation, which might cause another
instability. In the model, −Φ must be positive. Therefore,
this requirement leads to a constraint on the amplitude
of τ:

τ2 <
6

1 − χ
−
1þ χ

1 − χ
ϕ2; ð29Þ

for χ < 1. (There is no constraint when χ ≥ 1.) The
quantum fluctuation during inflation is estimated as

τ2 ∼
H4

m2
τ
∼ g2ξ2; ð30Þ

where H is the Hubble parameter. Here we have used
Eq. (24) and H ∼ g2ξ2. Though mτ ¼ 0 at the critical
point, there is a mass term that arises at loop level (see
the next section). Even in that case, the estimate for the
mass is roughly the same except for an extra loop factor.
In the allowed parameter space that we will show in the
later analysis, this quantity is extremely smaller than
unity. Therefore, the condition for Eq. (29) is always
satisfied. One may worry about the isocurvature induced
by τ. We note that since τ has the same order of decay
width as ϕ has, τ decays at the time of reheating.
Assuming that τ dominantly decays to a radiation bath,
the isocurvature that τ produces has no effect on the later
thermal history. In addition, the energy density of τ
during inflation is estimated as m2

τ τ
2 ∼H4, which is

much smaller than the inflaton energy density. Then,
inflation driven by the ϕ-s system is not affected by the
quantum fluctuation of τ. Thus, there is no constraint due
to the quantum fluctuation6 of τ.

III. DYNAMICS OF INFLATON AND
WATERFALL FIELDS

We discuss the dynamics of inflaton and waterfall
fields around and after the critical point. In the typical
hybrid inflation model, inflation ends at the critical point
where the waterfall field becomes tachyonic. In the
subcritical hybrid inflation, by contrast, inflation contin-
ues after the critical point. The crucial point here is a
suppressed λ, as pointed out in Ref. [7]. If λ ≪ 1,

6We are indebted to Tomo Takahashi for private communica-
tion on this issue.
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therefore, the subcritical regime is expected to emerge in
the generalized framework of the superconformal hybrid
inflation model. In this section, we confirm this and give
the effective potential for inflation after the critical point.
See Refs. [8,32,33] for details.
Before it reaches the critical point, we assume that the

inflaton field slowly rolls down to the critical point while
the other scalar fields are initially stabilized at the origin.
Since the tree-level potential is constant, the motion of the
inflaton field is driven by the Coleman-Weinberg potential
[7,34], which is given by

V1L ¼ g4q2ξ2

32π2
LðΨÞ; ð31Þ

where LðxÞ≡ ðx − 1Þ2 lnðx − 1Þ þ ðxþ 1Þ2 lnðxþ 1Þ−
2x2 ln x − ln 16. The velocity of the inflaton field at the
critical point _ϕc is given by

_ϕc ¼ −
1

3Hc

∂V1L

∂ϕ
����
ϕ¼ϕc

; ð32Þ

where Hc is the Hubble parameter at the critical point and
the dot signifies a time derivative. After the critical point,
the tachyonic growth of the waterfall field begins. In order
to describe the dynamics, we use the canonically normal-
ized waterfall field. Taking ŝk as a Fourier mode of the
canonically normalized waterfall field, the equation of
motion is given by [32,33,35]7

̈ŝk þ
�
k2e−2Hct −

9

4
H2

c − d̂3t

�
ŝk ¼ 0; ð33Þ

where d̂ is obtained as

d̂3 ¼ g2qξð2 − ð1 − αÞð1þ χÞϕ2
cÞ

ϕcð−Φc=3Þ
j _ϕcj: ð34Þ

It is noted that d̂ > 0 and − _ϕc > 0 are satisfied in the
parameter space of Eqs. (21) and (22). By solving the
equation of motion, we get the variance hŝ2ðtÞi. After
the decoherence time tdec defined in Ref. [7], the variance is
matched to the classical field, and the time evolutions of
the waterfall field and inflaton field are determined by the
classical equations of motion. Namely, we solve the
classical equations of motion of ϕ and s with a boundary

condition sðtdecÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hŝ2ðtdecÞi=KSþS̄þ;c

q
:

_ϕþ 1

3HKNN̄

∂V tot

∂ϕ ¼ 0; ð35Þ

_sþ 1

3HKSþS̄þ

∂V tot

∂s ¼ 0; ð36Þ

where

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V totðϕ; sÞ=3

p
; ð37Þ

KNN̄ ¼ α
1þ 1

6
χð1þ χÞϕ2 − 1

6
s2

ð−Φðϕ; sÞ=3Þ2 ; ð38Þ

KSþS̄þ ¼ α
1 − 1

6
ð1þ χÞϕ2

ð−Φðϕ; sÞ=3Þ2 : ð39Þ

Here KSþS̄þ;c is the value at the critical point.
In order to track the inflation dynamics in the ϕ-s

system, we define the slow-roll parameters by the
Hubble parameter,

ϵH ≡ −
_H
H2

; ηH ≡ ϵH −
Ḧ

2H _H
: ð40Þ

We have confirmed that inflation continues after crossing
the critical point in the parameter space we are interested
in. In addition, it is found that the dynamics after the
critical point is effectively described by the single field.
To be explicit, the waterfall field is relaxed to the local
minimum smin after up to a few Hubble times. During
this period, the inflaton field merely moves and stays at
the critical point. The local minimum value is approxi-
mately given by8

s2minðϕÞ ¼ −
Φ0

3

2ξ

qα
ð1 −ΨðϕÞÞ: ð41Þ

We have numerically checked that mass of s is larger
than the Hubble in the subcritical region. Namely, the
same situation in Refs. [7,8,33] is realized. Putting smin
into V totðϕ; sÞ and ignoring parametrically unimportant
terms suppressed by ξ, the effective potential in the
subcritical regime is obtained as

VðϕÞ ¼ g2ξ2ΨðϕÞ
�
1 −

1

2
ΨðϕÞ

�
: ð42Þ

We have confirmed that after the waterfall field relaxes to
the local minimum, ϵH and ηH coincide with ϵðϕÞ and
ηðϕÞ defined in Eq. (44), respectively, derived from the
single-field effective potential VðϕÞ. In later analysis, we

7Here, k stands for momentum. Do not confuse this with the
dimensionless parameter k given in Eq. (20).

8To be precise, the local minimum should be determined
numerically by solving ∂V totðϕ; sÞ=∂s ¼ 0. However, it turns out
that Eq. (41) agrees well with the exact solution when ξ ≪ 1,
which is the parameter region on which we focus.
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use the effective potential to discuss the cosmological
consequences. We will see in the next section that the
typical inflaton field value that is canonically normalized
is super-Planckian. However, the predicted tensor-to-
scalar ratio can be much smaller than unity.
Careful readers may worry about the effect of the

waterfall field on the adiabatic curvature perturbation. It
is expected to be negligible since, as we will see in the next
section, the trajectory of the subcritical inflation is almost
straight along the inflaton field. Such trajectory was already
studied and analyzed in Ref. [7].9 The effect can be
evaluated by calculating a quantity eβ ¼ 1þ 4η2⊥H2=M2

given in Ref. [36] (see also Ref. [37].) Here we follow the

notation of Ref. [36]. (Do not confuse their β with the one
defined in this paper.) A variable η⊥ describes the curvature
of the trajectory. Namely, η⊥ ¼ 0 means that the trajectory
is straight. M is the mass of the field perpendicular to the
inflaton direction. The value eβ has an impact on the scalar
amplitude as

As → A0
s ¼ eβAs: ð43Þ

Using the formula given in Ref. [36], we have found that
η2⊥ ∼Oð10−6Þ around 60 e-folds in the valid parameter
regions that will be shown in Fig. 1. In addition,
H2=M2 ∼ ξ, which is suppressed as Oð10−4Þ (see
Figs. 2, 5, and 8). Consequently, eβ − 1 ∼Oð10−10Þ, which
is sufficiently small. Therefore, the effective description in
the subcritical regime is valid.

FIG. 1. Allowed region for α and χ for N� ¼ 60 (top) and 50 (bottom) by imposing m2
τ > 0 and Eqs. (1)–(3). The right panels are the

same as the left ones, but the range of −1.5 ≤ χ ≤ −0.5 is magnified. The color map indicates the minimum value of the predicted
tensor-to-scalar ratio, rmin.

9The inflation trajectory below the critical point is also
analyzed in Refs. [9–11]. In that case, the trajectory during
inflation is almost the waterfall field direction.
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IV. COSMOLOGICAL CONSEQUENCES

Now, we are ready to discuss cosmological conse-
quences of this model. We compute the scalar spectral
index, the tensor-to-scalar ratio, and the scalar amplitude
and compare them with the latest observational results
[Eqs. (1)–(3)].

A. Cosmological parameters and overview
of the results

The slow-roll parameters defined by the effective poten-
tial are

ϵðϕÞ≡ 1

2

�
V 0

V

�
2

; ηðϕÞ≡ V 00

V
: ð44Þ

Here, V 0 ¼ dV=dϕ̂ and V 00 ¼ d2V=dϕ̂2, and ϕ̂ is the
canonically normalized inflaton field, which is defined by

dϕ

dϕ̂
¼ K−1=2

NN̄

����
s¼smin

: ð45Þ

Since the field value of the waterfall field is found to
be parametrically much smaller than the inflaton field
value, it can be approximated as smin ≃ 0 during inflation.
Therefore,

KNN̄ ≃
3α

−Φ0

�
1þ ð1þ χÞ2ϕ2

−2Φ0

�
: ð46Þ

Inflation ends at

FIG. 2. Left: Predicted scalar spectral index and tensor-to-scalar ratio for fixed e-folds, N� ¼ 60 (solid curves) and 50 (dotted curves),
and various values of α. In the top and bottom panels, χ is taken to −5 and 5, respectively. We imposem2

τ > 0, and 1σ (dark shaded) and
2σ (light shaded) regions from the Planck Collaboration [2] are also shown. Right: Allowed regions for λ and

ffiffiffi
ξ

p
for χ ¼ −5 (top) and

5 (bottom), by imposing Eqs. (1)–(3).
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ϕ ¼ ϕend ≡Maxfϕϵ;ϕηg: ð47Þ

ϕϵ and ϕη are determined by ϵðϕϵÞ ¼ 1 and jηðϕηÞj ¼ 1,
respectively. ns, r, and As are determined by the slow-roll
parameters as

ns ¼ 1þ 2ηðϕ�Þ − 6ϵðϕ�Þ; ð48Þ
r ¼ 16ϵðϕ�Þ; ð49Þ

As ¼
Vðϕ�Þ

24π2ϵðϕ�Þ
: ð50Þ

Here, ϕ� is determined by the number of e-folds before the
end of inflation:

N� ¼
Z

ϕ̂�

ϕ̂end

dϕ̂
V
V 0 ¼

Z
ϕ�

ϕend

dϕ

ffiffiffiffiffiffiffiffiffiffiffiffi
KNN̄

2ϵðϕÞ

s
; ð51Þ

where ϕ̂� and ϕ̂end are canonically normalized field values
corresponding to ϕ� and ϕend, respectively. In our numeri-
cal analysis, we take q ¼ g ¼ 1 without the loss of
generality. This is due to the fact that when ξ ≪ 1, which
is the case we are interested in, q and g can be absorbed into
λ and ξ by redefining these as λ̄≡ λ=

ffiffiffiffiffi
qg

p
and ξ̄≡ gξ,

respectively. This is easily seen in Eq. (42). Since ξ is
cancelled in the slow-roll parameters, ϕend and ϕ� are
determined for α, χ, k, and N�, and they give ns and r. The
median value of the observed scalar amplitude determines
the value of λ and ξ (also using the value of k).
First of all, we give the allowed region on the ðα; χÞ plane

in Fig. 1. We imposem2
τ > 0 and the observed results given

in Eqs. (1)–(3). In the plot N� ¼ 60 and 50 are taken, and
each dot corresponds to an allowed point. For a given set of
α, χ, and N�, the values of ns and r are given as a function
of k. When k has solutions such that the predicted ns and r
are within the range of Eqs. (1) and (2), a dot is plotted on
the α-χ plane. The color map shows the minimum value of r
in the range of Eqs. (1) and (2). It is found that selective
regions are allowed, and the behavior changes around
χ ¼ −1. In addition, the allowed value of α saturates for
jχj≳ 5. When N� ¼ 60, for instance, the allowed regions
are α ≃ 1 for χ ≲ −5, 2=3 ≤ α ≤ 1 for χ ≃ −1, and α ≃ 2=3
for χ ≳ 5, and the predicted r changes by orders of
magnitude. It is found that Eqs. (26) and (28) do not give
constraints on the parameters for χ < −1. On the contrary,
the obtained allowed region roughly tracks the region
indicated in Eqs. (27) and (30) for χ > −1. To investigate
further, we categorize the parameter space into two regions:

� jχj≳ 5

χ ≃ −1
:

We examine the dynamics of the inflaton and waterfall
fields and their consequences in detail in Secs. IV B

and IV C. In addition, we further investigate the specific
cases α ¼ 1, 2=3, and χ ¼ 0 in Sec. IV D. These cases are
motivated by theoretical models beyond supergravity. In
superstring theory, 3α corresponds to the dimension of the
compactified space. Therefore, it is supposed to be an
integer. When χ ¼ 0, on the other hand, the superconformal
invariance is exact in the Kähler potential, and it corre-
sponds to a symmetry enhanced point.

B. jχ j≳ 5

Summary of the predictions.—The predictions for ns and
r are shown in the left panels of Fig. 2 for χ ¼ −5 (top) and
5 (bottom) with various values of α. Here the stability
condition for τ is imposed. In the right panels, the
parameters (

ffiffiffi
ξ

p
, λ) that are consistent with the Planck

observations are plotted for N� ¼ 60 and 50. For a given α,
it is found that ns and r get larger for smaller k. For χ ¼ −5,
r tends to be smaller when α → 1; meanwhile, it can be as
large as Oð0.1Þ. This is the opposite behavior compared to
the α attractor model [5]. As a consequence, a lower bound
is obtained as r≳ 10−3. For χ ¼ 5, on the other hand, r is
found to be suppressed as 10−4 ≲ r≲ 10−3, and it gets
smaller as α decreases. The parameter space that is
consistent with the Planck data turns out to be 10−3 ≲ λ≲
10−2 and

ffiffiffi
ξ

p
∼Oð1016GeVÞ. The results for χ < −5

(χ > 5) behave almost the same as those10 for χ ¼
−5 (χ ¼ 5).
To get a better understanding of the results, it is

legitimate to describe the effective potential in terms of
the canonically normalized field ϕ̂. In addition, we consider
a large field value limit for ϕ to give analytical expressions
for the effective potential. Even though the analytical
expressions are not always valid, they are used to help
understand the numerical results for ns and r qualitatively.
When jχj ≫ 1 and in a large field limit, the second term

in the parenthesis in Eq. (46) can be neglected. In that case,
the Kähler metric is approximately given by

KNN̄ ≃
3αð1þ χÞ2ϕ2

2Φ2
0

; ð52Þ

and consequently Eq. (45) can be solved analytically as to
give ϕ. Using the result, Φ0 and Ψ are determined. The
results are

ϕ2 ≃

8<
:

1
β ðCe

ffiffiffi
2
3α

p
ϕ̂ − 1Þ ðχ < −1Þ

1
−β ð1 − Ce−

ffiffiffi
2
3α

p
ϕ̂Þ ðχ > −1Þ

; ð53Þ

−
Φ0

3
≃

(
Ce

ffiffiffi
2
3α

p
ϕ̂ ðχ < −1Þ

Ce−
ffiffiffi
2
3α

p
ϕ̂ ðχ > −1Þ

; ð54Þ

10We find that the preferred value of λ becomes larger, but it is
less than 10−2.
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Ψ ≃

8<
:

k
2α2β

C2−3αe
ffiffiffi
2
3α

p
ð2−3αÞϕ̂ðCe

ffiffiffi
2
3α

p
ϕ̂ − 1Þ ðχ < −1Þ

k
−2α2βC

2−3αe−
ffiffiffi
2
3α

p
ð2−3αÞϕ̂ð1 − Ce−

ffiffiffi
2
3α

p
ϕ̂Þ ðχ > −1Þ

;

ð55Þ

where β≡ −ð1þ χÞ=6 and C is a positive constant. C can
be determined by, for example, Ψðϕ̂cÞ ¼ 1. The results are
summarized in Table I. For the cases of χ < −1 & α ≠ 1

and χ > −1 & α ≠ 2=3, 2α2jβj=k ≫ 1 is further assumed,
which will be discussed soon. The approximated expres-
sions for Ψ have similarity even for χ < −1 and χ > −1.
Based on the expressions, we categorize the parameter
space into two cases:�

χ < −1 & α ≠ 1 or χ > −1 & α ≠ 2=3
χ < −1 & α ¼ 1 or χ > −1 & α ¼ 2=3

;

and we discuss the numerical results in Fig. 2.

1. χ < − 1 & α ≠ 1 or χ > − 1 & α ≠ 2=3

As mentioned above, we further assume

2α2jβj=k ≫ 1 ð56Þ

to derive the expressions, which are shown in the first row
of Table I. If the above condition is satisfied, then the
second term in the parenthesis of Eq. (53) can be ignored.
(The condition can be rewritten as jβjϕ2

c ≫ 1.) We note
here that this approximation is only valid for an α which is
not much closer to 1 or 2=3. Ignoring this term under the
limit of α → 1 or 2=3, one cannot determine a consistent C
from the analytic expressions.
To get a very rough picture, let us make more simpli-

fications. If we further assume that the effective potential is
determined by V ∼ g2ξ2Ψ, then ns and r are given by
ðns; rÞ ∼ ð1 − p2; 8p2Þ, where p≡ ffiffiffiffiffiffiffiffi

6=α
p ð1 − αÞ for χ <

−1 and p≡ ffiffiffiffiffiffiffiffiffiffi
2=3α

p ð3α − 2Þ for χ > −1. The expressions
indicate that for χ < −1 (χ > −1), ns and r get larger and
smaller, respectively, when α approaches unity (2=3). This
estimation is consistent with the results shown in Fig. 2.
Although the qualitative behavior can be understood from

this rough estimation, quantitative discussion is found to be
more complicated.
For the χ < −1 case, the approximation is found to be

good for χ ≲ −20 and α ≲ 2.8=3. If α becomes larger, we
find that the approximated expression of Ψ does not give
the correct values of ns and r even though Eq. (56) is
satisfied. The maximum values of ns and r come from
saturated values of ϕ� in the limit k → 0.
For the χ > −1 case, on the other hand, the expression is

found to be valid for χ ≳ −0.5 and α≳ 2.2=3. However, we
have found that the upper bound for ns (and r) is given by
the stability of τ. This is expected from Eq. (30). Therefore,
it is difficult to understand the predicted value of ns and r
based on the simple approximation.
Therefore, to see theα dependence onns and r for cases of

χ < −1 and χ > −1, it is more intuitive to plot the effective
potential numerically. Figure 3 shows the effective potential
V̂ (normalized by the value at the critical point) plotted for
various values of α. Here we have derived ϕ̂ by numerically
solving Eq. (45). One can see that ϕ̂c (and ϕ̂�) becomes
smaller as α approaches 1. Consequently, a smaller r is
obtained,which is consistentwith the results shown inFig. 2.

2. χ < − 1 & α= 1 or χ > − 1 & α= 2=3

As seen in Table I, Ψ is given in more complicated
expressions compared to the previous case; meanwhile,
both the α ¼ 1 and 2=3 cases give a similar Ψ expression.
This expression is valid when jð1þ χÞ2ϕ2=ð−2Φ0Þj ≫ 1 is
satisfied. We have found that the approximated Ψ is valid
for χ ≲ −10 and χ ≳ 2 when α ¼ 1 and 2=3, respectively.
Besides this, recall that k has a lower bound, given in
Eq. (23). Aside from the exponential factor, Ψ is given as a
function of 2α2jβj=k, and it has the same upper bound:

2α2jβj=k < 1: ð57Þ
Therefore, the predicted values of ns and r for α ¼ 1 and
2=3 are expected to be similar to each other.11 In fact, Fig. 2
shows the expected results. We have found that the lowest

TABLE I. Approximated expression of Ψ in the limit jð1þ χÞ2ϕ2=ð−2Φ0Þj ≫ 1. For cases of χ < −1 & α ≠ 1

and χ > −1 & α ≠ 2=3, 2α2jβj=k ≫ 1 is further assumed. The parameter space where the approximated expression
is valid is given in the right column. (See also Fig. 1 for the allowed region for α and χ.) The effective potential can
be obtained from Ψ by using Eq. (42).

Cases Approximated expression for Ψ Valid parameters

χ < −1 & α ≠ 1 e
ffiffi
6
α

p
ð1−αÞðϕ̂−ϕ̂cÞ χ ≲ −20 & α≲ 2.8=3

χ > −1 & α ≠ 2=3 e
ffiffiffi
2
3α

p
ð3α−2Þðϕ̂−ϕ̂cÞ χ ≳ −0.5 & α≳ 2.2=3

χ < −1 & α ¼ 1
k

2α2jβj ½1 − ð1 − 2α2jβj
k Þe−

ffiffiffi
2
3α

p
ðϕ̂−ϕ̂cÞ� χ ≲ −10

χ > −1 & α ¼ 2=3 χ ≳ 2

11The model with α ¼ 1 is the same model studied in Ref. [33].
The predictions for ðns; rÞ are different from those in the
literature, because now we consider χ away from −1.
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FIG. 4. Trajectory of the waterfall field (red dotted curve) as a function of the canonically normalized inflaton field ϕ̂. As a reference,
the normalized potential V̂ (blue solid curve) is also plotted. The field values of ϕ̂ at the end of inflation and at 60 e-folds are indicated as
ϕ̂end and ϕ̂�, respectively. In the top (bottom) panels, χ is taken to −5 (5). The other parameters are α ¼ 1, λ ¼ 3.1 × 10−3,

ffiffiffi
ξ

p ¼
6.5 × 1015 GeV (top-left); α ¼ 2.8=3, λ ¼ 3.3 × 10−3,

ffiffiffi
ξ

p ¼ 2.0 × 1016 GeV (top-right); α ¼ 2=3, λ ¼ 2.2 × 10−3,
ffiffiffi
ξ

p ¼
5.5 × 1015 GeV (bottom-left); and α ¼ 2.04=3, λ ¼ 2.4 × 10−3,

ffiffiffi
ξ

p ¼ 6.6 × 1015 GeV (bottom-right). With these parameters, the
median value of the observed ns is obtained, and the tensor-to-scalar ratio is predicted to be 7.9 × 10−4 (top-left), 6.4 × 10−2 (top-right),
4.2 × 10−4 (bottom-left), and 8.5 × 10−4 (bottom-right).

FIG. 3. Normalized potential V̂ as a function of the canonically normalized inflaton field ϕ̂. Only the subcritical regime is shown, and
the field values of ϕ̂ at the end of inflation and at 60 e-folds are indicated as ϕ̂end and ϕ̂�, respectively. Color codes are the same as in
Fig. 2, and λ and

ffiffiffi
ξ

p
are chosen to give the best-fit value of the observed ns.
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value of k determines the maximum values for ns and r, and
that the results resemble each other. One can see this fact
from the plot of the effective potential shown in Fig. 3. We
will come back to α ¼ 1 and 2=3 cases with various values
of χ in Sec. IV D.
In a nutshell, for jχj ≫ 1, the potential becomes flatter as

α approaches unity or 2=3. This allows ϕ̂� to have smaller
values, and consequently, we obtain smaller r values.
Finally, we plot the trajectory of the waterfall field as a

function of ϕ̂ in Fig. 4. The potential is found to be almost
flat at 60 e-folds from the end of inflation except for the
α ¼ 2.8=3 and χ ¼ −5 case. In this case, the waterfall field
grows much larger than the global minimum value due to a
factor

−
Φ0

3
ð1 − ΨÞ ∼ −

�
2α2β

k

� 1
3ð1−αÞ

ffiffiffi
6

α

r
ð1 − αÞðϕ̂ − ϕ̂cÞ; ð58Þ

where ð2α2β=kÞ1=3ð1−αÞ ∼Oð105Þ after the critical point.
Due to this enhancement, the effective potential is distorted
to have convection points. It is worth noticing that the
subcritical regime of the superconformal hybrid inflation
reduces to such a potential and that predicted ns and r
values can be consistent with the observations. In the other
cases, on the other hand, there is no such enhancement after
the critical point, and the waterfall field grows slowly as
shown in the figure.

C. χ ≃ − 1
Summary of the predictions.—Figure 5 is the same as

Fig. 2, but taking χ ¼ −1.03 (top) and χ ¼ −0.97 (bottom)
and various values of α. In the right panels, the results
are given for N� ¼ 60 and 55 (since the allowed region
for N� ¼ 50 is very limited). As in the case of jχj ≳ 5, ns

FIG. 5. Same as Fig. 2, but taking χ ¼ −1.03 (top) and χ ¼ −0.97 (bottom) and different values of α accordingly. In the right panels,
we take N� ¼ 60 (solid curves) and N� ¼ 55 (dot-dashed curves).
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and r become larger for smaller k. It is found that 10−2 ≲
r≲ 0.1 for both cases in the region consistent with the
Planck data. While the result with χ ¼ −1.03 is similar
to one given in Ref. [33], r becomes larger for smaller α,
and it is eventually out of the preferred region by the
Planck observations. The results of χ ¼ −0.97 look
similar. However, r becomes smaller for smaller α. The
allowed region is found to be 10−4 ≲ λ≲ 10−3 and

ffiffiffi
ξ

p
∼

Oð1016GeVÞ for both cases.
As in the previous subsection, we derive the effec-

tive potential in terms of the canonically normalized
field. In the present case, the second term in the pare-
nthesis on the rhs in Eq. (46) can be ignored due to χ þ
1 ≃ 0 to get

KNN̄ ≃ −
3α

Φ0

: ð59Þ

Consequently, ϕ and Φ0 are given by

ϕ2 ≃

8<
:

1
β sinh

2

ffiffi
β
α

q
ϕ̂ ðχ < −1Þ

1
−β sin

2

ffiffiffiffiffi
−β
α

q
ϕ̂ ðχ > −1Þ

; ð60Þ

−
Φ0

3
≃

8<
:

cosh2
ffiffi
β
α

q
ϕ̂ ðχ < −1Þ

cos2
ffiffiffiffiffi
−β
α

q
ϕ̂ ðχ > −1Þ

; ð61Þ

and Ψ is given in Table II. Here we have taken the
boundary condition ϕ̂ ¼ 0 at ϕ ¼ 0. One can see that both
cases give similar expressions. In fact, both are exactly the
same around ϕ ¼ 0, and the qualitative difference appears
at large field values.12 We find that the approximated
expression is valid in j1þ χj≲ 0.05 and j1þ χj ≲ 0.01 for
χ < −1 and χ > −1, respectively. Since the valid param-
eter region is limited, it is better to see α dependence
numerically by computing the potential, which is shown
in Fig. 6. From the figure, one can see that the potential
becomes flatter as α approaches 1 (2=3) and gives smaller
values of r for χ ¼ −1.03 (−0.97). This behavior is similar
to that seen in Sec. IV B, and it can be understood
qualitatively as follows. Expanding the effective potential
in terms of ϕ̂, the tensor-to-scalar ratio is approximately
given by

r ∼
32

ϕ̂2
�
þ 32ð9α − 7Þð1þ χÞ

9α
: ð62Þ

Due to the second term, r becomes smaller (larger) as α
gets larger when χ < −1 (χ > −1). We note that the
above rough estimate cannot give the precise value for
r; however, it is enough to understand the response to
the value of α. In addition, we find that α ¼ 2=3 is not
allowed for χ ¼ −0.97. This comes from the lower
bound for k given in Eq. (23). We will discuss this
in the next subsection in detail by comparing the results
with α ¼ 1. Except for α ¼ 2=3 or 1, we find that the
endpoint of ns and r comes from the saturated value of
ϕ� under k → 0.
For comparison with the jχj ≳ 5 case, Fig. 7 shows the

trajectory of the waterfall field. Although the potential is
not so flat, a large field value keeps the inflaton slow-roll.
For χ < −1, the waterfall field grows to its global minimum
value just after entering the subcritical regime, but it does
not overshoot much greater than the global minimum.

D. Specific cases

Finally, we focus on the specific cases where α ¼ 1,
α ¼ 2=3, and χ ¼ 0. Such values of the parameters are
motivated by superstring theory or superconformal sym-
metry. Therefore, it is worth analyzing these cases in detail,
although parts of the results shown in this subsection are
already presented in the previous subsections. As is found
in the previous subsections, the results for α ¼ 1 and 2=3
share some behaviors. Thus, we categorize the contents as
α ¼ 1 or 2=3, and χ ¼ 0.

1. α= 1 or 2=3

Summary of the predictions.—Figure 8 shows the pre-
dicted ns and r (left panels) and the allowed region (right
panels) for α ¼ 1 (top) and α ¼ 2=3 (bottom) and various
values of χ. The allowed parameters are roughly λ ∼
Oð10−3Þ and

ffiffiffi
ξ

p
∼Oð1016GeVÞ and mildly depend on

χ. For α ¼ 1, χ < −1 gives consistent results with the
Planck observations for N� ¼ 60, while N� ¼ 50 is found
to be disfavored. For α ¼ 2=3, ns and r are consistent with
the observed data when χ ≳ 0 or χ ≃ −1. In the latter case,
r ∼ 0.1, and N� ¼ 60 is preferred. As in the α ¼ 1 case,
N� ¼ 50 has a tension with the observed data.

TABLE II. Approximated expression of Ψ in the limit
jð1þ χÞ2ϕ2=ð−2Φ0Þj ≪ 1. The parameter space where the ap-
proximated expression is valid is given in the right column. The
effective potential can be obtained from Ψ by using Eq. (42).

Cases Approximated expression for Ψ Valid parameters

χ < −1 k
2α2β

cosh2ð2−3αÞ
ffiffi
β
α

q
ϕ̂ × sinh2

ffiffi
β
α

q
ϕ̂ j1þ χj ≲ 0.05

χ > −1 k
2α2jβj cos

2ð2−3αÞ
ffiffiffiffi
jβj
α

q
ϕ̂ × sin2

ffiffiffiffi
jβj
α

q
ϕ̂

j1þ χj ≲ 0.01

12As mentioned earlier, the χ ¼ −1 case corresponds to the
model studied in Refs. [7,8] when potential is written in terms
of ϕ̂.
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FIG. 7. Same as Fig. 4, but taking χ ¼ −1.03 (top) and χ ¼ −0.97 (bottom). The other parameters in each panel are α ¼ 1,
λ ¼ 7.6 × 10−4,

ffiffiffi
ξ

p ¼ 1.8 × 1016 GeV (top-left); α ¼ 2.6=3, λ ¼ 5.5 × 10−4,
ffiffiffi
ξ

p ¼ 2.1 × 1016 GeV (top-right); α ¼ 2.1=3,
λ ¼ 4.1 × 10−4,

ffiffiffi
ξ

p ¼ 1.9 × 1016 GeV (bottom-left); and α ¼ 2.3=3, λ ¼ 4.3 × 10−4,
ffiffiffi
ξ

p ¼ 2.3 × 1016 GeV (bottom-right). The
tensor-to-scalar ratio is found to be 3.5 × 10−2 (top-left), 5.9 × 10−2 (top-right), 4.5 × 10−2 (bottom-left), and r ¼ 9.5 × 10−2

(bottom-right).

FIG. 6. Same as Fig. 3, but with χ ¼ −1.03 and −0.97. Color codes are the same as in Fig. 5, and λ and
ffiffiffi
ξ

p
are chosen to give the best-

fit value for ns.

SUBCRITICAL HYBRID INFLATION IN A GENERALIZED … PHYS. REV. D 104, 123545 (2021)

123545-13



It can be seen the resultant ns and r for α ¼ 1 and 2=3 are
similar when χ ≃ −1 and jχj≳ 5. The similarity at χ ≃ −1
is due to the fact that the effective potential reduces to the
same potential as shown in Table II. In the jχj≳ 5 case, Ψ
has the same form of function but with a different exponent
of the exponential factor (see Table I) and the valid domain
of the parameter. That is why the behavior is quite similar.
However, they give quantitatively different predictions for
ns and r, which comes from the different exponent in Ψ.
The quantitative difference is prominent in the other value
of χ: i.e., χ ≲ −1 and χ ≳ −1.

Figure 9 shows χ dependence on the potential. It is
clearly seen that the potential gets flatter for larger values
of jχj for both α ¼ 1 and 2=3, and consequently, r is
suppressed.

2. χ = 0

Summary of the predictions.—Figure 10 shows the ns, r,
and the allowed parameter space for χ ¼ 0. Roughly
speaking, the results are found to be similar to those in
the χ ≳ 5 case (see Fig. 2). It is found that α≲ 2.16=3 gives

FIG. 8. Left: Predicted values of ns and r for N� ¼ 60 (solid curves) and 50 (dotted curves) and various values of χ. α is taken to be 1
(top) and 2=3 (bottom). Right: Allowed parameters for N� ¼ 60. Here, α ¼ 1 (top) and 2=3 (bottom), and various values of χ are taken.
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a consistent result with the observations for both N� ¼ 60
and 50. A notable difference is that r can be as large
as Oð10−2Þ.
In the χ ¼ 0 case, it is easy to derive the potential

analytically, since the Kähler metric [Eq. (46)] takes a
simple form without any approximation:

KNN̄ ¼ 36α

ð6 − ϕ2Þ2 : ð63Þ

As a result, Eq. (45) can be solved analytically to give

ϕ2 ¼ 6 tanh2
ϕ̂ffiffiffiffiffiffi
6α

p ; ð64Þ

−
Φ0

3
¼ cosh−2

ϕ̂ffiffiffiffiffiffi
6α

p ; ð65Þ

Ψ ¼ 3k
α2

tanh2
ϕ̂ffiffiffiffiffiffi
6α

p × cosh2ð3α−2Þ
ϕ̂ffiffiffiffiffiffi
6α

p : ð66Þ

Here, we have taken the boundary condition ϕ̂ ¼ 0 at
ϕ ¼ 0. Although the effective potential is given exactly, it
behaves nontrivially as a function of α. When α is away

FIG. 9. Normalized potential as a function of the canonically normalized inflaton field. Color codes are the same as in Fig. 8, and λ andffiffiffi
ξ

p
are chosen to give the best-fit value for ns.

FIG. 10. Same as Fig. 2, but taking χ ¼ 0 and different values of α accordingly. In the right panels, we takeN� ¼ 60 (solid curves) and
N� ¼ 55 (dot-dashed curves).
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from 2=3, the discussion for χ ≳ 5 case in Sec. IV B can be
applied. Namely, when α gets smaller, r becomes smaller. If
α goes much closer to 2=3, on the other hand, Eq. (56) is no
longer satisfied. Instead, we can derive the effective
potential for α ¼ 2=3 as

V ¼ 27g2ξ2k
4

tanh2
ϕ̂

2
×

�
1 −

27k
8

tanh2
ϕ̂

2

�
: ð67Þ

The largest values of ns and r are obtained from the lower
bound for k. The resultant ns and r that are consistent with
the observed data are found for N� ¼ 60 and 50. In order to
see α dependence on ns and r, it is more intuitive to plot the
effective potential, which is shown in Fig. 11. As α
approaches 2=3, it can be seen that the potential becomes
flatter, and smaller values of r are obtained.

For completeness, Fig. 12 shows the same plot as Fig. 4
but takes χ ¼ 0 and α ¼ 1, 2.16=3. It can be seen that the
shape of the potential changes nontrivially depending on α.
That is why the prediction for r changes by orders of
magnitude for an α that even slightly deviates from 2=3.

V. CONCLUSIONS AND DISCUSSION

We have studied the subcritical regime of D-term hybrid
inflation in the generalized framework of a superconformal
model. The model is characterized by the superconformal
Kähler potential and superconformal superpotential. The
former contains a parameter α and an explicit super-
conformal breaking term that is turned on by nonzero χ.
The latter is given by the Yukawa interaction of the inflaton
and waterfall fields with a coupling λ. In addition, we
introduce the Fayet-Iliopoulos term ξ that appears after
gauge fixing of the superconformal symmetry. In this
framework, we focus on the parameter space λ ≪ 1, which
is supported by an approximate shift symmetry of the
inflaton field, and α ≤ 1 (α ≥ 2=3) for χ < −1 (χ > −1) to
give a single critical point.
In the parameter space, it has been found that inflation

continues in the subcritical regime of the inflaton field, and
that the inflaton potential in the subcritical regime changes
drastically depending on α and χ. The latest Planck data
prefer 2=3 ≤ α ≤ 1 for χ ≃ −1 and α ≃ 1 (2=3) for χ ≲ −1
(χ ≳ −1) for 60 e-folds, while the preferred parameter
space is limited for 50 e-folds as 2.5=3≲ α ≤ 1 (2=3 ≤
α≲ 2.2=3) for χ < −1 (χ > −1). The tensor-to-scalar ratio
r turns out to be r > Oð10−2Þ for χ ≃ −1, r > Oð10−3Þ for
χ ≲ −1, and r ∼Oð10−4Þ for χ ≳ −1 for 60 e-folds.
Roughly speaking, r tends to be suppressed when α
approaches 1 for χ < −1, or 2=3 for χ > −1 or jχj ≫ 1.
The other parameters, λ and ξ, on the other hand, are

Oð10−4Þ < λ < Oð10−2Þ and
ffiffiffi
ξ

p
∼Oð1016GeVÞ. This

result indicates that the FI term is determined to be around
the GUT scale, which might be a clue for further

FIG. 11. Same as Fig. 3, but with χ ¼ 0. Color codes are the
same as in Fig. 10, and λ and

ffiffiffi
ξ

p
are chosen to give the best-fit

value for ns.

FIG. 12. Same as Fig. 4, but taking χ ¼ 0 and α ¼ 2=3 (left) and 2.16=3 (right). In the left panel, λ ¼ 9.6 × 10−4 andffiffiffi
ξ

p ¼ 6.0 × 1015 GeV. In the right panel, λ ¼ 1.3 × 10−3 and
ffiffiffi
ξ

p ¼ 2.1 × 1016 GeV. The tensor-to-scalar ratio is 6.1 × 10−4 (left)
and 7.0 × 10−2 (right).
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phenomenological study of the GUT, neutrino sector, and
inflation [15,38–40].
Besides this, the cases of integer 3α (namely, 2 or 3 in the

present model) and χ ¼ 0 are motivated by the compacti-
fication of the extra dimensions in superstring theory and
the superconformal symmetry, respectively. We have found
the allowed parameter spaces for such cases. This may
bring another clue to investigating the relation between the
symmetry of the compactified space and extension of the
minimal supersymmetric standard model that accommo-
dates the inflaton sector.
As mentioned in the Introduction, non-Abelian discrete

symmetry can be one of such symmetries. Recently, the
modular symmetry has drawn a lot of attention [41] to
giving a nice fit with the experimental results of neutrino
oscillations—for example, under the modular S3 [42], A4

[41–50], S4 [51–53], and A5 [54,55]. Furthermore, the
study of the modular symmetry has been applied to solve
the cosmological issues. Reference [56] has studied lepto-
genesis with the modular A4 and showed that right-handed
neutrinos with a mass scale of 1013 GeV can account for
the observed baryon asymmetry of the Universe. This
coincides with the mass scale of right-handed sneutrinos
that play the role of inflaton and can be a source of baryon
asymmetry in the superconformal framework embedded
into the MSSM [15,33]. Since the model proposed in

Ref. [15] predicts that one of the light neutrinos is massless,
the model may give completely different consequences on
inflation and the leptogenesis if the modular symmetry
rules the lepton sector. Additionally, it was pointed out that
higher-dimension operators that are allowed by the modular
symmetry in the Kähler potential have the possibility to
spoil the success of fitting with the neutrino oscillation data
[57]. To avoid such a danger, a large volume limit in
superstring theory [58,59] is considered. For instance, the
model with an additional gauge singlet Higgs in the large
volume limit can give a consistent result with the neutrino
oscillation data [60]. However, whether it is compatible
with the cosmological issues needs further investigation.
Our results, especially on the symmetry-enhanced points,
would be another possibility to provide a phenomenologi-
cally and cosmologically acceptable scenario [61].
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