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A cosmic string wake produces a distinct non-Gaussian signal in 21-cm intensity maps at redshifts above
that of reionization. While the string signal is (locally) larger in amplitude than the signal of the Gaussian
fluctuations of the ΛCDM model, they are overwhelmed (even locally in position space) by astrophysical
and instrumental foregrounds. Here, we study to what extent the signal can be extracted from noisy
interferometric data. The narrowness of the string-induced feature in the redshift direction allows for a
subtraction of astrophysical and instrumental foregrounds. Based on the specific geometry of the string
signal, we identify a particular three-point statistic that is promising in order to extract the signal, and we
find that, having in mind a telescope with specifications similar to that of the MWA instrument, the string
signal can be successfully extracted for a value of the string tension ofGμ ¼ 3 × 10−7. Prospects for further
improvements of the analysis are discussed.
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I. INTRODUCTION

A large class of particle physics models beyond the
Standard Model admit topologically stable string configu-
rations (see Ref. [1] for review articles on cosmic strings). If
nature is described by such a theory, then a network of
strings will form during a symmetry-breaking phase tran-
sition in the early Universe and persist, by causality,1 until
the present time [2]. These strings are relativistic, i.e.,
characterized by a tension whose magnitude is equal to the
energy per unit length. Any curvature of such a string will
hence induce relativistic motion. The network of strings
takes on a scaling solution in which the statistical proper-
ties of the string distribution are independent of time if all
lengths are scaled to the Hubble radius. Strings carry
trapped energy, and their gravitational effects lead to
specific non-Gaussian signatures in a wide range of
cosmological observables (see, e.g., Ref. [3]). The search
for these signatures provides an interesting interplay
between particle physics and cosmology [4]. Note that
since the energy per unit length μ of a cosmic string is of the
order η2, where η is the scale of the particle physics

symmetry breaking, searching for signals of cosmic strings
can constrain particle physics from the high-energy end
downwards, in contrast to accelerator experiments which
constrain new physics from the bottom up. Finding a
cosmic string signal would be a spectacular new discovery
and would provide new directions for particle physics
model building. The absence of string signals would yield
new upper bounds on the energy scale η of symmetry
breaking.
The network of cosmic strings consists of a random-

walk-like distribution of “infinite” (or “long”) strings, and a
distribution of string loops with radii R smaller than the
Hubble radius. The mean curvature radius of the infinite
string network is of the order of the Hubble radius. This is
maintained in time by the long strings intersecting and
chopping off string loops [1]. A long string will typically
undergo one intercommutation event per Hubble time.
Hence, we can model [5] the distribution of long strings
at time t as a set of string segments of length c1t which live
for a Hubble time. There are N string segments per Hubble
volume. Here, c1 and N are constants of the order one
which must be determined from numerical string evolution
simulations [6]. The centers and orientations of the string
segments can be taken to be random, and uncorrelated in
different Hubble time steps.
Space perpendicular to a cosmic string is conical with

deficit angle 8πGμ, where G is Newton’s gravitational
constant [7]. The extent of the deficit angle extends to one
Hubble distance away from the string [8]. This feature leads
to the two key effects of an “infinite” string, the first being
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condensate—the cosmic strings.
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the lensing of photons passing on different sides of a
moving string. This induces a line discontinuity in the
temperature of cosmic microwave background (CMB)
photons [9] of magnitude 8πGμvsγs, where vs is the
velocity of the string and γs is the corresponding relativistic
γ factor. The signature in CMB temperature maps is a
rectangle in a CMB map of comoving size c1ti × vsγsti,
where ti is the time when the string segment is present. The
Canny algorithm [10], wavelet and shapelet statistics [11],
and machine learning techniques [12] have been proposed
in order to search for this signal.
Because of the conical deficit angle, a long string

segment moving through the primordial gas will lead to
an overdensity in its wake. The comoving planar dimen-
sions of this overdensity (called a “wake” [13]) are set by
the length and distance traveled by the segment, and the
thickness is set by the deficit angle. The key point is that
wakes are nonlinear overdense regions that exist at arbi-
trarily early times after the phase transition. In particular, at
any time after trec they lead to regions of enhanced baryon
number and thus of enhanced free electron density. The
extra Thomson scattering in wakes thus leads to a char-
acteristic CMB polarization signal [14], a rectangle in the
sky with extra polarization (including a B-mode compo-
nent). The overdensity of baryons inside of a string wake
also leads to the signal that we will focus on in this paper,
namely, a wedge of extra 21-cm absorption or emission in
21-cm redshift maps [15].
Since string wakes are disrupted by the Gaussian

fluctuations from the ΛCDM model which are the dom-
inant source of structure formation2 at redshifts smaller than
that of reionization (which we denote by zEoR) [17], the
21-cm signal of strings wakes is most clearly visible for
z > zEoR. In fact, at these redshifts the wakes are the
dominant source of nonlinear fluctuations in the Standard
Model. Hence, in this paper we study the potential of
planned interferometric 21-cm redshift surveys to discover
the signal of a string wake given the multitude of astro-
physical and instrumental foregrounds.3

In the following section, we review the 21-cm signal of a
cosmic string wake. In Sec. III we study the string wake
signal in Fourier space in which interferometers will
acquire the data. Section IV describes our numerical
simulations. The 21-cm maps that we produce include
the signal of a string wake, the signals of the primordial
Gaussian fluctuations plus astrophysical foregrounds, and
instrumental effects. We describe the foregrounds that we

include and explain how we model instrumental effects. We
focus on two statistics that we use to differentiate between
maps with and without strings: a χ2 statistic and a three-
point function with a shape designed to pick out the string
signal. We also describe signal processing techniques that
we use to suppress the backgrounds relative to the string
signal. Our results are presented in Sec. V. We find that an
experiment like MWA has the angular resolution and
sensitivity to clearly identify the cosmic string signal using
our three-point statistic provided we apply our signal
processing techniques to suppress the foregrounds. This
is true even if a small patch of the sky of size 5° × 5° is
analyzed. The benchmark value of the string tension that
we use is Gμ ¼ 3 × 10−7. While this value is a factor of 2
larger than the current upper bound, we show that strings
with tensions comparable to and slightly lower than this
bound can also be identified, provided that a larger patch of
the sky is analyzed.
Concerning units and notation, we use natural units in

which the speed of light c, Boltzmann’s constant, and the
Planck constant are set to one. In these units, Gμ is
dimensionless. We work in the context of a spatially flat
Friedmann-Lemaître-Robertson-Walker metric with physi-
cal time t, comoving spatial coordinates x, and a scale
factor aðtÞ normalized to be one at the present time t0. The
Hubble expansion rate is given by HðtÞ≡ _a=a, and its
inverse is the Hubble radius. Relevant times for our study
are trec, the time of recombination, and teq, the time of equal
matter and radiation. As usual, the cosmological redshift at
time t is denoted by zðtÞ.

II. COSMIC STRING WAKES

A. Setup

In this section we study in more detail the distinct effects
that influence the signal of a string wake in a 21-cm map.
The goal is to acquire intuition for the appearance of the
string wake in interferometer data in order to implement
realistic simulations and apply appropriate analysis tech-
niques. We focus on an understanding of the size, the
shape, and the brightness temperature of the string wake
and transfer the results to Fourier space. As interferometer
surveys sample measurement data in the form of frequency
modes, the latter step is essential if we want to compare
with real survey data.
We first focus on the calculation of the brightness

temperature intensity of the string wake signal in position
space. There are two major processes that affect the
temperature of the atoms inside the string wake and
consequently its brightness temperature: shock heating
and diffusion. We then transform our signal to Fourier
space and stress critical implications for the detectability.
We also address the extent of the string signal in redshift
space and how it influences the Fourier-space data for a
fixed redshift hypersurface.

2For string tensions consistent with the current upper bound
[16] Gμ < 1.5 × 10−7 coming from measurements of the angular
power spectrum of the CMB temperature maps, cosmic strings
cannot be the dominant source of structure formation.

3Note that cosmic strings also lead to a global 21-cm signal
(see Ref. [18] for a study of the global 21-cm signal of string
wakes, and Refs. [19,20] for a study of the corresponding signal
for superconducting cosmic string loops).
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As already mentioned in the Introduction, a single
cosmic string segment moving through the primordial
gas generates a region of twice the background density
of matter in its wake. The comoving planar dimensions of
this wake [13] are set by the length and distance traveled by
the segment. The width of a wake increases linearly from
zero (at the front of the wake, the position of the string
at the end time) to the value 8πvsγsGμti at the back of
the wake. The initial overdensity creates a gravitational
force on matter above and below the wake, and this
causes the comoving width of the wake4 to grow in time
as ðzðtÞ þ 1Þ−1 (see, e.g., Ref. [21]). Thus, the comoving
dimensions of a wake created by a string segment laid down
at time ti and viewed at time t are

cit1 × vsγsti × 4πGμvsγsti
zðtiÞ þ 1

zðtÞ þ 1
: ð1Þ

The geometry of a wake in three-dimensional physical
space is sketched in Fig. 1. The horizontal axis corresponds
to the plane perpendicular to our line of sight, while the
vertical axis is the direction in the line of sight. The string
segment was moving from the right to the left. The induced
wake is thickest at the original position of the string, and
minimal at the final position.
We are interested in the density distribution of baryons

inside the string wake. However, since for times t < trec
baryons are still coupled to radiation, we first focus on the
clustering of cold dark matter due to cosmic strings

(studied, e.g., in Ref. [22]). This is a reasonable approach
as for t > trec baryons will rapidly fall into the potentials
created by cold dark matter clustering. Since cosmic strings
produced at earlier times are more numerous, we focus on
wakes generated at redshifts of around zeq. Note that before
teq there is no gravitational clustering of cold dark matter
and consequently no wake growth.
The overdensity of cold dark matter will attract baryons

and, in particular, hydrogen atoms which remain neutral
after the background temperature drops below the ioniza-
tion threshold until the onset of reionization, when ionizing
sources form in the Universe. During this period, overdense
regions of hydrogen can emit or absorb radiation of
wavelength λ ¼ 21 cm, corresponding to the hyperfine
transition of the electron in the ground state of the hydrogen
atom (HI). As a result, the string wake in this period will be
visible via either absorbing 21-cm background radiation or
emitting extra intensity at this frequency.
First, we test the type of signature we expect the string to

produce in the dark ages. The variable that determines
whether a cosmic string absorbs or emits extra 21-cm
radiation is the temperature of the atoms inside the string
wake. Therefore, we calculate the kinetic temperature of the
HI atoms inside the wake. We closely follow the corre-
sponding calculation in Ref. [15].
In analogy to hydrodynamics, when the in-falling matter

shells that collapse towards the center of the wake collide
with other streams of matter, a shock occurs. This appears
at approximately half the maximal distance of the matter
shells with respect to the center of the wake [23]. Since the
distance of turnaround is half the width of the shell without
any perturbations, the shock occurs at approximately one
quarter of the unperturbed matter shell width. Equivalent to
what was stated before, this implies that the averaged
density inside the shocked region is 4 times the background
density. We define the distance of the shocked region above
the plane of the initial overdensity as the width of the
string wake.

B. Shock-heated wakes

In order to compute the brightness temperature induced
by a string wake, we need to determine the kinetic
temperature of HI atoms inside the wake. In a first analysis
we neglect the initial thermal velocities of the gas particles
falling forwards the center of the wake. The temperature is
then determined by the process of shock heating. To find
this temperature we calculate the physical velocity of the
gas particles at the point where the shock occurs, and then
infer the resulting temperature at redshift z via the standard
formula 3

2
kbT ¼ 1

2
mv2. Here, m is the mass of HI

atoms and v is the velocity of the attracted particles.
Consequently, it follows that [15]

TK ≃ ½20 K�ðGμ · 106Þ2ðγsvsÞ2
zi þ 1

zþ 1
: ð2Þ

FIG. 1. Sketch of a string wake in three-dimensional real space
(dimensions not scaled) being tilted relative to the line of sight.
The width of the wake, as it was defined above, is marked relative
to the center of the wake, here displayed as a dotted line. The
dashed line represents a vector normal to the wake plane and
defines the angle θ.

4Defined as the distance from the central plane of the wake of
the matter shell that is decoupling from the Hubble flow and
starting to collapse onto the wake.
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This implies that wakes produced at earlier times exhibit
higher temperatures due to shock heating. The overdense
region grows as more and more matter has time to collapse
onto it, yielding a wedge-like shape, as discussed earlier.
Note that a string wake created at some redshift zi

persists until the present time, growing in comoving
thickness, as described above. Our past light cone can
intersect such a wake at any redshift z < zi, and we will see
the signal of the wake from this redshift which we call the
redshift of emission. We need to compare TK with
Tγ ¼ 2.725ð1þ zÞ K, the CMB temperature. For TK <
Tγ the wake displays an absorption signal; otherwise, it
establishes a region of extra emission. The result will
depend on the chosen values for the string speed vs, tension
μ, and redshifts of emission of radiation z and generation of
the string zi
The result for the kinetic temperature of HI atoms inside

the wake is based on the assumption that they thermalize
solely due to shock-heating effects. We discuss corrections
to the results that result from including the primordial
kinetic energy of the gas in the next subsection. First, we
apply the description of TK to a cosmological context and
calculate how the signal appears to an observer on Earth
when competing against the background CMB 21-cm
radiation.
To determine the brightness temperature of cosmic string

wakes, we apply the equation of radiative transfer along the
line of sight piercing this overdensity. For 21-cm emission,
the brightness temperature TbðνÞ at an observed frequency
ν reads

TbðνÞ ¼ TSð1 − e−τνÞ þ TγðνÞe−τν ; ð3Þ

where TS is the spin temperature and Tγ is the CMB
temperature. τν corresponds to the optical depth, which is
given by the integral of the absorption coefficient along the
path of the photons through the wake, τν ¼

R
αds. Note

that the first term in Eq. (3) represents spontaneous
emission, while the second term is due to absorption
and stimulated emission. We do not give a detailed
description of all processes involved in radiative transfer,
and we refer to Ref. [24] for more detailed descriptions of
21-cm emission at high redshift.
We are interested in the comparison of the emission from

the HI clouds created by the wakes with the 21-cm radiation
originating from the CMB. Therefore, we consider

δTbðνÞ ¼
TbðνÞ − TγðνÞ

1þ z
≈
TS − TγðνÞ

1þ z
τν; ð4Þ

where in the first equation we inserted Eq. (3) and
expanded the exponential to first order in τν, and where
z is the redshift of emission. Note that in this formula we
assumed that, except for the wake, the line of sight crosses
no other density perturbations. It is also worth emphasizing

that for redshift < 200 the brightness temperature from a
unperturbed region in space is negative as the atoms in this
region exhibit a lower temperature than that of CMB
photons at that time. The spin temperature TS is defined via

n1=n0 ¼ 3 expð−T⋆=TSÞ; ð5Þ

where n1 and n0 are the number densities of atoms in the
two hyperfine energy states and T⋆ ¼ E10=kB ¼ 0.068 K
is the temperature corresponding to the energy difference
between these two states. Taking into account collisions of
HI atoms as well as scattering of UV photons, the spin
temperature is given by

1−
Tγ

TS
¼ xc
1þ xc þ xα

�
1−

Tγ

TK

�
þ xα
1þ xc þ xα

�
1−

Tγ

TC

�
;

ð6Þ

which boils down to

TS ¼
1þ xc þ xα

1þ ðxc þ xαÞ Tγ

TK

Tγ; ð7Þ

when reionization is not yet significant so that TC ¼ TK
[24]. Here, TC is the color temperature, and the coupling
coefficients for collision xc and for UV scattering xα are
given by the scattering rates of hydrogen atoms with
electrons and UV photons, respectively. In this work we
will neglect xα

5 and consider only xc.
The optical depth (see, e.g., Ref. [24]) of a hydrogen

cloud is given by

τν ¼
3c2A10

4ν2
ℏν10
kbTS

NHI

4
ϕðνÞ; ð8Þ

with the column densityNHI of HI and the line profile ϕðνÞ,
which is normalized such that

R
ϕðνÞdν ¼ 1. NHI is given

by the number density of hydrogen atoms inside the wake
nwakeHI integrated over the length of the light ray that
traverses the cloud. This length depends on the width of
the wake and its alignment relative to the line of sight. Let
us define the angle θ as the angle enclosed by the line of
sight and a vector normal to the plane marking the center of
the wake; see Fig. 1. Then,

NHI ¼
2nwakeHI w
cos θ

; ð9Þ

where the factor 2 arises since the distance w measures the
width with respect to the center of the wake.

5We comment on implications of a nonvanishing xα after
Eq. (13).
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The line profile ϕðνÞ describes the broadening of the
emission line and is generally influenced by bulk motion,
thermal motion, and pressure effects. The thermal motion
in our case is negligible, as are pressure effects since we
make the standard astrophysical assumption of small
pressure. The critical factor for the line profile in our
consideration is the bulk motion. The wake is broadened in
the planar directions due to cosmic expansion. For a
nontrivial angle θ this leads to an effective difference for
the frequencies of 21-cm photons reaching the observer
from the top and the bottom of the wake [15] (for an
illustration, see Fig. 2). If we use the photons emitted at the
center of the wake as a reference, then the photons at the
highest point and at the lowest point of the wake experience
a relative Doppler shift due to the expansion of

δν

ν
¼ 2 sinðθÞ tanðθÞHðzÞwðzÞ

c
; ð10Þ

where H is the Hubble expansion rate and w is the width of
the wake, both evaluated at the redshift of emission.6

Inserting both quantities and with c ¼ 1, we find

δν

ν
¼ 48π

15
Gμγsvs sinðθÞ tanðθÞðziþ1Þ1=2ðzþ1Þ−1=2: ð11Þ

The angle θ is displayed in Figs. 1 and 2. With an
appropriate normalization, we find

ϕðνÞ ¼ 1

δν
; ð12Þ

for ν ∈ ½ν10 − δν
2
; ν10 þ δν

2
�; otherwise, ϕðνÞ ¼ 0. Now that

we have determined every parameter in Eq. (4) for the
string wake, we insert TS into Eq. (7) and the optical depth
with Eq. (12) as a line profile and find

δTbðνÞ ¼ 2
xc

1þ xc

�
1 −

Tγ

TK

�
3c3A10ℏ

16ν210kBH0Ω
1=2
m

nbgHIðt0Þ

×
nwakeHI ðt0Þ
nbgHIðt0Þ

ð2 sin2ðθÞÞ−1ð1þ zÞ1=2;

where Ωm is the fraction of the energy density in matter. As
we stated before, the ratio of the HI number density inside
the wake and background number density is nwakeHI ðt0Þ=
nbgHIðt0Þ ¼ 4 for a shock-heated wake. The Hubble constant
was rescaled to its current value using HðzÞ ¼
H0Ω

1=2
m ð1þ zÞ3=2. The width of the wake has explicitly

canceled out, but it still implicitly influences the wake
temperatureTK and the signal’s appearance in redshift space.
Finally, with A10 ¼ 2.80 × 10−15 s−1, T⋆ ¼ 0.068 K,
H0 ¼ 73 kms−1 Mpc−1, ν10 ¼ 1420 MHz, Ωb ¼ 0.042,
and Ωm ¼ 0.26, we obtain

δTbðνÞ ¼ ½0.07 K� xc
1þ xc

�
1−

Tγ

TK

�
ð1þ zÞ1=2ð2sin2ðθÞÞ−1:

ð13Þ

As mentioned earlier, including UV scattering corresponds
to the substitution xc → xc þ xα in the above equation. Since
the factor x=ð1þ xÞ is monotonically increasing and xα > 0,
this yields a larger relative brightness temperature δTb
compared to the case of xα ¼ 0. Neglecting UV scattering
in this calculation hence corresponds to a conservative
estimate of δTb.
Note that the collision coefficient xc is governed by the

deexcitation cross section κHH
10 and reads [25]

xc ¼
nκHH

10 T⋆
A10Tγ

: ð14Þ

For the exact values of κHH
10 we use Table 2 in Ref. [25]. A

linear interpolation between the points in that table is too
imprecise. Therefore, we numerically fit a smooth function
of TK to the provided data points. As a result, κHH

10 can be
described by

κHH
10 ¼ 10−10

�
27.6 −

27.59

½1þ ð TK
24.03Þ2.28�0.014

�
: ð15Þ

The improvement in accuracy through the application
of the fit function will become evident in Sec. IV F 4.

FIG. 2. Sketch of photons emitted from different points inside
the wake (red dots) in three-dimensional real space. The three
points along the line of sight mark points of emission of 21-cm
radiation from the bottom, the center, and the top of the wake.
Due to Hubble expansion of the wake in planar dimensions, the
lower and upper points experience a Doppler shift in frequency of
the 21-cm photons, δν, relative to the point at the center of wake
plane. Note that the sketch is not to scale. The angle θ is
equivalent to the definition in Fig. 1.

6The frequency shift δν is the essential factor determining the
extent of the wake in redshift space (see Sec. IV E).
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Note that the factor ð2 sin2ðθÞÞ−1 in Eq. (13) does not lead
to a physical divergence. Any actual measurement of the
brightness temperature is carried out with finite frequency
resolution. Integrating over the frequency interval, the
factor of ðsin θÞ−1 cancels out.
We add a few comments on the assumptions we made

during the calculation. First, note that for certain values of
string wake characteristics, i.e., combinations of alignment
(expressed through θ), speed vs, and tension μ, the signal
switches form absorption to emission. By solving TK ¼ Tγ

with respect to the string tension, one finds the value

ðGμ × 106Þ2 ≃ 0.1ðγsvsÞ−2
ð1þ zÞ2
1þ zi

ð16Þ

for the critical tension at the point at which the signal
changes form absorption to emission [15].
Second, the approximation of neglecting the initial

thermal energy of the gas particles breaks down when
the temperature inside the wake is smaller than the temper-
ature of the background gas when it is adiabatically
compressed due to the overdensity of the wake.
Consequently, TK as it was given in Eq. (2) no longer
holds in this case. The cosmic gas temperature as a function
of redshift is given by

Tg ¼ 0.02 Kð1þ zÞ2 ð17Þ

when Compton heating through the CMB is neglected [26].
For adiabatic compression of a monatomic gas to
ncompressed=nuncompressed ¼ 4, the temperature gains a factor
of 42=3 ≈ 2.5. Hence, the breakdown condition reads
TK ¼ 2.5Tg. Above 2.5Tg the temperature of the HI atoms
inside the wake is well approximated by TK from Eq. (2).
Below this threshold, the initial gas temperature effects
dominate. Shock heating then becomes subdominant. In the
following subsection, we will discuss the implications for
the brightness temperature of wakes with subdominant
shock heating.

C. Diffuse wakes

In the previous analysis, we neglected the intrinsic
temperature of the gas at zi when the wake is laid down.
We mentioned that gravitational accretion onto the cosmic
string wake increases the background gas temperature by a
factor of roughly 2.5, boosting the temperature due to
thermal motion up to 2.5Tg, where Tg is the background
gas temperature. As stated before, one can ignore the
incoherent thermal motion of the accreted gas for
TK > 2.5Tg, where TK is the temperature of atoms ther-
malized via shock heating. However, when the incoherent
velocities due to thermal motion dominate over the coher-
ent velocity of the gas due to gravitational attraction
towards the center of the wake, i.e., TK < 2.5Tg, no shock

heating occurs. In this case, the overdense region of gas
induced by the wake is larger than it in the case of
subdominant thermal motion. The resulting cosmic string
wake is called “diffuse wake” [27]. In this section, we
calculate the broadening and the brightness temperature of
a diffuse wake, following Ref. [27].
The difference between shock-heated and diffuse wakes

lies in the density and the spatial extent of the wake. While
both types accrete the same amount of mass in linear
perturbation theory, the diffuse wake is larger and hence
less dense. Let us first consider the thickness of diffuse
wakes. For equipartition of energy between potential and
thermal energy, we find for TK ≪ Tg

mHIδΦ ¼ 3

2
Tg; ð18Þ

where mHI is the mass of a HI atom and δΦ is the
gravitational potential of the overdensity, δΦ ¼ 2πGσjhj.
Here, σ is the surface density and h is the height. Inserting
the induced gravitational potential into Eq. (18), we obtain
a linear scaling of h with temperature. Translating h to the
width w of the wake, we find that the width increases by a
factor

wðzÞjTK<Tg
¼ wðzÞjTg¼0 ·

Tg

TK
; ð19Þ

for TK < Tg. In the previous section, we saw that the width
influences the extent of the wake in redshift space.
Consequently, diffuse wakes exhibit a larger extent of
the signal in the redshift direction. On the other hand,
due to the reduced baryon density inside the wake the
brightness temperature decreases relative to the shock-
heated wake. The overdensity of a diffuse wake is thus
given by

ΔρðzÞ ¼ σðzÞ
wðzÞ ¼ ρ0

�
TK

Tg

�
; ð20Þ

and hence

ρ

ρ0
¼

�
1þ TK

Tg

�
: ð21Þ

Since TK decreases as we move to higher redshifts but Tg

increases quadratically, the overdensity will be significantly
smaller at earlier times, yielding less 21-cm absorption or
emission.
Using this result, we can now determine a formula for the

string brightness temperature of a diffuse wake. At first
sight, the expressions for the wake brightness temperature
for a shock-heated and diffuse wake are very similar. For a
shock-heated wake we have Eq. (13),
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δTbðzÞ ¼ ½17 mK� xc
1þ xc

�
1 −

Tγ

TK

�
nwakeHI

nbgHI

ð1þ zÞ12
2 sin2 θ

; ð22Þ

where z corresponds to the redshift of 21-cm emission or
absorption and the other entities are defined as in Eq. (13).
The latter equation holds for TK > 2.5Tg. For convenience,
we extend its validity up until TK > 3Tg. Then, for
TK < 3Tg, the density of HI atoms changes according to

the calculation above, i.e., we replace nwakeHI =nbgHI with
ð1þ TK=TgÞ. In addition, if Tg exceeds TK ¼ 3Tg the
temperature inside the string wake is governed by the
background gas temperature including the adiabatic com-
pression factor, yielding a brightness temperature of

δTbðzÞ ¼ ½17 mK� xc
1þ xc

�
1 −

Tγ

3Tg

��
1þ TK

Tg

� ð1þ zÞ12
2 sin2 θ

:

ð23Þ

The relative brightness temperature of a string wake
follows the latter equation for TK < 3Tg.
Let us summarize the findings of this section. The

cosmic string in relativistic motion produces a wedge-like
overdensity in three-dimensional real space. The brightness
temperature of this overdensity when compared to the
CMB 21-cm radiation is generally described by

δTbðzÞ ¼ ½17 mK� xc
1þ xc

�
1−

Tγ

TK=g

�
nwakeHI

nbgHI

ð1þ zÞ12
2 sin2 θ

: ð24Þ

The governing temperature that determines the amplitude
and the sign of the latter, i.e., if the signal is visible in
emission or absorption, TK=g, is given by

TK=g ¼
�
TK; TK > 3Tg;

3Tg; TK ≤ 3Tg;
ð25Þ

where in the first case shock heating dominates the
thermalization of the HI atoms inside the wake created
by the string, while in the second case the incoherent
intrinsic gas velocity due to thermal motion determines the
wake temperature. A similar piecewise definition holds for
the density fraction in Eq. (24):

nwakeHI

nbgHI
¼

8<
:

4; TK > 3Tg;�
1þ TK

Tg

�
; TK ≤ 3Tg:

ð26Þ

In addition, diffusion effects influence the width of the
wake as

wðzÞ ¼
�wðzÞ; TK ≥ Tg;

wðzÞ · Tg

TK
; TK < Tg:

ð27Þ

Equations (24)–(27) provide us with a complete description
of the wake’s brightness temperature, density, and width for
relevant domains of redshift. These formulas will be used in
the simulations which will be described later. There, we
will also discuss the transition point between shock-heated
and diffuse wakes in more detail, as it plays an important
role in the investigation of the string detectability.

III. COSMIC STRING SIGNAL IN
INTERFEROMETRIC DATA

In this work, we investigate the signature of a cosmic
string wake in interferometer data. Since interferometers
probe the three-dimensional matter distribution via two
angular and one frequency dimension, characteristics of the
wake’s appearance in all of these dimensions need to be
analyzed. The goal of this section is to explore the string
wake’s unique features that distinguish it from Gaussian
noise as well as from other non-Gaussian signals in
interferometer data. This knowledge can then be applied
later to filter out the comparably faint string wake signal
from noise-contaminated interferometer data.
We briefly mentioned earlier that the string wake can

take multiple alignments with respect to the angular plane.
As we will see in this section, these alignments affect the
spatial extent in real and Fourier space of the signature
we expect to observe, as well as its length in the redshift
direction.

A. Wake alignment in the redshift directions

In general, an interferometer probes a patch of the sky
with a given frequency resolution, i.e., it detects the
intensity of the radiation of this patch within a band Δν.
For modern-day interferometers, this band varies between
Oð101Þ and Oð102Þ kHz. If the sky patch is small enough,
we can apply the flat-sky approximation and parametrize
the patch via two Euclidean coordinates. Measuring multi-
ple frequency bins and combining them yields a three-
dimensional measurement of this patch where the extent in
the third dimension—the frequency direction—is given by
the collection of the frequency bins considered. Assuming a
cosmic string wake is located within this probed region, its
signature might extend over multiple frequency/redshift
bins.7 In redshift space, the string wake has a distinctive
shape. Due to the line broadening illustrated in Sec. II B,
the signature will appear as a wedge-like region of 21-cm
absorption or emission. It is wide in angular directions and
narrow in the redshift direction. For most alignments
relative to the angular plane, the wake signal is wide only
in one angular direction if we consider a fixed redshift. As
the interferometer cannot distinguish between frequencies

7Note that we use the terms frequency and redshift space
interchangeably during this section as they are equivalent to each
other up to some factor of proportionality.
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inside one bin, in the measurement data of a single
frequency bin the segment of the wake lying inside this
bin appears to be projected onto the angular plane.
Therefore, it is the Fourier signal of the projected shape
of 21-cm emission or absorption that the interferometer
picks up and that we aim to filter out of the data.
The alignment of the wake is determined by the plane

spanned by the tangent vector to the (straight) string
segment and its direction of motion. In redshift space,
the direction of the wake is given by its orientation relative
to the light cone of the observer. For a wake moving away
form the observer on Earth, its tip will intersect the past
light cone of the observer earlier than its back, yielding a
larger redshift compared to the back of the wake. Moreover,
the width of the wake in redshift direction vanishes at its tip
and is maximal at its back. This results from its wedge-like
shape in real space and the consequent line broadening δν
[see Figs. 2 and 3 and Eq. (27)] due to Hubble expansion in
its angular dimensions. All in all, the geometry of the wake
in the frequency direction is captured by Fig. 3. For a more
detailed derivation of this geometry, we refer to Ref. [15].
With the given shape in the redshift direction, the

binning results in a splitting of the signal into separate
parts. Combining the redshift bins in the sense of projecting
them onto the u, v plane, we find the shape resembling the
complete projection of the wake onto this plane. The
process is illustrated in Figs. 3 and 4. In Fig. 3 we choose
a random alignment for the string wake to describe the
binning process. We color each redshift bin and mark the

regions in the angular plane where the projections will
overlap. For each bin, we project the wake segment onto the
plane. In Fig. 4, we patch all bins together and thus, in some
sense, project the whole wake onto the plane. Note that
each segment is colored corresponding to the redshift bin
that it lies in. In the simplest case of string alignment, the
string wake lies entirely in one redshift bin, yielding the
largest extent of the wake in the x-y plane. Since δν [see
Eq. (27) and Fig. 3] is in general smaller than the
instrumental redshift resolution mentioned above, this
special alignment is a valid simplification. However, even
in the case of a general alignment the wake does not extend
over many redshift bins compared to other sources of
21-cm radiation. Note that this in an important feature of
the string wake signal that allows us to separate it from
other Gaussian and non-Gaussian signals that the interfer-
ometer picks up.
Another point worth emphasizing is that as a conse-

quence of the wedge-like shape of the string wake in
redshift space, its projection onto the angular plane leads to
a gradient in the intensity. The tip of the wake exhibits the
smallest intensity, the back of the wake the maximal
intensity as we integrated the signal over its extent in
redshift space δz when projecting it. In this work we will
not make use of this feature.
So far we have not discussed one important aspect of the

wake’s alignment, namely, that its projected shape varies
with the alignment. The wake in general has a rectangular
shape in its wide dimensions. Whether we see a nice
rectangular shape in the observer’s x-y plane depends
on the orientation of the wake relative to our line of sight.
For simplicity, we will consider alignments in which the

FIG. 3. Sketch of the geometry of the wake in redshift space.
The horizontal axis represents one coordinate of the angular plane
(the x-y plane), while the vertical axis represents the frequency
direction. The overdense wake is darkly shadowed and the
frequency direction is separated into differently colored redshift
bins. The angular intervals where the wake crosses the boundary
between two redshift bins are marked in red in order to facilitate
comparison with Fig. 4. The geometry of the wake is not to scale.

FIG. 4. Sketch of the projection of the wake with orientation
given in Fig. 3 onto the angular plane. The string signals in the
redshift bins of Fig. 3 are indicated with the corresponding colors.
Some parts of the wake yield a signal in neighboring redshift bins,
and these regions are marked in red.
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area of the projection of the total wake is ≥ 1=4 of the
wake’s actual area.
In conclusion, the alignment of the wake influences its

projected shape onto the angular plane and, therefore, its
appearance in measured data. In this analysis, we restrict
ourselves to a selected range of possible alignments
favorable for a detection of a string wake. The fact that
the string wake signal is narrow in the redshift direction
will allow us to extract the signal from maps including
noise, since most types of noise contaminants that are
relevant for the 21-cm frequency domain are correlated
over many redshift bins, while the string signal covers
comparatively few. This distinction allows for the appli-
cation of noise-removal techniques which increase the
string’s detectability. Note that, in general, the frequency
resolution of the interferometer is a crucial criterion to
select a suitable interferometer survey for potential string
detection. If redshift bins are too large, the noise will
dominate within the bin and consequently the detectability
declines.

B. Wakes in Fourier space

In the previous section, we analyzed the distinctive shape
of the string signal in position-redshift space and outlined
unique features of the wake that can be used advanta-
geously for a potential detection. As an interferometer
receives the signal data in the form of frequency modes, we
now focus on distinct features of the string signal in Fourier
space. Our goal is the identification of unique features that
can be used to construct wake-specific filter methods and
statistics.
In the following we assume that the wake is located

inside a single redshift bin and therefore its projected shape
onto the angular plane is rectangular with edge lengths
which we denote here by X and Y. The Fourier transform of
any function fðxÞ over a two-dimensional space A with
x ¼ ðx; yÞ is

FfðkÞ ¼
Z
A
fðxÞe−2πik·xdx; ð28Þ

where k is the spatial frequency vector k ¼ ðkx; kyÞ,
chosen so that the linear scale corresponding to k is
2π=k. The function f in our case describes the rectangular
string signal inside the coordinate plane. We start with the
simplest possible alignment, namely, a rectangle whose
edges are parallel the coordinate axis. The center of the
rectangle resides at the point ða; bÞ. Then,

fðx; yÞ ¼
�
1; if a ≤ x ≤ Xþ a& b ≤ y ≤ Y þ b;

0; else;
ð29Þ

and the Fourier transform is given by

Fðkx; kyÞ ¼
Z Z

fðx; yÞe−i2πðkxxþkyyÞdxdy

¼
Z

Xþa

a
e−i2πkxxdx

Z
Yþb

b
e−i2πkyydy

¼ 1

πkx
sin ðπkxXÞe−iπkxð2aþXÞ

×
1

πky
sin ðπkyYÞe−iπkyð2bþYÞ: ð30Þ

We immediately see that any displacement of the center
of the wake away from the coordinate origin of our x-y
plane yields an imaginary part, and so the Fourier transform
becomes complex. For a ¼ −X=2 and b ¼ −Y=2, i.e., the
center of the square equals coordinate origin, the Fourier
transform is purely real. Note also that the signal is damped
in each direction as ∼1=kx=y. In the case of F ∈ R, the
value for the length of the rectangular projection of the
string wake enters solely in the sine function of Eq. (30). It
follows that for smaller side lengths the sine function has a
longer periodicity in the corresponding k coordinate, and
we expect a stretching in this direction. At the origin, the
signal converges as sinðαkÞ=k → α for k → 0. We illustrate
the features of Fðkx; kyÞ in Figs. 5 and 6. In Fig. 5 the side
lengths X, Y are equal while in Fig. 6 Y is smaller than X,
resulting in a stretching in the ky direction.
To obtain the amplitude of the wake signal in Fourier

space, we insert as our function f the relative brightness
temperature δTðx; yÞ at the redshifted 21-cm line. This way,
the Fourier transform effectively yields δTðkx; kyÞ which
gives the intensity in k space. As an interferometer
measures the intensity of a certain k-mode domain for a
pixel in the sky given by the angular resolution, δTðkx; kyÞ
yields an accurate portrait of the signal in interferom-
eter data.

FIG. 5. Fourier transform Fðkx; kyÞ for X ¼ Y ¼ 1.5 in the case
of a ¼ − X

2
and b ¼ − Y

2
.
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The first features that can be unambiguously connected
to the string wake signal are the four perpendicular ridges in
Figs. 5 and 6. These ridges result from the transformation of
the sharp edges of the projected wake signal into Fourier
space. Comparing the wake signal with other common
structures for overdensities, such as spherical clumps
(Fig. 7), the ridges emerge as a wake-specific feature.
As mentioned in the previous section, for a wake residing

in a single redshift bin, its projection onto the angular plane
gains an intensity gradient due to the varying thickness in
the redshift direction δz. Assuming the wake is wedge
shaped and oriented in the x direction, its projection yields
the highest intensity for the x coordinate at the back of the
wake. In the direction tangent to the string segment, i.e., for
x ¼ const, the intensity is constant. The x dependence of
the wakes’ intensity is thus described by

δz · δTb·

				 x − xtip
xback − xtip

				 ð31Þ

for x ∈ ½xback; xtip� and else ¼ 0, where δz is the wake
thickness in the redshift direction, xback is the x coordinate
of its back and xtip of the wake’s tip. Plugging this result
into the Fourier transformation, the ridge in the x direction
becomes smooth. However, in the case, the signal also
becomes complex, and so we have to take its absolute value
for appropriate visualization. Note that taking the absolute
value gives an intuition for the power spectrum P of the
string wake as Pðkx; kyÞ ∼ jFðkx; kyÞj2. In Fig. 8 we display
the absolute value of the Fourier-transformed wake signal
including an intensity gradient. Instead of the ridges with
oscillations in amplitude in the kx direction, for ky ≈ 0 we
find an almost smooth damping ∼1=kx. Except for this
smoothing, the wake signal does not change significantly
and the geometries are the same. Thus, in the following we
will ignore the intensity gradient of the wake and focus
instead on the alignment of the ridges.
Let us now consider rotations in the angular plane of a

wake centered at the coordinate origin, i.e., a ¼ −X=2, b ¼
−Y=2 in (29). As in the case of a shifted wake, rotations in
real space add phases to the Fourier transform. In Fig. 9 we
plot the absolute value of the Fourier transform and find
exactly the same shape as for the absolute value of the
nonrotated wake signal, except for a rotation by an angle
corresponding to the angle applied in the two-dimensional
angular plane. The phase information of the Fourier
transform of the rotated wake is highly nontrivial, but
we do not make use of this in the following.
For completeness, let us assume that the wake does not

reside exactly in one redshift bin, but rather crosses it.
Then, the shape of the resulting signal inside this bin

FIG. 6. Fourier transform Fðkx; kyÞ for X ¼ 1.5, Y ¼ 1 in the
case of a ¼ − X

2
and b ¼ − Y

2
.

FIG. 7. Fourier transform of the projection of a spherical clump
overdensity onto the angular plane. We transform according to
Eq. (29).

FIG. 8. Absolute value of the Fourier transform Fðkx; kyÞ for
X ¼ 1.5, Y ¼ 1.5 and a ¼ − X

2
, b ¼ − Y

2
, where we introduced an

intensity gradient in the x direction of the real-space-projected
wake area.
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projected onto the angular plane differs slightly from what
we discussed so far. Note, however, that in this case there
are still straight edges resulting from the sharply defined
projection area of the wake signal intensity against the dark
background. The alignment of these edges may change
depending on how the wake crosses the redshift bin of
interest. A simple example is shown in Fig. 10. Here, we
assume that the projected area of the string inside the
redshift bin has the shape of a parallelogram with two edges
parallel to the x axis and the other two being slightly tilted
with respect to the y axis. Fourier transforming this
configuration results in one pair of ridges being tilted in
Fourier space as well. The angles enclosed by two
neighboring edges of the parallelogram correspond to
the angles enclosed by the ridges. Note also that for a

single tilted edge of a rectangle being tilted, Fig. 10 would
correspondingly show only one ridge rotated by the same
angle. Again, this illustrates how the ridges result from the
Fourier transform of the straight edges enclosing the signal
of intensity δTb compared to the background with δTb ¼ 0.
In general, an arbitrary alignment of the wake and its

extent over multiple redshift bins produces a variety of
polygons as projected signal shapes in the x-y plane. The
important features that distinguish these structures from
other overdensities are the ridge-like arms that spread out
from the peak at the origin of the coordinate system in
Fourier space. The number of ridges, the angles between
them and their amplitude (smoothly or periodically
damped) depend on the specific alignment of the wake
in the redshift direction. Note that the alignment of the
ridges is in direct correspondence to the alignment of the
edges of the projected two-dimensional real-space signal.
In this work, we only consider string wakes residing in a

single redshift bin. This simplifies the Fourier signal sig-
nificantly since the projection onto the angular plane in this
case is almost perfectly rectangular. Hence, we are dealing
with Fourier signals of the shape displayed in Fig. 5. In
addition, we neglect the intensity gradient induced by the
thickness of the wake in redshift space, δz [in analogy
to Eq. (27)].
As Fig. 5 is the targeted structure in Fourier space

resulting from a string wake inside a redshift bin, its
features are essential to identifying it in interferometer
data.8 The ridges are a distinct element of the wake signal in
Fourier space. Since spherical clumps (or other contami-
nants) also produce a distinct peak at the origin of Fourier
space (shown in Fig. 7), we must rely on the ridges as a
detection characteristic. Choosing a suitable statistic to
extract this characteristic is thus essential for being able to
detect the signal of cosmic string wakes.
In the following section we use the above insights about

the Fourier signal of a wake in order to simulate a realistic
string wake signal received by a modern-day interferom-
eter. In particular, we apply statistics that enhance the
signature of the wake (based on Fig. 5).

IV. NUMERICAL SIMULATIONS

Our goal is to study if cosmic string signatures are
extractable from realistic interferometer data. In the pre-
vious sections, we discussed how an overdensity induced
by a cosmic string wake appears in data sampled by radio
interferometry. We calculated the amplitude of the intensity
of the string signature through the induced relative bright-
ness temperature and determined the expected shape a
string in the frequency domain for a wake that resides in a
single redshift bin. The thickness of the bin is given by the
finite frequency resolution of the interferometer. In this

FIG. 9. Absolute value of the Fourier transform Fðkx; kyÞ for
X ¼ 1.5, Y ¼ 2. The rectangular wake projection is rotated by
α ≈ 37° relative to the coordinate cross in real space. The intensity
over the signal area is homogeneous.

FIG. 10. Absolute value of the Fourier transform of a paral-
lelogram with one pair of edges being parallel to the x axis, and
the other two edges enclosing an angle of α ≈ 70° with the x axis.

8Figure 5 is from now on referred to as the string wake signal
in Fourier space.
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section, we will include the effects of contaminants found
in realistic measurement data. The biggest noise compo-
nents are different types of galactic and extragalactic
foregrounds and instrument-specific noise. We also include
the effects of the primordial Gaussian fluctuations which are
the source of the origin of structure in the Universe.
Following the analysis of the contaminants, we use our
insights on distinct features of noise and signal to find
suitable statistics and filters that can be applied to the data set
in order to extract the wake signal from the larger fore-
grounds. We then discuss the implementation of the numeri-
cal simulations. At the end of this section (in Sec. IV F) we
comment on the assumptions used in the simulations, the
application of special implementation techniques, and
selected parts of the program. Note that the full numerical
work is available at GitHub [28].
When speaking of interferometers, we refer to antenna

array interferometers (and not dish interferometers) since this
type is used in most experiments designed to study the large
scale of the 21-cm sky, one reason being the lower imple-
mentation cost, and another the large number of Fourier
modes that can be probed using this type of instruments..

A. Foreground contamination

We focus on signals of string wakes from the dark ages.
With the onset of reionization at z ≈ 12,9 ionizing radiation
enters the clouds of neutral hydrogen, leading to the
ionization and excitation, and effectively washing out
the clean string signature which we have discussed in
the previous section.
Besides the density fluctuations from the dark ages,

interferometers pick up radiation from sources formed
during later times like stars, synchrotron radiation, and
free-free transitions. The intensity of these so-called fore-
grounds is much larger than the signal we are aiming to
probe. Galaxies and extragalactic point sources, in particu-
lar, can be extremely bright and dwarf the cosmological HI
signal. In the following, we consider galactic synchrotron
radiation, extragalactic point sources, galactic free-free
emission, and extragalactic free-free emission.
For the following analysis we assume that there has

already been some sort of foreground removal or subtrac-
tion technique applied to the measurement data, i.e., we are
not considering the raw output of the interferometer, but
rather a prefiltered version. A number of different methods
for modeling and subtracting foregrounds have been
proposed in Refs. [29–37]. The residual contamination
can be modeled as a sum of Gaussian processes described
by angular power spectra Ci

lðν1; ν2Þ for our main noise
components. We model their combination as

Clðν1;ν2Þ≔ϵ2fg
X
i

Ai

�
lref
l

�
βi
�
ν2ref
ν1ν2

�
αi
exp

�
−log2ðν1=ν2Þ

2ξ2

�

ð32Þ

¼ ϵ2fg
X
i

Ci
lðν1; ν2Þ; ð33Þ

where lref and νref are reference values for mode number
and frequency, and ϵfg is a foreground-removal factor, i.e.,
for ϵfg ¼ 1 we consider the full residual foreground
contamination. The power spectra are defined via the
correlation functions [31]

Ci
lðν1; ν2Þ≡ hailmðν1Þailmðν2Þi: ð34Þ

where the alm are the coefficients of the expansion of the
noise field in spherical harmonics, and the angular brackets
denote spatial averaging. Since we consider very thin
redshift bins, we can take ν1 ≈ ν2. Note that we assume
here that the correlations between the contaminants are
negligible.
In the following we will study what fraction of the

foregrounds has to be removed before being able to extract
the string signatures. We wish to find a statistic for which
no such subtraction is required for values of Gμ that are of
interest, i.e., for which we can choose ϵfg ¼ 1. The smaller
ϵfg has to be for the string wake signature to become
detectable via a given processing technique, the worse the
detectability using this technique is. The values for the
parameters and the foregrounds that we consider here are
given in Table I (see Ref. [31] for details).
Note that all four foregrounds that we consider produce a

larger fluctuation power at each frequency than the cosmic
string 21-cm signal. It would be impossible to measure
21-cm signals if not for the high coherence of the contam-
inants across frequencies compared to the very short
frequency-space correlation length of the string signal.
We will discuss the coherence lengths of the foregrounds
again in Sec. IV E. Our choice of residual foregrounds is in
accordance with common literature on cosmology with
21-cm intensity mapping (see, e.g., Ref. [38]) and provides
the basis for modern-day techniques of residual foreground
removal, such as, applied in Ref. [39]. The parameter values
for the power spectra in Ref. [31] were determined based on

TABLE I. Fiducial foreground Clðν1; ν2Þ model parameters
extracted from Ref. [31] and adapted to the reference values lref ¼
1000 and νref ¼ 130 MHz.

Foreground type ½mK2� β α ξ

Galactic synchrotron 1100 3.3 2.80 4.0
Point sources 57 1.1 2.07 1.0
Galactic free-free 0.088 3.0 2.15 35
Extragalactic free-free 0.014 1.0 2.10 35

9There are large uncertainties in the literature concerning the
exact time that reionization starts. For the purpose of this
investigation, we want to maximize the redshift interval under
consideration and hence chose the value of z ¼ 12 for the end of
the dark ages.
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real observational measurements. With the power spectra of
the foreground components at hand, we can construct their
real-space image in the two-dimensional angular plane. In
this way we can adapt the simulated patch such that it
matches real observational data. For the galactic fore-
grounds, i.e., Galactic synchrotron and free-free emission,
we use the modeling techniques of Ref. [35] and references
therein. We assume these two types of foregrounds to be
Gaussian distributed with the above power law in Fourier
space. The same is assumed to hold for extragalactic free-
free emission, where we base our assumptions on Ref. [40].
For point sources, the procedure of modeling them in real
space is less trivial. A realistic picture of point sources can be
obtained by scattering sources of different flux density
across the sky via a Poisson-distributed random walk.
The Poisson distribution of point sources can potentially
contaminate higher-order correlation functions and is gen-
erally more difficult to model as it requires accurate catalog
data. Assuming that extremely bright sources have been
removed, i.e., we are considering point sources only up to a
certain threshold flux density limit and that the patch of the
sky under observation contains a large number of point
sources, a Gaussian distribution is a sufficiently accurate
approximation after removing the means. For an accurate
modeling of unresolved point sources we refer the reader to
Ref. [35]. In this work, we approximate this foreground type
to be Gaussian and model it in such a way that we match the
results of Ref. [41] and references therein.
In addition to foregrounds, the measurement of an

interferometer is distorted by noise from the atmosphere
and other radio background radiation. This type of noise is
considered as instrumental noise and will be discussed in
Sec. IV C.

B. ΛCDM fluctuations

While the cosmic string signal is dwarfed in amplitude
by the foregrounds, it is larger in amplitude than the
Gaussian fluctuations from the ΛCDM model that lead
to cosmological structure formation. The induced 21-cm
brightness temperature fluctuations from the ΛCDMmodel
are a biased tracer of the matter density field on large scales
[42] and are described by the power spectrum

PTb
ðk; zÞ ¼ T̄bðzÞ2ðbþ fμ2Þ2Pmðk; zÞ; ð35Þ

whereb is the bias factor andPmðk; zÞ is the real-spacematter
power spectrum. Here, the growth rate f is given by [43]

f ¼ Ωγ
MðzÞ; ð36Þ

with γ ≈ 0.55 for a ΛCDM cosmology. The parameter μ is
givenbyμ ¼ kk=k. Themeanbrightness temperature is taken
to be

T̄bðzÞ ¼ 0.1

�
ΩHI

0.33 × 10−4

�
·

�
ΩM þ ð1þ zÞ−3ΩΛ

0.29

�
−1=2

·

�
1þ z
2.5

�
1=2

mK; ð37Þ

following Ref. [44] and withΩHIb ¼ 0.62 × 10−3. In accor-
dance with Ref. [45], we set b ¼ 1. Note that Eq. (37) is a
low-redshift extrapolation of the general equation (1) in
Ref. [46] and is a good approximation for low redshifts, in
particular the redshift when the string signal is most visible,
which is around z ¼ 12 given the assumptions made in this
work. For higher redshifts the amplitude will deviate due to
the redshift dependence of TS − Tγ , but the increase in
amplitude is smaller than the increase in the amplitude of
the foregrounds. Hence, we can argue that the low-redshift
result ofEq. (37) is a reasonable approximationat the redshifts
for which the cosmic string wake signal is strongest. The
implications of this approximation are discussed below
Fig. 18.
Based on the real-space matter power spectrum (35), we

need to determine the induced angular power spectrum for
observations involving integration over a frequency band.
We use the flat-sky approximation and find [45]

ClðzÞ ¼
1

πχχ0

Z
∞

0

dkk cosðkkΔχÞPTb
ðk; zÞ; ð38Þ

where χ and χ0 are the comoving distances for the redshifts
z and z0 marking the lower and upper bounds of the redshift
bin under consideration. Δχ represents the differences of
the comoving distances. Note that in a fully accurate
treatment Pmðk; z; z0Þ ¼ PðkÞDþðzÞDþðz0Þ, where DþðzÞ
is the growth factor normalized such that Dþð0Þ ¼ 1.
However, since the redshift bins that we consider are very
thin, we can use Pmðk; zÞ as a good approximation. Note
that for the execution of the integral in Eq. (38) we used the
decomposition k2 ¼ k2k þ l2=χ2, where kk is the component

parallel to the line of sight.
In Fig. 11 we show the resulting 21-cm brightness map

from a realization of the Gaussian ΛCDM fluctuations,
compared with the signal of a string wake with
Gμ ¼ 3 × 10−7. Locally in position space, the string signal
is much larger in amplitude than the contribution from the
ΛCDM noise, the reason being that the string wake is
already a nonlinear fluctuation at high redshifts, while the
ΛCDM fluctuations are still in the linear regime. This
demonstrates that, provided foregrounds can be taken care
of, high-redshift observations provide an exciting venue to
identify string signals.
Concerning cosmological signals, we consider solely the

string wake signature, the four foreground contaminants,
and the primordial ΛCDM fluctuations in this work. We
assume that all other sources of significant noise disturb-
ance have been eliminated using some sort of subtraction
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techniques, leaving behind the above-described smooth
residuals. Hence, we have completed the discussion of the
cosmological signals picked up by an interferometer. Let us
now turn to the measurement-related noise.

C. Interferometer effects

Our aim is to simulate a realistic measurement of a patch
in the sky by an interferometer. Such an instrument
possesses certain characteristics that have a severe influ-
ence on the spectrum of Fourier modes that can be observed

as well as on the intrinsic instrumental noise level. In this
section, we analyze the implications of these interferometer
effects for our simulations and compare them with the
foreground contaminants.
In general, the instrumental noise contains two main

contributions. First, the instrument itself, depending on the
hardware design, produces a natural noise contribution due
to, e.g., finite, temperature effects or effects due to dust
particles. Second, atmospheric effects and background
radio sources can further increase the instrumental noise
level. However, note that the systematic noise, containing

FIG. 11. Simulation of a box of angular dimensions 5° × 5° comparing the ΛCDM fluctuations with the signal of a cosmic string wake
(located in the small rectangle in the center of the box). The value of Gμ is taken to be Gμ ¼ 3 × 10−7, and the redshift interval is
11.9 < z < 12.1.

FIG. 12. Sketch of the foreground-removal procedure. On the left-hand side five patches corresponding to five consecutive redshift
bins are lined up. The red patch contains the string signal. For each patch we mark the same single pixel. The brightness temperature of
these pixels is then plotted on the right-hand side as a function of redshift.
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instrumental and sky effects, is typically small compared to
the residual foregrounds [38].
The exact specifications of the instrumental noise are

quoted in the design specifications for a given experiment.
In this work, we adapt a general framework and calculate
the instrumental noise power spectrum based on an
approximate approach that is easily adaptable to an
arbitrary configuration of antennas. Note that this approach
holds only for array interferometers (dish or antenna) and
not for single-dish observations (although the adaptations
necessary are minimal). The advantage of this type of
survey is that measurements can be carried out using
multiple baselines at the same time and that these are
usually much larger than for single-dish surveys.
Additionally, we focus on antenna array interferometers
like MWA or LOFAR. Since antennas are cheaper and
easier to implement, these surveys usually contain a much
larger number of baselines and consequently, by the
principles of interferometry, can probe a larger domain
of Fourier modes. The approach for the instrumental noise
that is chosen here, however, remains identical for dish and
antenna interferometers.
The instrumental noise is modeled via a power spectrum

following Ref. [47],

PTðlÞ ¼
λ2T2

sysNp

A2
eΔνttotnðu ¼ l=2πÞ : ð39Þ

Here, λ is the wavelength of the measured radiation, Tsys ¼
T inst þ Tsky is the system temperature containing the
instrumental hardware-design-dependent temperature T inst

and Tsky ≈ 60 K · ðν=300 MHzÞ−2.5, the sky temperature
accounting for atmospheric effects and background radio
emission. Note that, usually, the instrumental (or equiv-
alently called the receiver temperature) is suppressed
compared to the sky temperature [48]. Np is the number
of pointings and effectively describes the relation between
the field of view (FOV) of an interferometer and the
fraction of the sky probed by it. Ae stands for the effective
collecting area per antenna or per tile in cases where the
antennas are combined to form antenna tiles (e.g., for
MWA). For a dish interferometer, it describes the effective
total dish area. The total integration time is given by ttot, and
the bandwidth of a measurement is given by Δν. The most
fundamental and interferometer-dependent part of the
power spectrum is the baseline density nðuÞ, where u is
given by the multipole moment divided by 2π. It depends
on the exact distribution of the antennas with respect to
each other and determines for every mode number l the
number of baselines able to measure this mode. Moreover,
the baseline density incorporates the natural limitations of
an interferometer regarding the minimal and maximal
Fourier modes that can be resolved by it. In general,
interferometer surveys have upper and lower limits

regarding the modes in k space10 that they can resolve.
For large k, an experiment is not able to resolve modes
larger than the k mode corresponding to the scale of the
longest baseline. For small k, only k modes bigger than the
mode corresponding to the FOV can be measured with a
reasonable amount of noise. The modes beyond these limits
are strongly contaminated by instrumental noise and thus
practically undetectable. This behavior is included in the
power spectrum (39) via the baseline density nðuÞ which
goes to zero as we approach these modes and hence leads to
a divergence of the power spectrum. The baseline density
depends on the relative positioning of the antennas or
dishes with respect to each other in an interferometer
experiment. Thus, to model it accurately, we need a given
configuration of antennas from a real experiment. We will
come back to this point in Sec. IV F.
With the description of the instrumental noise power

spectrum, we have now assembled all signal and noise
components relevant for the simulation of a patch in the sky
measured by an interferometer. As emphasized before, the
foreground noise is expected to be much larger than our
targeted cosmic string signal. Hence, we need to define and
apply techniques that enhance the string wake signal in the
measurement data. Before doing so, let us first introduce
the statistics with which we aim to analyze the data. This
way, we can adapt potential data-processing techniques to
the statistics to achieve an optimized result for the string
detectability.

D. Statistics

Due to the resolution limits in the angular and frequency
directions, interferometers output their data in discrete pixel
space and in redshift bins. The pixel map can be understood
as a sample of data points of radiation intensity. We want to
analyze this data sample for correlations between specific
groups of pixels, i.e., the wake signal. In this work, we
focus on two specific statistics.

1. χ 2 statistic

A commonly used statistic to extract a signal from a
given background model is the χ2 statistic. Similar to the
variance, for every data point the deviation from the mean
of the model is calculated and the results are summed up.
The resulting estimator contains information about the
goodness of the modeled mean, which translates to the
goodness of the model theory, which consists of an
imposed covariance matrix C and a prediction for the
mean μi for each data point i (here corresponding to pixels).
Let xi be the observed value of a pixel i and μi the

corresponding modeled mean value. Further, let us define C
as the model covariance matrix between the pixels such that

10Note that k space in this work refers to (unless explicitly
stated otherwise) k⊥ modes.
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Cij represents the correlation between xi and xj, Cij ¼
E½ðxi − μiÞðxj − μjÞ�. In the latter equation, E denotes the
expected value of its argument. Note that the standard
deviation is given by σi ¼ C1=2

ii ¼ E½ðxi − μiÞ2�1=2. Then,
the χ2 estimator for a one-dimensional chain of pixels is
defined as

χ2 ¼
Xν
j¼0

Xν
i¼0

ðxi − μiÞðC−1Þijðxj − μjÞ; ð40Þ

where C−1 is the inverse of the covariance matrix and ν
represents the degrees of freedom in the data sample.
In the case of interferometer data, the mean μi of the

background model corresponds to the observational mean
of a given type of foreground contaminant and C to the
estimated covariance matrix. Note that this matrix for a
given foreground type can be determined by applying the
definition above to multiple numerical foreground realiza-
tions.11 Equation (40) can further normalize the estimator

by dividing by the degrees of freedom so that χ̃2 ¼ χ2

ν . For
testing data with respect to some hypothetical model via the
χ2 statistic we need to formulate a model parameter μ and
the matrix C in advance. If the chosen model, i.e., μ and C,
is an accurate approximation of the data that is measured,
χ̃2 ≈ 1. The p-value for the acceptance of a hypothetical
model based on the measured data can be calculated using
the χ2 distribution

Pðχ2Þ ¼ 1

2ν=2Γðν=2Þ ðχ
2Þν−22 expð−χ2=2Þ; ð41Þ

where Γ is the Euler Γ function.
The definition above in Eq. (40) holds for real-space

data. Let us transform this formulation into Fourier space in
order to avoid the calculation of the full covariance matrix
in real space. In Fourier space, the covariance matrix C
becomes diagonal, and we use the relation between the
power spectrum and the Fourier transform PðkÞ ∼
jFðkx; kyÞj2 to rewrite Eq. (40) as

χ2 ∝
Xν
i

PdataðkiÞ
PmodelðkiÞ · σ2

: ð42Þ

In the latter equation, ki corresponds to a discretized k
mode and σ to the real-space variance of the background
model. Note that for the application of this formula we have
to assume that the above data follows a Gaussian distri-
bution and the power spectrum only depends on the
amplitude of the k mode.

In Sec. IV F we will discuss in more detail the effects of
measuring the data and applying this type of statistic in
pixel space. However, we emphasize at this point that in
Eq. (42) the string wake signal only constitutes a minimal
contribution to the overall power spectrum compared to
the foregrounds. Thus, we expect that multiple orders of
magnitude may have to be removed from the foregrounds
amplitude before the wake’s alteration of the overall data
power spectrum is sufficiently large for the χ2 estimator to
show a difference from the foreground model. In this work,
we will use the χ2 estimator in Fourier space.
As a first approach, the χ2 provides a good intuition

about the signal-to-noise ratio and is comparably simple to
implement. Nonetheless, it does not pick out specific
characteristics of the wake signature and represents a rather
general approach. In the following subsection, we will
apply the knowledge acquired in Sec. III B to customize
suitable statistics for string wake detection.

2. Higher-order correlation functions

Non-Gaussianities, such as the signature of a cosmic string
wake, are a prominent topic in research in cosmology and are
(due to the constant technological progress) explored more
and more in the 21-cm radiation domain (for recent works
see, e.g., Refs. [49,50]). As mentioned in Ref. [49], a
common approach to picking out these types of signatures
is the use of higher-point functions. In particular, in the case
of interferometer data, higher-order correlation functions in
Fourier space are used. Since we considered that the fore-
grounds in an observed patch to be realized as Gaussian
random fields, higher-order correlation functions (reduced
by their two-point components) without any non-
Gaussianity present average to zero when averaged over a
large region in space or a large number of samples. Adding
the string wake to the data yields a nontrivial value for the
reduced n-point functions in Fourier space.
The lowest-order statistic to which Gaussian noise

sources do not contribute is the three-point function. In
order to directly test for the ridge-like features a cosmic
string wake’s signal exhibits in Fourier space, we choose a
particular shape:

hTðk⃗1ÞTðk⃗2ÞTðk⃗3Þi with k⃗1 ≈ −k⃗2;

jk⃗1j ≈ jk⃗3j and k⃗1 · k⃗3 ≈ 0: ð43Þ

This three-point function has an additional advantage. We
saw that cosmic string wakes can take different shapes in
Fourier space which all share the ridge-like arms as a
feature. However, these arms can enclose different angles
relative to each other, depending on the wakes’ alignment
and on the redshift bin thickness, i.e., how the string wakes
cross the redshift bin. The three-point function can be
adapted to these more general alignments simply by
choosing k vectors that adequately represent the alignment

11The concrete application of this statistic is described in
Sec. IV F.
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of the ridges with respect to each other. For instance, in the
case of the projected string wake forming a parallelogram
in real space, the ridges in Fourier enclose the same angle as
the edges of the parallelogram. Let this angle be α. Then,
we have to adapt the conditions for the alignment of the
mode vectors in Eq. (43) to k⃗1 · k⃗3 ≈ jk⃗1jjk⃗2j sin α.

E. Signal processing and foreground removal

A common problem in radio cosmology is the low
signal-to-noise ratio of the raw data. Increasing this ratio
has become a field of research itself and many image-
processing techniques and foreground removal strategies
(see references in Sec. IVA) have been explored. Filtering
the data in favor of the string wake signal and removing
parts of the residual foregrounds described in Sec. IVA are
two key steps that we implement. Filtering techniques are
common and are reviewed in the Appendix. The exact
functional description of the wake signal in Fourier space as
well as the smooth frequency dependence of the residual
noise sources can be exploited. Note that the techniques
used in this paper are only a few of the vast variety of
signal-processing tools. Other potentially more powerful
and more involved techniques such as the application of
machine learning to the data set are used in the literature as
well. However, applying these methods is not within the
scope of this work.
Foreground-removal techniques are a prominent and

current research topic, in particular for 21-cm maps
(see, e.g., Refs. [51,52], and Ref. [53] for a review). For
cosmological studies of the early Universe, foreground
removal is essential for measuring any cosmological signal
as the foregrounds are much brighter than the signals we are
after. In this subsection, we present a suitable foreground
removal strategy that we implement in the numerical
simulations described later on.
A distinguishing feature between the string wake signal

and galactic as well as extragalactic foregrounds on the
other is their extent in the redshift direction. While the
foregrounds are smoothly correlated over a large number of
redshift bins, the string signal is expected to extend only
over a small number of them. In the specific case
considered in this work, the string wake signal resides in
a single redshift bin. If we analyze an individual pixel of the
sky patch measured by an interferometer in multiple
consecutive redshift bins, the brightness temperature dis-
plays a smooth redshift dependency, as sketched in Fig. 12.
The interpolation of the values over multiple redshift bins
will capture the frequency dependence of the foregrounds
without being spoiled by the wake signature within the
data, as the latter only affects a single redshift bin. This
allows for a removal of the foreground contaminants by
subtracting the interpolated values, and will conserve the
impact of the wake on the measured patch. Each angular
pixel has to be interpolated individually as the scaling in
redshift can vary from pixel to pixel. In the context of

interferometer surveys, this method is well applicable as
interferometers measure data in a frequency band that
includes multiple neighboring redshift bins at the same
time.
The interpolation of the residual foregrounds in the

considered patch is possible due to the foregrounds being
smooth in the frequency direction. In fact, following the
discussion in Sec. IVA, they display a frequency depend-
ence with a fixed exponent. We can use this behavior and
construct multiple consecutive redshifts bins following
the functional redshift dependency given in Eq. (32).
Additionally, we add uncertainties in the exponent accord-
ing to observational data (as in Ref. [35]). We simulate 11
frequency bins, and insert the signal into the frequency bin
in the middle. Further, we add ΛCDM fluctuations and
instrumental noise on top.12 For each pixel in these 11 maps
we line up their brightness temperature values, and fit a
function of redshift to these values, as displayed in Fig. 13.
This function takes a certain value for the redshift bin that
includes the signal. For this bin, we can subtract the
interpolated foreground vales and repeat the procedure for
the next pixel in the patch. As a result, we can approximately
remove the foreground from the patch including the string
wake.
In general, this method removes the foregrounds very

accurately. However, there is one caveat: instrumental effects
of interferometer surveysmay respond to a sky signal that has
oscillations in the frequency direction. The oscillation
amplitude scales with the amplitude of the foreground.

FIG. 13. Normalized pixel brightness temperatures for a map
containing the four residual foreground components discussed in
Sec. IVA, ΛCDM, and instrumental noise. The pixels are
extracted from multiple patches, as sketched in Fig. 20. We
normalize with respect to the mean of the displayed brightness
temperature values. The dots mark the normalized foreground
values at the center of the corresponding redshift bins whose
width in units of frequency is given by 50 kHz. The yellow line
represents the fit function ∼ð1þ zÞα.

12The exact implementation will be discussed in Sec. IV F.

EXTRACTING THE SIGNAL OF COSMIC STRING WAKES FROM … PHYS. REV. D 104, 123535 (2021)

123535-17



This effect may induce a mixing of the high-amplitude
foregrounds with the low-amplitude signal that we aim to
measure. Even if the mixing is small, the response function
may have a significant impact on the detectability of the
signal due to the much brighter foregrounds. Since the
response is generally unknown, it requires a high degree
of instrument calibration and thus poses amajor challenge for
interferometer surveys. Here, we simulate this behavior with
a sine-shaped noise with an amplitude of approximately one
percent of the foregrounds amplitude. Testing different
periodicities for this sine noise, we cover a group of potential
response functions of interferometers and can give quanti-
tative feedback about the detectability of the string wake for
eachof them. InFig. 14wedisplay a sine-shapednoise on top
of the foregrounds for each redshift bin. Depending on the

periodicity, the interpolation of the foreground may be less
accurate. Note that in order to better compare the pixel
interpolation,wenormalize thepixel brightness temperatures
of Figs. 13 and 14 by themean of the values without the sine-
shaped noise. When comparing the two figures we see a
slightly different tilt in the fit function due to the instrumental
response function in Fig. 14.
In the following, we turn to a description of our imple-

mentation of these techniques in the simulation program.

F. Implementation

1. Methodology

The numerical simulations of this work are implemented
in the open-source programming language PYTHON. Most
of the preexisting functions and methods we apply in this
analysis are standard functions in PYTHON and do not
require further introduction. In particular, we have used the
PyCosmo package [54] that was developed at the Institute
for Particle Physics and Astrophysics of the ETH Zurich
[28]. Some of the calculations were executed using the
ETH computer cluster Euler.

2. Signal and noise components

In our analysis we focus on Fourier maps obtained from
position-space maps in one redshift bin. Given a three-
dimensional map, this means that for each pixel in angular
space we integrate the signal in the redshift direction over
the bin.
Our analysis assumes that the string wake resides in a

single redshift bin. Consequently, in real space the pro-
jected shape corresponds to a rectangle. Note that, due to
the increasing thickness of the wake in real space moving
away from its tip, the brightness temperature signal obtains

FIG. 14. Normalized pixel brightness temperatures as in Fig. 13.
On top of the foregrounds we add instrumental effects in the form
of noise with a sine-shaped frequency dependence. The yellow
line represents the fit function ∼ð1þ zÞα.}

FIG. 15. Simulated real-space map of the total brightness
temperature with 512 × 512 pixels and an angular resolution
of 3600. The patch is filled with a Gaussian realization of galactic
synchrotron radiation at a redshift of z ¼ 30.

FIG. 16. Simulated real-space map of the total brightness
temperature with 512 × 512 pixels and an angular resolution
of 3600. The patch is filled with a Gaussian realization of galactic
free-free radiation at a redshift of z ¼ 30.
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a gradient in intensity across the rectangle. For simplicity,
we neglect this effect and assume that the string wake is
square shaped and of homogeneous intensity, the intensity
being obtained by integrating the brightness over the
redshift extent of the wake’s image. The size of the square
in angular directions is fixed to be 1° × 1° in the sky. This
corresponds to the angular size expected from a Hubble-
length string segment moving relativistically and which
was laid down at trec. We include the string signal of the
above size in a patch of 5° × 5°.
Given this configuration in real space, we obtain the

Fourier transform map by dividing the real-space map into
512 × 512 pixels and performing a fast Fourier transfor-
mation (making use of the extension package NumPy).
This analysis corresponds to an angular resolution of 3600, a
resolution which can be reached by modern-day interfer-
ometers such as SKA [55].
The foreground contamination per pixel corresponds to

Δz · Tfg
b , where Δz is the thickness of the redshift bin and

Tfg
b is the brightness temperature of the residual fore-

grounds. In order to implement the residual foregrounds
according to their power spectra, we calculate the value for
each pixel in Fourier pixel space as the sum over the
individual foreground components. Each contaminant is
individually implemented as

Tfgi
b ðkx; kyÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
· Ci

lðkx; kyÞ
r

ðg1ðkx; kyÞ þ i · g2ðkx; kyÞÞ;
ð44Þ

where g1 and g2 are Gaussian random coefficients (normal
distributed: μ ¼ 0, σ ¼ 1) andCi

l corresponds to the angular
power spectrum for the residual foreground component i
[defined in Eq. (32)]. As we work in the flat-sky approxi-
mation, the l in the angular foreground power spectrumgiven
by Eq. (32) is replaced with l ¼ ðk2x þ k2yÞ1=2. Subsequently,
we normalize each contaminant according to its observational

value [35] by setting the value of the k ¼ 0 mode in Fourier
pixel space equal to the real-space mean and adjusting the
real-space standard deviation using Parseval’s theorem. In the
case of discrete space, this theorem reads

XN−1

n¼0

jx½n�j2 ¼ 1

N

XN−1

k¼0

jX½k�j2; ð45Þ

where X½k� is the discrete Fourier transform of x½n�, both of
length N. Note that for the two-dimensional case, slight
adaptations are necessary. After this normalization pro-
cedure for every contaminant and adding together all
foreground component brightness temperature maps, we
obtain a real-space patch with the residual foreground
contamination in agreement with observational data.
For the galactic foregrounds, i.e., synchrotron and free-

free emission, we display the real-space patches of the
residual foreground contamination in Figs. 15 and 16.
Additionally, we want to include ΛCDM fluctuations in

the patch. They are also described by a Gaussian random
field and, by making use of Eq. (38), we can construct
the pixel values in analogy with Eq. (44). Note that the
primordial matter power spectrum in Eq. (38) is calculated
using the PyCosmo package. We use the value of the
ΛCDM fluctuation at the redshift of the bin being consid-
ered. Like in the computation of the wake signal, we
determine the relative brightness temperature of primordial
fluctuations with respect to the CMB background radiation.
The relative brightness temperature is calculated via
δTbðzÞ ¼ ðTbðzÞ − TγðzÞÞ=ð1þ zÞ [24] and we find that
the ΛCDM signal is much weaker at redshift z ¼ 12
compared to the foregrounds. The brightness temperature
fluctuations in the Gaussian realization are ∼Oð10Þ mK.
This yields an average relative brightness temperature
δTb of approximately 2.724 K in absorption. This ampli-
tude is larger than the extragalactic free-free emission
[μTb

ðz ¼ 12Þ ≈ 280 mK] but smaller than all other con-
taminants. Note that, without foregrounds, the string wake

FIG. 17. Relative alignment of MWA’s [56] Phase I and II antenna tiles. On the right side we zoom into the most densely populated
area of the interferometer configuration.
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can be easily detected against ΛCDM fluctuations at high
redshift, as shown in Fig. 11.
Finally, we implement the instrumental noise. This noise

is highly dependent on the type of interferometer and the
survey mode. Technically, Eq. (39) is arbitrarily adaptable;
however, for the purpose of this work we use the MWA
configuration as a benchmark.13 The MWA survey appears
suitable for string detection because the instrument is in a
radio quiet location, it has good frequency resolution, and
because of the large number of baselines. We assume a
frequency bandwidth of 50 kHz and an integration time of
1000 hours. The system temperature is defined below
Eq. (39). Phases I and II of MWA together consist of
256 antenna tiles each consisting of 16 antennas. The
effective collecting area per tile is Ae ≈ 21.5 square meters.
In order to calculate the baseline density nðuÞ we need an
exact distribution of antennas and their positions relative to
each other. This data was provided by Cathryn Trott from
the MWA Epoch-of-Reionization team. The relative align-
ment of the MWA antenna tiles is displayed in Fig. 17.

FIG. 18. Normalized signal-to-noise ratio following Eq. (46) for Gμ ¼ 3 × 10−7, ðvsγsÞ2 ¼ 1=3, θ ¼ 0.32 · π, and for various values
of the redshift zi of wake generation. The curves Tdiff

b take into account the fact that the wakes become diffuse at higher redshifts, while
the Tb curves show the results if diffusion is ignored and shock heating is assumed to occur for all redshifts. We additionally plot the
temperature curves for a linear interpolation of the collision coefficient xc to show the impact of the interpolation proposed in Sec. II B.

FIG. 19. Signal-to-noise ratio (46) depending on the string
tension Gμ. We plot two versions of the ratio: one where we fix
the redshift at z ¼ 12 (blue), and one where for every Gμ the ratio
(46) is evaluated at the optimal redshift zopt (red), where it is
maximal. The green dot marks the point of our simulation, while
the dashed line marks the tension for which ztrans ¼ 12. On the
left side of the line, diffusion dominates the wake thermalization.

13In the Conclusion, we comment on the implications for
applying our analysis techniques to other interferometer surveys.
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Note that smaller baselines are much more numerous than
long ones. Consequently, the noise grows significantly at an
intermediate mode and diverges when too few baselines are
available. We numerically model divergent instrumental
noise by dropping the pixels in which the noise exceeds a
certain large threshold.
Based on the data provided by Cathryn Trott, the

baseline density can be calculated. As this is a rather
complicated procedure, we adapted a preexisting program
created by one of us (D.C.). Based on the input of the
relative locations of the antennas or dishes, the program
outputs the baseline that nðuÞ provided we adapt a few
variables. The result is influenced by the numerical
parameters which describe the fit function used to inter-
polate the baseline densities at different scales. We can
model the fit function in two ways: either we allow for a
low noise level but fewer resolved modes or we accept a
large noise power spectrum resolving more modes. Within
the region of nondivergent noise power spectrum, the
interferometer noise is much smaller than the foregrounds
and the detectability is more significantly affected by the
restriction in the resolved modes. We hence chose a
pessimistic fit function with respect to modes that are
not affected by the divergence of the noise, i.e., we chose a
fit function for which the interferometer resolves fewer
modes with finite noise. As one of our goals is to
investigate interferometer configuration favoring the string

wake detection, it is reasonable to start out with strict
constraints coming from the interferometer noise power
spectrum. Based on these, we can analyze detection-
improving parameters. In general, the instrumental noise
is simulated as being Gaussian in Fourier space, but it is
negligible at small scales compared to the foregrounds.
Thus, the strongest restriction induced by instrumental
noise originates from the divergence of the noise at
certain k scales, as explained in Sec. IVA. Note that
around the k ¼ 0 pixel we additionally cut away the
smallest k modes as they generally cannot be measured
robustly due to instrumental effects either. In the flat-sky
approximation, i.e., using k=180° ¼ l=π, this low-k cutoff
corresponds to ignoring contributions of angular modes
l < 200 in the calculation of the statistical estimators.

3. Statistics, filters, and removal techniques

After the implementation steps listed above, we obtain a
patch in Fourier space containing four residual foreground
contaminants, the string wake, ΛCDM fluctuation and
instrumental noise. Note that this would not correspond
to the raw data stream coming from an interferometer since
we assume that some kind of foreground-removal technique
has already been applied (as discussed in Sec. IVA). This
removes, e.g., extremely bright point sources, leaving only
the residual foreground components described in earlier
sections in the data. Next, the patch is subject to the filters
and foreground-removal procedures described in Sec. IV E.
The filters are implemented as described in Sec. IV E.

Given the power spectra of all of the noise sources
(including the ΛCDM “noise”), which are all modeled
as Gaussian random processes, we set up a realization of
these noise sources in our Fourier space patch.
The implementation of the removal of the foregrounds

was described in Sec. IV E. In the simulations, we consider
11 distinct redshift bins surrounding the one that is being
analyzed. We fit the redshift dependence of the signal to a
form ð1þ zÞα, where α serves as a fit parameter capturing
the smooth redshift dependence of the sum of the fore-
ground contributions listed in Table I in the simulated
patch. Note that, as aforementioned, when generating the
foregrounds we include uncertainties in the form of
choosing the redshift scaling of the individual foreground
components for each redshift bin and pixel to be Gaussian
normal distributed N ðμi; σÞ, where the mean μi is the
redshift scaling of the contaminant i given by the corre-
sponding value in Table I and σ ¼ 0.1 for all foreground
types. We adapt the value of σ from the standard deviation
of the redshift exponent of galactic synchrotron radiation in
Ref. [35]. The contamination from residual foregrounds
and primordial fluctuations is interpolated for the redshift
bin in the middle of the 11 slices of redshift space, i.e.,
for the one containing the string wake. This interpolation
value is subsequently subtracted from the pixel value. The
procedure is repeated for each pixel.

FIG. 20. In the upper plot we display the string wake signal
sliced for kx or ky ¼ 0, i.e., we slice through one of the ridges of
the wake’s signal in Fourier space and display the cross section.
The coordinate u then corresponds to u ¼ kx=y=ð2πÞ. δTsignal

refers to the brightness temperature of the string wake. The lower
plot shows the power spectra of the two strongest foreground
components and the instrumental noise modeled for MWA’s
antenna distribution. Note that while the foregrounds are modeled
Gaussian in real space, the interferometer noise is modeled as a
Gaussian in Fourier space. The coordinate u corresponds to

u ¼ l=ð2πÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
=ð2πÞ.
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With the removal of the foregrounds and the application
of the filters,14 the signal-to-noise ratio in the analyzed data
patch is significantly increased. At this point, the statistics
to search for the string wake’s signal can be applied. A
good statistic should be able to reveal the presence of the
string wake at a high statistical significance. However, we
can also artificially shrink the amplitude of the residual
foregrounds by choosing a foreground-removal factor
ϵfg < 1 and study what value of ϵfg is needed in order
that the string signal becomes visible (for a good statistic
the value of ϵfg should be one). The χ2 statistic and the
three-point function with the particular shape described in
the previous section are used. Note that for the calculation
of χ2 following Eq. (42) we bin the patch into 300 k bins
and compare histograms of the model and the data power
spectrum for this binning. This results in 300 degrees of
freedom by which we can normalize the χ2 estimator to be
approximately one.
We perform the simulation pipeline multiple times and

average over the results. The size of the samples is
explicitly stated in the section on our results. This sam-
pling, however, requires a long chain of processes to be
executed, and as PYTHON is by default structured in a way
that each process is carried out successively, this is a time
intensive task. Therefore, we apply a multiprocessing
routine in which the processes are explicitly separated
and executed in parallel, i.e., realizations of the patch are
generated in parallel and joined at the end before averaging.
This results in simulations of reasonable sample size and
simultaneously adequate computational time scales.

4. Optimal detectability

The redshift dependences of the string wake signal and
the foreground noise sources are very different. As derived
in Eq. (22), the brightness temperature of the wake signal
scales as ð1þ zÞ1=2 up to the time when the ΛCDM
nonlinearities disrupt the wake. On the other hand, the
foregrounds increase in amplitude faster as the redshift
increases. Thus, we would expect the string wake signal to
be most easily detectable at the lowest redshift before wake
fragmentation. A complicating factor is that the string wake
signal shifts from absorption at high redshifts (when the
kinetic temperature of the wake is lower than the temper-
ature of the CMB) to emission at lower redshifts. Here, we
investigate for which redshift the signal-to-noise ratio is
maximized. This will determine the choice of redshift for
our actual analysis in the following section.
The total redshift domain considered here is z ∈ ½12; 30�.

The lower bound is set by the onset of the epoch of
reionization, while the upper bound is set by the limitations
ofmost of the currently operating interferometer instruments.

The signal-to-noise ratio in interferometer data can be
expressed by the intensity ratio

Dwake ¼
jδzTwake

b j
jΔzT

fg
b j

; ð46Þ

where we multiplied the temperatures with the thickness in
redshift space as we integrate over the redshift bin. For the
brightness temperature of the foregrounds [derived from
their power spectrum in Eq. (32)] we use a particular mode
number l whose choice does not affect the redshift
dependence of the ratio (46).
For the value Gμ ¼ 3 × 10−7, the normalized fraction

(46) is plotted in Fig. 18 for various values of the redshift zi
of wake creation. The curves Tdiff

b are obtained by taking
into account the fact that a wake changes for shock-heated
to diffuse at higher redshifts, the curves Tb assume shock-
heating for all redshifts. Here, we assume the angle θ of the
string wake is optimal for string detectability. In this
idealized scenario, the string wake leads to a square-shaped
homogeneous block of extra emission or absorption posi-
tioned in a single redshift bin. In Fig. 18 the absolute value of
the signal-to-noise ratio is displayed. Note that the redshift
where the ratio (46) vanishes corresponds to the transition
point from emission to absorption for the string wake.
Another kink of the curves in Fig. 18 occurs at the

transition point from shock heating to diffusion dominance
of the wake. The redshift of this transition ztrans is
determined by

TK ¼ 3Tg; ð47Þ

where Tg is the temperature of the background gas. This
leads to

1þ ztrans ¼
�

20

0.06
ðGμ · 106Þ2γ2sv2sð1þ ziÞ

�1
3

: ð48Þ

For a string tension Gμ ¼ 3 × 10−7 and a string velocity of
ðvsγsÞ2 ¼ 1=3, we find the maximal detectability at redshift
z ¼ 12, i.e., at the lower bound of the redshift domain, for
wakes laid down at approximately zi ¼ 3000. This con-
figuration is used as a simulation benchmark for the
numerical analysis of the following section.
For lower values of the string tension μ the curves of

Fig. 18 are shifted to the left and the amplitude decreases.
Consequently, z ¼ 12may not be optimal for all tensions μ.
If shifted sufficiently to the left, the redshift of transition
between shock heating and diffusion becomes the new
maximum of the signal-to-noise ratio. As shown by the
yellow curve in Fig. 18, this new peak occurs for
Gμ ¼ 1 × 10−7. We call the tension at which the maximum
of Eq. (46) shifts μcrit. For the benchmark wake with
ðvsγsÞ2 ¼ 1=3 and zi ¼ 3000, we find that the optimal
redshift for detectability of the wake signal shifts away

14We first remove the foregrounds and then apply the filters in
this work.
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from z ¼ 12 once the string tension falls below
Gμcrit ≈ 1.8 × 10−7. Note that the critical tension decreases
monotonically in v2sγ2s and zi. For Gμ < 1.8 × 10−7, the
maximumof the signal-to-noise ration occurs at zopt ¼ ztrans.
Note also that, as explained before, Eq. (37) is a good
approximation of the background brightness temperature
if z ¼ 12 roughly marks the onset of reionization. For
higher redshifts, T̄b evolves according to Table 1 in
Ref. [46] and reaches Oð10Þ mK. Compared to the fore-
grounds, this is a negligible effect so that the signal-to-noise
ratio evolution in redshift is still well described by Fig. 18.
The dependence of the optimal signal-to-noise ratio on

the string tension is shown in Fig. 19. The blue curve gives
the signal-to-noise ratio using the redshift bin at z ¼ 12,
while the red curve takes into account that the optimal
redshift for string detectability will change as the string
tension is lowered. The red curve has two kinks: the first
comes from the transition from zopt ¼ 12 to zopt ¼ ztrans,
and the second kink marks the transition to diffuse wakes.

V. RESULTS

In this section we study the effectiveness of different
combinations of statistics (as described in Sec. IV D) and
filtering techniques (see Sec. IV E) in identifying the signal
of a cosmic string wake in numerically simulated interfer-
ometer data.

A. Comparing statistics

As a first step, one wants to identify which of the
previously described statistics in general yields a superior
string wake detectability. Since foreground-removal meth-
ods work analogously for both statistics, we can compare
the χ2 estimator and the three-point function before any
application of removal techniques. Note that the instru-
mental noise is also ignored at first. This noise primarily
restricts the number of pixels with convergent noise in the
measurement patch. Both statistics in some sense average

over the pixel values of the patch and hence we expect them
to be equally affected by a restriction of the pixel space due
to divergent noise components.
The results discussed now are based on simulations that

include all of the effects we have discussed except for
instrumental noise. As justified in previous sections, we
choose the optimal redshift bin for string detectability. We
thus use z ¼ zoptðzi; μ; vsÞ ¼ 12, zi ¼ 3000, ðvsγsÞ2 ¼ 1=3,
Gμ ¼ 3 × 10−7, and θ ≈ 0.32π.
In Table II we show the results of the application of the

normalized χ2 statistics for multiple redshifts and angular
resolutions. Note that without the inclusion of instrumental
noise the angular resolution refers to the area-to-pixel ratio
used for the simulations. As no specific antenna configu-
ration is incorporated at this stage, the resolution can be
chosen arbitrarily. The wake is implemented according to
the aforementioned simulation benchmark, and the fore-
grounds (including ΛCDM fluctuations) are realized fol-
lowing the descriptions in Secs. IVA and IV F. For each
simulation we list the value of Δχ2 ¼ j1 − χ̃2j quantifying
the deviation of the simulated patch (foregrounds, ΛCDM
fluctuations, and string wake signature) from the theoretical
background model (foregrounds and ΛCDM fluctuations).
Additionally, we mark the application of a filter15 with a
“þ” in the “Filter” column (“−” hence corresponds to no
filter application) and calculate a confidence level on Δχ2
in the form of the p-value. The foreground-removal factor
as defined in Sec. IVA quantifies the detectability of the
wake.
Let us now discuss the results. We see from the first row

that if the foreground amplitude is suppressed by 3 orders
of magnitude, then, for a detectability benchmark of
p ¼ 0.10, the string wake is detectable in a patch of
5° × 5° in the sky at redshift z ¼ 12 given an angular
resolution of 36 arcsec. As seen from the second row, the

TABLE II. Results of the χ2 estimator applied to a 5° × 5° patch in the sky containing residual foreground
contaminants and ΛCDM fluctuations as described in Sec. IVA, as well as the string wake with a redshift of 21-cm
absorption z ¼ zoptðzi; μ; vsÞ ¼ 12, redshift of generation zi ¼ 3000, velocity ðvsγsÞ2 ¼ 1=3, tension
Gμ ¼ 3 × 10−7, and an angle enclosed between the angular plane on the sky and the wake θ ≈ 0.32π. The “+”
in the column “Filter” indicates the application of the Wiener filter before applying the statistic. The Δχ2 are
calculated based on the averages χ̃2 for a patch with and without a string wake for 100 random realizations of the
foregrounds.

Row Angular resolution Redshift z Filter Removal factor εfg Δχ2 p-value

1 3600 12 − 10−3 0.1281 0.0712
2 3600 13 − 10−3 0.0966 0.1200
3 3600 12 þ 10−3 0.6689 < 0.0001
4 1.20 12 − 10−3 0.1056 0.1054
5 1.20 12 þ 10−3 0.5210 < 0.0001
6 3600 25 − 10−3 2.3 × 10−5 0.4889

15We used the Wiener filter. Results for matched filtering
would be similar.
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detectability decreases if the redshift increases. From the
third row we see that the detectability greatly increases if
the Wiener filter is applied. As seen in the fourth and fifth
rows, the detectability decreases when the angular reso-
lution is worsened. Finally, at z ¼ 25 the detectability is
almost 2 orders of magnitude smaller (sixth row).
Based on the results of Table II, we conclude that (even

without the inclusion of instrumental noise) without the
application of foreground-removal methods, the χ2 estima-
tor applied to realistic interferometer data with an extent
of 5° × 5° in the sky is able to detect the string signature
only when the amplitude of the foregrounds is reduced by
approximately 3 orders of magnitude, with or without filter
techniques.
The three-point statistic (for the special shape chosen to

identify the ridges that cosmic string wakes produce in
Fourier space) yields significantly better results. The results
are listed in Table III. Here, we list the confidence level via
calculating the difference in the numerical values for the
three-point functions with and without the string wake in
units of the standard deviation σ of the averaged values.
Note here that the σ of the three-point function is based on a
large-scale survey with 20 000 square degrees in area.
Assuming the area can be divided in uncorrelated patches
of 5° × 5° in the sky, σ scales as

σ ¼ σthree−pointffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20000=25

p ; ð49Þ

where σthree-point is the actual standard deviation of the
averaged three-point function of a single 25 square degree
patch in the sky. The assumption that these patches are
uncorrelated is nontrivial. In real world measurements, the
correlation of these patches can potentially yield a bias that
has to be modeled separately in the numerical simulation
pipeline. For this work, however, we assume that these
correlations occur only on the largest angular scales
corresponding to the smallest k scales in the patch in

Fourier space. These are cut out in the signal processing
pipeline before the calculation of the three-point function,
as described in Sec. IV F. Thus, for the purpose of this
work, we ignore any correlations between patches and the
standard deviation can be calculated using Eq. (49).
The results of Table III indicate that, similar to the χ2

statistic, for an angular resolution of 36 arcsec at redshift
z ¼ 12, the string wake is detectable to a 5σ confidence
level if 3 orders of magnitude are removed from the
foreground amplitude. However, applying the Wiener filter,
which does not result in a significant enhancement of the
detectability using the χ2 statistic, yields a 2-orders-of-
magnitude improvement for the three-point function, as the
second row indicates. This constitutes a significant advan-
tage of the three-point statistic over the χ2 estimator.
Further, changing the redshift to z ¼ 25 yields a 2-
orders-of-magnitude difference in the detectability for
the filtered, as indicated in the fifth row.
The greater effectiveness of the filters when using the

three-point function is not the only advantage of this
statistic. Due to the choice of the k modes as described
in Eq. (43), we configure the three-point function in such a
way that it probes shapes in Fourier space that can be
unambiguously connected to the signatures of cosmic
string wakes. Consequently, a detection in the context of
the three-point function corresponds to a detection of a key
string wake signature rather than the detection of some
general deviation from the background model.
In the following we focus only on the three-point

correlation function. First, we study the string wake detect-
ability as a function of the string tension μ. In Table IVwe list
the results for different tensions μ. These results should be
compared with Fig. 19. We can conclude that Fig. 19
provides an accurate description of the detectability of a
string wake via the three-point function when the string
tension is varied. Note that the last entry in Table IV (the fifth
row) describes the result when we include interferometer
noise. In our realization of the noise using the baseline

TABLE III. Results of the three-point function hTbðk1ÞTbðk2ÞTbðk3Þi estimator applied to a 5° × 5° patch in the
sky containing residual foreground contaminants and ΛCDM fluctuations as described in Sec. IVA, as well as the
string wake with a redshift of 21-cm absorption z ¼ zoptðzi; μ; vsÞ ¼ 12, redshift of generation zi ¼ 3000, velocity
ðvsγsÞ2 ¼ 1=3, tension Gμ ¼ 3 × 10−7, and an angle enclosed between the angular plane on the sky and the wake
θ ≈ 0.32π. The “þ” in the column “Filter” indicates the application of the Wiener filter before applying the statistic.
The “þ” and “−” in the last two columns indicate whether the three-point function indicates
a detectability with a 3σ and a 5σ confidence level for the given configuration. Note that σ here is defined
with respect to a larger survey of 20 000 square degrees, and hence σ ¼ σthree−point=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20000=ð5 · 5Þp

. For the listed
results, we average over 10 000 random realizations of the noise contaminants.

Row Angular resolution Redshift z Filter Removal factor εfg Detectability 3σ Detectability 5σ

1 3600 12 − 10−3 þ þ
2 3600 12 þ 10−1 þ þ
3 3600 12 þ 2.5 × 10−1 þ −
4 3600 12 þ 5 × 10−1 − −
5 3600 25 þ 10−3 þ þ
6 1.20 12 þ 10−1 þ −
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density of MWA’s Phases I and II, we find that around 5810
of the 512 × 512 pixels corresponding to the smallest k
modes in Fourier space exhibit a convergent noise level.
Consequently, we evaluate the three-point function only on a
disc centered at the origin of the angular plane in Fourier
spacewith an area of 5810 pixels. In the fifth row of Table IV
we see that the detectability in this case suffers only mildly.
This is due to the fact that the instrumental noise is important
for larger values of kwhere the stringwake signal is small (see
Fig. 20).We conclude that themost significant contributionof
the string signal resides in lowerkmodes, andhence the cutoff
induced by the instrumental noise foru ≥ 450 yieldsmerely a
slight change in the detectability. This is shown in Fig. 20.
Note at this point that the angular resolution in Table IV does
not correspond to the angular resolution implied by the
antenna configuration in Fig. 17. The former describes the
area-to-pixel ratio of the simulated sky patch, while the latter
influences the baseline density in the instrumental noise
power spectrum and hence restricts the region in k space that
is not discarded in the calculation of the three-point function
due to diverging noise. Hence, even with the chosen area-to-
pixel ratio resolution, limitations of the MWA antenna
configuration are taken into account. Adjusting the area-to-
pixel ratio to the resolution exhibited by the MWA configu-
ration has only a negligible impact on the results.
To sum up our results so for: with a residual foreground

amplitude reduce by 1 order of magnitude, a cosmic string
wake completely residing in the probed redshift bin is
detectable by an interferometer with a noise power spec-
trum similar to that of MWA via applying the Wiener filter
and subsequently using the three-point function defined
in Eq. (43).
To further improve the string wake detectability, we

now employ the foreground-removal scheme sketched in
Sec. IV F.

B. Foreground-removal pipeline

Following the description in Sec. IV E, we can simulate
multiple consecutive redshift bins enclosing the bin in
which the string wake resides in order to interpolate, pixel
by pixel, the residual foreground level of the redshift bin
containing the string wake. Due to the smooth frequency
dependence of the residual foregrounds [see Eq. (32)], we
find a well-defined fit function and hence can interpolate
very accurately. When applying this technique, we fix the
redshift to z ¼ 12, the string tension toGμ ¼ 3 × 10−7, and
the angular resolution to 36 arcsec. Since we aim to mimic a
realistic measurement, we include a sinusoidal response by
the interferometer to the smooth foregrounds in the redshift
direction as described in Sec. IV F.
The results are presented in Table V and Fig. 21. The

instrumental response function ismodeled via a sine function
on top of the foregroundswith an amplitude of one percent of
the total foreground amplitude in the redshift direction, i.e., it
is given by 0.01 · Tfg

b ðzÞ · sinð2π=λ · ð1þ zÞÞ. Here, λ is in
units of the redshift bin thicknessΔz, the effective step length
in discretized redshift space. We expect the detectability to
decrease for lower values of λ=Δz as the mode mixing
becomes stronger. However, the results indicate a leveling off
at low wavelengths. This can be explained by comparing the
frequency sampling rate with the wavelength λ. In our
discrete data set in the frequency direction, sampling patches
with Δz ≥ λ=2 result in the sine wavelength mimicking a
longer wavelength mode as a single redshift bin covers
multiple sine function periods. Smaller wavelengths λ=Δz,
on the other hand, imply effects similar to just adding a
constant to the residual foregrounds. Thus, the detectability
function levels off.

TABLE IV. Results of the three-point function
hTbðk1ÞTbðk2ÞTbðk3Þi estimator applied to a 5° × 5° patch in
the sky. The configuration of this patch is analogous to the
description in Table III. Note that in this table we explicitly test at
z ¼ 12 and apply the Wiener filter before calculating the three-
point function. Also, for the listed results we average over 10 000
random realizations of the noise contaminants. In the fifth row we
include the instrumental noise according to Eq. (39) in the
simulated patch, based on which we calculate the three-point
function. We further elaborate on the effect of this noise
component on the detectability of string signatures in the text
below.

Row
Angular
resolution

Gμ
[10−6]

Removal
factor εfg

Detectability
3σ

Detectability
5σ

1 3600 0.3 0.1 þ þ
2 3600 0.25 0.06 þ þ
3 3600 0.2 0.05 þ −
4 3600 0.2 0.03 þ þ
5 3600 0.3 0.1 þ −

FIG. 21. Results of Table V. The 3σ and 5σ thresholds are
marked with dashed lines. The y axis is given in units of σ, while
the x axis is in units of redshift bin thickness Δz. For the data with
filtering, we divide the confidence level by 10 for better visibility
and comparability with the case without filtering. The data points
display a leveling off for λ=Δz < 2.
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The results demonstrate that the foreground-removal
technique works very well and allows us to identify the
string signal above all of the noise sources.We can achieve a
string detectability at a 5σ significance level even without
the application of a filter. Note, however, that this detect-
ability drops below 3σ for lower wavelengths of the
instrumental response function. The wavelength of the
response function is determined by the instrument hardware
and its calibration. Here, we have considered several wave-
lengths to analyze the effectiveness of the removal method
for various potential instrumental and calibration schemes.
The results also show that filtering is highly effective.
Wiener filtering the data after removing the foreground
yields a more than 20-fold increase in the significance of the
detectability.
Note that, making use of filtering, the string wake is

detectable for values of λ in the first two rows with a
significance of 4.7 to 3.3σthree-point even if a single 5° × 5°
patch is being considered. This indicates that if the response
function of the interferometer is well understood and its
periodicity wavelength is much longer than the considered
redshift interval, then the three-point function in combi-
nation with foreground removal and filtering is able to
detect the string wake with a survey size of a single patch of
5° × 5° in the sky. Even if the response function is less
favorable for the detection, the large significance for the
detectability using filters is promising. The survey size
necessary to achieve a 5σ detectability scaling sigma as
σ ¼ σthree-point=

ffiffiffiffi
N

p
is much lower than in the case without

filtering.
Note that the filters are robust even when the exact

orientation of the string wake is unknown. The degrees of
detectability listed in the third column of Table Valso imply

that cosmic strings with a significantly lower tension than
the one used as a simulation benchmark can be detected
using our data analysis pipeline consisting of foreground
removal, filtering, and the three-point function statistic.

VI. CONCLUSIONS AND DISCUSSION

We have studied the detectability of a cosmic string wake
in interferometric 21-cm surveys. Since a string wake
produces a non-Gaussian signal with a distinctive pattern
involving edges in Fourier space, a three-point function
statistic with shape chosen to match the string signal is
effective. We have presented the results of mock simulations
that include both astrophysical foregrounds and instrumental
effects.We found thatwith an angular resolutionof 36 arcsec,
awake produced by a stringwith tensionGμ ¼ 3 × 10−7 can
be detected with very high significance after the application
of Wiener filtering and the foreground subtraction scheme
discussed in this work. The analysis of a single patch of
5° × 5° in the sky is sufficient to tease out the signal. An
analysis of larger patches of the sky will increase the
significance of the detection, and will allow the detection
of signals from strings with somewhat lower tensions.
Note that we have assumed that our maps contain one

wake of angular size 1° × 1° in the sky produced at a
redshift zi ¼ 3000. Based on the scaling solution of the
cosmic string network, we know that this is a very
conservative assumption. Our sky patch will likely contain
a larger number of such string wakes, and this will further
improve the detectability. On the other hand, we have
assumed optimal orientation of the string for detectability.
But since the edge structure in the Fourier maps does not
depend on the orientation, our statistic should also give
similar results for suboptimal orientations, and if there are a
significant number of string wakes in our patch, then at
least one will have close-to-optimal orientation.
Let us comment on the application of our results to other

prominent interferometer surveys, e.g., (to name just a few)
SKA-Low [55] and HERA [57]. As we discussed above,
the choice of instrument manifests itself in three hardware-
dependent impact factors: the angular and frequency
resolutions, and the resolvable k-space interval, i.e., the
region of k modes with finite instrumental noise contribu-
tion. We showed in our analysis that an improvement in the
angular resolution has only a minor impact on the detect-
ability. The size of a bin in the frequency direction, i.e., the
frequency resolution, on the other hand, plays a crucial rule
for the detectability of cosmic strings as it directly enters
the signal-to-noise ratio. Broader frequency bins result in
the data containing more foreground contamination. The
two instruments mentioned above have resolutions com-
parable to that of MWA, and hence resolution-wise similar
results can be expected. The main difference reveals itself
through the distribution of the antennas of an instrument
which determines the resolution in k space. Here, the SKA
Collaboration provides a promising alternative instrument

TABLE V. Results of the three-point function statistic applied
to patches on the sky with dimensions as in previous results
(Tables III and IV). Here, we have applied the foreground-
removal technique described in Sec. IV E before calculating the
three-point function, and we consider instrumental effects. We fix
z ¼ 12 and Gμ ¼ 3 × 10−7. The wavelength λ refers to the
wavelength of the sinusoidal response function in the redshift
direction described in Sec. IV F. The detectability with or without
filtering is given in units of σ, where as above we define
σ ¼ σthree-point=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
20000=25

p
. These results are obtained by aver-

aging over 1000 randomly chosen realizations of the foregrounds
with and without the string signal.

Row
Sine wavelength

λ in ½λ=Δz�
Detectability
with filter [σ]

Detectability
without filter [σ]

1 27.5 133.5 5.58
2 13.7 93.4 2.6
3 6.9 62.8 2.0
4 3.4 40.9 1.5
5 1.7 55.1 1.8
6 0.9 37.6 1.9
7 0.4 58.5 2.8
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as it unites many antennas distributed over various con-
tinents, allowing for a wide range of finite-noise k modes.
Finally, note that we have modeled our foregrounds as

Gaussian processes. This is a rather simplified approxima-
tion. However, our main statistic to search for cosmic string
signals is a three-point function with a specific shape chosen
to pick out the planar structures that string wakes create.
Since none of the foregrounds are expected to produce such
planar structures, we expect the contribution of foregrounds
to our three-point statistic to be small. Along the same lines,
one could raise the potential worry about the intrinsic non-
Gaussianities of the ΛCDM fluctuations which result from
the nonlinearities in the mapping between the density and
21-cm fields [58]. These non-Gaussianities have been shown
to lead to a value of the normalized three-point coefficient
fNL which, depending on shape, can be as large as 10.
However, the basic amplitude of theΛCDM signal is at least
2 orders of magnitude smaller than the string wake signal at
the redshift that we considered (see Fig. 11). Combined with
the fact that the string wake signal is more non-Gaussian
than theΛCDM signal, it then follows that theΛCDM signal
in the non-normalized three-point function which we con-
sidered will be highly suppressed compared to the wake
signal.
We look forward to applying our analysis scheme to

actual data. Another avenue for future research is to explore
more sophisticated statistics such as wavelet analyses. It
would also be interesting to consider the application of
machine learning techniques.
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APPENDIX: WIENER AND MATCHED
FILTERING

Optimal-filter schemes are commonly used in cosmol-
ogy and originate from image processing. Two of the most
prominent examples known in cosmology are the Wiener
Filter (see, e.g., Refs. [59,60] for applications to CMB data)
and the matched Filter (see, e.g., Refs. [61,62] for appli-
cations to CMB and cluster cosmology). Both filters are
similar in their implementation. They rely on the approxi-
mate knowledge of the power spectrum of the signal we
want to extract and of the noise contamination in the
analyzed data. With these power spectra, we can construct a
function in Fourier space that can be multiplied with the

data so that it enhances the string wake signal while
simultaneously damping the noise contamination.
The filters are modeled as follows. At a fixed frequency,

we assume our incoming signal to have the following form:

fðx; yÞ ¼ sðx; yÞ þ nðx; yÞ: ðA1Þ
Here, f represents the received data, s represents the signal
(in our case the wake signal), and n represents the noise,
i.e., the residual foregrounds. The coordinates ðx; yÞ para-
metrize the two-dimensional real space. We aim to deter-
mine a function gðx; yÞ so that

f̃ðx; yÞ ¼ ðg⋆fÞðx; yÞ ðA2Þ
is an estimator for f minimizing the mean square error and
⋆ represents the mathematical convolution. The advantage
of this formulation is that in Fourier space the convolution
boils down to the product of the Fourier transforms.
For the Wiener filter the function g is defined via its

Fourier transform

Gðkx; kyÞ ¼
Sðkx; kyÞ

Sðkx; kyÞ þ Nðkx; kyÞ
; ðA3Þ

where S and N are the power spectra of the signal and noise
and kx, ky are the coordinates in Fourier space. For the
matched filter, it is defined as

Gðkx; kyÞ ¼
Sðkx; kyÞ
Nðkx; kyÞ

: ðA4Þ

If we have a well-described signal and noise, i.e., if the
power spectra are known, we can calculate and insert
the functions G into the Fourier transform of Eq. (A2). The
resulting function

F̃ðkx; kyÞ ¼ Gðkx; kyÞ · Fðkx; kyÞ ðA5Þ
can be inverse Fourier transformed. In doing so, we recover
a function describing the incoming signal of the original
measurement but with the target signature being more
pronounced with respect to the noise contamination.
TheWiener and matched filters are processing techniques

that are comparably easy to implement. Nonetheless, they
have certain advantages for the analysis of signatures in
Fourier space. Both filters preserve the phase information of
the dataf. Due toG beingpurely real as a combination of real
power spectra,16 the imaginary parts of F and F̃ agree.
Additionally, after application of the filters the residual noise
component left in the data is approximately white noise, i.e.,
the covariance matrix in real space is diagonal. This
significantly eases the analysis in real space. Note, however,
that since interferometer data is sampled in Fourier space and
constructing real-space maps based on this data generally
comes with side effects that may impair the string wake

16We define the power spectrum P as PðkÞ ∼ jFðkx; kyÞj2.
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detectability, it is reasonable to conduct thewhole analysis in
Fourier space as it is done in the context of this work.
Wiener and matched filters are generally robust. We use

“robust” here in the sense that even if the theoretical
description of the signal or noise power spectrum is not in
perfect alignment with the real power spectrum of the
corresponding component, the filters still improve the
signal-to-noise ratio of the data. This is a huge advantage
when searching for string wakes. The shape of the wake
power spectrum generally depends on the alignment of the
wake within the redshift bin (or across many redshift bins).
Selecting a reference alignment, the filters are capable of
picking up signals that exhibit small deviations with respect
to the signature shape of the reference alignments. Thus, we
can probe for multiple string alignments at once. As the
wake alignment is in general unknown, a practical

approach for the application of the filter in the context
of string detection would be to filter the measurement data
with the Wiener or matched filter for multiple distinct wake
power spectra.
All in all, filtering techniques are a good first approach

for increasing the signal-to-noise ratio. In particular, their
robustness in the context of approximate theoretical
descriptions for the power spectra makes them suitable
for the search for cosmic string signatures. Note, however,
that the filters are applied to data of a two-dimensional
patch and do not include information from the third
dimension of interferometer data—the frequency direc-
tion. In the following, we aim to use our knowledge of the
extent of the residual foregrounds in redshift space to
further improve the detectability of the cosmic string
wake.

[1] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other
Topological Defects (Cambridge University Press,
Cambridge, England, 2000); M. B. Hindmarsh and T.W. B.
Kibble, Cosmic strings, Rep. Prog. Phys. 58, 477 (1995);
R. H. Brandenberger, Topological defects and structure
formation, Int. J. Mod. Phys. A 09, 2117 (1994); R. Durrer,
M. Kunz, and A. Melchiorri, Cosmic structure formation
with topological defects, Phys. Rep. 364, 1 (2002).

[2] T. W. B. Kibble, Phase transitions in the early Universe,
Acta Phys. Pol. B 13, 723 (1982); Some implications of a
cosmological phase transition, Phys. Rep. 67, 183 (1980).

[3] R. H. Brandenberger, Searching for cosmic strings in new
observational windows, Nucl. Phys. B, Proc. Suppl. 246–
247, 45 (2014).

[4] R. H. Brandenberger, Probing particle physics from top
down with cosmic strings, Universe 1, 6 (2013).

[5] E. J. Copeland, T. W. B. Kibble, and D. Austin, ‘ Scaling
solutions in cosmic string networks, Phys. Rev. D 45, R1000
(1992); L. Perivolaropoulos, COBE versus cosmic strings:
An analytical model, Phys. Lett. B 298, 305 (1993); D.
Austin, E. J. Copeland, and T.W. B. Kibble, Evolution of
cosmic string configurations, Phys. Rev. D 48, 5594 (1993).

[6] A. Albrecht and N. Turok, Evolution of Cosmic Strings,
Phys. Rev. Lett. 54, 1868 (1985); D. P. Bennett and F. R.
Bouchet, Evidence For A Scaling Solution In Cosmic String
Evolution, Phys. Rev. Lett. 60, 257 (1988); B. Allen and
E. P. S. Shellard, Cosmic String Evolution: A Numerical
Simulation, Phys. Rev. Lett. 64, 119 (1990); C. Ringeval,
M. Sakellariadou, and F. Bouchet, Cosmological evolution
of cosmic string loops, J. Cosmol. Astropart. Phys. 02
(2007) 023; V. Vanchurin, K. D. Olum, and A. Vilenkin,
Scaling of cosmic string loops, Phys. Rev. D 74, 063527
(2006); L. Lorenz, C. Ringeval, and M. Sakellariadou,
Cosmic string loop distribution on all length scales and
at any redshift, J. Cosmol. Astropart. Phys. 10 (2010) 003;
J. J. Blanco-Pillado, K. D. Olum, and B. Shlaer, Large

parallel cosmic string simulations: New results on loop
production, Phys. Rev. D 83, 083514 (2011); The number of
cosmic string loops, Phys. Rev. D 89, 023512 (2014); P.
Auclair, C. Ringeval, M. Sakellariadou, and D. Steer,
Cosmic string loop production functions, J. Cosmol. As-
tropart. Phys. 06 (2019) 015; J. J. Blanco-Pillado and K. D.
Olum, Direct determination of cosmic string loop density
from simulations, Phys. Rev. D 101, 103018 (2020).

[7] A. Vilenkin, Gravitational field of vacuum domain walls and
strings, Phys. Rev. D 23, 852 (1981); R. Gregory, Gravi-
tational Stability of Local Strings, Phys. Rev. Lett. 59, 740
(1987).

[8] J. C. R. Magueijo, Inborn metric of cosmic strings, Phys.
Rev. D 46, 1368 (1992).

[9] N. Kaiser and A. Stebbins, Microwave anisotropy due to
cosmic strings, Nature (London) 310, 391 (1984); R.
Moessner, L. Perivolaropoulos, and R. H. Brandenberger,
A cosmic string specific signature on the cosmic microwave
background, Astrophys. J. 425, 365 (1994).

[10] S. Amsel, J. Berger, and R. H. Brandenberger, Detecting
cosmic strings in the CMB with the canny algorithm, J.
Cosmol. Astropart. Phys. 04 (2008) 015; R. J. Danos and
R. H. Brandenberger, Canny algorithm, cosmic strings and
the cosmic microwave background, Int. J. Mod. Phys. D 19,
183 (2010).

[11] L. Hergt, A. Amara, R. Brandenberger, T. Kacprzak, and A.
Refregier, Searching for cosmic strings in CMB anisotropy
mapsusingwavelets and curvelets, J. Cosmol.Astropart. Phys.
06 (2017) 004; J. D. McEwen, S.M. Feeney, H. V. Peiris, Y.
Wiaux, C. Ringeval, and F. R. Bouchet, Wavelet-Bayesian
inferenceof cosmic strings embedded in the cosmicmicrowave
background, Mon. Not. R. Astron. Soc. 472, 4081 (2017).

[12] R. Ciuca and O. F. Hernandez, A Bayesian framework for
cosmic string searches in CMB maps, J. Cosmol. Astropart.
Phys. 08 (2017) 028; R. Ciuca, O. F. Hernandez, and
M. Wolman, A convolutional neural network for cosmic

DAVID MAIBACH et al. PHYS. REV. D 104, 123535 (2021)

123535-28

https://doi.org/10.1088/0034-4885/58/5/001
https://doi.org/10.1142/S0217751X9400090X
https://doi.org/10.1016/S0370-1573(02)00014-5
https://doi.org/10.1016/0370-1573(80)90091-5
https://doi.org/10.1016/j.nuclphysbps.2013.10.064
https://doi.org/10.1016/j.nuclphysbps.2013.10.064
https://doi.org/10.1103/PhysRevD.45.R1000
https://doi.org/10.1103/PhysRevD.45.R1000
https://doi.org/10.1016/0370-2693(93)91825-8
https://doi.org/10.1103/PhysRevD.48.5594
https://doi.org/10.1103/PhysRevLett.54.1868
https://doi.org/10.1103/PhysRevLett.60.257
https://doi.org/10.1103/PhysRevLett.64.119
https://doi.org/10.1088/1475-7516/2007/02/023
https://doi.org/10.1088/1475-7516/2007/02/023
https://doi.org/10.1103/PhysRevD.74.063527
https://doi.org/10.1103/PhysRevD.74.063527
https://doi.org/10.1088/1475-7516/2010/10/003
https://doi.org/10.1103/PhysRevD.83.083514
https://doi.org/10.1103/PhysRevD.89.023512
https://doi.org/10.1088/1475-7516/2019/06/015
https://doi.org/10.1088/1475-7516/2019/06/015
https://doi.org/10.1103/PhysRevD.101.103018
https://doi.org/10.1103/PhysRevD.23.852
https://doi.org/10.1103/PhysRevLett.59.740
https://doi.org/10.1103/PhysRevLett.59.740
https://doi.org/10.1103/PhysRevD.46.1368
https://doi.org/10.1103/PhysRevD.46.1368
https://doi.org/10.1038/310391a0
https://doi.org/10.1086/173992
https://doi.org/10.1088/1475-7516/2008/04/015
https://doi.org/10.1088/1475-7516/2008/04/015
https://doi.org/10.1142/S0218271810016324
https://doi.org/10.1142/S0218271810016324
https://doi.org/10.1088/1475-7516/2017/06/004
https://doi.org/10.1088/1475-7516/2017/06/004
https://doi.org/10.1093/mnras/stx2268
https://doi.org/10.1088/1475-7516/2017/08/028
https://doi.org/10.1088/1475-7516/2017/08/028


string detection in CMB temperature maps, Mon. Not. R.
Astron. Soc. 485, 1377 (2019); R. Ciuca and O. F. Hernndez,
Information theoretic bounds on cosmic string detection in
CMB maps with noise, Mon. Not. R. Astron. Soc. 492, 1329
(2020).

[13] J. Silk and A. Vilenkin, Cosmic Strings And Galaxy
Formation, Phys. Rev. Lett. 53, 1700 (1984); M. J. Rees,
Baryon concentrations in string wakes at z≳ 200: Impli-
cations for galaxy formation and large-scale structure, Mon.
Not. R. Astron. Soc. 222, 27 (1986); T. Vachaspati, Cosmic
Strings and the Large-Scale Structure of the Universe, Phys.
Rev. Lett. 57, 1655 (1986); A. Stebbins, S. Veeraraghavan,
R. H. Brandenberger, J. Silk, and N. Turok, Cosmic string
wakes, Astrophys. J. 322, 1 (1987); D. Cunha, J. Harnois-
Deraps, R. Brandenberger, A. Amara, and A. Refregier,
Dark matter distribution induced by a cosmic string wake in
the nonlinear regime, Phys. Rev. D 98, 083015 (2018).

[14] R. J. Danos, R. H. Brandenberger, and G. Holder, A
signature of cosmic strings wakes in the CMB polarization,
Phys. Rev. D 82, 023513 (2010).

[15] R. H. Brandenberger, R. J. Danos, O. F. Hernandez, and
G. P. Holder, The 21 cm signature of cosmic string wakes, J.
Cosmol. Astropart. Phys. 12 (2010) 028.

[16] T. Charnock, A. Avgoustidis, E. J. Copeland, and A. Moss,
CMB constraints on cosmic strings and superstrings, Phys.
Rev. D 93, 123503 (2016); C. Dvorkin, M. Wyman, and W.
Hu, Cosmic string constraints from WMAP and the south
pole telescope, Phys. Rev. D 84, 123519 (2011); P. A. R.
Ade et al. (Planck Collaboration), Planck 2013 results.
XXV. Searches for cosmic strings and other topological
defects, Astron. Astrophys. 571, A25 (2014).

[17] D. C. N. da Cunha, O. F. Hernandez, and R. H. Branden-
berger, Disruption of cosmic string wakes by Gaussian
fluctuations, Phys. Rev. D 93, 123501 (2016).

[18] O. F. Hernandez, Wouthuysen-field absorption trough in
cosmic string wakes, Phys. Rev. D 90, 123504 (2014).

[19] R. Brandenberger, B. Cyr, and T. Schaeffer, On the possible
enhancement of the global 21-cm signal at reionization from
the decay of cosmic string cusps, J. Cosmol. Astropart.
Phys. 04 (2019) 020; R. Brandenberger, B. Cyr, and R. Shi,
Constraints on superconducting cosmic strings from the
global 21-cm signal before reionization, J. Cosmol. Astro-
part. Phys. 09 (2019) 009; S. Laliberte and R. Branden-
berger, Ionization from cosmic strings at cosmic dawn,
Phys. Rev. D 101, 023528 (2020).

[20] R. Thériault, J. T. Mirocha, and R. Brandenberger, Global
21 cm absorption signal from superconducting cosmic
strings, J. Cosmol. Astropart. Phys. 10 (2021) 046.

[21] Y. B. Zeldovich, Gravitational instability: An approximate
theory for large density perturbations, Astron. Astrophys. 5,
84 (1970).

[22] L. Perivolaropoulos, R. H. Brandenberger, and A. Stebbins,
Dissipationless clustering of neutrinos in cosmic string
induced wakes, Phys. Rev. D 41, 1764 (1990); R. H.
Brandenberger, L. Perivolaropoulos, and A. Stebbins, Cos-
mic strings, hot dark matter and the large scale structure of
the Universe, Int. J. Mod. Phys. A 05, 1633 (1990).

[23] A. Sornborger, R. H. Brandenberger, B. Fryxell, and K.
Olson, The structure of cosmic string wakes, Astrophys. J.
482, 22 (1997).

[24] S. Furlanetto, S. P. Oh, and F. Briggs, Cosmology at low
frequencies: The 21 cm transition and the high-redshift
Universe, Phys. Rep. 433, 181 (2006).

[25] B. Zygelman, Hyperfine level-changing collisions of hydro-
gen atoms and tomography of the dark age Universe,
Astrophys. J. 622, 1356 (2005).

[26] S. Seager, D. D. Sasselov, and D. Scott, A new calculation
of the recombination epoch, Astrophys. J. Lett. 523, L1
(1999); S. Seager, D. D. Sasselov, and D. Scott, How exactly
did the Universe become neutral?, Astrophys. J. Suppl. Ser.
128, 407 (2000).

[27] O. F. Hernandez and R. H. Brandenberger, The 21 cm
signature of shock heated and diffuse cosmic string wakes,
J. Cosmol. Astropart. Phys. 07 (2012) 032.

[28] D. Maibach, Numerical Simulations of Cosmic Strings
in Interferometer Data, https://github.com/maibachd/
simulationthesis.

[29] S. P. Oh and K. J. Mack, Foregrounds for 21 cm observa-
tions of neutral gas at high redshift, Mon. Not. R. Astron.
Soc. 346, 871 (2003).

[30] R. Barkana and A. Loeb, A method for separating the
physics from the astrophysics of high-redshift 21 cm
fluctuations, Astrophys. J. Lett. 624, L65 (2005).

[31] M. G. Santos, A. Cooray, and L. Knox, Multifrequency
analysis of 21 cm fluctuations from the era of reionization,
Astrophys. J. 625, 575 (2005).

[32] M. F. Morales, J. D. Bowman, and J. N. Hewitt, Improving
foreground subtraction in statistical observations of 21 cm
emission from the epoch of reionization, Astrophys. J. 648,
767 (2006).

[33] X. M. Wang, M. Tegmark, M. Santos, and L. Knox, Twenty-
one centimeter tomography with foregrounds, Astrophys. J.
650, 529 (2006).

[34] L. Gleser, A. Nusser, and A. J. Benson, De-contamination of
cosmological 21-cm maps, Mon. Not. R. Astron. Soc. 391,
383 (2008).

[35] V. Jelic et al., Foreground simulations for the LOFAR—
epoch of reionization experiment, Mon. Not. R. Astron. Soc.
389, 1319 (2008).

[36] A. Liu, M. Tegmark, J. Bowman, J. Hewitt, and M.
Zaldarriaga, An improved method for 21 cm foreground
removal, Mon. Not. R. Astron. Soc. 398, 401 (2009).

[37] N. Petrovic and S. P. Oh, Systematic effects of foreground
removal in 21 cm surveys of reionization, Mon. Not. R.
Astron. Soc. 413, 2103 (2011).

[38] P. Bull, P. G. Ferreira, P. Patel, and M. G. Santos, Late-time
cosmology with 21 cm intensity mapping experiments,
Astrophys. J. 803, 21 (2015).

[39] T. L. Makinen, L. Lancaster, F. Villaescusa-Navarro,
P. Melchior, S. Ho, L. Perreault-Levasseur, and D. N.
Spergel, deep21: A deep learning method for 21 cm
foreground removal, J. Cosmol. Astropart. Phys. 04
(2021) 081.

[40] A. R. Cooray and S. R. Furlanetto, Free—free emission
at low radio frequencies, Astrophys. J. Lett. 606, L5
(2004).

[41] M. Gervasi, A. Tartari, M. Zannoni, G. Boella, and G.
Sironi, The contribution of the unresolved extragalactic
radio sources to the brightness temperature of the sky,
Astrophys. J. 682, 223 (2008).

EXTRACTING THE SIGNAL OF COSMIC STRING WAKES FROM … PHYS. REV. D 104, 123535 (2021)

123535-29

https://doi.org/10.1093/mnras/stz491
https://doi.org/10.1093/mnras/stz491
https://doi.org/10.1093/mnras/stz3551
https://doi.org/10.1093/mnras/stz3551
https://doi.org/10.1103/PhysRevLett.53.1700
https://doi.org/10.1093/mnras/222.1.27P
https://doi.org/10.1093/mnras/222.1.27P
https://doi.org/10.1103/PhysRevLett.57.1655
https://doi.org/10.1103/PhysRevLett.57.1655
https://doi.org/10.1086/165697
https://doi.org/10.1103/PhysRevD.98.083015
https://doi.org/10.1103/PhysRevD.82.023513
https://doi.org/10.1088/1475-7516/2010/12/028
https://doi.org/10.1088/1475-7516/2010/12/028
https://doi.org/10.1103/PhysRevD.93.123503
https://doi.org/10.1103/PhysRevD.93.123503
https://doi.org/10.1103/PhysRevD.84.123519
https://doi.org/10.1051/0004-6361/201321621
https://doi.org/10.1103/PhysRevD.93.123501
https://doi.org/10.1103/PhysRevD.90.123504
https://doi.org/10.1088/1475-7516/2019/04/020
https://doi.org/10.1088/1475-7516/2019/04/020
https://doi.org/10.1088/1475-7516/2019/09/009
https://doi.org/10.1088/1475-7516/2019/09/009
https://doi.org/10.1103/PhysRevD.101.023528
https://doi.org/10.1088/1475-7516/2021/10/046
https://doi.org/10.1103/PhysRevD.41.1764
https://doi.org/10.1142/S0217751X9000074X
https://doi.org/10.1086/304130
https://doi.org/10.1086/304130
https://doi.org/10.1016/j.physrep.2006.08.002
https://doi.org/10.1086/427682
https://doi.org/10.1086/312250
https://doi.org/10.1086/312250
https://doi.org/10.1086/313388
https://doi.org/10.1086/313388
https://doi.org/10.1088/1475-7516/2012/07/032
https://github.com/maibachd/simulationthesis
https://github.com/maibachd/simulationthesis
https://github.com/maibachd/simulationthesis
https://doi.org/10.1111/j.1365-2966.2003.07133.x
https://doi.org/10.1111/j.1365-2966.2003.07133.x
https://doi.org/10.1086/430599
https://doi.org/10.1086/429857
https://doi.org/10.1086/506135
https://doi.org/10.1086/506135
https://doi.org/10.1086/506597
https://doi.org/10.1086/506597
https://doi.org/10.1111/j.1365-2966.2008.13897.x
https://doi.org/10.1111/j.1365-2966.2008.13897.x
https://doi.org/10.1111/j.1365-2966.2008.13634.x
https://doi.org/10.1111/j.1365-2966.2008.13634.x
https://doi.org/10.1111/j.1365-2966.2009.15156.x
https://doi.org/10.1111/j.1365-2966.2011.18276.x
https://doi.org/10.1111/j.1365-2966.2011.18276.x
https://doi.org/10.1088/0004-637X/803/1/21
https://doi.org/10.1088/1475-7516/2021/04/081
https://doi.org/10.1088/1475-7516/2021/04/081
https://doi.org/10.1086/421241
https://doi.org/10.1086/421241
https://doi.org/10.1086/588628


[42] K.W. Masui et al., Measurement of 21 cm brightness
fluctuations at z 0.8 in cross-correlation, Astrophys. J. Lett.
763, L20 (2013).

[43] E. V. Linder, Cosmic growth history and expansion history,
Phys. Rev. D 72, 043529 (2005).

[44] T. C. Chang, U. L. Pen, J. B. Peterson, and P. McDonald,
Baryon Acoustic Oscillation Intensity Mapping as a Test of
Dark Energy, Phys. Rev. Lett. 100, 091303 (2008).

[45] J. R. Shaw, K. Sigurdson, M. Sitwell, A. Stebbins, and U. L.
Pen, Coaxing cosmic 21 cm fluctuations from the polarized
sky using m-mode analysis, Phys. Rev. D 91, 083514
(2015).

[46] S. Furlanetto, The global 21 centimeter background from
high redshifts, Mon. Not. R. Astron. Soc. 371, 867 (2006).

[47] D. Alonso, P. G. Ferreira, M. J. Jarvis, and K. Moodley,
Calibrating photometric redshifts with intensity mapping
observations, Phys. Rev. D 96, 043515 (2017).

[48] T. Franzen et al., The 154 MHz radio sky observed by the
Murchison Widefield Array: noise, confusion, and first
source count analyses, Mon. Not. R. Astron. Soc. 459,
3314 (2016).

[49] D. Karagiannis, J. Fonseca, R. Maartens, and S. Camera,
Probing primordial non-Gaussianity with the power spec-
trum and bispectrum of future 21 cm intensity maps, Phys.
Dark Universe 32, 100821 (2021).

[50] T. Sekiguchi, T. Takahashi, H. Tashiro, and S. Yokoyama,
Probing primordial non-Gaussianity with 21 cm fluctuations
from minihalos, J. Cosmol. Astropart. Phys. 02 (2019) 033.

[51] I. Hothi et al., Comparing foreground removal techniques
for recovery of the LOFAR-EoR 21 cm power spectrum,
Mon. Not. R. Astron. Soc. 500, 2264 (2020).

[52] F. G. Mertens, A. Ghosh, and L. V. E. Koopmans, Statistical
21-cm signal separation via Gaussian process regression
analysis, Mon. Not. R. Astron. Soc. 478, 3640 (2018).

[53] A. Liu and J. R. Shaw, Data analysis for precision 21 cm
cosmology, Publ. Astron. Soc. Pac. 132, 062001 (2020).

[54] A. Refregier, PyCosmo—Python Package, https://cosmo-
docs.phys.ethz.ch/PyCosmo/modules.html.

[55] D. J. Bacon et al. (SKA Collaboration), Cosmology with
phase 1 of the square kilometre array: Red book 2018:
Technical specifications and performance forecasts, Pub.
Astron. Soc. Aust. 37, e007 (2020).

[56] S. J. Tingay et al., The murchison widefield array: The
square kilometre array precursor at low radio frequencies,
Pub. Astron. Soc. Aust. 30, e007 (2013).

[57] D. R. DeBoer et al., Hydrogen epoch of reionization array
(HERA), Publ. Astron. Soc. Pac. 129, 045001 (2017).

[58] J. B. Muñoz, Y. Ali-Haïmoud, and M. Kamionkowski,
Primordial non-gaussianity from the bispectrum of 21-cm
fluctuations in the dark ages, Phys. Rev. D 92, 083508
(2015).

[59] F. Elsner and B. D. Wandelt, Efficient Wiener filtering with-
out preconditioning, Astron. Astrophys. 549, A111 (2013).

[60] E. F. Bunn,K. B. Fisher, Y.Hoffman,O. Lahav, J. Silk, and S.
Zaroubi, Wiener filtering of the COBE differential micro-
wave radiometer data, Astrophys. J. Lett. 432, L75 (1994).

[61] J. Hennawi and D. Spergel, Shear-selected cluster cosmol-
ogy: Tomography and optimal filtering, Astrophys. J. 624,
59 (2005).

[62] S. Nadathur and R. Crittenden, A detection of the integrated
Sachs-Wolfe imprint of cosmic superstructures using a
matched-filter approach, Astrophys. J. Lett. 830, L19 (2016).

DAVID MAIBACH et al. PHYS. REV. D 104, 123535 (2021)

123535-30

https://doi.org/10.1088/2041-8205/763/1/L20
https://doi.org/10.1088/2041-8205/763/1/L20
https://doi.org/10.1103/PhysRevD.72.043529
https://doi.org/10.1103/PhysRevLett.100.091303
https://doi.org/10.1103/PhysRevD.91.083514
https://doi.org/10.1103/PhysRevD.91.083514
https://doi.org/10.1111/j.1365-2966.2006.10725.x
https://doi.org/10.1103/PhysRevD.96.043515
https://doi.org/10.1093/mnras/stw823
https://doi.org/10.1093/mnras/stw823
https://doi.org/10.1016/j.dark.2021.100821
https://doi.org/10.1016/j.dark.2021.100821
https://doi.org/10.1088/1475-7516/2019/02/033
https://doi.org/10.1093/mnras/staa3446
https://doi.org/10.1088/1538-3873/ab5bfd
https://cosmo-docs.phys.ethz.ch/PyCosmo/modules.html
https://cosmo-docs.phys.ethz.ch/PyCosmo/modules.html
https://cosmo-docs.phys.ethz.ch/PyCosmo/modules.html
https://cosmo-docs.phys.ethz.ch/PyCosmo/modules.html
https://cosmo-docs.phys.ethz.ch/PyCosmo/modules.html
https://cosmo-docs.phys.ethz.ch/PyCosmo/modules.html
https://doi.org/10.1017/pasa.2019.51
https://doi.org/10.1017/pasa.2019.51
https://doi.org/10.1017/pasa.2012.007
https://doi.org/10.1088/1538-3873/129/974/045001
https://doi.org/10.1103/PhysRevD.92.083508
https://doi.org/10.1103/PhysRevD.92.083508
https://doi.org/10.1051/0004-6361/201220586
https://doi.org/10.1086/187515
https://doi.org/10.1086/428749
https://doi.org/10.1086/428749
https://doi.org/10.3847/2041-8205/830/1/L19

