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We study the effect of supergravity corrections due to a linear and a squared term in the Kähler potential
in the context of a supersymmetric hybrid inflation model. By appropriate choice of the parameters
associated to these terms, we are able to satisfy the main cosmological constraints for the spectral index ns
and the tensor-to-scalar ratio r. In addition, this model predicts primordial black hole abundance enough to
account for the whole dark matter of the Universe and gravitational wave spectra within the reach of future
detection experiments. The predictions of the model can be made compatible to the NANOGrav reported
signal at the cost of significantly lower primordial black hole abundance.
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I. INTRODUCTION

An important milestone in cosmology was the detection
of gravitational waves (GWs) by LIGO and Virgo collab-
orations [1–3]. The detection of such signals, related to the
merging of black holes or neutron stars, triggered numerous
studies, exploring the possibility that the primordial black
holes (PBHs) constitute a significant part or the whole of
the dark matter (DM) of the Universe. In addition, recently,
it was reported strong evidence for stochastic common-
spectrum process by the NANOGrav collaboration [4–6].
Needless to say, analogous and more precise detection
signals for GWs are expected from future space-based GW
interferometers such as LISA, BBO, DECIGO, SKA, and
Tianquin [7–12].
As a result, many theoretical studies have appeared in the

literature [13–40], which explain the production of PBH as a
fraction of DMof the Universe. This PBH production during
the radiation dominance epoch, can be associated to a
significant enhancement of the scalar power spectrum.
Many of these models are based on single field inflation
and especially on models with a near inflection point in the
effective scalar potential [13–22]. The required enhancement
factor of the power spectrum is calculated to be seven order of
magnitudes [13–22]. A severe drawback of these models is
the high level of the necessary fine-tuning in order to achieve
such a big amplification of the power spectrum. For this
reason, alternative methods have been proposed to alleviate
the issue of the fine-tuning, for example the multifield
inflation models [25–30] or models with a step behavior
in the effective scalar potential [23,24,41,42].
In this paper we follow a different avenue in order to

explain the generation of GWs and the production of PBHs.
Specifically, we study the case of a hybrid inflation model

[43,44], including supergravity (SUGRA) corrections. The
main advantage of the hybrid models, is that the required
fine-tuning is significantly smaller than in models where
the PBHs are produced due to an inflection point in the
scalar potential. The characteristic feature of a hybrid
model, is that the minimum of the scalar effective potential
corresponds to the false vacuum with nonvanishing energy
density [43,45]. This false vacuum dominates and becomes
unstable, when the inflaton field acquires a critical value
[45]. Needless to say, that the inflationary predictions from
the hybrid false vacuum models are quite different than
the true vacuum models. Specifically, in the true vacuum
models inflation ends with oscillations in the minimum of
the potential, which designate the reheating. Moreover, it
appears that the inflation scale in true vacuum models
differs from this in the false vacuum. In particular, in the
false vacuum models inflation occurs far below the Planck
scale, therefore they are similar to the embedded SUGRA
models [45]. On the contrary, the inflation scale in the true
vacuum models is predicted to be usually high.
The main drawback of hybrid inflationary models was

their prediction for the spectral index ns ≳ 1 [45–47], value
excluded by the Planck data [48,49]. In [50,51], the authors
introduced one-loop radiative corrections in order to
achieve a reduction to ns, although during the last years
alternative methods have been proposed [52–65].
Specifically, in the context of no-scale SUGRA hybrid
models, a reduced value for ns can be predicted [66–68].
In the context of hybrid models the production of PBHs has
already be studied [69–72], also with small values for ns.
This PBH production is obtained by an appropriate
enhancement of the power spectrum of the scalar pertur-
bations. In addition, the production of GWs can be obtained
by this enhancement [73–81].
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In this work we present a pure hybrid model, where we
achieve cosmologically accepted values for ns < 1.0 due to
SUGRA corrections. These corrections are related to a
linear and a squared term, added in the Kähler potential.
The enhancement of the power spectrum in hybrid models,
such as shown in Ref. [70], occurs during the mild waterfall
phase. Specifically, these models are based on a two-field
inflation scenario, where one field acquires a tachyonic
solution in the critical point and the other, which plays the
role of the inflaton, becomes unstable. Thus, the analysis of
the background dynamics is decomposed in two phases: a
slow-roll phase until the critical point and a second
waterfall phase till the end of the inflation. The evaluation
of the inflationary observables during these phases has been
performed analytically in the slow-roll approximation
[70,82]. For comparison we have performed also a numeri-
cal solution of the background equations as well as the
perturbations.
In the context of our model we have chose two

representative sets of parameters for the extra Kähler terms.
In any case we are able to satisfy the main cosmological
constraints for the spectral index ns and the tensor-to-scalar
ratio r. Moreover, this model predicts PBH abundance
enough to account for the total DM of the Universe and GW
spectra that can be detected in the future experiments like
LISA, DELIGO etc. With an appropriate choice of the
parameters, the GW spectrum can be made compatible to
NANOGrav signal, but in this case the PBH abundance is
much smaller, due to the SUBARU constraints.
The layout of the paper is as follows: in Sec. II we

introduce the hybrid model with the SUGRA correction as
discussed before, in order to derive acceptable values for
the spectral index ns and the tensor-to-scalar ratio r.
In Sec. III we present the background dynamics of the
waterfall as well as the perturbation of the fields. We
calculate analytically the scalar power spectrum based on
the slow-roll approximation and for comparison we evalu-
ate also the spectrum using a numerical solution. In Sec. IV
we evaluate the energy density of the GWs and we show
that the model yields detectable spectra for the future
experiments, like LISA, but also can explain the reported
signal from the NANOGrav collaboration. In Sec. V we
evaluate the fractional abundance of PBHs, which for a
particular choice of the parameters, can account for the
whole DM of the Universe. Furthermore, in Sec. VI we
estimate the amount of the required fine-tuning and we
present our concluding remarks.

II. THE HYBRID MODEL

The hybrid model [43,45,50] results from the globally
supersymmetric renormalizable superpotential

W ¼ κSðΨ1Ψ2 −m2Þ; ð2:1Þ
where Ψ1, Ψ2 are chiral superfields, the scalar component
of the superfield S is the gauge singlet inflaton field, κ is a

dimensionless coupling constant, and m is a mass. It is
important to notice that this superpotential is symmetric
under R symmetry,1 or in other words, transformations of
the field such as X → eiωX lead to the transformation of the
superpotential W → eiωW. This symmetry removes the
undesirable self-couplings of the inflaton field S, and it is
the only symmetry which treats the false vacuum in a
natural way [50].
The scalar potential in SUSY is given from the following

expression

VSUSY
F ¼

X
i

���� ∂W∂Fi

����
2

; ð2:2Þ

where Fi indicates the superfields: Ψ1, Ψ2, and S. In the
case of superpotential (2.1), we have

VSUSY
F ¼ jκðΨ1Ψ2 −m2Þj2 þ jκSΨ1j2 þ jκSΨ2j2: ð2:3Þ

We consider the following form of the Kähler potential:

K ¼ SS̄þΨ1Ψ̄1 þΨ2Ψ̄2: ð2:4Þ

For the choice of Eq. (2.4) we have the following Kähler
metric

Kij̄ ¼
∂2K

∂Fi∂Fj̄
¼

0
B@

1 0 0

0 1 0

0 0 1

1
CA: ð2:5Þ

So the kinetic term of the Langrangian is given by

Lkin ¼ Kij̄∂μFi∂μFj̄: ð2:6Þ

Hence the scalar potential is given from

VSUSY
F ¼ Λ

��
1 −

ψ2

M2

�
2

þ 2ϕ2ψ2

M4

�
; ð2:7Þ

where we have assumedΛ ¼ κ2m4 andM2 ≡ 2m2. In order
to fix the noncanonical kinetic term we have jSj ¼ ϕ=

ffiffiffi
2

p
and jΨ1j ¼ jΨ2j ¼ ψ=

ffiffiffi
2

p
[45,56]. The D term vanishes

along the inflationary trajectory, since it is quartic in the
charged Ψ1;2 fields. In general this term is important for
stabilizing the noninfaton fields [45,83,84]. The potential is
flat along the direction ψ ¼ 0, jϕj > jϕcj ¼ m

ffiffiffi
2

p
and is

given by a constant value for the energy density V ¼ κ2m4.
One the other hand, the field ψ develops tachyonic
solutions if

1For the charges of the superfields in the global R symmetry
we consider that the field S has Uð1ÞR equal to 1 and the fields
Ψ1, Ψ2 have Uð1ÞR equal to 0 [56].
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κ2ð−2m2 þ ϕ2 þ 3ψ2Þ < 0: ð2:8Þ

Along the flat direction this condition becomes

ϕ2 < ϕ2
c ¼ 2m2 ≡M2; ð2:9Þ

where ϕc is the critical value of the field ϕ, after which this
field ψ becomes tachyonic. The main phenomenological
issue of this model is that the predicted spectral index, ns, is
almost equal to unity, value rejected by the Planck data
[48]. It has been proposed that incorporating the one-loop
radiative corrections leads to a red spectral index [50].
However, there is an alternative way to fix this prob-

lematic feature. By incorporating SUGRA corrections, one
maintains the basic characteristics of the model, such as the
waterfall behavior or the false vacuum inflation, and
predicts ns ≲ 1. Specifically we consider a Kähler potential
like

K ¼ SS̄þ b1ðSþ S̄Þ þ b2ðSþ S̄Þ2 þ Ψ1Ψ̄1 þ Ψ2Ψ̄2;

ð2:10Þ

where b1 is a dimensionful parameter with mass dimen-
sions and b2 is dimensionless. As for the origin of these
parameters here we will remain agnostic, but their role
and their phenomenologically preferred values will be
discussed in the following. This form of Kähler potential
is similar to Eq. (2.4) plus a shift-symmetric term [85].
We calculate the F term of the scalar potential using its

general form of SUGRA models [86]

VSUGRA
F ¼ eK=MP

2

�
ðK−1Þij̄

�
W̄j̄ þ W̄Kj̄

MP
2

��
Wi þ

WKi

MP
2

�

−
3jWj2
MP

2

�
; ð2:11Þ

where ðK−1Þij̄ is the inverse Kähler metric, Ki ¼ ∂K
∂Fi and

Wi ¼ ∂W
∂Fi.MP is the reduced Planck mass.2 The indices i, j

in this equation and thereafter run over the chiral super-
fields S, Ψ1, and Ψ2 and with the bar we denote the
conjugate pair of each superfield. For the superpotential,
we use the (2.1). In order to calculate the corrections in the
effective scalar potential we expand the exponential in
Eq. (2.11) as

eK=M
2
P ¼ 1þ K

M2
P
þ K2

2M4
P
þO

�
1

M6
P

�
: ð2:12Þ

The Kähler metric for the Kähler potential (2.10) takes the
form

Kij̄ ¼

0
B@

1þ 2b2 0 0

0 1 0

0 0 1

1
CA: ð2:13Þ

Using Eqs. (2.1), (2.10), (2.12), and (2.13) in (2.11), the
scalar potential reads as

VSUGRA
F ¼ κ2ðM4 − 2M2ψ2 þ 2ψ2ϕ2 þ ψ4Þ

4þ 8b2

þ A1

M2
P
þ A2

M4
P
þO

�
1

M6
P

�
; ð2:14Þ

where we have assumed that jΨ1j ¼ jΨ2j ¼ ψ=
ffiffiffi
2

p
as

before. For the superfield S, we need to fix the nonca-
nonical kinetic term by considering the Kähler metric in
Eq. (2.13). Hence we have considered the following
redefinition of the field

S ¼ ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 4b2

p : ð2:15Þ

The A1;2 are functions ofM;ϕ;ψ with mass dimensions of
6 and 8, respectively. Detailed expression for these can be
found in the Appendix in Eqs. (A7) and (A8). One can
notice that the first term in (2.14) is VSUSY

F =ð1þ 2b2Þ.
In the limit MP → ∞ and b2 → 0 apparently one derives
the SUSY potential as in Eq. (2.7). Therefore, the total
effective scalar potential is

V ≡ VSUGRA
F ¼ Λ

��
1 −

ψ2

M2

�
2

þ 2ϕ2ψ2

M4
þ Ṽcorrection

F

�
;

ð2:16Þ

where Vcorrection
F ¼ VSUGRA

F − VSUSY
F from Eqs. (2.7) and

(2.14) and Ṽcorrection
F ¼ Vcorrection

F =Λ. If we expand this
expression around the critical value of ϕ, then we derive
[70,87]

Ṽcorrection
F ¼ a0 þ a1ðϕ − ϕcÞ þ a2ðϕ − ϕcÞ2

þ a3ðϕ − ϕcÞ3 þ a4ðϕ − ϕcÞ4: ð2:17Þ

In this expansion, terms up to a2 are related toA1 in (2.14),
where these up to a4 are related to A2. The numerical
calculation reveals that the terms which appear in (2.14),
suffice to approximate the VSUGRA

F in (2.11). More details
can be found in the Appendix.
In Fig. 1 we present the effective scalar potential in

Eq. (2.16). As one can notice, the inflaton field moves
through the valley until it reaches the critical point. After
that the other field, which is called a waterfall, acquires a
tachyonic solution and the inflaton moves through the
waterfall. Finally, the inflation ends in false vacuum. We
can show that the prediction of the ns in this model is

2In the following we keep MP as dimensionful parameter in
order to clarify the SUGRA limiting behavior.
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indeed compatible with the Planck cosmological data.
In the slow-roll limit it is known that

ns ¼ 1þ 2ηV − 6ϵV; ð2:18Þ

with

εV ¼ M2
P

2

�
V 0

V

�
2

; ηV ¼ M2
P
V 00

V
: ð2:19Þ

Prime denotes derivation with respect to the fields. It is
worth noting that in this model we get ns ¼ 0.965, which is
consistent with the current data. For the tensor-to-scalar
ratio we use the corresponding slow-roll expression

r ¼ 16εV: ð2:20Þ

Detailed phenomenological analysis delineating values for
b1;2 compatible with the experimental constraints for ns and
r will be discussed in the following section.

III. BACKGROUND DYNAMICS AND
PERTURBATIONS ALONG THE WATERFALL

In the hybrid inflation models two scalar fields are
required: the inflaton field ϕ and the waterfall field ψ . The
field ψ becomes tachyonic at some critical value ϕ ¼ ϕc,
where its mass squared gets negative values. In this section
we discuss the background dynamics for both ϕ and ψ
fields. In addition, we present the evaluation of scalar
power spectrum with analytical and numerical tools,
adopting methods from Refs. [70,82].
First we calculate the evolution of the fields with respect

to the cosmic time, as described from the potential (2.16).
Consequently, we evaluate the spectral index ns and the
tensor-to-scalar ratio r using the Eqs. (2.18) and (2.20),

respectively. Our results for two sets for the parameters b1;2
are shown in Table I.3 We notice that the additional terms,
that depend on b1;2 are found to be numerically at least
three orders of magnitude smaller than the dominant M
term. On the other hand, their presence is important in order
to satisfy the cosmological constraints. This can be under-
stood, because the subdominant terms contribute in the
derivatives of the potential V and through these to ns.
In Fig. 2 we plot these predictions for the observables ns
and r along with the current allowed regions by the Planck
2018 collaboration [48].
The background dynamics is described by the

Friedmann-Lemaître equation

H2 ¼ 1

3M2
P

�
_ϕ2

2
þ _ψ2

2
þ Vðϕ;ψÞ

�
ð3:1Þ

and the Klein-Gordon equations

ϕ̈þ 3H _ϕþ ∂V
∂ϕ ¼ 0;

ψ̈ þ 3H _ψ þ ∂V
∂ψ ¼ 0; ð3:2Þ

where the dots denote differentiation with respect to cosmic
time. In Fig. 3 we display the full solution of the (3.2)
for the fields ϕ and ψ . As initial conditions for the solution
we assume those of the critical point. Specifically, we
assume ϕic ¼ ϕc ¼ 0.05MP and ψ ic ¼ 1.3 × 10−10MP,
and we calculate the background equations until the end
of inflation, or equivalently until the parameter ε ¼
− _H=H2 reaches the value 1.
The potential, we proposed in Eq. (2.16), gives signifi-

cant enhancement in the power spectrum, almost by seven
order of magnitude, due to the waterfall behavior, as it has
been pointed out in [70]. In the following we present the
analytical calculation of the power spectrum based on the
slow-roll approximation and for comparison the corre-
sponding numerical result based on the integration of
curvature perturbations of the fields.

A. The slow-roll approximation

The equations of motion (3.2) can be solved numerically.
However, it is possible to derive analytical solutions by
considering the usual slow-roll approximation [70,82,88].
In this subsection we derive the analytical solution and we
use these results in order to evaluate the scalar power
spectrum [70].
The equations of motion in slow-roll approximation,

ignoring the seconds derivatives in (3.2), are

FIG. 1. The quantity lnðVΛÞ, using Eq. (2.16) with b1 ¼
3.506 × 10−4MP, b2 ¼ −3.5 × 10−3 and m ¼ 0.05MP. The
fields ϕ and ψ are measured in MP units. The black bullet
denotes the position of the critical point.

3The numerical value of the parameter Λ is fixed by the
requirement PR ¼ 2.1 × 10−9 at the cosmic microwave back-
ground (CMB) scale.
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3H _ϕ ¼ −
∂V
∂ϕ ;

3H _ψ ¼ −
∂V
∂ψ ; ð3:3Þ

and the Friedmann-Lemaître equation is

H2 ¼ Λ
3M2

P
: ð3:4Þ

We consider the potential as in Eq. (2.16) with the SUGRA
corrections case in Eq. (2.17). Expanding the field ϕ in a
Taylor series around the critical point, the potential takes
the form

V ¼ Λ
��

1 −
ψ2

M2

�
2

þ 2ϕ2ψ2

M4
þ a0 þ a1ðϕ − ϕcÞ

þ a2ðϕ − ϕcÞ2 þ a3ðϕ − ϕcÞ3 þ a4ðϕ − ϕcÞ4
�
; ð3:5Þ

where a0 ¼ 0.00707364, a1 ¼ 4.331 × 10−7M−1
P , a2 ¼

−0.0088M−2
P , a3 ¼ 0.0242M−3

P , and a4 ¼ 0.118M−4
P .

These values correspond to the parameters M ¼ 0.05MP,
b1 ¼ 3.506 × 10−4MP, and b2 ¼ −3.5 × 10−3, as in set 1.
Evaluating the potential derivatives, the equations of

motion read as

3H _ϕ ¼ −Λa1
�
1þ 4ψ2ϕ

M4a1

�
; ð3:6Þ

3H _ψ ¼ −
4ψΛ
M2

�
ϕ2 −M2

M2
þ ψ2

M2

�
: ð3:7Þ

In order to solve analytically these equations, we follow the
standard procedure to divide the inflationary period into
three phases [70,82,88]. In the so-called phase 0, we
neglect the second term of rhs of Eq. (3.6) and the first
term of rhs of Eq. (3.7). Consequently in the phase 1 the
first term of rhs of Eq. (3.6) as well as the first term of
Eq. (3.7) are dominant. Finally in the phase 2 the dominant
terms are the second term of rhs of Eq. (3.6) and the first
term of rhs of Eq. (3.7). We omit the terms proportional to
a2, a3, and a4 in Eq. (3.6) because in phases 0 and 1ϕ varies
quite slowly with respect to ϕc. Moreover, in phase 2 this
term does not contribute. As it is shown in Refs. [82,88],
the duration of the phase 0 is small. Therefore, we consider
only phases 1 and 2.

TABLE I. The prediction for the spectral index ns and ratio tensor-to-scalar r for two representative sets of the
parameters b1;2.

Model MðMPÞ b1ð10−4MPÞ b2ð10−3Þ Λð10−20M4
PÞ ns r

Set 1 0.05 3.506 −3.5 4.9 0.9651 1.55 × 10−12

Set 2 0.10 8.918 −5.0 140 0.9684 1.54 × 10−10

FIG. 3. The fields ϕ, ψ as functions of the number of e-folds N inMP units, starting from the critical point. We evaluate them solving
the full background Eq. (3.2) using the scalar potential (2.16).

FIG. 2. The predictions of our models for ns and r plotted
against the Planck 2018 constraints [48]. Triangle corresponds to
set 1 and bullet to set 2, as given in Table I.
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For convenience we introduce two new variable ξ, χ,
which are related to ϕ;ψ as

ϕ ¼ ϕceξ;

ψ ¼ ψ0eχ : ð3:8Þ

During the waterfall, as long as the slow-roll approximation
is valid (jχj ≪ 1), we use the approximation ϕ ≃ ϕcð1þ ξÞ.
Moreover, in Eq. (2.9), we assume that the value of the
critical point is ϕc ¼ M.
The equations of motion (3.6) and (3.7) during the two

phases, phase 1 and phase 2, get the form
(i) Phase 1:

3H_ξ ¼ −Λ
a1
M

;

3H _χ ¼ −
4Λ
M2

ð2ξÞ; ð3:9Þ

(ii) Phase 2:

3H_ξ ¼ −Λ
�
4ψ2

M4

�
;

3H _χ ¼ −
4Λ
M2

ð2ξÞ: ð3:10Þ

Thus, the field trajectory through the phase 1 is governed
by Eq. (3.9): dξdχ

4
M2 ð2ξÞ ¼ a1

M, so 2ξdξ ¼ Ma1
4
dχ with solution

ξ2 ¼ Ma1
4

χ: ð3:11Þ

The number of e-folds during phase 1 of inflation can be
evaluated from Eq. (3.9). Hence, one gets

N1ðξÞ ¼ −
ξM
a1M2

P
: ð3:12Þ

Assuming that there is exact match between phase 1 and 2,
we get for the field χ

χ2 ¼ ln

�
M3=2 ffiffiffiffiffi

a1
p

2ψ0

�
: ð3:13Þ

Hence from the second equation of (3.9), we derive

N1 ¼
χ1=22 M3=2

2M2
p

ffiffiffiffiffi
a1

p ; ð3:14Þ

which gives the total number of e-folds during phase 1. This
number of e-folds is valid if χ2 > m2a1=8 [82].

As for the phase 2 the solution of (3.10) is

ξ2 ¼ ξ22 þ
Ma1
4

ðe2ðχ−χ2Þ − 1Þ; ð3:15Þ

and from Eq. (3.11)

ξ2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1χ2M

p
2

; ð3:16Þ

where we match the phase 1 with phase 2. The total number
of e-folds during phase 2 is given to a good approximation
by [70,82,88]

N2 ¼
Mϕc

1=2

4M2
Pa

1=2
1 x1=22

: ð3:17Þ

For the evaluation of the scalar power spectrum we have
in the δN formalism [88–90]:

PR ¼ H2

4π2
ðN2

;ψ þ N2
;ϕÞ; ð3:18Þ

where N;ϕ ¼ N1;ϕ þ N2;ϕ and N;ψ ¼ N1;ψ þ N2;ψ are the
partial derivatives with respect to fields ψ and ϕ. The
subscripts 1,2 denote the phases 1 and 2, respectively. It has
been shown [88] that the partial derivatives in phase 2 do
not have a significant contribution. Hence we neglect them
and we evaluate those in phase 1. For the derivatives we get

N;ϕ ¼ −
1

a1M2
P
; N;ψ ¼ −

M2

8M2
Pξ2ψk

: ð3:19Þ

So the power spectrum in the slow-roll approximation is

PR ¼ 1

4π2
Λ

3M2
P

�
1

a21M
4
P
þ M4

64M4
Pξ

2
2ψ

2
k

�

≈
1

4π2
Λ

3M2
P

M4

64M4
Pψ

2
kξ

2
2

; ð3:20Þ

where, as it has been pointed out in [88], in a good
approximation we have also neglected the term N;ϕ [88].
With ψk we denote the following quantity

ψk ¼ ψ0eχk ; ð3:21Þ

where

χk ¼
4a1M4

P

M3
ðN1 þ N2 − NÞ2: ð3:22Þ

Eventually, the analytical expression for the power spec-
trum we use is

PR ¼ ΛM3

192π2a1M6
Px2ψ

2
k

: ð3:23Þ
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B. Numerical solution beyond the slow roll

In order to check our analytical calculation for the scalar
power spectrum, we also evaluate it numerically. Thus, in
this section we present this numerical evaluation for the
perturbation of the fields and the power spectrum. This way
wewill check that the previous analytical calculation can be
regarded as a good approximation.
The perturbed metric is given by

ds2 ¼ a2
�
−ð1þ 2ΦÞdτ2 þ

�
ð1− 2ΨÞδij þ

1

2
hij

�
dxidxj

�
;

ð3:24Þ

where hij are the tensor perturbations. With Φ and Ψ we
denote the Bardeen potentials that are equal in the con-
formal-Newtonian gauge.
For evaluating the scalar perturbations, which are

denoted as φi þ δφi, we assume the linear equations

δφ00
i þ ð3 − ϵÞδφ0

i þ
X 1

H2

∂2V
∂φi∂φj

δφi þ
k2

a2H2
δφi

¼ 4Φ0φ0
i −

2Φ
H2

∂V
∂φi

; ð3:25Þ

where the subscript i refers to the fields ϕ;ψ and the
Bardeen potential Φ is given by the solution of equation

Φ00 þ ð7 − ϵÞΦ0 þ
�
2
V
H2

þ k2

a2H2

�
Φ ¼ −

V;φ

H2
: ð3:26Þ

With k we denote the comoving wave number and both
Eqs. (3.25) and (3.26) are expressed in terms of the number
of e-folds. Primes denote derivatives in e-fold time.
Integrating this equation, we evaluate the scalar power
spectrum using the expression

PR ¼ k3

2π2
jRkj2; ð3:27Þ

where Rk is the comoving curvature perturbation:

Rk ¼ Φþ δφ

φ0 : ð3:28Þ

The initial conditions of these equations as well as the
numerical treatment of them are found in Ref. [91].
In Fig. 4 we present the exact (numerical) and analytical

(in the slow-roll approximation) power spectrum for the
potential (2.16). In this plot we also depict for comparison
reasons the current bounds from the Lyman-alpha forest
[92], the μ distortion [93] and the acoustic-reheating
bound [94,95]. The exact results are plotted as dashed
lines and the slow-roll analytical results as solid lines. For
the analytical expression we use the Eq. (3.23) and for the

numerical expression we use the Eq. (3.27). For the
numerical evaluation we follow the analysis described in
Refs. [70,88]. Specifically, we solve numerically the back-
ground equations (3.2), the fields’ perturbation (3.25) and
the Bardeen potential (3.26) simultaneously until the end of
inflation (the parameter ε reaches value 1) starting from the
critical point as initial condition. We obtain at around 27
e-folds, as it is shown in Fig. 3. We integrate again the
system of the different equations, (3.2), (3.25), and (3.26),
until k ¼ 0.05 Mpc−1 and we find the initial conditions and
we obtain the rest number of the e-folds. Finally, we
integrate again the system from the new initial conditions
until the end of inflation. We notice that the analytical and
the numerical results are very similar, as is expected [70].
Therefore for convenience we shall use the analytical slow-
roll solution hereinafter.

IV. GRAVITATIONAL WAVES PRODUCTION

In the previous sections, we have presented a mechanism
in the context of a SUGRA based hybrid model, that can
produce a significant enhancement in the scalar power
spectrum. The amount of GWs is evaluated by the second-
order (tensor) perturbations, which appear as hij in
Eq. (3.24). However, the tensor second-order perturbations
can be related to the scalar first-order perturbations, and
hence to the scalar power spectrum [96–102]. In this
section we show that the enhancement of the power
spectrum can be interpreted as a source of GWs created
during the radiation dominance era.
The present-day energy density of the GWs is [103]

ΩGWðkÞ ¼
1

24

�
k
aH

�
2

Phðτ; kÞ; ð4:1Þ

FIG. 4. The power spectra in the slow-roll approximation (solid
lines) and using the exact equation (3.27) of perturbations
(dashed lines). Purple line corresponds to the set 1 and orange
line to set 2, given in Table I. Details are in the main text.
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where Ph is the tensor perturbation and the overline denotes
the average over the time. In terms of scalar power
spectrum this expression reads as [100]

ΩGWðkÞ ¼
cgΩr

36

Z 1ffiffi
3

p

0

dd
Z

∞

1ffiffi
3

p
ds

�ðs2 − 1=3Þðd2 − 1=3Þ
s2 þ d2

�
2

× PRðkxÞPRðkyÞðI2c þ I2sÞ: ð4:2Þ

The radiation density Ωr gets its measured present day
valueΩr ¼ 5.4 × 10−5 and cg ¼ 0.4 in the case of Standard
Model (SM) spectrum, while cg ¼ 0.3 in the minimal
supersymmetric SM (MSSM). The variables x and y are

x ¼
ffiffiffi
3

p

2
ðsþ dÞ; y ¼

ffiffiffi
3

p

2
ðs − dÞ: ð4:3Þ

Finally, the functions Ic and Is are given by the equations

Ic ¼ −36π
ðs2 þ d2 − 2Þ2
ðs2 − d2Þ3 Θðs − 1Þ; ð4:4Þ

Is ¼ −36
ðs2 þ d2 − 2Þ2
ðs2 − d2Þ2

�ðs2 þ d2 − 2Þ
ðs2 − d2Þ ln

���� d
2 − 1

s2 − 1

����þ 2

�
:

ð4:5Þ

Using that 1 Mpc−1 ¼ 0.97154 × 10−14 s−1 and k ¼ 2πf,
we can evaluate the energy density of the GWs as a function
of the frequency.
In Fig. 5 we plot the energy density of GWs using

the analytical expression in Eq. (3.23). Purple curves

correspond to set 1 and the orange to set 2, as given in
Table I. Moreover, the solid (dashed, dashed-double dot)
purple line correspond to a1 ¼ 4.33 (a1 ¼ 5, a1 ¼ 6), in
units 10−7=MP. The parameter a1 is defined in (2.17).
As can be seen from the figure, the predicted GW spectra
for these parameter choices, in the context of our hybrid
model, lie well within the detection range of the future
GWexperiments, like LISA, DESIGO, BBO, SKA, and ET
[7–10,12]. Interestingly enough, we notice that the recently
reported NANOGrav [4–6] signal of can be interpreted in
the context of this model (purple lines). In this figure we
display the NANOGrav 12.5 yrs region.

V. PRIMORDIAL BLACK HOLES ABUNDANCE

The significant enhancement of scalar power spectrum
not only can explain the energy density of GWs, as it is was
discussed in the previous section, but also the production of
the PBHs. A main result of Ref. [104] is that the GWs
spectrum, which is compatible with the NANOGrav region,
can be related to a particular prediction for the PBH
abundance. In this section we evaluate the mass of
PBHs and their fractional abundances. As usual it is
assumed that the PBH are formed in the radiation domi-
nated epoch, as the GWs.
The fractional abundance of PBHs, ΩPBH=ΩDM, can be

evaluated as a function of the PBH mass using that

ΩPBH

ΩDM
ðMPBHÞ ¼

βðMPBHÞ
8 × 10−16

�
γ

0.2

�
3=2

�
g�ðTfÞ
106.75

�−1=4

×

�
MPBH

10−18 grams

�
−1=2

; ð5:1Þ

where we assume that the DM abundance is ΩDM ≃ 0.26.
With γ we denote a factor that depends on the gravitation
collapse and we choose γ ¼ 0.2 [105]. With β we denote
the mass fraction of Universe collapsing in PBH mass.
The Tf denotes the temperature of PBH formation and the
g�ðTfÞ are the effective degrees of freedom during this
formation. In order to evaluate the abundance of PBHs, we
integrate the expression in Eq. (5.1) as

fPBH ¼
Z

dMPBH

MPBH

ΩPBH

ΩDM
: ð5:2Þ

The mass of PBHs, which are created after the inflation
when the scales reenter the horizon is related to the mass
inside the Hubble horizon. Specifically, the mass of PBHs is

MPBH ¼ γ
4πρ

3
H−3; ð5:3Þ

where ρ is the energy density of Universe during collapse.
If we consider that the PBHs are formed during the radiation
epoch, their mass is [13]

FIG. 5. The energy density of gravitational waves for the
analytical expression Eq. (3.23). Purple curves correspond to
set 1 and the orange to set 2, as given in Table I. Detailed
description of the various curve shapes can be found in the
main text.
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MPBH ¼ γ
4πρ

3
H−3

m−r

�
gðTfÞ
gðTm−rÞ

�
1=2

×

�
gsðTfÞ
gsðTm−rÞ

�−2=3� k
km−r

�
−2
; ð5:4Þ

where the subscript m − r refers to the time of equality of
matter and radiation domination and gs refers to the entropy
density. The equation above arises from the entropy con-
servation dðgsðTÞT3a3Þ=dt ¼ 0 between the epoch of the
reentry of the comoving wave numbers and the epoch of
radiation-matter equality. Thus we can express the mass of
PBHs as a function of the comoving wave number k

MPBHðkÞ ¼ 1018
�

γ

0.2

��
g�ðTfÞ
106.75

�−1=6

×

�
k

7 × 1013 Mpc−1

�
−2
in grams; ð5:5Þ

where we use the approximation gðTÞ ¼ gsðTÞ [13].
Assuming that the spectrum of the our model is like the
SM, we can use g�ðTÞ ¼ 106.75. On the other hand assum-
ing a spectrum like theMSSM,weget g�ðTÞ ¼ 228.75. Thus
the PBH fractional abundance in the SM is 1.13 times larger
than in the MSSM. This relative factor to a good approxi-
mation can be ignored.
The mass fraction β is evaluated using the Press-

Schechter approach. In this approach, the mass fraction
β is calculated assuming that the overdensity δ follows a
gaussian probability, with a threshold of collapse δc. So the
mass fraction is given from the integral

βðMPBHÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πσ2ðMPBHÞ
p

Z
∞

δc

dδ exp

�
−

δ2

2σ2ðMPBHÞ
�
;

ð5:6Þ

where σ is the variance of curvature perturbation, related to
the comoving wave number as

σ2ðMPBHðkÞÞ ¼
16

81

Z
dk0

k0

�
k0

k

�
4

PRðk0ÞW̃
�
k0

k

�
: ð5:7Þ

where W̃ðxÞ is a window function. We consider the
Gaussian distribution for this function: W̃ðxÞ ¼ e−x

2=2.
For δc, following recent studies [106–113], we consider
values in the range between 0.4 and 0.6.
In Fig. 6 we plot the fractional abundance of PBHs from

Eq. (5.1). We use the analytical expression for the scalar
power spectrum from Eq. (3.23). In this plot we use the
value of the δc ¼ 0.50 for set 1 (purple curve) and
δc ¼ 0.43 for set 2 (orange curve). In both cases, a
significant fractional abundance of PBHs is obtained. To
form an idea of the allowed parameter space, in the Fig. 6

we also display the disallowed regions due to various
observational groups and studies [114–125].
Specifically, we notice a tension between the NANOGrav

data for the GW spectrum and the SUBARU HSC experi-
ment exclusion limit for the PBH fraction. As a result of this,
for set 1 (purple curve) the calculated abundance of PBHs
from Eq. (5.2) is fPBH ≃ 0.01, while for set 2 (orange line)
we get fPBH ≃ 1. That is, in former case PBH can account
just for the 1% of the DM of the Universe, while in the latter
can be almost 100%. In order to understand this one has to
compare Fig. 6 with Fig. 5. In particular, in Fig. 5 the
frequency f is proportional to comoving wave number k,
but theMPBH in Fig. 6 is proportional to k−2. Thus, to fulfil
the NANOGrav region result to move the GW spectrum
to the right close to the disallowed regions. In any case,
the hybrid model under consideration can be regarded as
proper candidate to explain the whole DM in the Universe.
Finally, hybrid models can also explain the production of
PBHs in a wide range of masses.

VI. FINE-TUNING ESTIMATION
AND CONCLUSIONS

A drawback of the models, where an enhancement of
scalar power spectrum is produced due to a modification
of the potential, is the high level of required fine-tuning of
the parameters involved in this modification. In particular,
models, where an inflection point in effective scalar
potential is developed, demand a significant amount of
fine-tuning [20,21]. In this section we perform an analo-
gous study for the hybrid model under consideration and
we show that the corresponding amount of the fine-tuning
is much smaller, at least by three or four orders of
magnitudes.

FIG. 6. The fractional abundance of PBHs as a function of
mass. As before, the purple line corresponds to set 1 and orange
line to set 2 given in Table I.
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As discussed in Sec. II, the basis of our hybrid model is
the original hybrid model introduced in [43], with the
addition of extra SUGRA terms that correct the value of the
spectral index ns. Hence, we have had two extra param-
eters, b1 and b2. Generally speaking, using the parameter
b2 we decreased the value of the ns to be in accordance with
the observable constraints, while the other parameter b1 is
used for explaining the enhancement in power spectrum
and then the production of GWs and PBHs.
In order to have a measure of the required fine-tuning in

this model, we calculate the quantity Δp, as discussed in
[126], for the parameter b1.Δp is the maximum value of the
logarithmic derivative of the peak value of the power
spectrum, with respect to b1

Δp ¼ Max

���� ∂ lnðP
peak
R Þ

∂ lnðb1Þ
����: ð6:1Þ

The larger the Δp, the larger the amount of the required
fine-tuning. Evaluating numerically Δp from Eq. (6.1), for

the function PðpeakÞ
R ðb1Þ we find that Δp ∼ 100, if we

demand a peak of power spectrum at around 5 × 10−2.
Thus, we conclude that the amount of the fine-tuning is
significantly smaller, by almost four orders of magnitude in
the case of this hybrid model, compared to the single field
inflation models, where an inflection point is the source for
producing PBHs [20]. Finally, we notice here that the fine-
tuning for an acceptable value for the ns is mainly based on
the parameter b2 and this issue. For the analogous equation
of Eq. (6.1) we obtain a quantity at Δp ∼ 10 in the range
near to b2.
In conclusion, in this work we presented a two-field

inflationary model based on the original simple hybrid
model, in order to explain the generation of both GWs and
PBHs. The effective scalar potentials derived by hybrid
models have the advantage that they do not require a high
level of fine-tuning of the parameters in order to describe an
amplification in scalar power spectrum. As the issue of
fine-tuning is regarded as a main problematic feature in
many proposed models, studying hybrid models should be
a plausible scenario in order to describe enhancement in
scalar power spectrum. A disadvantage of these models is
that they cannot predict acceptable values for the spectral
index ns. For this reason we introduced specific SUGRA-
type corrections in the inflaton field, where we evaluated
the prediction for the cosmological constraints. In our
proposed model we have achieved acceptable values for
both spectral index and tensor-to-scalar ratio.
Hybrid models can explain the production of GWs and

PBHs due to the amplification of the scalar power

spectrum. This enhancement occurs because of the mild
waterfall of one of the two fields. We presented an
analytical procedure for evaluating the scalar power
spectrum of our proposed model based on slow-roll
approximation. For comparison, we evaluated numeri-
cally the exact equations of perturbations by using the
exact proposed potential. We conclude that the results for
analytical and numerical procedure are quite similar,
since they differ up to 10%.
Having calculated the scalar power spectrum we

evaluated the amount of the produced GWs in the
radiation dominated epoch. To facilitate the phenomeno-
logical analysis of our model we have chose two
representative sets of the two parameters for the extra
terms in the Kähler potential. The first set corresponds
to a model that predicts GW spectra that lie within the
NANOGrav detection region. Unfortunately the associ-
ated factional abundance of PBHs is restricted by the
SUBARU HSC exclusion region. As a result in this case
only 1% of DM can be interpreted by PBHs. On the
other hand, in the second set we relax the NANOGrav
constrain. This way we are able to increase the factional
abundance of PBHs up to 100%.
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APPENDIX: EVALUATION OF THE POTENTIAL

In order to evaluate the SUGRA corrections in the scalar
potential, we consider the Kähler potential

K ¼ SS̄þ b1ðSþ S̄Þ þ b2ðSþ S̄Þ2 þ Ψ1Ψ̄1 þ Ψ2Ψ̄2;

ðA1Þ

and we assume that the superpotential is given from

W ¼ κS

�
Ψ1Ψ2 −

M2

2

�
: ðA2Þ

We calculate the F term of scalar potential from Eq. (2.11)
and we find
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VSUGRA
F ¼ κ2

4MP
4
exp

2
64 1

M2
P

0
B@ b1ϕffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ 1
2

q þ b2ϕ2

b2 þ 1
2

þ ϕ2

4b2 þ 2
þ ψ2

1
CA
3
75

×

�ðM2 − ψ2Þ2ðb1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4b2 þ 2

p
ϕþ ð4b2 þ 2ÞMP

2 þ ð4b2 þ 1Þϕ2Þ2
4ð2b2 þ 1Þ3

þ ϕ2ψ2ð−M2 þ 2MP
2 þ ψ2Þ2

4b2 þ 2
−
3MP

2ϕ2ðM2 − ψ2Þ2
4b2 þ 2

�
; ðA3Þ

where we have fix the noncanonical kinetic terms by the definition of the chiral fields

S ¼ ϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ 4b2

p ; jΨ1j ¼ jΨ2j ¼ ψ=
ffiffiffi
2

p
: ðA4Þ

Moreover, we derive the scalar potential using the general form

VSUGRA
F ¼

�
1þ K

M2
P
þ K2

2M4
P
þ K3

6M6
P

�

×

�
ðK−1Þij̄

�
Wj̄ þWKj̄

MP
2

��
W̄i þ

W̄Ki

MP
2

�
−
3jWj2
MP

2

�
; ðA5Þ

and we have

VSUGRA
F ¼ κ2ðM4 − 2M2ψ2 þ 2ψ2ϕ2 þ ψ4Þ

4þ 8b2
þ A1

M2
P
þ A2

M4
P
þ A3

M6
P
þO

�
1

M8
P

�
: ðA6Þ

In the limit MP → ∞ we derive the SUSY scalar potential. The SUGRA corrections A1, A2 and A3 are calculated as

A1 ¼
κ2

4ð2b2 þ 1Þ5=2 ½2
ffiffiffi
2

p
b1ð2b2 þ 1ÞϕðM4 − 2m2ψ2 þ ϕ2ψ2 þ ψ4Þ

þ 2
ffiffiffi
2

p
b1ð2b2 þ 1ÞϕðM4 − 2M2ψ2 þ ϕ2ψ2 þ ψ4Þ

þ b2ðM4ð3ϕ2 þ 2ψ2Þ þ 2M2ψ2ð−5ϕ2 − 2ψ2 þ 2M2
PÞ

þ ψ2ð4ϕ4 þ 11ϕ2ψ2 − 2M2
Pð2ϕ2 þ 3ψ2Þ þ 2ψ4ÞÞ�; ðA7Þ

A2 ¼
κ2

32ð2b2 þ 1Þ7=2 ½4b1
2ð2b2 þ 1Þ3=2ϕ2ð7M4 − 14M2ψ2 þ 4ϕ2ψ2 þ 7ψ4Þ

þ 8
ffiffiffi
2

p
b1ϕðð8b22 þ 6b2 þ 1Þϕ4ψ2 þ 5ð6b22 þ 5b2 þ 1Þϕ2ψ4

þ ð2b2 þ 1ÞM4ðð7b2 þ 1Þϕ2 þ 2ð2b2 þ 1Þψ2Þ
− 2ð2b2 þ 1ÞM2ψ2ðð9b2 þ 2Þϕ2 þ 2ð2b2 þ 1Þψ2Þ þ 2ð2b2 þ 1Þ2ψ6Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2 þ 1

p
ðM4½ð64b22 þ 20b2 þ 1Þϕ4

þ 4ð16b22 þ 10b2 þ 1Þϕ2ψ2 þ 4ð2b2 þ 1Þ2ψ4�
− 2M2ψ2½ð96b22 þ 44b2 þ 5Þϕ4 þ 12ð8b22 þ 6b2 þ 1Þϕ2ψ2

− 8ð2b2 þ 1Þ2MP
4 þ 4ð2b2 þ 1Þ2ψ4�

þ ψ2½ð192b22 þ 116b2 þ 17Þϕ4ψ2 þ 4ð40b22 þ 34b2 þ 7Þϕ2ψ4

− 8ð2b2 þ 1Þ2MP
4ð2ϕ2 þ 3ψ2Þ þ 2ð4b2 þ 1Þ2ϕ6 þ 4ð2b2 þ 1Þ2ψ6�Þ�; ðA8Þ
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A3 ¼
κ2

96ð2b2 þ 1Þ9=2 ½4
ffiffiffi
2

p
b13ð2b2 þ 1Þ2ϕ3ð11M4 − 22M2ψ2 þ 4ϕ2ψ2 þ 11ψ4Þ

þ 6b12
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2 þ 1

p
ϕ2ð4ð8b22 þ 6b2 þ 1Þϕ4ψ2 þ 5ð32b22 þ 26b2 þ 5Þϕ2ψ4

þ ð2b2 þ 1ÞM4ðð48b2 þ 9Þϕ2 þ 14ð2b2 þ 1Þψ2Þ
− 2ð2b2 þ 1ÞM2ψ2½ð56b2 þ 13Þϕ2 þ 14ð2b2 þ 1Þψ2Þ þ 14ð2b2 þ 1Þ2ψ6Þ
þ 6

ffiffiffi
2

p
b1ϕð2M4ðð56b23 þ 50b22 þ 13b2 þ 1Þϕ4

þ ð16b2 þ 3Þϕ2ð2b2ψ þ ψÞ2 þ 2ð2b2 þ 1Þ3ψ4�
− 4M2ψ2ðð72b23 þ 70b22 þ 21b2 þ 2Þϕ4 þ 5ð4b2 þ 1Þϕ2ð2b2ψ þ ψÞ2 þ 2ð2b2 þ 1Þ3ψ4Þ
þ 10ð24b23 þ 26b22 þ 9b2 þ 1Þϕ4ψ4 þ ð2b2 þ 1Þϕ6ð4b2ψ þ ψÞ2
þ 2ð28b2 þ 9Þψ6ð2b2ϕþ ϕÞ2 þ 4ð2b2 þ 1Þ3ψ8Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2b2 þ 1

p
ðM4½3ð160b23 þ 144b22 þ 38b2 þ 3Þϕ4ψ2 þ ð4b2 þ 1Þ2ð17b2 þ 2Þϕ6

þ 12ð5b2 þ 1Þψ4ð2b2ϕþ ϕÞ2 þ 4ð2b2 þ 1Þ3ψ6�
þ ψ2½3ð352b23 þ 384b22 þ 134b2 þ 15Þϕ4ψ4

− 24ð2b2 þ 1Þ3MP
6ð2ϕ2 þ 3ψ2Þ þ ð4b2 þ 1Þ3ϕ8

þ ð41b2 þ 14Þϕ6ð4b2ψ þ ψÞ2 þ 4ð31b2 þ 11Þψ6ð2b2ϕþ ϕÞ2 þ 4ð2b2 þ 1Þ3ψ8�
− 2M2ψ2½−24ð2b2 þ 1Þ3MP

6 þ ð4b2 þ 1Þ2ð23b2 þ 5Þϕ6

þ 21ð2b2 þ 1Þϕ4ð4b2ψ þ ψÞ2 þ 12ð7b2 þ 2Þψ4ð2b2ϕþ ϕÞ2 þ 4ð2b2 þ 1Þ3ψ6�Þ�: ðA9Þ

We derive that around the critical point ϕc ¼ 0.05MP the
numerical values of the corrections are A1=MP

6κ2 ≈ 10−9,
A2=MP

8κ2 ≈ 10−10, and A3=MP
12κ2 ≈ 10−12. Moreover

for these parameters, the spectral index is ns ¼ 0.96505.

If we consider corrections up to Oð1=Mp
2Þ, then we

derive ns ¼ 0.9577. Therefore, it is essential for the
precise ns calculation to include corrections up
to Oð1=Mp

4Þ.
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