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We study the gravitational radiation produced by the collisions of bubble walls or thin fluid shells in
cosmological phase transitions. Using the so-called envelope approximation, we obtain analytically the
asymptotic behavior of the gravitational wave spectrum at low and high frequencies for any phase transition
model. The complete spectrum can thus be approximated by a simple interpolation between these
asymptotes. We verify this approximation with specific examples. We use these results to discuss the
dependence of the spectrum on the time and size scales of the source.
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I. INTRODUCTION

In a phase transition of the Universe, the disturbance
produced in the hot plasma is a source of interesting
phenomena such as baryogenesis [1,2] or the formation
of gravitational waves (GWs) [3]. In particular, a phase
transition at the TeV scale gives naturally a GW spectrum
that may be observable by the space-based interferometer
LISA [4]. This fact has motivated the investigation of GW
production in the electroweak phase transition, which may
be strong enough in several extensions of the Standard
Model [5–39]. Gravitational waves generated in other
phase transitions have also been studied, as well as their
detectability prospects [40–59]. In general, a cosmological
phase transition can be modeled with a scalar order-
parameter field ϕðx; tÞ which couples to a plasma com-
posed of several species of relativistic particles. In the
electroweak phase transition, this classical field represents
the expectation value of the Higgs field. The value ϕ ¼ 0
corresponds to the symmetric, metastable phase, while a
nonvanishing value corresponds to the stable, broken-
symmetry phase.
In the case of a first-order phase transition, bubbles of the

stable phase nucleate and expand into the supercooled
metastable phase. A bubble is essentially a configuration in
which the scalar field takes the stable-phase value in a
certain region and vanishes outside. The expansion of
bubbles is driven by the pressure difference between the
two phases. In most cases the bubble walls reach a terminal
velocity due to the friction with the plasma [60–75] and to
hydrodynamic obstruction [76–86]. However, there are
scenarios in which the wall undergoes a continuous
acceleration or runaway behavior [87–89], especially when

there is significant supercooling (see, e.g., [90–95]). In any
case, the variation of temperature due to the adiabatic
cooling or to reheating generally causes variations of the
nucleation rate ΓðtÞ and the wall velocity vðtÞ as functions
of time t (see, e.g., [96]).
A few different processes can produce GWs in a phase

transition. The bubble collision mechanism is directly
related to the propagation of the bubble walls [97]. On
the other hand, the walls cause bulk fluid motions which
may lead to gravitational radiation via turbulence [98–106]
or sound waves [107–113], (see [114] for a review of these
mechanisms). If the wall reaches a terminal velocity, most
of the energy released in the transition will go to reheating
and bulk fluid motions (see, e.g., [84,115]). In such
scenarios the GW signal is dominated by the fluid mech-
anisms. On the other hand, in cases of continuous wall
acceleration, an important fraction of the energy accumu-
lates in the bubble walls (see, e.g., [84,86]) and the bubble
collisions become important.
The envelope approximation for the bubble collision

mechanism consists in modeling the bubble walls as
infinitely thin spherical surfaces and considering only
the uncollided parts of them as sources of GWs. The
original calculation [116] was based on a simulation in
which bubbles were nucleated at arbitrary points in space
and with a distribution in time corresponding to a nucle-
ation rate ΓðtÞ ∝ eβt, and their radii grew with a constant
velocity v. This numerical computation was repeated in
Refs. [117,118] with technical improvements such as
considering more bubbles in the simulation. The resulting
GW power spectrum has the form of a broken power law in
frequency. Specifically, the spectrum rises as a power ωa

for low frequencies and falls as ω−b for high frequencies,
where a is close to 3 and b is close to 1. The peak frequency
is of the order of the timescale β−1. Lattice simulations for
the evolution of the scalar field have also been used to
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compute the GW spectrum from bubble collisions
[118–121]. The precise value of the peak of the spectrum
is found to be slightly shifted to lower frequencies with
respect to the envelope approximation, and the exponent
of the high-frequency power law varies from b ≃ 1.5 to
b ≃ 2.3, depending on the wall width.
The envelope approximation has also been used to

compute the gravitational radiation from bulk fluid
motions, assuming that the fluid is concentrated in thin
shells next to the walls [98,117]. In Ref. [118], such a
computation was compared with a lattice simulation of the
coupled system of scalar field and fluid. It was shown that,
for GWs generated by the fluid during bubble collisions,
the form of the spectrum is different for thick walls.1

A more recent semianalytic calculation [122] for an
exponentially growing nucleation rate and a constant wall
velocity confirmed the broken power law, with a ¼ 3 and
b ¼ 1. In this approach, only two integrals must be
computed numerically, thus allowing us to reach a wider
frequency range. A modification of the envelope approxi-
mation, the so-called bulk flow model, consists in consid-
ering thin fluid shells which persist after the walls collide.
This model was investigated either with semianalytical
calculations [123] and by simulating the formation and
expansion of the thin fluid shells [124]. Recently, we
discussed a more general semianalytic approach [125],
which can be applied to the envelope or bulk-flow
approximations, as well as to more general wall kinematics.
The relative simplicity of the envelope approximation is

useful to study the dependence of the GW spectrum on the
phase transition model. In the simulations of Ref. [118], a
simultaneous nucleation as well as an exponentially grow-
ing nucleation rate were considered. In Ref. [126], the
semianalytical method of [122] was applied to a nucleation
model of the form eβt−γ

2t2 . In this case, the exponential and
simultaneous nucleations are obtained in the limits of very
low and very high γ, respectively. On the other hand, in the
lattice simulations of Ref. [120], a constant nucleation rate
was considered as well as the exponential and simultaneous
cases. The different spectra obtained in these works are
qualitatively similar, suggesting that the power laws at low
and high frequencies do not depend on the nucleation rate.
This also seems to indicate that the GW signal does not
have a strong dependence on the distribution of bubble
sizes, which is quite different for different nucleation rates.
It is worth mentioning that, for such a comparison

between nucleation rates, the energy of the gravitational
radiation is usually divided by the released vacuum energy,
and the frequency ω is divided by some characteristic
parameter ω� which has the same meaning in the different
scenarios. For instance, using the average final bubble

separation db as a unit of frequency, ω� ¼ d−1b (see, e.g.,
[120]), the models under comparison have the same value
of db. The parameter β of the exponential rate can also be
used as a unit. Although this quantity is rather artificial
for other models, it can be defined, e.g., by inverting
the relation which holds for the exponential case, db ¼
ð8πÞ1=3v=β (this was used, e.g., in Ref. [114] to put the
results of Ref. [109] in terms of β). For comparing only the
shape of the spectrum, the peak frequency ωp can be used
[126]. The precise choice of ω� in terms of some length or
time associated to the phase transition kinematics will
determine the relative position of the peak between differ-
ent models.
In the present paper we use the envelope approximation to

investigate the dependence of the GW spectrum on specific
features of the phase transition, such as the nucleation rate
and the wall velocity, and, more generally, on length and
timescales of the source. The bubble collision mechanism is
particularly suitable for that aim since it is the one that links
more directly the kinematics of bubble nucleation and
expansion to the GW spectrum.We also discuss a technique
for finding the asymptotic behavior of the spectrum at high
frequency. We obtain analytically the power laws ω3 and
ω−1 for the envelope approximation independently of ΓðtÞ
and vðtÞ. For the case of a constant wall velocity, we obtain
analytically the dependence on the parameter v.
The plan of the paper is the following. In the next section

we review the development of a first-order phase transition
and we discuss the general definition of a characteristic
timescale for general forms of ΓðtÞ and vðtÞ. In Sec. III we
discuss the definition of a dimensionless GW spectrum
which is suitable for model comparison and we write down
the expressions we shall use for the envelope approxima-
tion. In Sec. IV we investigate the form of the spectrum at
low and high frequencies. In Sec. V we consider several
specific cases, corresponding to a constant wall velocity
and different nucleation rates (namely, an exponential, a
delta function, a Gaussian, and a constant rate). In Sec. VI
we use the results to discuss the dependence of the GW
spectrum on the characteristics of the phase transition. We
conclude with a discussion on the bubble collision mecha-
nism in Sec. VII. More details on the calculations and on
the numerical results, as well as analytic formulas and
comparisons with previous approaches are given in the
Appendices.

II. GENERAL PARAMETRIZATION
OF BUBBLE KINEMATICS

In the envelope approximation, one considers bubble
walls which are spherical surfaces (as bubbles overlap, the
walls are assumed to disappear in the overlapping regions).
In this picture, there is a homogeneous wall velocity vðtÞ.
Thus, for a bubble nucleated at a certain time tN , the radius
at time t is given by

1Moreover, after bubble collisions, the acoustic and turbulent
behaviors of the fluid cannot be modeled by the envelope
approximation [111].
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RðtN; tÞ ¼
Z

t

tN

vðt00Þdt00; ð1Þ

where we have ignored for simplicity the scale factor
(which is a good approximation if the transition is short
enough), and we have assumed that the initial bubble size
can be neglected (which is often the case). Assuming as
well a homogeneous nucleation rate ΓðtÞ per unit time per
unit volume, and taking into account bubble overlapping,
the average fraction of volume remaining in the high-
temperature phase at time t is given by fþðtÞ ¼ e−IðtÞ,
with [127–129]

IðtÞ ¼
Z

t

−∞
dt00Γðt00Þ 4π

3
Rðt00; tÞ3: ð2Þ

The nucleation rate actually vanishes for t < tc, where tc is
the time corresponding to the critical temperature, so the
lower limit of integration in Eq. (2) can be replaced by tc.
However, doing so is somewhat misleading, since in most
cases ΓðtÞ is actually negligible still at later times t > tc, so
the quantity IðtÞ does not really depend on the value of tc.
The general form of the nucleation rate as a function of

the temperature T is

Γ ¼ A exp½−SðTÞ�; ð3Þ

where S is the instanton action. For a vacuum transition
[130,131], S is a constant and the factor A is of order M4,
where M is the energy scale of the model. For a thermal
transition, we have A ∼ T4. In this case [132,133], S has a
strong dependence on the temperature, the dynamics of
nucleation is dominated by the exponential, and the specific
form of the prefactor is not too relevant. The adiabatic
cooling of the Universe causes in principle a rapid growth
of Γ with time. However, depending on the global dynam-
ics of the phase transition, Γ may begin to decrease at a
certain point, as quickly as it previously grew. Two possible
scenarios for such a decrease are the system getting stuck in
the false vacuum (in the case of a very strong phase
transition), or a reheating of the plasma, which occurs when
the phase transition is mediated by slow deflagration
bubbles (see Refs. [90,134] for recent discussions).
In practice, bubble nucleation becomes noticeable at a

certain time t�, after Γ becomes of orderH4, whereH is the
Hubble rate. Then, in general, bubbles fill all the space in a
short time tb ≪ H−1. The kinematics of bubble nucleation
and growth may involve different characteristic times. For
instance, ΓðtÞ may turn off in a relatively short time due to
reheating, after which bubble expansion may continue for a
longer time [134]. We shall denote by tΓ the time associated
to bubble nucleation. Without loss of generality, we can
always define a dimensionless function fðτÞ such that we
can write

ΓðtÞ ¼ Γ�f
�
t − t�
tΓ

�
; with fð0Þ ¼ 1; ð4Þ

so that Γ� ¼ Γðt�Þ for a certain reference time t�. Since in
general ΓðtÞ has a very rapid variation, the prefactor Γ� is
rather meaningless unless the time t� is inside, or very close
to, the time interval in which the phase transition effectively
occurs (i.e., where most bubbles nucleate and the fraction
of volume fþ has a significant variation). The number
density of bubbles,

nb ¼
Z þ∞

−∞
ΓðtÞfþðtÞdt; ð5Þ

defines a characteristic length scale db ≡ n−1=3b , which is an
estimate of the average distance between nucleation cen-
ters. For cases in which the nucleation rate reaches a
maximum at a time tm within the relevant time interval (we
consider specific examples below), a convenient choice for
the parameter t� is t� ¼ tm. If Γ does not have a maximum
but grows indefinitely, the time t� can be associated, e.g., to
the maximum of the effective nucleation rate ΓðtÞe−IðtÞ. In
any case, by definition of tΓ we have nb ∼ Γ�tΓ, and we can
write2

ΓðtÞ ¼ 1

tΓd3b
g

�
t − t�
tΓ

�
; with gð0Þ ∼ 1: ð6Þ

The relation between the time parameter tΓ and the
distance parameter db depends on the global dynamics of
the phase transition. In particular, these parameters may not
be directly related through the velocity of bubble expan-
sion. As already mentioned, the duration of the phase
transition tb may differ from the nucleation time tΓ. The
time tb is more directly related to the average bubble size db
through the average bubble wall velocity. We thus define a
velocity parameter vb ¼ db=tb. If the two timescales are
different, it is convenient to define the parameter α ¼ tb=tΓ
and the function Γ̃ðτÞ ¼ αgðατÞ. Thus, we may write
Eq. (6) in terms of tb and vb,

ΓðtÞ ¼ 1

v3bt
4
b

Γ̃
�
t − t�
tb

�
; with Γ̃ð0Þ ∼ tb=tΓ: ð7Þ

In the simplest cases, we have a single timescale, tb ∼ tΓ, so
Γ̃ð0Þ ∼ 1. The different parametrizations we have discussed
are useful for different purposes, and in the rest of this
paper we shall use the form (7).

2We could actually define the parameters t� and tΓ such that we
have exactly Γ�tΓ ¼ nb, so that we would just have gðτÞ ¼ fðτÞ in
Eq. (6). However, we want to have the freedom to choose the
parameters conveniently for the simplicity of the expression for
ΓðtÞ. Therefore, we relax the condition fð0Þ ¼ 1 to gð0Þ ∼ 1.
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Let us consider a few simple examples which span the
different possibilities for the relation between tb and tΓ.

A. Constant nucleation rate

As mentioned above, for a vacuum phase transition the
nucleation rate is a constant. In a physical particle-physics
model, this scenario could arise in the case of extreme
supercooling, i.e., if the system is stuck in the metastable
phase even when the temperature is much smaller than the
critical temperature. In such a case the energy density is
dominated by vacuum energy and the Universe undergoes
inflation (see, e.g., [90]), unless the phase transition occurs
in a hidden sector, such that the visible sector dominates
the energy density (see, e.g., [54]). In the latter case, the
nucleation of bubbles will effectively occur when the
condition Γ ∼H4 is satisfied, where the evolution of
the Hubble rate HðtÞ is determined by the temperature
of the visible sector. Hence, the dynamics of such a phase
transition departs from the more common scenario in which
the variation of H is neglected.
For a thermal phase transition, a constant nucleation rate

will hardly be a good approximation since the instanton
action SðTÞ is very sensitive to temperature variations.
A scenario in which the temperature remains approximately
constant arises when bubbles expand as slow deflagrations,
where the temperature outside the bubbles is heated up by
shock fronts which carry away the released latent heat
(see, e.g., [134]). In this case there is a reheated stage in
which the temperature is approximately constant and
homogeneous. However, this temperature is higher than
in the previous pre-reheating stage, so this constant rate is
vanishingly small in comparison. Hence, the bubble nucle-
ation effectively occurs in a small time interval at the
beginning of bubble expansion, and a better approximation
for ΓðtÞ is a Gaussian or a delta function.
In spite of this, the approximation of a constant nucleation

rate is often used in time-consuming computations such as
lattice simulations, so we shall discuss it here. In the
parametrization (7), this case corresponds to the limit of
tΓ ≫ tb, while the opposite case tΓ ≪ tb corresponds to a
delta-function rate (considered below). This model requires
also assuming that the bubble nucleation turns on at a certain
time t0. Thus, we have Γ ¼ Γ0Θðt − t0Þ. For a constant
velocity v, a trivial calculation gives IðtÞ ¼ π

3
v3Γ0ðt − t0Þ4,

so the fraction of volume in the old phase is given by
fþ ¼ e−½ðt−t0Þ=tb�4 , with tb ¼ ðπ

3
v3Γ0Þ−1=4. The parameter tb

is associated to the duration of the phase transition, and we
may use a parametrization of the form (7),

ΓðtÞ ¼ 1

v3t4b

3

π
Θ
�
t − t0
tb

�
; ð8Þ

with t� ¼ t0 and Γ̃ðτÞ ¼ 3
πΘðτÞ. The parameter db defined

from the bubble number density is not exactly given by vtb.

A simple calculation gives nb ¼
Rþ∞
−∞ ΓðtÞe−IðtÞdt ¼

ð3=πÞΓð5=4Þv−3t−3b (where the last Γ symbol represents
the Euler gamma function). Therefore, we have db ≃
0.98vtb (i.e., the velocity parameter defined by vb ¼
db=tb does not coincide exactly with the velocity v).

B. Exponential nucleation rate

The exponential nucleation rate ΓðtÞ ¼ Γ�eβðt−t�Þ is
obtained by linearizing the instanton action SðTðtÞÞ at
the time t�. For a constant velocity, this rate gives IðtÞ ¼
8πv3ΓðtÞ=β4, and the fraction of volume varies from the
asymptotic value fþ ¼ 1 for t → −∞ to fþ ¼ 0 for
t → ∞. Nevertheless, most of the variation occurs in a
time interval of order β−1. If t� is not close enough to this
interval, then the parameter Γ� will not give even the order
of magnitude of ΓðtÞ at the relevant times. Whatever the
values of the original parameters t� and Γ�, we may write
ΓðtÞ ¼ Γ0�eβðt−t

0�Þ, where the new and old parameters are
related by Γ0� ¼ Γ�eβðt

0�−t�Þ. A convenient choice for t0� is the
time te for which IðteÞ ¼ 1, i.e., when fþ has decreased to
e−1. Indeed, at t ¼ te the average nucleation rate ΓðtÞfþðtÞ,
as well as the total uncollided wall area hStotðtÞi, take their
maximum [135]. By definition of te we have IðtÞ ¼ eβðt−teÞ,
so we may write

ΓðtÞ ¼ β4

8πv3
eβðt−teÞ: ð9Þ

Taking into account the well known relation db ¼
ð8πÞ1=3v=β, we have ΓðtÞ ¼ βd−3b eβðt−teÞ, which is of the
form (6) with tΓ ¼ β−1. If we define tb ¼ tΓ ¼ β−1, Eq. (9)
is also of the form (7) and we have Γ̃ðτÞ ¼ eτ=8π. Here,
we have Γ̃ð0Þ ¼ 1=8π ≠ tb=tΓ, since a different time
parameter t0b > β−1 would actually be more representative
of the duration of the phase transition (see, e.g., [135]).
Nevertheless, we shall use the form (9) since β is the
standard parameter.

C. Gaussian nucleation rate

As already mentioned, there are at least two different
scenarios in which the nucleation rate may reach a
maximum and turn off during the phase transition:
(A) Strong supercooling: SðTÞ has a minimum.
(B) Reheating: TðtÞ has a minimum.

Case A occurs when a barrier between the minima of the
effective potential persists at low temperatures [90]. In such
a case, the nucleation rate initially grows as the temperature
descends from the critical temperature Tc and the minima
become nondegenerate. However, at low enough temper-
ature the barrier between phases cannot be surpassed and
the nucleation rate begins to decrease with decreasing
temperature. Correspondingly, the instanton action SðTÞ
has a minimum at a certain temperature Tm. Since T
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decreases as a function of time, this minimum will be
reached at a certain time tm (unless the phase transition is
completed before that time). Expanding SðtÞ around its
minimum, we obtain a Gaussian approximation for the
nucleation rate,

ΓðtÞ ¼ Γm exp½−γ2ðt − tmÞ2�: ð10Þ

Case B occurs when a phase transition is mediated by slow
deflagrations [134]. In the general scenario there is little
supercooling, since the barrier between minima disappears
at a temperature which is close to the critical one, and in this
range SðTÞ is a monotonous function. However, for walls
which propagate as deflagrations, the plasma outside the
bubbles is reheated during the phase transition. As a result,
the temperature initially decreases due to the adiabatic
expansion of the Universe, but at some point it begins to
increase due to reheating. As a consequence, the temper-
ature TðtÞ has a minimum at a certain time tm, and so does
the function SðTðtÞÞ, so the nucleation rate can be approxi-
mated again by Eq. (10).
In case B, the maximum of the nucleation rate is always

reached during the phase transition, since the very existence
of a minimum of TðtÞ is due to the reheating during bubble
expansion. In contrast, in case A the function ΓðTÞ has a
maximum at a temperature Tm which may not be reached
during the phase transition. This will happen if Γm is very
large compared to H4. In such a case, the phase transition
will complete at an earlier time t� such that Γðt�Þ ∼Hðt�Þ4.
If this is the case, it is not a good approximation to expand
SðTÞ at Tm. Expanding at a higher temperature T� will
give a linear term, while the quadratic term is a second
order correction. Hence an exponential nucleation rate will
not be a bad approximation. This case was considered in
Ref. [126], and we discuss it in some detail in Appendix B.
On the other hand, in cases for which the maximum of ΓðtÞ
is reached during the phase transition,3 we have a “true
Gaussian rate”, i.e., it cannot be approximated by an
exponential rate.
The nucleation rate (10) is of the form (4), with t� ¼ tm,

Γ� ¼ Γm, and tΓ ¼ γ−1. An interesting difference from the
previous cases is that, since the nucleation rate turns off,
there is a bound on the number of nucleated bubbles,
namely,

nmax ¼
Z þ∞

−∞
ΓðtÞdt ¼ ffiffiffi

π
p

Γm=γ: ð11Þ

The actual number density (5) contains a factor fþðtÞ, which
implies nb < nmax. This bound defines a minimal bubble

separation, dmin ¼ n−1=3max . Unless the phase transition

finishes before the maximum of the Gaussian is reached,
the value nmax will be a good approximation for nb, and we
have db ≃ dmin (see Appendix B for more details). In terms
of this parameter, Eq. (10) becomes

ΓðtÞ ¼ ðγ= ffiffiffi
π

p
d3minÞ exp½−γ2ðt − tmÞ2�; ð12Þ

which is of the form (6) with gðτÞ ¼ e−τ
2

=
ffiffiffi
π

p
. The time

tb ¼ db=vb may be different from the nucleation time tΓ (in
particular, the phase transitionmaygoon after the nucleation
rate turns off). In order to write Eq. (12) in the form (7), we
shall use the analytic parameter tmin ¼ dmin=vb instead of tb
which must be obtained numerically. We have

ΓðtÞ ¼ 1

v3bt
4
min

Γ̃
�
t − tm
tmin

�
; ð13Þ

where Γ̃ðτÞ ¼ γtmingðγtminτÞ. Since we have two different
timescales, the dimensionless nucleation rate depends on the
parameter α≡ γtmin ¼ tmin=tΓ.

D. Delta-function nucleation rate

If the time during which nucleation occurs is much
shorter than the total duration of the phase transition, the
nucleation rate can be approximated by a delta function
ΓðtÞ ¼ nbδðt − t�Þ, where nb is the number density of
bubbles. This can be regarded as a limit of the Gaussian
rate, and is a good approximation for somemodels of type B
(in the classification of the previous subsection). In particu-
lar, when a sudden reheating of the plasma causes the
nucleation rate to quickly turn off [134]. Since the nucleation
in this case is simultaneous, the fundamental parameter is the
distance scale db ≡ n−1=3b . Using the well-known scaling
property of the delta distribution, we may write

ΓðtÞ ¼ 1

tbd3b
δ

�
t − t�
tb

�
ð14Þ

for any parameter tb. The convenient time parameter here is
the typical time of bubble growth. Given a characteristic
(average) velocity vb, we have tb ¼ db=vb. Hence, Eq. (14)
is of the form (7) with Γ̃ðτÞ ¼ δðτÞ. This can also be
obtained as the limit for α → ∞ of the Gaussian case
Γ̃ðτÞ ¼ αgðατÞ.

III. GRAVITATIONAL WAVES

The gravitational wave power spectrum is often repre-
sented by the quantity

ΩGW ¼ 1

ρtot

dρGW
d lnω

; ð15Þ

i.e., the energy density in gravitational radiation per
logarithmic frequency, divided by the total energy density

3It is worth commenting that, in case A, if Γm is too low in
comparison with the expansion parameter H4, the phase tran-
sition will never complete (see [90] for details).
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of the Universe, ρtot. Before proceeding to the calculation of
this quantity, we shall discuss the definition of a dimen-
sionless quantity which is useful for expressing general
results and for model comparison.

A. Dimensionless GW spectrum

The quantity (15) is sometimes written in the form (see,
e.g., [117,122])

ΩGW ¼ κ2
�
H
β

�
2
�

αT
αT þ 1

�
2

Δðω=βÞ; ð16Þ

where β is the parameter of the exponential nucleation rate,
αT is the ratio of the energy released at the phase transition
to the radiation energy, αT ¼ ρvac=ρrad, κ is an efficiency
factor [98] quantifying the fraction of the released energy
which goes into the source of GWs, and the dimensionless
function Δ is defined as

Δðω=βÞ≡ 3β2

8πGðκρvacÞ2
dρGW
d lnω

ðωÞ: ð17Þ

In these expressions, the quantities κ2, ρ2vac, and β2 are
introduced just by multiplying and dividing them in
Eq. (15). The other quantities are introduced by using
the relationH2 ¼ 8πGρtot=3, assuming that the total energy
density can be decomposed into vacuum and radiation
energy densities, ρtot ¼ ρvac þ ρrad, and assuming that the
vacuum energy density coincides with the latent heat
released at the phase transition. These approximations
can be improved (see [136,137] for recent discussions),
but are useful to focus on the calculation of the dimension-
less quantity Δ for a simplified phase transition kinematics
and then applying Eq. (16) to specific realistic models (see,
e.g., [93,114]).
Under suitable approximations, the quantity ðκρvacÞ2 is a

constant which will appear explicitly in the expression for
dρGW=d lnω and cancel out in Eq. (17), as well as the
numerical constants. On the other hand, using the param-
eter β makes sense only for the exponential nucleation rate,
since for other cases the expression for dρGW=d lnω will
depend on a different quantity. Nevertheless, we may
generalize the definition of Δ in terms of a more general
reference frequency ω�,

Δðω=ω�Þ≡ 3ω2�
8πGðκρvacÞ2

dρGW
d lnω

ðωÞ: ð18Þ

For a given mechanism of GW generation, the parameter
ω� can be conveniently associated to a relevant time or
length scale.4 Thus, for bubble collisions, it is convenient to

use the frequency ωb ¼ t−1b associated to the time param-
eter which appears explicitly in the parametrization (7) and
depends on the specific phase transition model. However,
for comparing two different models a single frequency unit
must be used. The relation between the dimensionless
spectrum for two different reference frequencies
is Δ2ðω=ω2Þ ¼ ðω2=ω1Þ2Δ1ððω2=ω1Þðω=ω2ÞÞ.

B. GWs from bubble walls

We shall use the approach of Ref. [125], which we
summarize very briefly. For a large volume V, the GW
power spectrum is written in the form

dρGW
dlnω

¼4Gω3

π

Z
∞

−∞
dt
Z

∞

t
dt0cos½ωðt−t0Þ�Πðt;t0;ωÞ; ð19Þ

where

Πðt; t0;ωÞ≡ 1

V
Λij;klðn̂ÞhT̃ijðt;ωn̂ÞT̃klðt0;ωn̂Þ�i; ð20Þ

Λij;kl is the transverse-traceless projection tensor for the
direction of observation n̂, T̃ij is the spatial Fourier trans-
form of the stress-energy tensor Tij of the source, and hi
indicates ensemble average. If Tij is decomposed as a sum
over bubbles, Π naturally separates as Π ¼ ΠðsÞ þ ΠðdÞ,
where ΠðsÞ contains correlations between different points
on a single bubble and ΠðdÞ contains correlations between
two different bubbles (such a separation also arises in the
treatment of Ref. [122]). For gravitational waves from
bubble walls, Tij is approximated by a surface delta
function which eliminates some of the spatial integrals
in the Fourier transforms T̃ij, T̃kl. In the case of the
envelope approximation we have, for each bubble,

Tij ¼ σδðr − RÞr̂ir̂j1Sðr̂Þ; ð21Þ

where σ is the surface energy density, r is the distance
from the bubble center, R is the bubble radius, Rr̂ is the
position of a point on the bubble surface, and 1S is the
indicator function for the uncollided wall. To take into
account the energy which accumulates in the wall, the usual
replacement σ ¼ ðκρvac=3ÞR is made, where the efficiency
factor κ accounts for the fraction of energy which goes
either to the wall (in a vacuum phase transition we have
κ ¼ 1) or to bulk fluid motions (which are assumed
to occur in thin shells next to the walls) (see, e.g.,
[6,16,84,86,92,115,138–141] for the calculation of this
factor). Finally, the sum over bubbles and the statistical
average are related to the nucleation rate ΓðtÞ, and several
of the remaining angular integrals can be performed
analytically.
The result depends on the probability that two points at

angular positions r̂; r̂0 on the bubble surfaces at times t and

4It is worth noticing that this characteristic frequency deter-
mines the peak of the spectrum at the time of GW generation. The
frequency, as well as the energy density, are subject to redshifting.
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t0 are both uncollided. This probability was studied in
Ref. [135]. It is proportional to e−IðtÞe−Iðt0ÞeI∩ , where the
last factor takes into account the fact that the probabilities
for the two points are not independent.5 We have

I∩ðt; t0; sÞ ¼
Z

t

−∞
dt00Γðt00ÞV∩ðt00; t; t0; sÞ; ð22Þ

where s is the distance between the points and

V∩ ¼ π

12
ðrþ r0 − sÞ2

�
sþ 2ðrþ r0Þ − 3ðr − r0Þ2

s

�

× Θðrþ r0 − sÞ: ð23Þ

Here, Θ is the Heaviside step function, and we have used
the notation r ¼ Rðt00; tÞ, r0 ¼ Rðt00; t0Þ (for more details
and interpretation, see [135] or [125]). The final expres-
sions from Ref. [125] (see [123] for similar expressions) are

ΠðsÞðt; t0;ωÞ
ðκρvac=3Þ2

¼ π2

4

Z
t

−∞
dtNΓðtNÞ

Z
Rþ

R−

ds
s3

X2
i¼0

PiðRþ; R−; sÞ

×
jiðωsÞ
ðωsÞi e

−Itotðt;t0;sÞ; ð24Þ

ΠðdÞðt; t0;ωÞ
ðκρvac=3Þ2

¼ π3

4

Z
t

−∞
dtNΓðtNÞ

Z
t0

−∞
dt0NΓðt0NÞ

×
Z

Rþ−jRðtN ;t0NÞj

R−

ds
s4

e−Itotðt;t0;sÞ
j2ðωsÞ
ðωsÞ2

×Qþðs; R; R−ÞQ−ðs; R0; R−Þ; ð25Þ

where Itot ¼ IðtÞ þ Iðt0Þ − I∩ðt; t0; sÞ, the ji are spherical
Bessel functions,

j0ðxÞ ¼
sin x
x

; j1ðxÞ ¼
sin x − x cos x

x2
;

j2ðxÞ ¼
ð3 − x2Þ sin x − 3x cos x

x3
; ð26Þ

and the Pi andQ� are polynomials in R and R0, which have
simpler expressions in terms of the variables Rþ ¼ R0 þ R
and6 R− ¼ Rðt; t0Þ,

P0ðRþ; R−; sÞ ¼ ðs2 − R2
−Þ2ðs2 − R2þÞ2; ð27Þ

P1ðRþ; R−; sÞ ¼ 2ðs2 − R2
−Þðs2 − R2þÞ

× ½3s4 þ s2ðR2
− þ R2þÞ − 5R2

−R2þ�; ð28Þ

P2ðRþ;R−;sÞ¼3s8þ2s6ðR2
−þR2þÞ

þ3s4ðR4
−þ4R2

−R2þþR4þÞ
−30s2R2

−R2þðR2
−þR2þÞþ35R4

−R4þ ð29Þ

and

Qþðs; R; R−Þ ¼ ðs2 − R2
−Þ½ð2Rþ R−Þ2 − s2�

× ½s2 − R−ð2Rþ R−Þ�; ð30Þ

Q−ðs; R0; R−Þ ¼ ðs2 − R2
−Þ½ð2R0 − R−Þ2 − s2�

× ½s2 þ R−ð2R0 − R−Þ�: ð31Þ

Now, we insert these results in the GW energy density
(19) and then in the dimensionless spectrum (18). We
obtain Δ ¼ ΔðsÞ þ ΔðdÞ, with

ΔðsÞ ¼ ω3ω2�
48

Z
∞

−∞
dtþ

Z
∞

0

dt− cosðωt−Þ
Z

t

−∞
dtNΓðtNÞ

×
Z

Rþ

R−

ds
s3

e−Itotðt;t0;sÞ
X2
i¼0

jiðωsÞ
ðωsÞi PiðRþ;R−; sÞ; ð32Þ

ΔðdÞ ¼ πω3ω2�
48

Z
∞

−∞
dtþ

Z
∞

0

dt− cosðωt−Þ

×
Z

t

−∞
dtNΓðtNÞ

Z
t0

−∞
dt0NΓðt0NÞ

×
Z

Rþ−jRðtN ;t0NÞj

R−

ds
s4

e−Itotðt;t0;sÞ
j2ðωsÞ
ðωsÞ2 Qþðs; R; R−Þ

×Q−ðs; R0; R−Þ: ð33Þ

where we have changed the variables t, t0 to t� ¼ t0 � t.

IV. ASYMPTOTIC BEHAVIOR

Before considering specific examples, we shall study the
general behavior of the GW spectrum for low and high
frequencies.

A. Low frequency

A general argument based on causality shows that for a
transient stochastic source the low frequency tail of the GW
spectrumΩGW is proportional toω3 (see [142] and the more
recent review [143]). It is worth remarking that this is
the expected behavior in the far infrared (i.e., beyond
causality), and is not necessarily the power law closer to
the peak of the spectrum. As an example, for the bulk flow
model with long-lasting fluid shells, the GW spectrum
behaves as ∝ ω1 below the peak frequency, and then

5If the points belong to the surfaces of two different bubbles,
the probability includes also Heaviside functions which vanish if
the bubbles are so close that one of the points has been captured
by the other bubble.

6Notice that R− ¼ R
t0
t vwðt00Þdt00 is given by R0 − R only for the

single-bubble case (for the two-bubble case the latter difference
depends on the nucleation times tN; t0N).
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becomes ∝ ω3 for smaller ω [123]. In the limit in which the
fluid shells last forever, the low frequency limit is ∝ ω1

since the bubbles keep expanding and, hence, producing
GWs in the infrared [124]. This was shown analytically in
Ref. [123], and below we use similar considerations for the
envelope approximation. In this case, the source of GWs
turns off as soon as the phase transition ends since the
bubble walls disappear. As already mentioned, the power
law ω3 has been verified numerically for the bubble
collision mechanism in the envelope approximation.
In Eqs. (32)–(33), the time variables t� have an effective

range of order tb around the time t�, since the exponential
e−Itot , like e−IðtÞ, becomes negligible at later times. As a
consequence, the spatial variable s is bounded by ∼vbtb.
Hence, for ω ≪ t−1b , the oscillating functions in the
integrand can be expanded in powers of ω. The zeroth
order corresponds to the replacements

cosðωt−Þ → 1; j0ðωsÞ → 1;

j1ðωsÞ
ωs

→
1

3
;

j2ðωsÞ
ðωsÞ2 →

1

15
; ð34Þ

and the quantity Δ becomes, at low frequencies,

ΔLF ¼ ΔðsÞ
LF þ ΔðdÞ

LF ¼ ðBðsÞ þ BðdÞÞω3; ð35Þ

where7

BðsÞ ¼ ω2�
48

Z
∞

−∞
dtþ

Z
∞

0

dt−

Z
t

−∞
dtNΓðtNÞ

×
Z

Rþ

R−

ds
s3

�
P0 þ

P1

3
þ P2

15

�
e−Itot ; ð36Þ

and

BðdÞ ¼ πω2�
48

Z
∞

−∞
dtþ

Z
∞

0

dt−

Z
t

−∞
dtNΓðtNÞ

Z
t0

−∞
dt0NΓðt0NÞ

×
Z

Rþ−jRðtN ;t0NÞj

R−

ds
QþQ−

15s4
e−Itot : ð37Þ

B. High frequency

For ω ≫ t−1b , all the quantities appearing in Eqs. (32) and
(33) have a slow variation in comparison with the oscillat-
ing functions cosðωt−Þ and jiðωsÞ. We change to variables
x ¼ ωs and y ¼ ωt− in order to eliminate the frequency
from the latter, and then we define ϵ≡ 1=ω and expand the
quantities in powers of ϵ. In the first place, we have

t¼ tþ=2− ϵy=2; t0 ¼ tþ=2þ ϵy=2; s¼ xϵ: ð38Þ

For the bubble radius (1), we obtain

R ¼ R̄ − ϵv̄y=2þOðϵ2Þ;
R0 ¼ R̄0 þ ϵv̄y=2þOðϵ2Þ; ð39Þ

where R̄≡ RðtN; t̄Þ, R̄0 ≡ Rðt0N; t̄Þ, v̄≡ vðt̄Þ, and t̄ ¼ tþ=2
(R̄ and R̄0 are equal for the single-bubble case). Hence, we
have8 R− ¼ ϵv̄yþOðϵ3Þ, Rþ ¼ 2R̄þOðϵ2Þ. From Eq. (2)
we obtain

IðtÞ þ Iðt0Þ ¼ 2Iðt̄Þ þOðϵ2Þ ð40Þ

and, from Eqs. (22) and (23),

I∩ðt; t0; sÞ ¼ Iðt̄Þ − ϵπ
x2 þ v̄2y2

x
I2ðt̄Þ þOðϵ2Þ; ð41Þ

where we have used the notation

InðtÞ ¼
Z

t

−∞
dt00Γðt00ÞRðt00; tÞn ð42Þ

(the function I3 is proportional to I). We thus have

e−Itot ¼ e−Iðt̄Þ
�
1 − ϵπI2ðt̄Þ

x2 þ v̄2y2

x
þOðϵ2Þ

�
: ð43Þ

Let us consider first the single-bubble contribution,

ΔðsÞ ¼ ϵ−4ω2�
24

Z
∞

−∞
dt̄

Z
∞

0

dy cos y
Z

t̄−ϵy=2

−∞
dtNΓðtNÞ

×
Z

2R̄=ϵþOðϵÞ

v̄yþOðϵ2Þ

dx
x3

X2
i¼0

jiðxÞ
xi

Pie−Iðt̄Þ

×

�
1 − ϵπI2ðt̄Þ

x2 þ v̄2y2

x
þOðϵ2Þ

�
ð44Þ

The first term inside the brackets gives a vanishing
contribution upon integrating the variable x.9 Therefore,
the bracket gives a factor of ϵ. Besides, it is easy to see that
the polynomials Pi, Eqs. (27)–(29), are of order ϵ4,

PiðRþ; ϵy; ϵxÞ ¼ 16ϵ4R̄4piðx; v̄yÞ ð45Þ

with

7We remark that the general definition of R− is R− ¼ Rðt; t0Þ,
and the expression R− ¼ R0 − R is valid only for the single-
bubble case.

8For any smooth function fðtÞ, we have fðt0Þ − fðtÞ ¼
f0ðt̄ÞϵyþOðϵ3Þ and fðtÞþfðt0Þ¼2fðt̄Þþf00ðt̄Þϵ2y2=4þOðϵ4Þ.
We use these identities a couple of times below.

9Indeed, we have
R Rþ
R−

ds
s3
P

2
i¼0

jiðωsÞ
ðωsÞi Pi ¼ 0 (to all order

in ϵ), which is a consequence of the fact thatR
dr̂

R
dr̂0eiωn̂·sΛijklr̂ir̂jr̂0kr̂

0
l ¼ 0. The reason is that the approxi-

mation Itot ¼ Iðt̄Þ restores the spherical symmetry, since only the
dependence of I∩ on the variable s carries the information on the
correlation between different points on the walls.
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p0 ¼ ðx2 − v̄2y2Þ2; p1 ¼ −2ðx2 − v̄2y2Þðx2 − 5v̄2y2Þ;
p2 ¼ 3x4 − 30x2v̄2y2 þ 35v̄4y4: ð46Þ

Therefore, we have ΔðsÞ ∼ ϵ ¼ ω−1. To this lowest order,
we take the zeroth order in the limits of the integrals in
Eq. (44). In this limit, the integration over the nucleation
time only affects the factor R̄4, and gives a factor I4ðt̄Þ.
Interchanging the order of the integrals with respect to x
and y, we obtain

ΔðsÞ ¼−
2π

3
ω2�ω−1

Z
∞

−∞
dt̄e−Iðt̄ÞI2ðt̄ÞI4ðt̄Þ

×
Z

∞

0

dx
x3

X2
i¼0

jiðxÞ
xi

Z
x=v̄

0

dycosyðx2þ v̄2y2Þpiðx; v̄yÞ

þOðω−2Þ: ð47Þ

The integrations on x and y can be done analytically, and
we obtain

ΔðsÞ
HF ¼ ω−1 πω

2�
72

Z
∞

−∞
dt̄I4ðt̄ÞI2ðt̄Þe−4π

3
I3ðt̄ÞAðsÞðv̄Þ ð48Þ

(where the notationHF indicates the high frequency limit),
with

AðsÞðv̄Þ¼ 2
3−11v̄2þ69v̄4−45v̄6

v̄

þ3
ð1− v̄2Þ2ð1−2v̄2−15v̄4Þ

v̄2
log

�
1− v̄
1þ v̄

�
: ð49Þ

For the two-bubble contribution, the first term in Eq. (43)
will not vanish (except for v̄ ¼ 1; see below), so we keep
only this term. To lowest order in ϵ, we have

ΔðdÞ
HF ¼ πϵ−5ω2�

24

Z
∞

−∞
dt̄

Z
t̄

−∞
dtNΓðtNÞ

Z
t̄

−∞
dt0NΓðt0NÞ

×
Z

∞

0

dy cos y
Z

∞

v̄y

dx
x4

e−Iðt̄Þ
j2ðxÞ
x2

×Qþðs; R; R−ÞQ−ðs; R0; R−Þ; ð50Þ

with

Qþ ¼ −8ϵ3R̄3v̄yðx2 − v̄2y2Þ;
Q− ¼ 8ϵ3R̄03v̄yðx2 − v̄2y2Þ; ð51Þ

which give again an overall factor of ϵ ¼ ω−1. The integrals
with respect to tN and t0N affect only the factors R̄3, R̄03, and
give factors I3ðt̄Þ. The integrations with respect to x and y
can be done analytically again (it is convenient to inter-
change them), and we obtain

ΔðdÞ
HF ¼ ω−1 πω

2�
18

Z
∞

−∞
dt̄e−

4π
3
I3ðt̄ÞI3ðt̄Þ2AðdÞðv̄Þ; ð52Þ

with

AðdÞðv̄Þ ¼ −ð1 − v̄2Þ
�
2
3þ 4v̄2 − 15v̄4

v̄

− 3
ð1þ v̄2 þ 3v̄4 − 5v̄6Þ

v̄2
log

�
1þ v̄
1 − v̄

��
: ð53Þ

Notice that this contribution vanishes for v̄ ¼ 1. Therefore,
in the ultrarelativistic limit, the two-bubble contribution
falls like ω−2, as observed in the computations of
Ref. [122].
This approximation for high frequencies is useful since

in this limit the integrals in (32)–(33) become difficult to
compute numerically due to the highly oscillatory inte-
grand. We have found only the leading term, but higher
orders can be obtained in the same way. To calculate the
integrals Iiðt̄Þ and the final integral with respect to t̄ in
Eqs. (48) and (52), we need to know the nucleation rate
ΓðtÞ as well as the wall velocity vðtÞ.

C. Constant velocity

In the case of a constant wall velocity we have R ¼
vðt − tNÞ, R0 ¼vðt0−t0NÞ, R−¼vt−, Rþ ¼ vðtþ − tN − t0NÞ,
and the expressions simplify significantly. For a nucleation
rate of the form (7), it is convenient to use ω� ¼ ωb ¼ t−1b
as the reference frequency, and to use the dimensionless
variables τ ¼ ðt − t�Þ=tb, τ0 ¼ ðt0 − t�Þ=tb. Thus, we shall
make the change of variables

τ− ¼ t−
tb
; τþ ¼ tþ − 2t�

tb
; τN ¼ tN − t�

tb
;

τ0N ¼ t0N − t�
tb

; τs ¼
s
vtb

ð54Þ

in the integrals of Eqs. (36)–(37), and τ̄ ¼ t̄=tb in Eqs. (48)
and (52).

1. Low frequency

In the single-bubble case, the polynomials Pi given by
Eqs. (27)–(29) are homogeneous functions of degree 8, so
we have

PiðRþ; R−; sÞ ¼ ðvtbÞ8Piðτþ − 2τN; τ−; τsÞ: ð55Þ

Changing the order of integration with respect to τN and τs,
we obtain
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BðsÞ ¼ v3t3b
48

Z
∞

−∞
dτþ

Z
∞

0

dτ−

Z
∞

τ−

dτs
τ3s

e−Itot
Z τþ−τs

2

−∞
dτN Γ̃ðτNÞ

×

�
P0 þ

P1

3
þP2

15

�
; ð56Þ

with Pi evaluated at the dimensionless variables as in the
right-hand side of Eq. (55). For the two-bubble case, the
polynomials Q�, Eqs. (30)–(31), are homogeneous func-
tions of degree 6. Changing the order of integration, we
obtain

BðdÞ ¼ πv3t3b
48

Z
∞

−∞
dτþ

Z
∞

0

dτ−

Z
∞

τ−

dτs
τ4s

e−Itot

15

×
Z τþ−τs

2

−∞
dτNΓ̃ðτNÞQþ

Z τþ−τs
2

−∞
dτ0N Γ̃ðτ0NÞQ−; ð57Þ

where the quantities Q� are now given by

Qþðτs; τ − τN; τ−Þ ¼ ðτ2s − τ2−Þ½ðτþ − 2τNÞ2 − τ2s �
× ½τ2s − τ−ðτþ − 2τNÞ�; ð58Þ

Q−ðτs; τ0 − τ0N; τ−Þ ¼ ðτ2s − τ2−Þ½ðτþ − 2τ0NÞ2 − τ2s �
× ½τ2s þ τ−ðτþ − 2τ0NÞ�: ð59Þ

Finally, for the dimensionless quantities appearing in Itot
we have

I ¼ 4π

3

Z
τ

−∞
dτ00Γ̃ðτ00Þðτ − τ00Þ3 ð60Þ

and

I∩ ¼ π

12

Z τþ−τs
2

−∞
dτ00Γ̃ðτ00Þðτþ − 2τ00 − τsÞ2

×

�
τs þ 2ðτþ − 2τ00Þ − 3τ2−

τs

�
: ð61Þ

Thus, Eqs. (35)–(37) give

ΔLF ¼ Dv3ω3=ω3
b; ð62Þ

with a numerical coefficientD¼ ðDðsÞ þ πDðdÞÞ=48, where
DðsÞ and DðdÞ are given by the integrals in Eqs. (56) and
(57), respectively. By definition, the dimensionless func-
tion Γ̃ðτÞ does not depend on tb or v, so the parametric
dependence is ΔLF ∝ v3t3bω

3.

2. High frequency

For constant velocity, we have v̄ðt̄Þ ¼ v, and the func-
tions AðsÞðvÞ and AðdÞðvÞ do not depend on the integration
variable t̄ in Eqs. (48) and (52). Using again the dimen-
sionless form of the nucleation rate, Eq. (42) becomes

Inðt̄Þ ¼ ðvtbÞn−3
Z

τ̄

−∞
dτ00Γ̃ðτ00Þðτ̄ − τ00Þn

≡ ðvtbÞn−3Ĩnðτ̄Þ ð63Þ

Thus, we have

ΔHF ¼ AðvÞωb=ω; ð64Þ

with

AðvÞ ¼ CðsÞAðsÞðvÞ þ CðdÞAðdÞðvÞ; ð65Þ

where the two numerical coefficients CðsÞ and CðdÞ are
given by

CðsÞ ¼ π

72

Z
∞

−∞
dτ̄e−

4π
3
Ĩ3ðτ̄ÞĨ4ðτ̄ÞĨ2ðτ̄Þ;

CðdÞ ¼ π

18

Z
∞

−∞
dτ̄e−

4π
3
Ĩ3ðτ̄Þ½Ĩ3ðτ̄Þ�2; ð66Þ

and we remark that the functions AðsÞðvÞ and AðdÞðvÞ are
given analytically by Eqs. (49) and (53), respectively. For
most of the nucleation rates considered below, the coef-
ficients CðsÞ and CðdÞ can also be calculated analytically.

3. Interpolation

Although we cannot give an analytic fit for the spectrum
for an arbitrary nucleation rate, we note that, from the two
asymptotes (62) and (64), we may obtain a rough approxi-
mation for the whole spectrum. The intersection of the
curves of ΔLF and ΔHF occurs at ω ¼ ω×, Δ ¼ Δ×, with

ω×=ωb ¼ ½AðvÞ=Dv3�1=4; Δ× ¼ ½Dv3AðvÞ3�1=4: ð67Þ

We shall check with specific examples below that these
values give the approximate position of the peak frequency
ωp as well as an order-of-magnitude estimate of the
amplitude ΔðωpÞ. The actual value of the latter is below
the intersection point, and a better approximation to ΔðωÞ
is given by the simple interpolation

ΔintðωÞ ¼ ðΔ−1=2
LF þ Δ−1=2

HF Þ−2: ð68Þ

The maximum of Eq. (68) is at
ffiffiffi
3

p
ω×, and the value of Δint

at this frequency is given by 33=2Δ×=16. For small velocity
we have

ω×

ωb
¼ 4

�
CðdÞ þ 4CðsÞ

5D

�1
4 þOðv2Þ;

Δ× ¼ 64D
1
4

�
CðdÞ þ 4CðsÞ

5

�3
4

v3 þOðv5Þ: ð69Þ
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Therefore, the peak frequency is approximately fixed for
most of the velocity range, while the amplitude is roughly
proportional to v3. Near v ¼ 1 the intersection point
departs from Eq. (69). We have

ω×

ωb
¼ 2

�
2CðsÞ

D

�
1=4

þOð1 − vÞ;

Δ× ¼ 8D1=4ð2CðsÞÞ3=4 þOð1 − vÞ: ð70Þ

V. SPECIFIC EXAMPLES

We shall now calculate the GW spectrum for a few
specific cases. We begin by writing down the expressions
for the case of a constant wall velocity. Notice that the
expressions for the complete spectrum Δ, Eqs. (32) and
(33), are very similar to those for the low-frequency limit,
Eqs. (36) and (37). For a constant wall velocity it will be
useful to do the same change of variables we used in the
previous section, Eq. (54), and we obtain expressions for
ΔðsÞ and ΔðdÞ which are similar to those for BðsÞ and BðdÞ,
Eqs. (56) and (57), but including the factor ω3 and the
oscillating functions shown in Eq. (34). Defining
ω̃≡ ω=ωb, we have

ΔðsÞ ¼ v3ω̃3

48

Z
∞

−∞
dτþ

Z
∞

0

dτ− cosðω̃τ−Þ

×
Z

∞

τ−

dτs
τ3s

X2
i¼0

jiðvω̃τsÞ
ðvω̃τsÞi

Fiðτþ; τ−; τsÞe−Itot ; ð71Þ

where

Fi ¼
Z τþ−τs

2

−∞
dτNΓ̃ðτNÞPiðτþ − 2τN; τ−; τsÞ; ð72Þ

with the polynomials Pi defined in Eqs. (27)–(29), and

ΔðdÞ ¼ πv3ω̃3

48

Z
∞

−∞
dτþ

Z
∞

0

dτ− cosðω̃τ−Þ

×
Z

∞

τ−

dτs
τ4s

j2ðvω̃τsÞ
ðvω̃τsÞ2

GþG−e−Itot ; ð73Þ

where

G�ðτþ;τ−;τsÞ¼
Z τþ−τs

2

−∞
dτNΓ̃ðτNÞQ�

�
τs;

τþ∓τ−
2

−τN;τ−

�
:

ð74Þ

The expressions for the quantities Q� in terms of these
variables are given in Eqs. (58) and (59). The quantity Itot is
given by Eqs. (60) and (61) as a function of τþ; τ−, and τs.

A. Exponential nucleation rate

The case of an exponential nucleation rate (and a
constant wall velocity) was studied numerically in
Refs. [116–118] and analytically in Ref. [122]. We shall
now see that Eqs. (71)–(74) give for this case the analytic
result of Ref. [122]. We use the parametrization (9) for the
nucleation rate, which is of the form (7) with Γ̃ðτÞ ¼ 1

8π e
τ,

tb ¼ β−1, and vb ¼ v. In this case, we haveωb ¼ β, and the
dimensionless spectrum (18) (with ω� ¼ ωb) coincides
with the expression (17). Since Γ̃ is an exponential and
Pi, Q� are polynomials, the integrals (72) and (74) are
straightforward. We obtain

Fi ¼
2

π
eτþ=2e−τs=2F̃iðτ−; τsÞ;

GþG− ¼ 1

4π2
eτþe−τs G̃ðτ−; τsÞG̃ð−τ−; τsÞ; ð75Þ

with

F̃0 ¼ 2ðτ2s þ 6τs þ 12Þðτ2s − τ2−Þ2; ð76Þ

F̃1 ¼ 2ðτ2s − τ2−Þ½ðτ3s þ 4τ2s þ 12τs þ 24Þτ2s
− ðτ3s þ 12τ2s þ 60τs þ 120Þτ2−�; ð77Þ

F̃2 ¼
1

2
½ðτ4s þ 4τ3s þ 20τ2s þ 72τs þ 144Þτ4s

þ ðτ4s þ 20τ3s þ 180τ2s þ 840τs þ 1680Þτ4−
− ð2τ4s þ 24τ3s þ 168τ2s þ 720τs þ 1440Þτ2sτ2−�; ð78Þ

G̃ ¼ ðτ2s − τ2−Þ½τ3s þ 2τ2s − τ−ðτ2s þ 6τs þ 12Þ�: ð79Þ

On the other hand, we have IðtÞ ¼ eτ ¼ eðτþ−τ−Þ=2, Iðt0Þ ¼
eτ

0 ¼ eðτþþτ−Þ=2, and I∩ ¼ 1
4
eτþ=2e−τs=2ðτs þ 4 − τ2−=τsÞ.

Summing these contributions, we obtain

Itot¼eτþ=2½2coshðτ−=2Þ−e−τs=2ðτs=4þ1−τ2−=4τsÞ�: ð80Þ

Notice that, in all these expressions, the variable τþ appears
only in exponentials eτþ=2; eτþ , and the integration with
respect to this variable can be readily done using the
substitution u ¼ eτþ=2. We obtain

ΔðsÞ ¼ ðvω̃Þ3
12π

Z
∞

0

dτ− cosðω̃τ−Þ
Z

∞

τ−

dτs
τ3s

×
F̃0j0ðvω̃τsÞ þ F̃1

j1ðvω̃τsÞ
vω̃τs

þ F̃2
j2ðvω̃τsÞ
ðvω̃τsÞ2

2 coshðτ−
2
Þeτs

2 − 1 − ðτ2s − τ2−Þ=4τs
; ð81Þ
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ΔðdÞ ¼ ðvω̃Þ3
96π

Z
∞

0

dτ− cosðω̃τ−Þ
Z

∞

τ−

dτs
τ4s

×
G̃ðτ−; τsÞG̃ð−τ−; τsÞ j2ðvω̃τsÞðvω̃τsÞ2

½2 coshðτ−
2
Þeτs

2 − 1 − ðτ2s − τ2−Þ=4τs�2
; ð82Þ

in agreement with Ref. [122].
In Fig. 1 we plot the spectrum for several wall velocities,

as well as the low-frequency and high-frequency approx-
imations ΔLF, ΔHF given by Eqs. (62) and (64), respec-
tively. The coefficients for these approximations are10

D ≃ 0.3820, CðsÞ ¼ ð96πÞ−1, and CðdÞ ¼ ð32πÞ−1. We
see that the asymptotic curves give an order-of-magnitude
approximation in the whole range. The figure also shows
the simple interpolation (68). Its maximum gives a good
approximation for the peak frequency, ωp ≃

ffiffiffi
3

p
ω×. The

error is less than 10% for all the curves. On the other hand,
the maximum value of Δ for the interpolation gives a rough
approximation for the peak amplitude, Δp ≃ 33=2Δ×=16,
although for some of the curves this value departs more
than 50% from the actual value.

B. Simultaneous nucleation

We now calculate the GW spectrum for a delta-function
nucleation rate. This case was considered in Ref. [126] as a
limit of a Gaussian nucleation rate. In that work, the general
expressions (B.22) and (B.28) have the same form of our
Eqs. (71)–(73). However, their specific expressions for the
integrands, Eqs. (B.30)–(B.36), are somewhat cumbersome
for a direct comparison. On the other hand, we shall

perform the integral with respect to τ− analytically, which
greatly simplifies the remaining numerical integrations
and will allow us to consider a much wider frequency
range. The particular case v ¼ 1 was considered also in
Ref. [118]. In Appendix C we compare the different
numerical results.
We use the parametrization (14) of the nucleation rate,

for which the dimensionless rate is Γ̃ðτÞ ¼ δðτÞ and the
timescale is defined as tb ¼ db=v. The associated fre-
quency is ωb ¼ t−1b ¼ v=db, and we shall use this as the
reference frequency ω� for the dimensionless spectrum Δ.
Due to the delta function, the integrals (72) and (74) are
trivial, and we obtain

Fi ¼ Piðτþ; τ−; τsÞΘðτþ − τsÞ;
G−Gþ ¼ Qðτþ; τ−; τsÞΘðτþ − τsÞ; ð83Þ

where Pi are the polynomials defined in Eqs. (27)–(29),
and

Q ¼ ðτ2þ − τ2sÞ2ðτ2s − τ2−Þ2ðτ4s − τ2−τ
2þÞ: ð84Þ

Hence, Eqs. (71) and (73) become

ΔðsÞ ¼ v3ω̃3

48

Z
∞

0

dτþ

Z
τþ

0

dτ− cosðω̃τ−Þ

×
Z

τþ

τ−

dτs
τ3s

X2
i¼0

jiðvω̃τsÞ
ðvω̃τsÞi

Piðτþ; τ−; τsÞe−Itot ; ð85Þ

ΔðdÞ ¼ πv3ω̃3

48

Z
∞

0

dτþ

Z
τþ

0

dτ− cosðω̃τ−Þ

×
Z

τþ

τ−

dτs
τ4s

j2ðvω̃τsÞ
ðvω̃τsÞ2

Qðτþ; τ−; τsÞe−Itot ; ð86Þ

The integrals for Itot are also trivial, and we obtain
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FIG. 1. The GW spectrum for the exponential nucleation rate,
with ω� ¼ β (solid lines). The dashed lines indicate the asymp-
totes, and the dotted lines correspond to the interpolation (68).
The dash-dot lines indicate the peak values ðωp;ΔpÞ for the
spectrum, and dash-dot-dot lines those for the interpolation.
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FIG. 2. Like Fig. 1 but for the delta-function rate, with
ω� ¼ v=db.

10The functions Ĩnðτ̄Þ defined in Eq. (63) are given by
Ĩ2 ¼ 1

4π e
τ̄, Ĩ3 ¼ 3

4π e
τ̄, and Ĩ4 ¼ 3

π e
τ̄.
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Itot ¼
π

12
ð2τ3þ − τ3s þ 3τ2þτsÞ þ

π

4

ðτþ þ τsÞ2
τs

τ2− ð87Þ

Since the exponent (87) is quadratic in τ−, the integrals with
respect to this variable can be calculated analytically. We
must first interchange the integrals with respect to τ− and τs
using

R τþ
0 dτ−

R
τþ
τ−

dτs ¼
R τþ
0 dτs

R τs
0 dτ−. We obtain

ΔðsÞ ¼ ðvω̃Þ3
48

Z
∞

0

dτþ

Z
τþ

0

dτs
τ3s

e−
π
12
ð2τ3þ−τ3sþ3τ2þτsÞ

×
X2
i¼0

jiðvω̃τsÞ
ðvω̃τsÞi

P̃iðτþ; τs; ω̃Þ; ð88Þ

with

P̃iðτþ; τs; ω̃Þ ¼
Z

τs

0

dτ− cosðω̃τ−ÞPiðτþ; τ−; τsÞe−
π
4

ðτþþτsÞ2
τs

τ2− ;

ð89Þ

and

ΔðdÞ ¼ πðvω̃Þ3
48

Z
∞

0

dτþ

Z
τþ

0

dτs
τ4s

e−
π
12
ð2τ3þ−τ3sþ3τ2þτsÞ j2ðvω̃τsÞðvω̃τsÞ2

× Q̃ðτþ; τs; ω̃Þ; ð90Þ

with

Q̃ðτþ; τs; ω̃Þ ¼
Z

τs

0

dτ− cosðω̃τ−ÞQðτþ; τ−; τsÞe−
π
4

ðτþþτsÞ2
τs

τ2− :

ð91Þ

The analytic expressions for the functions P̃i and Q̃ are
given in Appendix A.
In Appendix Awe plot separately the single-bubble and

the two-bubble contributions to the GW spectrum. In Fig. 2
we plot the complete spectrum together with the asympotic
curves and the interpolation. The coefficient of the low
frequency approximation is D ≃ 8.066 × 10−5, while those
of the high-frequency approximation are given by11

CðsÞ ¼ Γð7=3Þ
128π4=362=3

≃ 6.123 × 10−4;

CðdÞ ¼ Γð7=3Þ
32π4=362=3

≃ 2.449 × 10−3: ð92Þ

We see that, at the maximum, the interpolations are not as
good approximations as in the previous case. The peak
frequency departs more than 50% and the amplitude
departs by a factor of 2 in some cases.

C. Gaussian nucleation rate

We shall now consider a nucleation rate of the form
e−γ

2ðt−tmÞ2 . A Gaussian nucleation rate was considered in
Ref. [126] with a different parametrization, namely,
eβðt−t�Þ−γ2ðt−t�Þ2 . This parametrization is useful when the
phase transition occurs away from the maximum of the
Gaussian (in particular, it allows to consider the case
γ ¼ 0), while we are more interested in the case in which
the phase transition occurs around this maximum. For a
given physical model, the two exponents correspond to the
expansion of SðtÞ around two different times tm, t�.
Therefore, the value of γ is different in each case. We
compare the two approaches in more detail in Appendix B.
We shall use the parametrization (13), which is of the

form (7), with tb replaced by the parameter tmin for
simplicity of the expressions. The dimensionless rate is
Γ̃ðτÞ ¼ ðα= ffiffiffi

π
p Þe−ðατÞ2 , where α ¼ γtmin. The timescale of

the nucleation rate is tΓ ∼ γ−1, but the duration of the phase
transition, tb, depends mainly on the value of tmin. We shall
use the reference frequency ω� ¼ t−1min, so the dimensionless
spectrum is given by Eqs. (71)–(74), with ω̃ ¼ ω=t−1min.
The integrals (72) and (74) can be done analytically. The

expressions for Fi and G� contain polynomials, the
Gaussian function, and the error function. These expres-
sions are rather cumbersome, and we write them down in
Appendix B. The function Itot also contains error functions
which depend on the variables t−; tþ; ts, so the remaining
integrals in Eqs. (71) and (73) cannot be done analytically.
The multiple integration is difficult to do numerically, and
in Ref. [126] a limited frequency range around the peak of
the spectrum was considered. In particular, the high
frequency behavior cannot be seen in those results.
Therefore, this case provides an example of the usefulness
of our asymptotic approximations. In Fig. 3 we show the
spectrum, the asymptotes, and the interpolation for the case
α ¼ 1 and for several values of the wall velocity. We give
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FIG. 3. Like Fig. 1 but for a Gaussian nucleation rate with
α ¼ 1. Here, ω� ¼ t−1min.

11The functions Ĩnðτ̄Þ which appear in the expressions for CðsÞ

and CðdÞ are given by Ĩn ¼ τ̄n.
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the details of the calculation in Appendix B. We have
computed the exact GW spectrum only in the range
0.1 ≤ ω=ω� ≲ 10. For higher frequencies, the multiple
integration becomes very difficult due to the highly
oscillating integrand. Nevertheless, we see that in this case
the high-frequency asymptote or the interpolation become
good approximations. For lower frequencies, the numerical
integration does not present critical difficulties. In any case,
we see that for ω=ω� ∼ 10−1 the low-frequency asymptote
is already a very good approximation.
In Fig. 4 we show the GW spectrum for a few values of

the parameter α. The dashed red curve actually corresponds
to the simultaneous nucleation considered in the previous
subsection. Indeed, in the limit of large α we have
tΓ ≪ tmin, and the Gaussian becomes a delta function.
The opposite limit, α → 0, corresponds to tmin ≪ tΓ, but in
this case tmin does not represent the duration of the phase
transition, i.e., we have tb > tmin. We discuss the depend-
ence with the timescales in the next section. Notice also that
the limit α → 0 can be interpreted as γ → 0. However,
this limit does not coincide with what is usually called a
constant nucleation rate. The latter is actually a Heaviside
function since it turns on at a given time t0. We consider
this case next.

D. Constant nucleation rate

Although a constant nucleation rate Γ0Θðt − t0Þ is not
well motivated physically, we shall discuss it here since it is
often used as an approximation (for its application to the
computation of GWs, see [120]). We use the parametriza-
tion (8) for the nucleation rate, so we have Γ̃ðτÞ ¼ 3

πΘðτÞ,
and we compute the dimensionless spectrum (18) with
ω� ¼ ωb ¼ t−1b , which is given by Eqs. (71)–(74). In this
case, the integrands in Eqs. (72) and (74) are polynomials,

and we obtain, omitting a Heaviside Θðτþ − τsÞ in the
expressions,

F0 ¼
1

10π
ðτþ− τsÞ3ðτ2− − τ2sÞ2ð3τ2þ þ 9τþτsþ 8τ2sÞ; ð93Þ

F1 ¼
1

5π
ðτ2s − τ2−Þ½15τþτ2−ðτ2þ − τ2sÞ2

þ τ2sτþð45τ4s − 10τ2þτ2s − 3τ4þÞ − 32τ7s �; ð94Þ

F2 ¼
1

10π
½15τ4−τþð7τ4þ − 10τ2þτ2s þ 3τ4sÞ

þ 30τ2−τ
2
sτþðτ4s þ 2τ2þτ2s − 3τ4þÞ ð95Þ

þτ4sτþð9τ4þ þ 10τ2þτ2s þ 45τ4sÞ − 64τ9s �; ð96Þ

G� ¼ ∓ 1

8π
ðτþ − τsÞ2ðτ2s − τ2−Þ

× ½3τ−ðτþ þ τsÞ2 ∓ 4τ2sðτþ þ 2τsÞ�: ð97Þ

On the other hand, we have I ¼ τ4, I∩ ¼
1
16
ðτþ − τsÞ3ðτþ þ τs − 2τ2−=τsÞ, and

Itot ¼
1

16
½ðτþ − τ−Þ4 þ ðτþ þ τ−Þ4

− ðτþ − τsÞ3ðτþ þ τs − 2τ2−=τsÞ� ð98Þ

The remaining integrals with respect to τþ, τ−, and τs in
Eqs. (71) and (73) cannot be done analytically.
In Fig. 5 we show the spectrum, the asymptotes, and the

interpolation, for several values of the wall velocity. The
coefficient of the low-frequency approximation (62) is
given by
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FIG. 4. The spectrum (solid lines) and the interpolation
approximation (dotted lines) for the Gaussian nucleation rate
for v ¼ 1, with ω� ¼ t−1min. The dashed line corresponds to the
delta-function rate.

10−12

10−10

10−8

10−6

10−4

10−2

10−2 10−1 100 101 102 103 104

Δ

ω / ω∗

v = 1
v = 0.3
v = 0.1

v = 0.03
v = 0.01

FIG. 5. Like Fig. 1 but for a constant nucleation rate, with
ω� ¼ t−1b .
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D ¼ 1

48

Z
∞

−∞
dτþ

Z
∞

0

dτ−

Z
τþ

τ−

dτs
τ3s

e−Itot

×

�
F0 þ

F1

3
þ F2

15
þ πGþG−

15τs

�

≃ 2.046 × 10−4: ð99Þ

For the high-frequency approximation (64)–(65), the
coefficients are given by12

CðsÞ ¼ Γð9=4Þ
480π

≃ 7.513 × 10−4;

CðdÞ ¼ Γð9=4Þ
128π

≃ 2.818 × 10−3: ð100Þ

The case v ¼ 1 can be compared with the lattice simu-
lations of Ref. [120]. We find that the peak for envelope
approximation is slightly to the left with respect to that
computation. We discuss the differences between these
approaches in Sec. VII.

VI. TIME AND SIZE SCALES

It has been discussed in the literature whether the GWs
should inherit the characteristic frequency or the character-
istic length of the source (see, e.g., [98–100,144]). This
issue was specifically analyzed in Ref. [145]. For a spatially
homogeneous and short lived source, the GWs are expected
to inherit the characteristic length. However, for the bubble
collision mechanism, it turns out that the characteristic
frequency is of the order of the timescale tb rather than the
length scale db ¼ vtb. This was observed numerically for
the exponential rate in Refs. [117,122], and can be seen in
all the plots of the previous section, where the peak
frequency ωp is around the value ω� ∼ t−1b . Below we
discuss this issue in more detail.

A. The bubble size distribution

Some of the cases considered above correspond to very
different bubble size distributions. For instance, for an
exponential nucleation, smaller bubbles, which nucleate
later, have exponentially higher number densities than
larger bubbles, which nucleate earlier. Besides, newer
bubbles only nucleate in the increasingly smaller regions
remaining in the false vacuum, so the space distribution
also depends on the bubble size. In contrast, for a
simultaneous nucleation, all the bubbles have the same
size at any time during the phase transition. However, the
shape of the spectrum is very similar for the two nucleation
rates. This can be seen more clearly in Fig. 12 in
Appendix C. Therefore, the presence of different size
scales does not seem to be relevant for GW production.

As argued in Ref. [117], the result ωp ∼ t−1b may be
explained by the fact that, for v ≪ 1, the duration of the
phase transition is not actually short in comparison to the
scale db ¼ vtb. Hence, the GWs do not inherit the distance
scale. This explains also why the size distribution is not a
decisive factor.
Notice, indeed, that the relevant bubble radius is at most

of order vtb. This is quite clear for a simultaneous
nucleation, since the bubble radius is limited by the bubble
separation db and the time of bubble expansion is∼db=v. In
the exponential case, the average radius at any time is
approximately given by vβ−1, and the width of the radius
distribution is of the same order. Since the released energy
is proportional to the bubble volume, it is sometimes
assumed that the volume distribution of bubbles is the
relevant quantity [116]. This quantity also has its peak at a
radius of order vβ−1.
One could argue that, since the walls of different bubbles

join to form larger domains, in the evolution of this system
of walls, there will be length scales which are larger than
vtb (at percolation, there will be domains of size H−1).
However, the spatial correlation within these domains falls
rapidly beyond a distance of the order of the typical bubble
radius [135], so we do not expect a relevant length scale
beyond this distance. Moreover, for the single-bubble
contribution, any length scale involved is of order vtb or
smaller, so the timescale is the relevant quantity. Indeed,
this contribution alone has a peak at ω ∼ t−1b rather than at
ω ∼ d−1b (see Fig. 10 in Appendix A for the simultaneous
case or Ref. [122] for the exponential case).

B. Model comparison

Since two different nucleation rates depend on
different kinds of parameters, for a sensible comparison
it is necessary to fix some physical quantity. For the
exponential and delta-function cases, the final average
bubble separation db ≡ n−1=3b has often been used for such
a purpose (see, e.g., [118,120]). For the simultaneous
nucleation, this is just a parameter of the nucleation rate,
while for the exponential nucleation it is given by

db ¼ ð8πÞ1=3v=β; ð101Þ

If we fix a different physical quantity, the comparison will
be quantitatively different. For instance, we may compare
an exponential nucleation and a simultaneous nucleation
for which the phase transition has the same duration. We
may take, as an estimation, the time Δt ¼ t2 − t1 between
the moment t1 at which fþ ¼ 0.99 and t2 at which fþ ¼
0.01 [135]. We have Iðt1Þ ¼ − logð0.99Þ≡ I1 and
Iðt2Þ ¼ − logð0.01Þ≡ I2. For the exponential nucleation
rate this quantity is given by

Δt ¼ ðlog I2 − log I1Þβ−1 ≃ 6.13β−1; ð102Þ12In this case we have Ĩnðτ̄Þ ¼ 3
ðnþ1Þπ τ̄

nþ1.
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while for the simultaneous nucleation it is given by

Δt ¼ ð3=4πÞ1=3ðI1=32 − I1=31 Þðdb=vÞ
≃ 0.898ðdb=vÞ: ð103Þ

For the same Δt, the relation between the parameters of
these models is

db ¼
�
4π

3

�
1=3 log I2 − log I1

I1=32 − I1=31

v
β

ð104Þ

instead of (101).
In Fig. 6 we compare the two models fixing either db or

Δt. We need to use the same unit of frequency for all the
curves, and we chose ω� ¼ β. The dimensionless spectrum
Δ is also normalized using ω� ¼ β in Eq. (18), which thus
coincides with Eq. (17). We consider an exponential
nucleation rate (solid lines), a simultaneous nucleation
with db given by Eq. (101) (dashed lines), and a simulta-
neous nucleation with db given by Eq. (104) (dotted lines),
for three different values of the wall velocity. The fact that
there is not a unique way of comparing two different
nucleation rates implies that the position of the peak for the
simultaneous case can be either to the left or to the right
of the peak for the exponential case, depending on the
quantity which is fixed in the comparison. Similarly, the
peak amplitude can be higher or lower.
For a given wall velocity, we see that the GW spectrum

for an exponential nucleation is quite closer to that for a
simultaneous nucleation with the same value of Δt than to
one with the same value of db. This seems to be another
indication of the fact that, for the bubble collision mecha-
nism, the timescale is more relevant than the length scale.
Furthermore, we verify that the peak frequencyωp is within

the range ð1 − 3Þβ for all the curves in Fig. 6, while
db ∼ vβ−1 varies by two orders of magnitude for the
velocity range considered in the figure. On the other hand,
the amplitude Δp does vary with the distance scale.
According to Fig. 6, we have, roughly, Δp ∼ d3b.
This behavior can be seen analytically for an arbitrary

nucleation rate from the approximation ωp ≃
ffiffiffi
3

p
ω×, where

ω× is proportional to ωb ¼ t−1b . According to Eqs. (69) and
(70), as a function of the velocity, the ratio ω×=ωb varies
between two Oð1Þ values (below we discuss the Gaussian
case, where the dimensionless coefficients in these equa-
tions depend on the ratio between two timescales). Hence,
the behavior ωp ∼ ω× ∼ t−1b is quite model independent.
For the peak amplitude, we have Δp ∼ Δ×, which is
roughly ∝ v3.

C. Two timescales

The Gaussian nucleation rate Γ ¼ Γme−γ
2ðt−tmÞ2 provides

a model with two different timescales, since the time during
which bubble nucleation is active does not necessarily
coincide with the duration of the phase transition. We have
defined two time parameters, namely, the width of the
Gaussian, tΓ ≡ γ−1, and the time associated to the minimal
bubble separation tmin ¼ dmin=v. The latter is obtained
from ΓðtÞ alone, i.e., omitting the suppression factor fþ in
Eq. (5), and is given by dmin ¼ ð ffiffiffi

π
p

Γm=γÞ−1=3. We remark
that the use of the parameters tΓ, tmin is convenient due to
their simple analytical relations with the parameters γ and
Γm. As we discuss in Appendix B, in the cases in which the
phase transition actually occurs around the maximum of the
Gaussian, tΓ is directly related to the duration of bubble
nucleation and tmin is related to the total duration of the
phase transition. Otherwise, the nucleation rate can be
approximated by an exponential and there is a single
timescale which is not simply related to these parameters.
In Sec. V C we used ω� ¼ t−1min as the unit of frequency

and we considered different values of the ratio α ¼ tmin=tΓ.
This means that the different curves in Figs. 3 and 4
correspond to different phase transitions with the same
value of tmin. In the left panel of Fig. 7 we consider again
the curves of Fig. 4. Here we use the interpolation
approximation, so that it is easier to reach wider ranges
for ω and α. The central panel shows the same spectra with
t−1Γ as the unit of frequency. Therefore, in these curves this
timescale is fixed while the parameter tmin varies. We see
that the order of the curves is inverted with respect to those
in the left panel. Like in Fig. 6, this shows that, when we
compare different models (in this case, different values of
α), the result depends on which physical quantity we fix in
the comparison. In the third panel of Fig. 7 we fix the
parameter tb ¼ db=v, where db is the real bubble separa-
tion, i.e., taking into account the factor fþ in Eq. (5).
Therefore, tb is related to the actual duration of the phase
transition. We see that the peak frequency changes very
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FIG. 6. The GW spectrum for an exponential nucleation rate
(solid lines), a delta-function nucleation rate with parameter db
given by Eq. (101) (dashed lines), and a delta-function rate with
db given by Eq. (104) (dotted lines).
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little in this case (we have 4≲ ωp=ω� ≲ 6 for the whole
range of α), indicating that ωp is mostly determined by this
timescale.
As already mentioned, in the limit α → ∞ the width of

the Gaussian becomes very small in comparison with the
duration of the phase transition (tΓ ≪ tmin < tb), and we
have a simultaneous nucleation. Also, we have tmin → tb in
this limit. The convergence to the simultaneous case can be
seen in the left and right panels of Fig. 7, but not in the
central panel, where we normalize the frequency and
amplitude using t−1Γ . On the other hand, in the right panel
we also observe a limiting curve for α → 0. In this limit we
have tmin ≪ tΓ, but in this case none of these parameters
correspond to a physical time in the evolution of the phase
transition. This limit is obtained for γ → 0 or Γm → ∞.
Since the nucleation rate acts from t ¼ −∞, this means that
in this case the phase transition will be completed about a
time t� much earlier than tm. Around the time t� the usual
exponential approximation can be used, and the limiting
curve corresponds to an exponential nucleation rate (see
App. B for more details). Since the value of db is fixed in
the right panel of Fig. 7, the parameter of the exponential is
given by β ¼ ð8πÞ1=3v=db.
In Fig. 8 we indicate this limiting curve with a dashed

line, and the limit for α → ∞ with a dotted line. We also
consider different values of the wall velocity, and we
observe again that the peak frequency is always determined
by the timescale tb, while the peak amplitude depends on
the length scale db ¼ vtb. For a given wall velocity v and a
given average separation db, the spectrum has larger
amplitudes and smaller frequencies in the limit of an
exponential nucleation, while it shifts to smaller amplitudes
and higher frequencies as we approach the limit of a
simultaneous nucleation. Since larger bubbles contribute
more than smaller ones to the GW spectrum, this behavior
may be due to the differences in the bubble size distribution
for the different nucleation rates. Indeed, in the simulta-
neous case all bubbles have similar sizes, while in the
exponential case there are bubbles with sizes much larger

than the average. The same behavior can be expected for
other mechanisms, such as sound waves. Hence, the
differences observed in this figure may be regarded as a
quantitative estimate of the degree of error in the spectrum
when different nucleation rates are adopted for simplicity in
a simulation.

D. Relation with the surface area

Since the characteristic frequency of the gravitational
waves is determined by the timescale of the source, it is
useful to consider the time evolution of the latter. For the
envelope approximation it is clear that the source of GWs is
the motion of thin walls. More generally, for any mecha-
nism associated to the bubble walls, the GW production
will be weighted by the amount of bubble wall which is
present at a given time (as can be seen from the general
expressions derived in Ref. [125]). One may wonder
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FIG. 8. The spectrum (using the interpolation approximation)
for the Gaussian nucleation rate, for different values of α and v.
The reference frequency is ω� ¼ t−1b . The three groups of curves
correspond to velocities v ¼ 1, 0.1, and 0.01 from top to bottom.
The dotted lines indicate the limit α → ∞ (simultaneous nucle-
ation), and the dashed lines indicate the limit α → 0 (exponential
nucleation).
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whether the relevant quantity here is the average uncollided
wall area, hSi ∼ R2fþ ∼ R2e−4πR

3=3, or the surface energy
σhSi ∼ R3e−4πR

3=3 (since σ ∝ R due to the release of latent
heat), or some other quantity. In the envelope approxima-
tion, the energy-momentum tensor is given by Eq. (21),
Tij ¼ σδðr − RÞr̂ir̂j1Sðr̂Þ. Since h1Si ¼ hSi=4πR2, this
seems to indicate that the “effective” surface energy density
σhSi=R2 ∼ Re−4πR

3=3 is the relevant quantity. Let us con-
sider for simplicity the case of simultaneous nucleation, for
which the above expressions are exact since all the bubbles
have the same radius. For instance, the average uncollided
wall area of a bubble is just given by

hSi ¼ 4πR2e−
4π
3
R3

¼ 4πd2b

�
t − t�
tb

�
2

exp

�
−
4π

3

�
t − t�
tb

�
3
�
; ð105Þ

and the total uncollided wall area per unit volume is given
by nbhSi ¼ d−3b hSi. We observe a qualitative relation
between this quantity and the GW spectrum, namely, that
the time variation is determined by tb, while the amplitude
is determined by the characteristic db. Notice, however, that
the GW spectrum involves the correlator hTijTkl

0i. For a
given bubble, any of the quantities discussed above is of the
form RnS, and we should expect that the result depends on
RnR0nhSS0i, i.e., that the relevant quantity is the surface
correlation rather than hSi.
In the expression for Tij, the time independent factor r̂ir̂j

characterizes the spatial dependence of the source (the
spherical wall), while the time dependence is contained
essentially in the variation of the bubble radius R and the
uncollided surface S. If we omit the factor Λij;klr̂ir̂jr̂k0r̂l0 in
Eq. (20), and consider for simplicity only the single-bubble
contribution, we obtain the rough estimation

Πðt; t0;ωÞ ∼ nbσσ0hSðtÞSðt0Þi
∼ nbðκρvacÞ2RR0hSðtÞSðt0Þi: ð106Þ

In Ref. [135] it was argued that an estimation for the GW
spectrum can be obtained by assuming that the quantity
Πðt; t0;ωÞ is proportional to the surface correlator
hSðtÞSðt0Þi. This is equivalent to the further approximation
R ∼ R0 ∼ db in Eq. (106). For the simultaneous case and the
single bubble contribution we have [135]

hSðtÞSðt0Þi ¼ 8π2RR0
Z

R0þR

R0−R
dsse−Itotðt;t0;sÞ: ð107Þ

(notice that this quantity contains information about
the correlation between points on the bubble surface).
Proceeding as before, for the approximation (106) we
obtain

Δ ∼ v3ω̃3

Z
∞

0

dτþ

Z
τþ

0

dτsτs

Z
τs

0

dτ− cosðω̃τ−Þðτ2þ − τ2−Þ2

× e−Itotðτþ;τ−;τsÞ: ð108Þ

The integrand does not depend on the velocity, so we have
an amplitude proportional to v3 and a shape which depends
on ω̃ ¼ ωtb. The computation of Eq. (108) is much simpler
than the complete expression (88) (see Appendix A). We
show the result in Fig. 9 for v ¼ 1 (dashed black line). The
approximation gives the correct power-law form.13 The
peak intensity, though, is a few orders of magnitude higher
than the exact result (solid line). This is the effect of
ignoring the spatial dependence of the source, since the
spherical shape of the bubbles causes a suppression. In
particular, in the envelope approximation the sphericity is
lost at the expense of decreasing the surface area of the
walls which produce the gravitational radiation.
If we replace RR0 by d2b in Eq. (106), we obtain a single

factor of ðτ2þ − τ2−Þ in Eq. (108). This result is plotted with a
dotted black line in Fig. 9. We see that the spectrum
does not change significantly, indicating that the relevant
quantity which determines its shape is hSS0i. In [135]
we argued that it would be more realistic to relate
the GW spectrum to the quantity hΔSðtÞΔSðt0Þi, with
ΔS ¼ S − hSi, rather than to hSðtÞSðt0Þi, in order to
take into account the fact that the result should vanish if
the surfaces at t and t0 were uncorrelated. Indeed, the
separation hSðtÞSðt0Þi ¼ hSðtÞihSðt0Þi corresponds to
assuming that any two points on the bubble surface are
not correlated, i.e., to approximating the probability e−Itot ¼
e−IðtÞe−Iðt0ÞeI∩ðt;t0;sÞ by e−IðtÞe−Iðt0Þ. Replacing S with ΔS in

10−10

10−8

10−6

10−4

10−2

100

 0.01  0.1  1  10  100  1000  10000

Δ

ω / ω∗

Exact
Π ∝ RR’〈SS’〉

Π ∝ 〈SS’〉
Π ∝ RR’〈ΔSΔS’〉

Π ∝ 〈ΔSΔS’〉

FIG. 9. The GW spectrum and some rough approximations, for
a simultaneous nucleation and v ¼ 1 (ω� ¼ v=db).

13The additional approximation hSðtÞSðt0Þi ∼ hSðtÞihSðt0Þi
simplifies significantly the expressions, but does not give the
correct behavior at high frequencies. It is a smoother function of
time, and therefore its Fourier transform falls more rapidly at
high ω.
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Eq. (106) we obtain the red lines in Fig. 9 (with and without
taking into account the extra factor of RR0). Only the low-
frequency part of the spectrum changes with respect to the
previous approximations. The shape of the spectrum is
more realistic, but it is quantitatively very similar.

VII. CONCLUSIONS AND DISCUSSION

We have studied the general features of gravitational
waves from bubble collisions in the envelope approxima-
tion. For that aim we have applied the approach of
Ref. [125] to this particular mechanism of GW generation.
In the first place, we have computed the GW spectrum for
several phase transition models. Our results for these
specific models are in agreement with previous works,
whereas our analytic expressions allowed us to consider
wider frequency ranges as well as greater variations of
parameters.
In second place, we have studied the asymptotic limits of

the spectrum for arbitrary nucleation rate ΓðtÞ and wall
velocity vðtÞ. We have thus confirmed analytically that the
GW spectrum for the envelope approximation always rises
as ω3 for low frequencies and falls as ω−1 for high
frequencies, independently of the specific evolution of
the phase transition. Therefore, in the two ends of the
spectrum, it is only necessary to compute numerically the
constant coefficients of these power laws. For constant
velocity, the calculation of these coefficients simplifies
significantly, and we obtained analytically the dependence
on v. Furthermore, we provided a simple interpolation
between the asymptotes, which can be used as an estimate
of the whole spectrum, thus avoiding difficult numerical
computations. These analytic approximations are useful for
studying the dependence of the spectrum on the parameters
of the model. Although in this work we have focused on the
envelope approximation, we expect that our determination
of the asymptotes can be generalized to other mechanisms
such as the bulk flow model [123,124], where it is
particularly difficult to compute the spectrum at high
frequencies.
Finally, we have used our results to study the dependence

of the GW spectrum on the characteristic time and distance
scales of the phase transition. We have confirmed that the
peak frequency ωp is generally determined by the timescale
rather than the length scale. More precisely, we have
ωp ∼ t−1b , where tb is the total duration of the phase
transition. We have checked this fact, both numerically
and analytically, by varying the bubble size db ¼ vtb as
well as the time tΓ ≤ tb during which bubble nucleation is
active. The amplitude of the spectrum does depend on the
size scale db (the dimensionless spectrum Δ goes roughly
as v3). We have related these features to the time correlation
of the uncollided wall surface area, which is essentially the
source of GWs in the envelope approximation. Moreover,
the rough approximation Π ∝ hSðtÞSðt0Þi, which corre-
sponds essentially to neglecting the spatial dependence

of the source, gives the correct position of the peak as well
as the correct behavior at low and high frequencies,
although the amplitude is a few orders of magnitude
too high.
Lattice simulations of vacuum bubbles generally give a

different form of the spectrum. In the first place, in
Ref. [119], it was found that GWs are produced after
bubble percolation. However, in Ref. [120] this effect was
identified with oscillations of the scalar field, which
produce GWs with a frequency of the order of the scalar
mass in the broken phase. Thus, with a realistic separation
of scales (not achievable in the simulation), this signal will
be actually at a much higher frequency, and will have a
much smaller amplitude.
In Ref. [118] it was found that the GW spectrum sourced

by the scalar field agrees in shape and intensity with the
envelope approximation, at least in the frequency range
delimited by the inverses of the box size L of the simulation
and the wall width lw. At higher frequencies the decrease
becomes steeper. In the more recent simulation [120], it
was found that the peak of the spectrum from bubble
collisions is slightly shifted toward the infrared with respect
to the envelope approximation. Besides, the power law on
the high frequency side of this peak seems to be given by
b ≃ 1.5, in contrast to the value b ¼ 1 for the envelope
approximation. In the subsequent work [121], the wall
thickness was varied (by changing a parameter in the
effective potential), and it was found that for thicker walls
the ultraviolet power law has even larger values, up to
b ≃ 2.3. The more recent work [146] supports the con-
clusion that the high-frequency power law becomes steeper
for thick-walled bubbles.
However, we remark that the bubble radius and the wall

width, which in general differ by several orders of magni-
tude, in the lattice simulations are separated by, at most, a
couple of orders of magnitude. For instance, in [120], the
power law b ≃ 1.5 fits the curve in a frequency range of one
order of magnitude between the peak frequency ωp and
ω ∼ 10ωp. A little beyond this range is the ultraviolet bump
due to the field oscillations. This second peak is associated
to the scalar mass scale, which is of the same order of the
wall width lw, so this part of the curve is also influenced by
this parameter. Therefore, it is possible that the differences
with the envelope approximation at high frequency are due
to an insufficient separation of these scales.
In order to avoid this problem, in Refs. [147,148] a two-

bubble collision is first studied by lattice simulations to
determine how the surface energy density scales with the
bubble radius in the collided regions, and then the GW
spectrum is computed in many-bubble thin-wall simula-
tions like those of Ref. [124] for the bulk flow model. The
power law exponents obtained with this approach are also
different from the envelope approximation and depend on
the nature of the scalar field, i.e., they are different for a real
scalar field, a complex scalar field which breaks a Uð1Þ
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global symmetry, and the case of a gauge Uð1Þ symmetry.
As already mentioned, the part of this calculation which is
equivalent to the bulk flow model can be approached
semianalytically, but the numerical integrals become very
difficult for frequencies higher than the peak [123].
Therefore, the high-frequency approximations we used
to obtain the asymptotic behavior for the envelope case
will be useful to address this kind of calculation.
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APPENDIX A: DETAILS FOR THE
SIMULTANEOUS CASE

In this Appendix we present some analytic and numeri-
cal results for the delta-function nucleation rate.

1. Gaussian integrals

The integrals

Q̃ðτþ; τs; ω̃Þ ¼
Z

τs

0

dτ− cosðω̃τ−ÞQðτþ; τ−; τsÞe−
π
4

ðτþþτsÞ2
τs

τ2−

ðA1Þ

and

P̃iðτþ; τs; ω̃Þ ¼
Z

τs

0

dτ− cosðω̃τ−ÞPiðτþ; τ−; τsÞe−
π
4

ðτþþτsÞ2
τs

τ2− ;

ðA2Þ

where Q and Pi are the polynomials defined in Eqs. (84)
and (27)–(29), are straightforward, since the polynomials
are of the form Aþ Bτ2− þ Cτ4− þDτ6− (with D ¼ 0 for the
Pi) and the cosine can be written as a combination of
exponentials. We obtain

Q̃ ¼ ðτ2þ − τ2sÞ2½τ8sIð0Þ − τ4sðτ2þ þ 2τ2sÞIð2Þ
þ τ2sð2τ2þ þ τ2sÞIð4Þ − τ2þIð6Þ�;

P̃0 ¼ ðτ2þ − τ2sÞ2ðτ4sIð0Þ − 2τ2sIð2Þ þ Ið4ÞÞ;
P̃1 ¼ 2ðτ2þ − τ2sÞ½−ðτ2þ þ 3τ2sÞτ4sIð0Þ

þ 2ð3τ2þ þ τ2sÞτ2sIð2Þ þ ðτ2s − 5τ2þÞIð4Þ�;
P̃2 ¼ ð3τ4s þ 2τ2þτ2s þ 3τ4þÞτ4sIð0Þ

þ 2ðτ4s þ 6τ2þτ2s − 15τ4þÞτ2sIð2Þ
þ ð3τ4s − 30τ2þτ2s þ 35τ4þÞIð4Þ: ðA3Þ

where the quantities IðnÞ are the integrals

IðnÞ ¼
Z

τs

0

dτ−τn− cosðω̃τ−Þe−ατ2−

¼ Re

�Z
τs

0

dτ−τn−e−ατ
2
−−iω̃τ−

�
; ðA4Þ

with α ¼ π
4
ðτþ þ τsÞ2=τs. These are given by

Ið0Þ ¼
ffiffiffiffiffiffi
π

4α

r
exp

�
−
ω̃2

4α

�
Re

�
erf

� ffiffiffi
α

p
τs þ

iω̃
2

ffiffiffi
α

p
��

; ðA5Þ

Ið2Þ ¼ 1

4α2
½ð2α − ω̃2ÞIð0Þ þ S − C�; ðA6Þ

Ið4Þ ¼ 1

16α4
½ðω̃4−12αω̃2þ12α2ÞIð0Þ

−ðω̃2−4α2τ2s −10αÞSþðω̃2−4α2τ2s −6αÞC�; ðA7Þ

Ið6Þ ¼ 1

64α6
½ð−ω̃6þ30αω̃4−180α2ω̃2þ120α3ÞIð0Þ

þðω̃4−4α2τ2sω̃
2−28αω̃2þ16α4τ4sþ72α3τ2sþ132α2ÞS

−ðω̃4−4α2τ2sω̃
2−24αω̃2þ16α4τ4sþ40α3τ2sþ60α2ÞC�;

ðA8Þ

where

S ¼ e−ατ
2
s ω̃ sinðω̃τsÞ; C ¼ 2ατse−ατ

2
s cosðω̃τsÞ; ðA9Þ

and Re½erfðzÞ� is the real part of the error function.
On the other hand, for the approximation (108), we have

to calculate the integral

P̃ ¼
Z

τs

0

dτ− cosðω̃τ−Þðτ2þ − τ2−Þ2e−
π
4

ðτþþτsÞ2
τs

τ2− : ðA10Þ

which has the same form of Eq. (A2), but for the function
P ¼ τ4þ − 2τ2þτ2− þ τ4− instead of Pi. We obtain in this case
P̃ ¼ τ4þIð0Þ − 2τ2þIð2Þ þ Ið4Þ, and Eq. (108) is given by

Δ ∼ v3ω̃3

Z
∞

0

dτþ

Z
τþ

0

dτsτsP̃e−
π
12
ð2τ3þ−τ3sþ3τ2þτsÞ: ðA11Þ

If RR0 is replaced by d2b in Eq. (106), then we have a single
factor of ðτ2þ − τ2−Þ in Eq. (108), so we have to calculate
the integral (A10) with P ¼ τ2þ − τ2−, and we obtain in this
case P̃ ¼ τ2þIð0Þ − Ið2Þ. If hΔSðtÞΔSðt0Þi is used instead of
hSðtÞSðt0Þi in Eq. (106), then, in the integrand of Eq. (A11),
we have to subtract, to the quantity P̃e−Itot, the same
quantity evaluated at τs ¼ τþ.

2. Contributions to the spectrum

It is of interest to show separately the single-bubble and
the two-bubble contributions. In Fig. 10 we consider the
case of simultaneous nucleation for a few velocities (the
exponential case was already considered in Ref. [122]).
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We see that the two contributions are in general of the same
order, except for the case v ¼ 1, where the intensity falls as
ω−2 for ω=ωb ≫ 1, as shown analytically in Sec. III.

APPENDIX B: DETAILS FOR THE
GAUSSIAN CASE

In Sec. V C we have considered as a reference time the
parameter tmin and as a reference frequency ω� ¼ t−1min.
Thus, in Eqs. (71)–(74), we have ω̃≡ ω=ω� ¼ ωtmin, and
the dimensionless times are given by Eq. (54) with t� ¼
tm and tb ¼ tmin. For instance, we have τ ¼ ðt − tmÞ=tmin.
The dimensionless rate is given by Γ̃ðτÞ ¼ ðα= ffiffiffi

π
p Þe−ðατÞ2,

and the integrals in Eqs. (72) and (74) can be done
analytically, as well as those in Eqs. (2) and (22).
To simplify a little the expressions, in this Appendix
we shall consider the parameter tΓ as the reference
time, and the corresponding reference frequency
ω� ¼ t−1Γ ¼ γ. To avoid confusion, we shall denote the
dimensionless spectrum (18) as Δ̄, and we shall denote
ω̄≡ ω=ω� ¼ ωtΓ. The relation with ω̃ and the corre-
sponding spectrum is ω̄ ¼ ω̃=α, Δ̄ðω̄Þ ¼ α2Δðαω̄Þ. We
also denote the corresponding dimensionless times by
x ¼ ðt − tmÞ=tΓ, xN ¼ ðtN − tmÞ=tΓ, etc., which corre-
sponds to the change of variables x ¼ ατ, xN ¼ ατN ,
etc. in Eqs. (71)–(74).

1. Formulas for the spectrum and the asymptotes

We obtain

Δ̄ðsÞ ¼ v3ω̄3

48α3

Z
∞

−∞
dxþ

Z
∞

0

dx− cosðω̄x−Þ
Z

∞

x−

dxs
x3s

X2
i¼0

jiðvω̄xsÞ
ðvω̄xsÞi

Fie−Itot : ðB1Þ

Δ̄ðdÞ ¼ πv3ω̄3

48α6

Z
∞

−∞
dxþ

Z
∞

0

dx− cosðω̄x−Þ
Z

∞

x−

dxs
x4s

j2ðvω̄xsÞ
ðvω̄xsÞ2

GþG−e−Itot ; ðB2Þ

where the functions Fi, G�, and Itot are given by

F0 ¼
ðx2− − x2sÞ2

2

�
ðx4s þ x4þ − 4x2s − 2x2þx2s þ 12x2þ þ 12Þ

�
erf

�
xþ − xs

2

�
þ 1

�

þðx3þ − x3s þ x2þxs − xþx2s þ 10xþ þ 6xsÞ
2ffiffiffi
π

p e−
1
4
ðxþ−xsÞ2

�
; ðB3Þ

F1 ¼ ðx2s − x2−Þ
�
ð3x6s þ x2−x4s − 2x2þx4s − x4þx2s þ 5x2−x4þ − 6x2−x2þx2s

− 4x4s − 12x2−x2s − 12x2þx2s þ 60x2−x2þ − 12x2s þ 60x2−Þ
�
erf

�
xþ − xs

2

�
þ 1

�

− ð3x5s þ 3xþx4s þ x2−x3s þ x2þx3s − 5x2−x2þxs − 5x2−x3þ þ x3þx2s þ x2−xþx2s

þ6x3s þ 10xþx2s − 30x2−xs − 50x2−xþÞ
2ffiffiffi
π

p e−
1
4
ðxþ−xsÞ2

�
; ðB4Þ
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FIG. 10. The different contributions to the spectrum for the case
of simultaneous nucleation, for a few values of the wall velocity
v (ω� ¼ v=db).
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F2 ¼ ð3x8s þ 2x2−x6s þ 2x2þx6s þ 4x6s þ 3x4−x4s þ 3x4þx4s þ 24x2−x4s þ 12x2−x2þx4s þ 36x2þx4s
þ 36x4s − 60x4−x2s − 30x2−x4þx2s − 360x2−x2s − 30x4−x2þx2s − 360x2−x2þx2s þ 420x4−

þ35x4−x4þ þ 420x4−x2þÞ
1

2

�
erf

�
xþ − xs

2

�
þ 1

�

þ ð5x7s þ 5xþx6s − 18x2−x5s þ 3x2þx5s þ 18x5s þ 3x3þx4s − 18x2−xþx4s þ 30xþx4s þ 5x4−x3s

− 180x2−x3s − 30x2−x2þx3s − 30x2−x3þx2s þ 5x4−xþx2s − 300x2−xþx2s þ 210x4−xs

þ35x4−x2þxs þ 35x4−x3þ þ 350x4−xþÞ
1ffiffiffi
π

p e−
1
4
ðxþ−xsÞ2 ; ðB5Þ

G� ¼ ðx2− − x2sÞ
2

�
½x4s − x2þx2s − 2x2s � x−ðx3þ þ 6xþ − xþx2sÞ�

�
erf

�
xþ − xs

2

�
þ 1

�

−2½x3s þ xþx2s ∓ x−ðxþxs þ x2þ þ 4Þ� 1ffiffiffi
π

p e−
1
4
ðxþ−xsÞ2

�
; ðB6Þ

and Itot ¼ Iððxþ − x−Þ=2; αÞ þ Iððxþ þ x−Þ=2; αÞ þ I∩, with

Iðx; αÞ ¼ π

3α3

�
xð2x2 þ 3Þ½erfðxÞ þ 1� þ ðx2 þ 1Þ 2ffiffiffi

π
p e−x

2

�
ðB7Þ

and

I∩ ¼ πα−3

24xs

�
ð3x2−xs þ 2x2þxs − x3s − xþx2s þ 8xs − 3x2−xþÞ

2ffiffiffi
π

p e−
1
4
ðxþ−xsÞ2

þ ðx4s − 3x2−x2s − 3x2þx2s − 6x2s þ 2x3þxs þ 6x2−xþxs þ 12xþxs − 6x2− − 3x2−x2þÞ
�
erf

�
xþ − xs

2

�
þ 1

��
: ðB8Þ

The coefficient of the low-frequency asymptote (62) is given by (D̄ ¼ α5D)

D̄ ¼ α−3

48

Z
∞

−∞
dxþ

Z
∞

0

dx−

Z
∞

x−

dxs
x3s

�
F0 þ

F1

3
þ F2

15
þ πGþG−

15α3xs

�
e−Itot : ðB9Þ

The coefficients of the high-frequency asymptote (64)–(65) are given by (C̄ðsÞ ¼ αCðsÞ)

C̄ðsÞ ¼ π

72

Z
∞

−∞
dx̄e−

4π
3
Ĩ3ðx̄ÞĨ4ðx̄ÞĨ2ðx̄Þ; C̄ðdÞ ¼ π

18

Z
∞

−∞
dx̄e−

4π
3
Ĩ3ðx̄ÞĨ3ðx̄Þ2; ðB10Þ

with

Ĩ2 ¼ α−2
�
2x̄2 þ 1

4
½erfðx̄Þ þ 1� þ x̄

2
ffiffiffi
π

p e−x̄
2

�
; ðB11Þ

Ĩ3 ¼ α−3
�
x̄ð2x̄2 þ 3Þ

4
½erfðx̄Þ þ 1� þ x̄2 þ 1

2
ffiffiffi
π

p e−x̄
2

�
; ðB12Þ

Ĩ4 ¼ α−4
�
4x̄4 þ 12x̄2 þ 3

8
½erfðx̄Þ þ 1� þ x̄ð2x̄2 þ 5Þ

4
ffiffiffi
π

p e−x̄
2

�
: ðB13Þ
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2. Different parametrizations

The parametrization (10) for the nucleation rate,

ΓðtÞ ¼ Γme−γ
2ðt−tmÞ2 ; ðB14Þ

is centered at the maximum of the Gaussian. We have
conveniently defined the time parameters tΓ ¼ γ−1 and
tmin ¼ dmin=v ¼ v−1ðγ= ffiffiffi

π
p

ΓmÞ1=3 in order to obtain the
simple expression (13) where the dimensionless rate Γ̃
depends only on the parameter α ¼ tmin=tΓ. In terms of the
basic parameters of the Gaussian, we have

α3 ¼ γ4ffiffiffi
π

p
v3Γm

: ðB15Þ

In Fig. 11 we consider the evolution of the phase
transition for different values of α. We see that, for
α≳ 1, the development of the phase transition takes place
around the time tm or later. Hence, in these cases the
number density of nucleated bubbles is maximal (i.e., it is
given by the integral of the Gaussian), and we have db ≃
dmin ¼ n−1=3max and the duration of the phase transition is
given by tb ≃ tmin. Besides, we see that the parameter tΓ
gives an estimate of the duration of bubble nucleation. In
the limit α → ∞, the time tΓ becomes infinitely smaller
than tb, and the nucleation rate becomes a delta function.
In contrast, for small α (left panel in Fig. 11) the phase

transition is completed before t ¼ tm, and neither tmin nor tΓ
give a correct estimate for its duration. The limit α → 0
corresponds either to γ → 0 or to Γm → ∞. Since the phase
transition takes place away from the maximum of the
Gaussian, we expect that the usual exponential approxi-
mation should be valid in this limit. To investigate this, we
notice that, for any t�, we may write t − tm ¼ t − t� þ t� −
tm in Eq. (B14), and we obtain

ΓðtÞ ¼ Γ�eβðt−t�Þ−γ
2ðt−t�Þ2 ; ðB16Þ

where

Γ� ¼ Γme−γ
2ðtm−t�Þ2 ; β ¼ 2γ2ðtm − t�Þ ðB17Þ

(notice that β depends on the time t�). Let us consider the
time te at which I ¼ 1 (fþ ¼ e−1). The corresponding
dimensionless variable xe ¼ ðte − tmÞ=tΓ is given by the
equation Iðxe; 1Þ ¼ α3, where Iðx; αÞ is given by Eq. (B7).
For t� ¼ te we have β ¼ 2γjxej and Γ� ¼ Γme−x

2
e . The

function Iðx; 1Þ grows monotonically from Ið−∞; 1Þ ¼ 0.
This can be seen more clearly from the definition of IðtÞ,
Eq. (2). Hence, for α → 0 we have xe → −∞. This implies,
in the first place, that te − tm → −∞, and, in the second
place, that γ=β ∝ jxej−1 → 0, so Eq. (B16) becomes indeed
an exponential rate in this limit. For large and negative xwe
have Iðx; 1Þ ≃ ffiffiffi

π
p

e−x
2

=2x4, so the equation for xe becomesffiffiffi
π

p
e−x

2
e=2x4e ≃ α3, and using the relation (B15), we obtain

Γ� ≃ 2γ4x4e=πv3 ¼ β4=8πv3. Hence, in this limit Eq. (B16)
coincides with our parametrization (9),

ΓðtÞ ¼ β4

8πv3
eβðt−teÞ: ðB18Þ

In Ref. [126], the GW spectrum was calculated for a
nucleation rate of the form

ΓðtÞ ¼ H4�eβðt−t�Þ−γ
2ðt−t�Þ2 : ðB19Þ

As we discussed in Sec. II, this model is motivated by an
expansion of the instanton action S in powers of t − t�. For
many physical models we have γ ≪ β. Indeed, the usual
approximation is to neglect γ, which leads to the expo-
nential nucleation rate. Notice that, in this parametrization,
t� is the time at which Γ ¼ H4�, while the phase transition
takes place at a later time, which is roughly given by Γ ∼ β4

(in general, β is a few orders of magnitude higher thanH�).
Therefore, a new parametrization is used in [126],

ΓðtÞ ¼ β04eβ0ðt−t0�Þ−γ2ðt−t0�Þ2 : ðB20Þ

Here, t0� is the time at which Γ ¼ β04, and for γ ¼ 0 we have
β0 ¼ β. On the other hand, for γ ≠ 0 the nucleation rate
(B20) is a Gaussian and can be written in the form (B14).
The parametrizations (B20) and (B14) are related by [126]

Γm ¼ β04eβ02=4γ2 ; t0� ¼ tm − β0=2γ2: ðB21Þ

FIG. 11. The nucleation rate Γ=Γm (solid lines) and the fraction of volume remaining in the high-temperature phase fþ (dashed lines)
for v ¼ 1.
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The results of Ref. [126] depend on the ratio γ=β0 and the
velocity v. The relation with our dimensionless parameter
α ¼ γtb is

ffiffiffi
π

p
v3ðγtbÞ3 ¼ ðγ=β0Þ4e−ðβ0=γÞ2=4: ðB22Þ

We remark that, for γ ≪ β, the phase transition com-
pletes in a time of order β−1 well before the time tm is
reached. Therefore, in the relevant time interval we may
expand the exponential e−γ

2ðt−t�Þ2 and obtain a perturbative
expansion in powers of γ=β, where each term of the
expansion is computed using the exponential rate. Thus,
we obtain the lowest correction to the exponential case by
writing Eq. (B16) as

ΓðtÞ ¼ Γ�eβðt−t�Þ½1 − γ2ðt − t�Þ2�: ðB23Þ

Taking t� ¼ te, where now te is the time corresponding to
fþ ¼ 1 for the exponential rate, the first factors in (B23)
are of the form (B18). The dimensionless nucleation rate is
in this case

Γ̃ðτÞ ¼ ðeτ=8πÞ½1 − ðγ=βÞ2τ2� ðB24Þ

(with τ ¼ βt). Hence, the correction to the exponential case
is given by Eqs. (71)–(74), with the polynomials Pi

replaced by −ðγ=βÞ2τ2NPi in Eq. (72), and the same for
Q� in Eq. (74). The integrals in these equations can be done
analytically, and the functions Fi and G� are of the form
(75), where F̃i and G̃ are polynomials which are now more
cumbersome than Eqs. (76)–(79). In any case, computing
this correction to the exponential case may be more useful
than considering a Gaussian rate. We shall investigate this
kind of approximation elsewhere.
In the opposite case, in which the phase transition occurs

around the time tm, the parametrization (B20) in terms of β0 is
no longer useful. In particular, according to Eqs. (B21), we
have t0� → tm only for β0 → 0 or γ → ∞. In practice, we may
have β0 > γ and the bubble nucleation still occur in a time γ−1

around tm, while the reference time t0� may fall outside the

relevant range. Therefore, if the value of γ is calculated by
expanding S around the corresponding temperature T 0�,
the error may be large. Let us consider some specific
examples from physically motivated models. In the case
of strong supercooling considered in Ref. [90] we have
typical values γ=H� ∼ 10;Γm=H4� ∼ 1000. This gives,
according to Eq. (B21), a ratio β0=γ in the range 2–3 and
tm − t0� ≃ γ−1. On the other hand, in the case of reheating, for
the physical model considered in Ref. [134] we have
Γm=H4� ∼ 1017–1018 and γ=H� ∼ 103–104. This gives β0=γ ≃
9–10 and tm−t0�≃5γ−1.

APPENDIX C: THE SHAPE OF THE SPECTRUM

The GW spectrum for both the exponential nucleation
and the simultaneous nucleation were computed in
Ref. [118] for v ¼ 1, and Fig. 3 of that work can be
directly compared with our solid and dashed curves for
v ¼ 1 in Fig. 6. The results are in qualitative agreement for
the shapes of the curves as well as for the relative positions
of the peak for the two models. Quantitatively, though, our
results have order 1 differences with those simulations.
Nevertheless, for the exponential case, our results are in
agreement with more recent simulations [124] as well as
with the semianalytic treatment of Ref. [122].
The numerical results of Ref. [126] for the Gaussian case

were presented with the frequency and amplitude of the
GW spectrum Δ normalized with their peak values ωp, Δp.
In this way, the maximum of the spectra for different model
parameters coincide. The information on the values of ωp

and Δp is lost, but the shape of the spectra can be directly
compared. We consider a similar plot in Fig. 12 for the
two limiting cases of the Gaussian nucleation rate, namely,
α → 0 (exponential rate) and α → ∞ (delta-function rate).
The curves for different values of α fall between these two
cases. Only the range 0.1≲ ω=ωp ≲ 3 was considered in
Ref. [126], due to numerical difficulties of their multidi-
mensional integration. The inset in Fig. 12 shows this range
for a better comparison. It can be appreciated that these
curves are in agreement with those of [126].
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FIG. 12. The spectral shape for the exponential and the delta-function rates, for v ¼ 1 (left) and v ¼ 0.3 (right).
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