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The increasing interest in studying the role of holographic dark energy in the evolution of the very early
Universe motivates us to study it for the scenario of warm inflation. Because of this scenario, the
holographic dark energy, which now drives inflation, has an interaction with the radiation. The case of
interacting dark energy also has received increasing interest in studying the late time cosmology. The
infrared cutoff is taken as the Hubble length, and all corrections are assumed to be exhibited by the
parameter c, which appears in the holographic dark energy. By comparing the predictions of the model with
observational data, the free constants of the model could be determined. Then, by using these values of the
constants, the energy density of inflation is estimated. Next, we consider the validity of the fundamental
assumptions of the warm inflation, e.g., T=H > 1, which is necessary to be held during inflation, for the
obtained values of the constant. Gathering all outcomes, the model could be counted as a suitable candidate
for warm inflation.
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I. INTRODUCTION

Since the first proposal of inflation [1,2] and its pre-
liminary modifications [3–5], many different models of
inflation in different frames have been introduced [6–39].
So far, the scenario of inflation has received wide accep-
tance from cosmologists, and it has been supported strongly
by the observational data [40–42].
Based on the scenario, it is assumed that the scalar field

is the dominant component that drives inflation. It is called
inflaton. The energy density of the scalar field includes a
kinetic term and a potential one. Since the scalar field varies
slowly, the potential term dominates over the kinetic term.
Then, the equation of the state is about ω ≃ −1, and a
quasi–de Sitter expansion occurs [43–51]. Because of this
extreme expansion, all other fluids diluted rapidly so that at
the end of inflation the Universe is cold and almost empty
of particles. Therefore, to recover the hot standard big bang,
a reheating mechanism is required [52–62].
In 1995, a different scenario for inflation was proposed

[28], which is known as warm inflation. In warm inflation,
it is still assumed that the inflaton is still the dominant
component and it also varies slowly; however, there are
some differences. One of the main differences of warm
inflation is that it assumes that there is radiation along with
inflaton, so that these two have interaction during the whole
time of inflation. Because of the interaction, energy trans-
fers from inflaton to the radiation, and the Universe remains
warm at the end of reheating. Then, it comes to the second

difference, which is that there is no need for the reheating
mechanism in the scenario of warm inflation. The next
difference is about the fluctuations. In contrast to cold
inflation,1 where the fluctuations are quantum type [47–50],
in warm inflation, we have both quantum and thermal
fluctuations, and the thermal fluctuations dominate as long
as the condition T > H is satisfied [29,30,63–66].
Inspired by Ref. [67], we are going to consider the role of

holographic dark energy (HDE) in the very early Universe.
In other words, it is assumed that inflation is derived by
HDE, known as a candidate of dark energy that provides
interesting results for the late time evolution of the Universe
[68–71] (see [72] for a review on HDE). The HDE is given
by ρ ¼ 3c2M2

p=L2, where c is a dimensionless parameter
and the length scale L is known as the infrared cutoff LIR.
One of the motivations for studying the HDE for inflation is
the possibility of having large HDE due to the small length
scale L [67,73–75]. In the present work, we will study the
role of HDE in warm inflation; namely, it is assumed that
there is also radiation and during inflationary times HDE
and radiation interact with each other. The topic has been
considered for the scenario of cold inflation; however, we
could not find any literature in the frame of warm inflation.
There are different choices for the length scale L, such

as different horizons and the Ricci scalar. It has been
shown that the Hubble horizon for the HDE could not
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1The standard inflationary scenario assumes that the scalar
field is the dominant component that drives inflation. All other
fluids diluted rapidly, and the Universe is cold at the end of
inflation. This is why it is also known as “cold inflation.”
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provide desirable results, and it could not provide a suitable
description for the present accelerating Universe [76].
Reference [77] reconsidered the HDE with the Hubble
length including a varying parameter c. The results were
promising in which the model could properly describe the
late time acceleration. It motivates us to consider the same
model of dark energy density in the scenario of warm
inflation. Then, the length scale is taken as the Hubble
horizon, and the parameter c will be assumed to vary
instead of being constant. Moreover, the model will be
studied for the strong dissipation regime of warm inflation.
One of the main reasons for this choice is that the scenario
of warm inflation in the strong dissipation regime has the
ability to come to an agreement with the swampland criteria
[78–80], which recently have got cosmologists’ attention as
a measure to classify inflationary models [81–93].
The paper has been organized as follows: In Sec. II, the

scenario of warm inflation briefly is reviewed. In Sec. III,
the HDE is taken as the source of inflation, and the main
dynamical equations are derived. Then, we derive the
perturbation parameters and, by comparing the results with
data, the free constants are determined. Next, we consider
the energy scale of inflation and also investigate the validity
of the main assumptions of the model. Finally, the results
will be summarized in Sec. IV.

II. BRIEF REVIEW ON WARM INFLATION

The main dynamical equations are two Friedmann
equations:

H2 ¼ 1

3M2
p
ðρinf þ ρrÞ; ð1Þ

_H ¼ −1
2M2

p
ððρinf þ pinfÞ þ ðρr þ prÞÞ; ð2Þ

and the evolution equations of the fluids as [94]

_ρinf þ 3Hðρinf þ pinfÞ ¼ −Γðρinf þ pinfÞ; ð3Þ

_ρr þ 3Hðρr þ prÞ ¼ Γðρinf þ pinfÞ; ð4Þ

where the subscript ”inf” stands for the fluid that drives
inflation (e.g., it is ρinf ¼ ρϕ when the scalar field is the
source of inflation) and the subscript ”r” stands for radiation.
Also, the quantity Γ is known as the dissipation coefficient,
which could be constant, depends on temperature Tr or
scalar field, or depends on both temperature and scalar field.
The same as cold inflation, we have slow-roll approx-

imations which are usually described by the slow-roll
parameters. The first slow-roll parameter is defined as

ϵ1 ¼
− _H
H2

; ð5Þ

and the next slow-roll parameters are defined through a
hierarchy relation as follows:

ϵnþ1 ¼
_ϵn
Hϵn

: ð6Þ

Also, there is another type of the slow-roll parameter in
warm inflation, which is given by

β ¼
_Γ

HΓ
: ð7Þ

This parameter describes the evolution of the dissipation
coefficient during inflationary time. The dissipation co-
efficient that we are going to consider is given by

Γ ¼ C
Tm

ϕm−1 ; ð8Þ

where ϕ is the scalar field that drives inflation. This
dissipation coefficient has been considered in many models
of warm inflation [66,90,95–98], where the cases m ¼
3; 1;−1 are the ones that have received the most interest.
There are both quantum and thermal fluctuations in the

scenario of warm inflation, and the thermal fluctuations
dominate as long as T > H [29,30,63–66,95,96]. The ampli-
tude of the scalar perturbations is given by [66,90,95,96]

Ps ¼
H2

8π2M2
pϵ1

�
1þ 2nBE þ

2
ffiffiffi
3

p
πQffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 4πQ
p T

H

�
GðQÞ; ð9Þ

where nBE is the Bose-Einstein distribution given by
nBE ¼ ðexpðH=T infÞ − 1Þ−1, where T inf is the inflaton fluc-
tuation which is not required to necessarily be equal to
radiation temperature Tr. Also, GðQÞ is a function of the
dissipative ratio Q, defined as Q≡ Γ=3H, which is the
result of coupling between inflaton fluctuations and radiation.
The exact form of GðQÞ depends on the dissipation
coefficient, and it is determined by solving the set of
perturbation equations. For the dissipation coefficient (8),
the function GðQÞ could be found numerically which is
given by [66,90,95,96]

GðQÞ¼1þ4.981Q1.946þ0.127Q4.330 for m¼3; ð10Þ

GðQÞ¼1þ0.335Q1.364þ0.0185Q2.315 for m¼1; ð11Þ

and

GðQÞ ¼ 1þ 0.4Q0.77

ð1þ 0.15Q1.09Þ2 for m ¼ −1: ð12Þ

For the strong dissipative regime, which we are interested in,
the dissipative parameter Q is bigger than one, i.e., Q ≫ 1.
Then, the function, in general, could be written as GðQÞ ¼
amQbm ,where the constantsam andbm dependon thevalueof
the constant m.
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The scalar spectral index is defined through the ampli-
tude of the scalar perturbation as

ns − 1 ¼ d lnðPsÞ
d lnðkÞ : ð13Þ

The observational data determine that the scalar spectral
index should be ns ¼ 0.9642� 0.0042, according to
Planck-2018 data [42], which is very close to one. Note
that ns ¼ 1 corresponds to scale-invariant fluctuations (see
[49–51] for more detail).
The amplitude of the tensor perturbation is read as

[95,96]

Pt ¼
2H2

π2M2
p
: ð14Þ

The next perturbation parameter, which is widely used to
test the inflationary model, is the tensor-to-scalar ratio r,
defined by

r ¼ Pt

Ps
: ð15Þ

There are still no exact data for the parameter, and the latest
observational data indicate only an upper limit for the
parameter as r < 0.064 [42].
The amount of expansion of the Universe during

inflation is measured through the parameter N, known as
the number of e-folds, which is defined by

N ¼
Z

te

t⋆
Hdt; ð16Þ

in which the subscripts e and ⋆, respectively, indicate the
end of inflation and the time of horizon crossing. Using this
relation, one could relate a parameter at the initial time to its
value at the end of inflation.

III. HDE FOR WARM INFLATION

In this section, it is assumed that HDE is the source of
inflation, i.e., ρinf ¼ ρHDE. The HDE is given by

ρHDE ¼ 3c2M2
p

L2
; ð17Þ

where L is the infrared cutoff and c is a dimensionless
parameter which usually is taken as a constant; however, it
could vary in a general case.
Here, the infrared cutoff is taken as the Hubble length,

i.e., L ¼ H−1, and the parameter c is assumed to vary
instead of being constant. Such a case of HDE is studied for
the late time behavior of the Universe in Ref. [77], which
led to interesting results. On the other hand, it is assumed
that, since inflation occurs in a high-energy regime, there is

an ultraviolet correction to the infrared cutoff. The presence
of such corrections is also assumed to be included in the
parameter c. Then, for the Friedmann equation, we have

H2 ¼ 1

3M2
p
ð3c2M2

pH2 þ ρrÞ: ð18Þ

From the radiation conservation equation [Eq. (4)] and by
imposing the quasistable production of the radiation, i.e.,
_ρ ≪ Hρr;Γðρinf þ pinfÞ, one arrives at

4Hρr ¼ ΓðρHDE þ pHDEÞ: ð19Þ

By using the second Friedmann equation [Eq. (2)], the
radiation energy density is read as

ρr ¼
−3M2

p

2

Q
1þQ

_H; ð20Þ

note that, since energy density is positive, the time
derivative of the Hubble parameter should be negative.
The quantity Q is known as the dissipative parameter
defined as Q≡ Γ=3H.
Substituting Eq. (20) in the Friedmann equation

[Eq. (18)], the time derivative of the Hubble parameter
is obtained as

_H ¼ −2ð1 − c2Þ 1þQ
Q

H2: ð21Þ

Inserting the result in Eq. (20), the radiation energy density
is rewritten in terms of the parameter c and the Hubble
parameter as

ρr ¼ 3M2
pð1 − c2ÞH2: ð22Þ

On the other hand, the radiation energy density is expressed
in terms of its temperature

ρr ¼ σT4
r ; ð23Þ

where σ is the Stephen-Boltzmann constant given by
σ ¼ π2g⋆=30, where g⋆ is the number of degrees of
freedom of the radiation field. Tr is the temperature of
the radiation. Comparing Eqs. (22) and (23), the temper-
ature is obtained as follows:

T4
r ¼

3M2
p

σ
ð1 − c2ÞH2: ð24Þ

From the definition of ϵ1 and using Eq. (21), the parameter,
in general, is read as

ϵ1 ¼ 2ð1 − c2Þ 1þQ
Q

: ð25Þ
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The second slow-roll parameter is obtained from Eq. (6) as

ϵ2 ¼ η −
1

1þQ
ðβ − ϵ1Þ; ð26Þ

where the new parameter η is defined as

η ¼ −2c_c
Hð1 − c2Þ : ð27Þ

The introduced dissipation coefficient depends on both
the temperature and the scalar field ϕ, which plays the role
of inflaton. To go for more detail, the dependence of the
scalar field should be specified. Here, the HDE drives
inflation, and it could be said that it plays the role of
inflaton ϕ. Also, there are works of literature where the
correspondence between the HDE and the scalar field has
been studied [99–104]. Therefore, it is assumed that the
HDE could be related to a type of scalar field which
depends on the temperature as ϕ ∝ Tλ. Then, substituting it
in Eq. (8), the dissipation coefficient is rewritten as
Γ ¼ CTTp, where CT and λ are two constants and the
parameter p is defined as p ¼ m − λðm − 1Þ. Then, using
Eq. (24), it is expressed in terms of the parameter c and the
Hubble parameter:

Γ ¼ CT

�
3M2

p

σ
ð1 − c2ÞH2

�p=4

: ð28Þ

The result could be utilized in Eq. (7), so that the slow-roll
parameter β is simplified as

β ¼ −2ð1 − c2Þ 1þQ
Q

HΓ;H

Γ
: ð29Þ

A. Holographic warm inflation in HDR

For the rest of the work, it is assumed that inflation
occurs in the high dissipative regime (HDR), i.e., Q ≫ 1.
Imposing this condition on the equations, and by substitut-
ing the radiation energy density (20) in Eq. (18), the first
slow-roll parameter is obtained only in terms of the
parameter c as

ϵ1 ¼
− _H
H2

¼ 2ð1 − c2Þ: ð30Þ

Then, utilizing the hierarchy definition of the slow-roll
parameters, the second one is given by

ϵ2 ¼
_ϵ1

Hϵ1
¼ −2c_c

Hð1 − c2Þ : ð31Þ

The parameter c is assumed to be given by c ¼ c0Hγ,
where c0 and γ are constants2 which will be determined
later in a comparison with observational data. By this
definition, we have

_H ¼ −2ð1 − c20H
2γÞH2: ð32Þ

Inserting the above relation in the equation of number of
e-folds (16), we have

(a)

(b)

FIG. 1. The figure illustrates the tensor-to-scalar ratio r versus
the scalar spectral index ns for different values of the number of
e-folds. Here, γ is taken as the variable, and the arrow for each
curve shows the direction of increasing γ. The figure shows the
values of ns and r at the time of the horizon crossing. The other
constants are taken as (a) m ¼ 3, λ ¼ 2, and c0 ¼ 0.57 and
(b) m ¼ −1, λ ¼ −1, and c0 ¼ 0.51.

2In a general case for the HDE, the parameter c is considered to
be a slowly varying function instead of being constant. On the
other hand, during the slow-roll inflationary phase, the Hubble
parameter is taken as a slowly varying function, which is
described by the smallness of the parameter ϵ1. Therefore, the
parameter c is taken to be proportional to the Hubble parameter to
satisfy slowly varying behavior.
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N ¼ −
Z

He

H⋆

1

2ð1 − c20H
2γÞHdH:

The parameter He is found from the relation ϵ1 ¼ 1, which
indicates the end of inflation. By solving the above integral,
the Hubble parameter is obtained in terms of the number of
e-folds as

H2γðNÞ ¼ e4γN

c20ð1þ e4γNÞ : ð33Þ

Then, from the definition of c, the parameter is found in
terms of N, i.e.,

c2ðNÞ ¼ e4γN

1þ e4γN
: ð34Þ

Since both the slow-roll parameters were expressed in
terms of the parameter c, they could also be rewritten in
terms of the number of e-folds, as follows:

ϵ1ðNÞ ¼ 2

1þ e4γN
; ð35Þ

ϵ2ðNÞ ¼ 4γe4γN

1þ e4γN
: ð36Þ

The next slow-roll parameter is given by

βðNÞ ¼ −p
�
1 − ð1þ γÞ e4γN

1þ e4γN

�
: ð37Þ

By computing Eq. (13) for the HDR, the scalar spectral
index is obtained as

TABLE III. The table shows the numerical results of the model for different values of the constants.

m p N γ c0 ns r Energy scale T=H ρH=ρr

3 2 60 0.0192 0.55 0.9645 0.0140 9.74 × 1015 37.82 100.283
3 2 60 0.0192 0.57 0.9645 3.39 × 10−4 3.84 × 1015 95.892 100.283
3 2 65 0.0192 0.55 0.9282 0.0165 1.01 × 1016 33.009 147.230
3 2 65 0.0192 0.57 0.9282 4.00 × 10−4 4.01 × 1015 83.676 147.230
3 2 60 0.0180 0.57 1.0117 0.0135 9.65 × 1015 40.968 75.188
3 2 60 0.0180 0.59 1.0117 2.93 × 10−4 3.70 × 1015 106.779 75.188
3 2 65 0.0180 0.57 0.9659 0.0169 1.02 × 1016 35.466 107.770
3 2 65 0.0180 0.59 0.9659 3.66 × 10−4 3.91 × 1015 92.438 107.770
−1 −1 60 0.0231 0.49 0.9643 0.0119 9.36 × 1015 31.243 255.698
−1 −1 60 0.0231 0.51 0.9643 3.72 × 10−4 3.93 × 1015 74.272 255.698
−1 −1 65 0.0231 0.49 0.9752 0.0126 9.51 × 1015 27.414 405.856
−1 −1 65 0.0231 0.51 0.9752 3.96 × 10−4 4.00 × 1015 65.169 405.856
−1 −1 60 0.0215 0.51 0.9511 0.0258 1.13 × 1016 28.303 174.164
−1 −1 60 0.0215 0.53 0.9511 7.22 × 10−4 4.64 × 1015 69.238 174.164
−1 −1 65 0.0215 0.51 0.9661 0.0283 1.16 × 1016 24.847 267.73
−1 −1 65 0.0215 0.53 0.9661 7.92 × 10−4 5.75 × 1015 60.784 267.73

TABLE I. The table shows numerical results for the scalar
spectral index and the tensor-to-scalar ratio for different values of
the number of e-folds N and γ. The other constants are taken as
m ¼ 3, λ ¼ 2, and c0 ¼ 0.57.

N γ ns r

55 0.0205 0.9662 8.15 × 10−6

55 0.0192 1.0176 2.67 × 10−4

55 0.0180 1.0766 9.89 × 10−3

60 0.0205 0.9239 9.74 × 10−6

60 0.0192 0.9646 3.39 × 10−4

60 0.0180 1.0117 0.0135
65 0.0205 0.8956 1.09 × 10−5

65 0.0192 0.9282 4.00 × 10−4

65 0.0180 0.9659 0.0169

TABLE II. The table shows numerical results for the scalar
spectral index and the tensor-to-scalar ratio for different values of
the number of e-folds N and γ. The other constants are taken as
m ¼ −1, λ ¼ −1, and c0 ¼ 0.52.

N γ ns r

55 0.025 0.9625 9.43 × 10−7

55 0.023 0.9462 7.97 × 10−5

55 0.021 0.9207 0.0148
60 0.025 0.9746 1.00 × 10−6

60 0.023 0.9637 8.82 × 10−5

60 0.021 0.9458 0.0173
65 0.025 0.9819 1.04 × 10−6

65 0.023 0.9747 9.40 × 10−5

65 0.021 9.623 0.0193
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ns − 1 ¼ ðbm − 0.5Þϵ1 − ϵ2 þ
�
bm þ 1

m
þ 0.5

�
β; ð38Þ

and the tensor-to-scalar ratio is acquired from Eqs. (9)
and (14) as follows:

r ¼ 16ϵ1

� ffiffiffiffiffiffi
3π

p T
H
amQbm

�
−1
: ð39Þ

In the subsequent subsection, the parameters are estimated,
and the results of the model will be compared with data.

B. Comparing the model with data

To verify the validity of the model, its results should be
compared with observational data, or one could apply the
observational data and constrain the free constants of
the model. In this regard, first, we need to express the
perturbation parameters Ps, ns, and r in terms of the
number of e-folds. This way, the parameters could be easily
estimated at the time of the horizon crossing. Following
Refs. [67,73–75], it is assumed that Eqs. (38) and (39)
provide acceptable approximate values for the inflationary
observable parameters.
Using Eqs. (35) and (37), the scalar spectral index is

expressed in terms of the number of e-folds. Next, through
Eqs. (9), (24), (28), and (33), it is achieved that

� ffiffiffiffiffiffi
3π

p T
H
amQbm

�����⋆ ¼ 8π2M2
pP⋆

s ϵ1ðNÞ
H2ðNÞ : ð40Þ

Then, substituting Eq. (40) in Eq. (39), the tensor-to-scalar
ratio also is read in terms of the number of e-folds. Figure 1
illustrates the tensor-to-scalar ratio r versus the scalar
spectral index ns at the time of horizon crossing. The
figure shows the r − ns diagram for two values of m, in
Eq. (8), as m ¼ 3 and m ¼ −1. Note that, for m ¼ 1, there
is no consistency with the results and observational data.
The curves are plotted for different values of the number of
e-folds which are mostly used in the literature. The latest
data state that ns ¼ 0.9642� 0.0049 and r ≤ 0.064. By
increasing the number of e-folds, the curves go out of the
observational region. However, for a smaller number
of e-folds, the tensor-to-scalar ratio r gets smaller values.
The varying parameters of the curves are the parameter γ, in
which, form ¼ 3, increasing of the parameter γ leads to the
reduction of both the scalar spectral index and tensor-to-
scalar ratio. The situation is different for m ¼ −1 so that,
by enhancement of the parameter γ, the scalar spectral
index increases; however, the tensor-to-scalar parameter
decreases. Moreover, by taking smaller N, the curve stays
in the observational range for bigger values of γ. Tables I
and II determine the numerical results for both cases of
m ¼ 3 and m ¼ −1, where the above conclusions are
restated by numbers to give more insight. More results
are presented in Table III, where the energy scale of

inflation is estimated and the conditions of the model,
which is discussed in the next subsection, are investigated.
Figure 2 exhibits the same plot for different values of the

constant c0. The constant c0 appears in the tensor-to-scalar
ratio. The figure displays that, by enhancement of c0, r
dramatically decreases.
By comparing the model with observational data, we are

provided with a general view of the values of the constants
of the model to have an agreement with observation. Taking
these values of the constants, we could have a general
insight about the energy density ρH, which displays the
energy scale of inflation. Figure 3 portrays the behavior of
the HDE during the inflationary time. It is concluded that
the inflation starts at the energy scale of about 1015 GeV,
which decreases by approaching the end of inflation.

(a)

(b)

FIG. 2. The plot is a parametric plot displaying the tensor-to-
scalar ratio r versus the scalar spectral index ns for different
values of c0. The same as Fig. 1, the variable is γ. It is realized that
by decreasing of the c0 the curves goes out of the observational
range; however, by enhancement of c0, it comes inside and the
parameter r becomes very small. The number of e-folds is taken
as N ¼ 65, and the other constants are taken as (a) m ¼ 3 and
λ ¼ 2 and (b) m ¼ −1 and λ ¼ −1.
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Note that the number of e-folds N ¼ 0 indicates the end of
inflation, and higher values of number of e-folds means
we go more and more inside inflation. In other words,
over time and approaching the end of inflation, the number
of e-folds decreases. Therefore, in Fig. 3 and also the
subsequent figures, the direction of time is actually from
right to left.

C. Verifying the conditions of the model

In the scenario of warm inflation, we have two funda-
mental assumptions as T=H > 1 and ρHDE=ρr > 1. These
assumptions should be verified for the obtained values of
the constants. Figure 4 displays the term T=H versus the

number of e-folds for different values of c0 for both m ¼ 3
and m ¼ −1. It is verified that the term is greater than one,
and the condition T=H > 1 is verified. Also, the term
increases by approaching the end of inflation.
A comparison of the energy densities is presented in

Fig. 5. The plot exhibits the ratio ρHDE=ρr for different
values of c0 during inflation, for both cases of m as m ¼ 3
andm ¼ −1. It is realized that, at the initial times, the HDE
is much bigger than the radiation energy density. Then, the
HDE is the dominant component, and the assumption that
the warm inflation is driven by HDE is verified. By passing
time, they come close together so that at the end of inflation
they are comparable to each other. Note that, at the

(a)

(b)

FIG. 4. The term T=H is plotted versus the number of e-folds
for different values of the constant γ. The curves shows the value
of the term during the inflationary time. It is seen that the
condition T=H > 1 is verified for the whole time of inflation. The
other constants are taken as (a) γ ¼ 0.018, m ¼ 3, and λ ¼ 2 and
(b) γ ¼ 0.021, m ¼ −1, and λ ¼ −1.

(a)

(b)

FIG. 3. The behavior of the HDE during the inflationary times
is presented for different values of c0. It has a high value at the
initial time, and then it decreases by passing the time. It is seen
that the energy scale of inflation is about 1015 GeV. The plot also
indicates that HDE has smaller values for bigger values of γ. The
other constants are taken as (a) γ ¼ 0.018, m ¼ 3, λ ¼ 2, and
c0 ¼ 0.57 and (b) γ ¼ 0.021, m ¼ −1, λ ¼ −1, and c0 ¼ 0.52.
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resolution scale of the figures, the difference of the curves
ρHDE=ρr is not distinguishable.

IV. CONCLUSION

The scenario of warm inflation was considered by
this assumption that the HDE is the source of inflation.
Based on the assumptions of the scenario of warm inflation,
we now have two components as HDE and radiation.

They interact with each other, and the energy transfers from
HDE to the radiation. Moreover, the scenario predicts two
types of fluctuations as quantum and thermal fluctuation,
respectively, are proportional to H and T. The thermal
fluctuations dominate over the quantum fluctuation as long
as the condition T=H > 1 is preserved.
The infrared of the HDE was assumed to be given by the

Hubble length, and we also included this assumption that
the parameter c, which appears in the HDE, is a varying
parameter instead of being constant. Then, the dynamical
equations of the model and also the main perturbations
parameter were derived. The inflation was assumed to
occur at the strong dissipative regime, and the dissipation
coefficient Γ was taken to depend on the temperature T.
Next, the perturbation parameters were estimated at the
time of the horizon crossing, and, by comparing them with
observational data, we could determine the free constants
of the model. This was performed for different types of
temperature dependence of the dissipation coefficient.
The r − ns diagram of the model was depicted, and it
was realized that the model could come to a good agree-
ment with data. Next, the behavior of the HDE was
investigated. The HDE was assumed for the source of
inflation; i.e., it is the dominant component. Therefore, its
energy density at the initial times gives the energy scale
of inflation. The behavior of HDE was plotted, which
displayed that the energy scale of inflation is around
1015 GeV.
At the final step, we reconsider the verification of the

fundamental conditions of the model, i.e., T=H > 1 and
ρHDE=ρr ≫ 1, for the determined values of the constants.
The first condition guarantees that the thermal fluctuations
dominate over the quantum fluctuations. The behavior of
the term T=H was plotted in Fig. 4. It shows that the term is
greater than one for the whole time of inflation. Also, it gets
larger over time. The ratio ρHDE=ρr ≫ 1 was illustrated in
Fig. 5, which determines that, at the initial time, the HDE is
much bigger than one. This result verifies the assumption
that inflation is driven by the HDE. By approaching the end
of inflation, the ratio gets smaller, stating that the two
densities come closer. A numerical result of the model is
presented in Table III.
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FIG. 5. The plot illustrates the ratio of energy densities of the
HDE and radiation during the inflationary times. At the initial time
HDE is much bigger, and, by passing the time and approaching the
end of inflation, they come close together. The other constants are
taken as (a) γ ¼ 0.018, m ¼ 3, λ ¼ 2, and c0 ¼ 0.57 and
(b) γ ¼ 0.021, m ¼ −1, λ ¼ −1, and c0 ¼ 0.52.
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