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We provide a formula for estimating the redshift and its secular change (redshift drift) in Lemaître-
Tolman-Bondi (LTB) spherically symmetric universes. We compute the scaling of the redshift drift for LTB
models that predict Hubble diagrams indistinguishable from those of the standard cosmological model, the
flat lambda cold dark matter (ΛCDM) model. We show that the redshift drift for these degenerate LTB
models is typically different from that predicted in theΛCDM scenario. We also highlight and discuss some
unconventional redshift-drift signals that arise in LTB universes and give them distinctive features
compared to the standard model. We argue that the redshift drift is a metric observable that allows us to
reduce the degrees of freedom of spherically symmetric models and to make them more predictive and thus
falsifiable.
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I. INTRODUCTION

The cosmological principle states that the Universe is
homogeneous and isotropic on large scales, i.e., invariant
under translations and rotations around each comoving
observer. Long regarded only as a philosophically appeal-
ing, if not logically necessary, convention on the sym-
metries of space [1,2], it has now acquired the most
scientifically legitimate status of a useful working hypoth-
esis that can be questioned and verified by astronomical
data [3–11]. The fact that the standard cosmic metric
deduced from it, the Friedmann-Robertson-Walker line
element (FRW), is still practically indisputable, should
not make us lose sight of the importance of challenging the
standard paradigm and analyzing the cosmological rel-
evance of alternative spacetime proposals.
The phenomenology induced by cosmic inhomogene-

ities and their impact on the interpretation of past light cone
data is still far from being satisfactorily understood [12].
Nonetheless, among the various inhomogeneous space-
times, spherically symmetric and radially inhomogeneous
models of the Universe, the so-called Lemaître-Tolman-
Bondi (LTB) models [13–15] have being investigated in
some details. They are widely regarded as interesting
testing ground for challenging the cosmological principle
or for noncanonical interpretations of cosmological obser-
vations (see [16,17] for a review).
The popularity of the LTB metric models stems from the

fact that they offer an alternative physical explanation for
the Hubble diagram measured via Supernovae Ia (SNIa).
The weakening of light from distant supernovae would be

caused, in this inhomogeneous scenario, by radial spatial
gradients in the rate of expansion and density of matter,
rather than, as currently preferred, by a dark energy
component forcing the second derivative of the cosmic
scale factor aðtÞ to be positive [18–25]. Indeed, since we
have direct access only to data on our light cone, it is
challenging to disentangle temporal evolution in the scale
factor from radial spatial variations. For example, it is
possible to mimic the effect of dark energy by postulating
that we live in a region of the Universe that is underdense
with respect to the average, which extends to the point in
space where the acceleration/deceleration transition takes
place (at redshift z ∼ 0.6). Typically one invokes the
hypothetical existence of a deep void, almost centered
around us, with a radius that, depending on models, can be
as big as the horizon (∼3 Gpc). Interestingly, LTB model-
ing of smaller size “voids” (∼300 Mpc), which are com-
patible with tentative evidences about the existence of a
local under density in the galaxy distribution [26,27], has
been recently advocated as a way to lessen the tension
between local and early epochs measurements of the
present day Hubble parameter H0 [25,28].
From the theoretical side, it has been argued that any

spatially uniform dataset can be misinterpreted by carefully
tuning the functional degrees of freedom of an inhomo-
geneous LTB model [29]. This is ultimately due to the fact
that this spacetime has fewer symmetries than the standard
metric of the Universe. For example, distance-redshift
relations of the standard ΛCDM models can be recon-
structed with arbitrary precision using the freedom in
the specification of the arbitrary boundary conditions of
the LTB models [30]. Even if fine-tuned to reproduce the
ΛCDM Hubble diagram, the LTB models should retain*christian.marinoni@cpt.univ-mrs.fr
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their cosmological predictiveness when distance-indepen-
dent observables are considered. It is thus of some interest
to devise cosmological testing schemes that might resolve
this degeneracy. In this paper we explore if and to what
level this can be achieved by studying the temporal drift of
the redshift [31,32].
The time variation of the redshift is a cosmological

quantity that, being directly measurable from data, gives
access to the evolution of the past light cone in real time
and in a model-independent way [33]. It is thus a crucial
observable for the so-called cosmographic approach to
cosmology [34]. While the physics is straightforward, the
observational implementation of this probe is challenging:
dimensional arguments suggests that the signal is of order
_z ∼HðtÞ and thus very precise and stable observations over
a period of several years are necessary to reach a signal to
noise ratio of unity. Notwithstanding, the Extremely Large
Telescope [35,36], the Square Kilometre Array [37] and the
Canadian Hydrogen Intensity Mapping Experiment [38]
observational facilities promise to reach the necessary
sensitivity.
Redshift drift data, once interpreted in the FRW frame-

work, are expected to provide competitive constraints on
the Hubble constant [39] as well as on some representative
dark energy models [40–47]. The scaling of the redshift
drift has also been investigated in alternative metric
scenarios such as in arbitrary spacetimes [48,49], in
Stephani universes [50], in axially symmetric quasispher-
ical Szekeres models [51] and backreaction models [52].
As far as the LTB model is concerned, the redshift drift has
been calculated numerically by [53], although, as argued in
[54], the intrinsic smallness of the redshift drift effect is a
challenging factor for numerical codes, demanding careful
architecture of non-naïve algorithms. An exact formula
using observational coordinates has been proposed by [4]
although it does not match numerical results, as claimed by
[52]. Here we explore these issues and present an exact
algebraic expression that provides the explicit dependence
of the redshift drift on the structural parameters of the LTB
metric in comoving coordinates.
The paper is organized as follows: in Sec. II, we briefly

review some key features of the LTB cosmological model
and introduce our notations. In Sec. III, we derive an
explicit expression for the redshift of light as a function of
the LTB comoving coordinates, as seen by a an observer
sitting at the center of symmetry of the metric while in
Sec. IV we provide the analytical expressions of its first and
second time variations. Various potential systematic biases
are discussed in Sec. V and applications to a specific LTB
model are shown in Sec. VI. Section VII provides summary
and conclusion.
In the following, we present results in natural units

(c ¼ 1) and we refer to the standard ΛCDM model,
as the flat FRW model which best fits the Planck18
data [55].

II. THE LTB COSMOLOGICAL MODEL

A. Kinematics of light

Universes with radial spatial inhomogeneities can be
charted using spherical coordinates xi ≡ ðχ; θ;ϕÞ that
comove (Ui ≡ dxi=dt ¼ 0) with matter. It is convenient
to set up the spatial origin (xi ¼ 0), the center of symmetry,
at the observer position, and to choose the time coordinate
(x0 ≡ t) so that it measures the proper time of the comoving
matter particles. The line element takes the form

ds2 ¼ dt2 − α2ðt; χÞdχ2 − A2ðt; χÞðdθ2 þ sin2 θdϕ2Þ; ð1Þ

and we will refer to the two degrees of freedom α and A as
the radial and angular scale factor, respectively.
The geodesic motion of massive and massless particles

for the central LTB observer is given by

dkμ

dλ
þ Γμ

νρkνkρ ¼ 0; ð2Þ

where μ ¼ 0, 1, 2, 3, kμ ¼ dxμ=dλ is the tangent to the null
geodesics and λ ∈ R is an affine parameter that describes
the particles path. Because of the spherical symmetry, the
geodesics are entirely determined by only two equations

dk0

dλ
¼ −α _αðk1Þ2; ð3Þ

dk1

dλ
¼ −

α0

α
ðk1Þ2 − 2

_α

α
k0k1; ð4Þ

where the overdot and a prime indicate a partial derivative
with respect to the coordinates t and χ, respectively. Null
geodesics are further characterized by the constraint
kμkμ ¼ 0, which supplies the additional condition

k0 ¼ −αk1; ð5Þ

where the sign convention stems from the hypothesis that the
affine parameter and the radial coordinate χ are chosen to
increases in the opposite direction of cosmic time, i.e., the
equations are integrated backward on the past light cone of
the observer. Moreover, since the affine parameter is deter-
mined up to a linear transformation, without loss of general-
ity we set λ ¼ 0 at the observer position and set as boundary
condition k0ðλ ¼ 0Þ ¼ −1 in the chosen length units.

B. Dynamics of dust

The evolution of α and A follows from imposing that the
metric evolves in space and time according to the Einstein’s
field equations (EFE). For the purpose of our analysis,
which deals with low-redshift phenomena, we will assume
that the Universe is in a dust dominated phase. Therefore
the stress energy tensor describing the matter distribution,

ROMAIN CODUR and CHRISTIAN MARINONI PHYS. REV. D 104, 123531 (2021)

123531-2



modeled as a perfect fluid, is Tμν ¼ ρmðt; χÞUμUν where
Uμ ¼ δμ0 are the components of the 4-velocity field of the
fluid with respect to the chosen coordinate system and ρ the
invariant matter density seen by a comoving observer.
The EFE, supplemented by the cosmological member Λ,

remove one metric degrees of freedom by imposing the
constraint

α ¼ A0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kðχÞ

p
; ð6Þ

where kðχÞ < 1 is an arbitrary function of the radial
coordinate χ only, and a prime denotes a derivative with
respect to this coordinate. This function describes the
position dependent spatial curvature of the t ¼ const hyper-
surfaces. The function A is determined via the equation

�
_A
A

�2

þ k
A2

¼ 8πG
3

ðρ̃þ ρΛÞ; ð7Þ

where ρΛ is the nondilutive energy density associated with
the cosmological constant Λ and where we have defined the
flat average density of matter

ρ̃ðt; χÞ ¼ 3

R χ
0 ρmA

2A0dχ
A3

ð8Þ

as the nonlocal quantity satisfying the continuity equation
(see Appendix A for details)

_̃ρþ 3
_A
A
ρ̃ ¼ 0: ð9Þ

This quantity must not be conceptually confused with (and it
is in general quantitatively different from) the actual average
density inside a shell of comoving coordinate χ. Indeed, the
averaging procedure is not carried out over the (spherical)
volume element dV ¼ 4πA2A0ð1− kðχÞÞ−1=2dχ. Anyway, as
the name suggests, the flat and the actual average densities of
matter coincide in LTB models with kðχÞ ¼ 0. Moreover, in
the absence of inhomogeneities, when the average density
coincides with the local one, one finds that ρ̃ðtÞ ¼ ρmðtÞ. By
inverting Eq. (8) one also finds the expression of the local
matter density as a function of ρ̃

ρm ¼ ρ̃þ ρ̃0
A
3A0 : ð10Þ

The advantage of introducing ρ̃ is that it brings the LTB
formulas into closer formal analogy with those of the
standard model of cosmology. This is shown explicitly by
Eqs. (7), (9) or (11) and is also evident by inspecting the
acceleration equation, which, in this notation, reads simply

Ä
A
¼ −

4

3
πGðρ̃ − 2ρΛÞ:

Finally, note that if there is no shell crossing during the
motion of the spherically symmetric matter inhomogeneity,
the integral on the numerator of the rhs of Eq. (8) is time
independent.
Since Eq. (7) is valid at any time, by evaluating it, for

example, at present time t0 we can determine kðχÞ as

kðχÞ ¼ H0ðχÞ2A0ðχÞ2ðΩm0ðχÞ þ ΩΛ0ðχÞ − 1Þ;

where H0ðχÞ≡Hðt0; χÞ and Ωm0ðχÞ≡Ωmðt0; χÞ are the
present day value of the (transverse) expansion rate

Hðt; χÞ≡ _A
A

and of the density parameter

Ωmðt; χÞ≡ 8πG
3H2

ρ̃; ð11Þ

respectively. The curvature function kðχÞ rests, in a
degenerate way, on two unknown gauge functions H0ðχÞ
and A0 ≡ Aðt0; χÞ. We can conveniently remove this
degeneracy by arbitrarily fixing the angular scale A0ðχÞ.
This must be a smooth and invertible positive function, and
in what follows we choose the conventional gauge of the
literature and set A0ðχÞ ¼ χ. In other terms, we label each
dust shell by means of its present day areal radius. Once a
given matter density ρm [or equivalently Ωm0ðχÞ] and a
present day transverse expansion rate H0ðχÞ are chosen,
Eq. (7) can be solved to determine the remaining degree of
freedom Aðt; χÞ.

III. REDSHIFT

The redshift is defined in terms of the photon wave
vector as [56]

1þ z ¼ ðuαkαÞe
ðuαkαÞ0

; ð12Þ

where the suffix e and 0 indicate quantities that are
computed at emission and present time, respectively. The
wave vector components satisfy kαkα ¼ 0 and k0, and the
physical energy of the photon depends at most on t and χ
because of the rotational symmetries of the line element.
We thus deduce that

1þ z ¼ k0ðt; χÞ
k0ðt0; 0Þ

; ð13Þ

where we have set χe ¼ χ, χ0 ¼ 0 and te ¼ t. The spatial
and temporal evolution of the photon energy is accounted
for by the geodesic equation for massless particles (3),
which can be recast as the following partial differential
equation
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∂ðαk0Þ
∂t ¼ ∂k0

∂χ : ð14Þ

By changing variable Uðt; χÞ ¼ αðt; χÞk0ðt; χÞ and suppos-
ing that it exists a characteristic curve t ¼ tðχÞ on which
the function UðtðχÞ; χÞ satisfy an ordinary differential
equation, Eq. (14) becomes

dU
dχ

−
α0

α
U ¼ ∂U

∂t
�
αþ dt

dχ

�
: ð15Þ

The equation is satisfied if

dt
dχ

¼ −αðt; χÞ; ð16Þ

which shows that the characteristic curve is indeed the null
geodesic of the LTB metric, and

dU
dχ

¼ α0

α
U: ð17Þ

It follows that the general solution, which depends on an
arbitrary function g, fixed by the initial data, is

Uðt; χÞ ¼ g

�
χ þ

Z
dt
α

�
e
R

α0
αdχ ;

and therefore the redshift is

1þ z ¼ αðt0; 0Þ
αðtðχÞ; χÞ e

R
χ

0

α0
αdχ ; ð18Þ

where the integral is performed along the photon path t ¼
tðχ; t0Þ solution of (16).
The previous formula makes explicit the fact that the

redshift depends not only on the time of emission and
reception of the photon but also on the specific geodesic
path of the photon t ¼ tðχÞ. In the limiting case of a FRW
model (α ¼ a and α0 ¼ 0) the redshift expression con-
verges to the standard model one 1þ z ¼ aðtÞ=aðt0Þ, with
the change in frequency resulting from the relative motion
of freely falling matter. In the LTB model, instead, the
varying gravitational potential between the observer and
the emitter also contributes to the relative change in the
photon frequency. As a result the redshift depends on
the integrated variation of the gravitational field along the
photon null geodesics.
Expression (18) shows that, under particular circum-

stances, the redshift could be a nonmonotonic function of
the look-back time or of the radial coordinate χ. Photons
emitted at two different radial positions, or two different
times, might be characterized by the same redshift. Indeed,
the argument of the integral is not necessarily positive, and
indeed it may change sign when the radial scale factor α is a

nonmonotonic function of χ (while still being monotonic
in the t variable). This might happen even if the scale factor
A is a monotonic function of both temporal and radial
coordinates. A distinctive consequence of this phenom-
enology will be presented in Sec. VI.
For small physical separations δχ between the light

source and the receiver, a series expansion to leading order
of (18) results in a formula similar to the Hubble-Lemaître
expansion law, i.e.,

z ≈
_α0
α0

r; ð19Þ

where r≡ α0δχ. It is straightforward to show that
_α0=α0 ¼ _A0=A0, however for t ≠ t0 or χ ≠ 0 the ratio
_α=α does not coincide with H ¼ _A=A, which encapsulates
information on how different shells of matter moves under
the action of gravity. To emphasize this we define the
longitudinal Hubble function as

Hk ≡ _α

α
:

Finally, by taking total derivatives of (18) with respect
the t and χ, one recovers standard expressions quantifying
how the redshift change when either the photon-flight
time or the comoving coordinate interval between source
and receiver vary. The equations that specify the past null
cone are

dz
dt

¼ −ð1þ zÞHk; ð20Þ

dz
dχ

¼ ð1þ zÞαHk; ð21Þ

respectively. These are the pair of coupled differential
equations that determine the relations between the coor-
dinates and the redshift, i.e., tðzÞ and rðzÞ.

IV. REDSHIFT DRIFT

Now consider a pair of photons that are both emitted
and received by the same comoving objects at radial
coordinates χ and χ0 ¼ 0, respectively. Suppose that
they are emitted(/received) at two instants t and t þ
δtð=t0 and t0 þ δt0Þ, which are separated by a time interval
over which cosmological changes cannot be anymore
overlooked (typically on timescales of the order of a
few years).
Formula (18) tells us that the redshift of a photon is

formally a functional z ¼ zðt0; t; χðtÞÞ which depends on
the specific geodesic path of the photon χ ¼ χðtÞ, on top of
the integration boundaries t and t0. At the same coordinate
time t0, two different photons, emitted at two different times
by the same comoving source, will be located at different
radial coordinates χ0 and χ0 þ δχ. If these two photons,
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emitted with a time delay δt are detected by the comoving
observer with a time lag δt0, then the difference in their
redshifts can be determined by computing the following
variational quantity

δz ¼ zðt0 þ δt0; tþ δt; χðtÞ þ δχðtÞÞ − zðt0; t; χðtÞÞ;

or, in first order approximation, as

δz ¼ ∂z
∂t δtþ

∂z
∂t0 δt0 þ ð1þ zÞ

Z
t0

t
dt0δχðt0Þ δz

δχðt0Þ ; ð22Þ

where δz=δχðt0Þ is the functional derivative of the redshift
which, using (18), evaluates to

δz
δχðt0Þ ¼ ð1þ zÞ∂χHkðt0; χðt0ÞÞ: ð23Þ

Since, by definition, time dilations are related as (see
Appendix B for a detailed discussion)

δt0
δt

¼ ð1þ zÞ ð24Þ

by plugging the expressions (18) and (24) into Eq. (22) we
obtain

δz
δt0

¼ ð1þ zÞ
Z

t0

t

∂χHkðt0; χðt0ÞÞdt0
αðt0; χðt0ÞÞð1þ zðt0; χðt0ÞÞÞ

þHkð0; t0Þð1þ zÞ −HkðχðzÞ; tðzÞÞ; ð25Þ

where tðzÞ and χðzÞ are calculated along the ray path of the
photon. As for the redshift [see Eq. (18)], the redshift drift
is also independent from the transverse scale factor A and
uniquely depends on the longitudinal Hubble function.
Moreover, note that Eq. (25) reduces to the standard FRW
formula when radial inhomogeneities vanish.
Up to this point, the discussion has relied solely on

kinematic concepts, with no reference at all to the dynami-
cal evolution of the metric. Indeed, Eq. (25) can be used to
predict redshift drift in any spherically symmetrical space-
time regardless of whether its evolution satisfies Einstein’s
equations. However, if the metric changes in time accord-
ing to the standard field equations of general relativity (see
Sec. II B), the degrees of freedom of the LTB metric can be
reduced. The price to pay is that the redshift drift becomes
model dependent. The gain is that its redshift dependence
can be easily predicted since the redshift drift becomes a
function of the transverse expansion rate H. The model-
dependent formula for the redshift drift can be obtained by
simply replacing α ¼ A0ðχÞ and

Hk ¼ H

�
1þ ðlogHÞ0

ðlogAÞ0
�

in (25).
The cosmological relevance of the rate of change of

the redshift drift itself, i.e., the next order time derivative of
the redshift drift, has been pointed out by [57,44] have
provided illustrations of the power of this observable
in discriminating different cosmological models. These
authors also emphasize that such a measurement is well
within the reach of the Square Kilometre Array Phase 2
array as well as that of Extremely Large Telescope-HIRES
(albeit, in this case, with less sensitivity). A complementary
goal of this article is therefore also to predict the amplitude
and scaling of the second time derivative of the redshift
within the framework of LTB cosmologies.
By proceeding as before, and taking the variation of the

redshift drift formula, we can predict the amplitude and
scaling of the second time derivative of the redshift within
the framework of LTB cosmologies. The rate at which the
drift changes is given by

δ2z
δt20

¼ ð1þ zÞ
�
dHk
dt0

þ g0 þ
Z

t0

t

∂χg

αð1þ zÞ dt
0
�

þ ð1þ zÞ−1
��

δz
δt0

�
2

−Hk

�
Hk0 þ

δz
δt0

�
þ dHk

dt

�
−Hk0Hk; ð26Þ

where

gðt0; t; χðtÞÞ ¼
∂χHkðt; χðtÞÞdt

αðt; χðtÞÞð1þ zðt0; t; χðtÞÞÞ
;

dHk
dt

¼ ∂Hk
∂t þ ∂Hk

∂χ
dχ
dt0

¼ _Hk −
H0

k
α

;

and where a suffix 0 means that the quantities are evaluated
at χ ¼ 0 at present time t0.
Again, in the limit in which the relevant quantities do not

depend on the radial coordinate χ, the standard FRW
formula

δ2z
δt20

¼ _H0ð1þ zÞ þH2
0ð1þ zÞ −H0H −

_H
1þ z

is recovered.

V. SYSTEMATIC EFFECTS

Here we investigate potential systematics that might
perturb the redshift drift measurement. On top of numerical
artifacts that arise because of the different approximation
schemes with which the redshift drift is defined and
computed, we also analyze the impact of physical effects,
such as proper motions of the sources or the observer.
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A. Redshift drift definition

There are three possible way in which the redshift drift
can be defined. The definition that most closely captures
the essence of the phenomenon is in Sec. IV where the
redshift is computed using the formula (18) [and the time
dilation using Eq. (24)]. No approximations are involved in
this definition that we refer to as method 1.
A second way of defining the redshift drift is via the linear

approximation Eq. (22) applied to the integral solution (18).
This approach, here called method 2, captures leading order
contributions to the time change of the redshift, and leads to
the explicit formula (25). Conceptually, this approach differs
from the approximation scheme, applied almost ubiquitously
in literature, which consists in linearizing the geodesic
equations [cf. Eqs. (20) and (21)] and computing, numeri-
cally, the redshift drift. According to this last strategy
(method 3), the amplitude of the drift follows from solving
the approximated differential equation

d
dλ

δzðλÞ ¼ ∂χ
∂λ _αδzþ ð1þ zÞα̈δzðλÞ ð27Þ

with the initial condition δzð0Þ ¼ 0 along the geodesic path
of the photon χðλÞ, tðλÞ (see Appendix C).
Given the explicit solution for the redshift in LTB

cosmologies given in Eq. (18), we are in measure to
compare all these definitions, check their mutual consis-
tency and thus the effectiveness of the approximations
involved. The results of applying these schemes to the
ΛLTB model is shown in Fig. 1.
Errors due to the linear approximation involved in both

methods 2 and 3 as well as the numerical imprecision in
computing the geodesics path of the photons [via Eqs. (20)

and (21)] are negligible, with the relative imprecision of
both methods 2 and 3 with respect to method 1 of order
∼5 × 10−5 over all the redshift range explored. The
“theoretical” noise is statistically insignificant, if compared
to the “observational” imprecisions expected for the mea-
surements of the redshift drift signal, and there is no need to
devise a more refined analytical way for computing the
redshift drift nor a more stable numerical way to solve for
the geodesics in LTB cosmologies.
The relative imprecision in computing the redshift drift

according to methods 2 and 3 is even smaller, of order
∼10−7. This insignificant residual discrepancy results from
the linearization procedure being applied to the differential
equations before integration (method 3) or directly to the
integral expression for the redshift (method 2).
As was originally noted by [52], the analytic expression

for the redshift drift obtained by [4] [see their Eq. (9)]
appears to differ from the numerical results predicted by
method 3, although both computational schemes correctly
reproduce the standard model predictions in the FRW limit.
This discrepancy is explicitly evident if we compare our
analytical expression [cf. Eq. (25)] with the redshift drift
expression given in Eq. (2.28) of [58]. We illustrate the
amplitude of the mismatch for two different LTB models,
the MLTB and the ΛLTB cosmologies (described in
Sec. VI) in Fig. 2. While [52] suggests that the disagree-
ment might be caused by a different definition of the
redshift drift observable, this in reality results from [4]
estimating the redshift drift a simple differential, instead, as
we did, as functional derivative.

B. Local peculiar velocity drift

The dominant correction to the redshift drift signal arises
from the time change of the peculiar velocity of galaxies in
the time lag δt0 between two redshift measurements. Since
the peculiar velocities of the various cosmic sources are, on
large cosmic scales, uncorrelated, they do not contribute to
the signal if not in increasing its variance. Indeed, it was
shown by [59], using linear perturbation theory of the
standard model of cosmology, that stochastic noise does not
to contribute at a level greater than 0.1% for z ≤ 5.
However [60] showed, on the characteristic timescale of
the redshift drift (H0), the peculiar velocity of the observer
(the Local Group center) change due to the competing
effect of global cosmic expansion and local gravitational
pull of surrounding cosmic mass structures. We here
quantify whether the systematic drift of the observer’s
velocity, computed in a LTB spacetime, has any measurable
effect on the redshift drift.
If the observer moves (Uiðt0; χ0Þ ≠ 0), then the observed

redshift zo of a comoving source is related to the cosmo-
logical redshift z as [cf. Eq. (12)]

1þ zo ¼ 1þ z
1þ β · n

;

1 2 3 4 5
–0.00010

–0.00005

0.00000

0.00005

0.00010

z

R
el

at
iv

e
E

rr
or

FIG. 1. Relative error in the redshift drift estimated according to
models 1 and 2. The relative error is calculated as (model 1—
model 2)/(model 2). We have assumed the ΛLTB universe as
reference cosmology (see Sec. VI).
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where βi ¼ ffiffiffiffiffiffiffiffijgiij
p

Ui is the physical (peculiar) velocity of
the observer nd n is the line of sight direction. A leading
order, and setting β ¼ αdχ=dt,

δz
δt

¼ δz
δt0

− _β

since the photons propagates along the radial coordinate χ
for an observer sitting at the center of symmetry of the LTB
metric (we neglect higher order terms arising from the fact
that the observer will move out of the central position due
to its peculiar velocity). We can estimate the additional
dipole modulation of the redshift drift signal by computing
the radial component of the acceleration of the central
observer in a LTB metric. From Eqs. (3) and (4) we obtain

_βχ ¼ −Hkβð1 − β2χÞ −
α0

α2
β2χ :

If the LTBmetric evolves according to the EFE, then α0 ¼ 0
so that the acceleration vector is proportional to the velocity
one. At leading order, we thus conclude that

_βχ ≈ H0β

�
1þ ðlogHÞ0

ðlogAÞ0
����
0

�
:

For relevant models (in which the difference between the
longitudinal and the transverse Hubble function is not
greater than 10% as for example the models discussed in
Sec. VI, and in which the central observer velocity is not
greater than ∼700 km=s, the standard model velocity of
the Local Group of galaxies with respect to the cosmic
microwave background (CMB), this systematic effect is not
expected to exceed 1% in the direction of motion of the
observer. It is interesting to note that even if future redshift
drift data were to reach a comparable level of accuracy, the
dipolar character of the contaminating signal would facili-
tate its identification and subtraction.

VI. APPLICATION WITH EXPLICIT
LTB MODELS

In this section, we review some popular LTB models
published in the literature that claim to reproduce the
predictions of the ΛCDM model. We premise that we are
not interested in their physical feasibility or cosmological
soundness but in their practical utility as toy models in
order to highlight the potential of the redshift drift obser-
vable in resolving some of the degeneracies that plague
LTB cosmologies when compared to observational data.
The first set of models are those that were shown by [20]

to reproduce the Hubble diagram of supernovae. The first
model (we call it MLTB) describes a LTB universe which is
comprised only of matter [Ωm0ðχÞ ¼ 1], while the second
one (ΛLTB) incorporates the contribution of the cosmo-
logical constant Λ and satisfies to the flatness constraint
ΩmðχÞ þ ΩΛðχÞ ¼ 1. The rationale for choosing them is
that the spacetime evolution of the scale factor Aðt; χÞ can
be computed analytically, making the results more trans-
parent. By integrating Eq. (7) for Ωm þ ΩΛ ¼ 1 we obtain
the following expression for the scale factor:

A
A0

¼
�
cosh

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωm;0

p
H0ðt − t0Þ

�

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωm;0

p sinh

�
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωm;0

p
H0ðt − t0Þ

��
2=3

;

ð28Þ

which reduces to A=A0 ¼ ½1þ 3=2H0ðχÞðt − t0Þ�2=3 in the
case of the MLTB model.
Both models are described by the same present day

transverse expansion rate profile

H0ðχÞ ¼ H0ð∞Þ þ ΔHe−χ=χ0 ð29Þ

with parameters fine tuned to fit the Hubble diagram
of SNIa data (see Fig. 3). Specifically, the MLTB
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FIG. 2. Redshift drift estimated using Eq. (25) (solid line) and
using Eq. (2.28) of [58] (dashed line) for two different LTB
scenarios: the MLTB model (left panel) and the ΛLTB model
(right panel) (see Sec. VI).
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model is characterized by Hð∞Þ ¼ 48.7 km=s=Mpc,
ΔH ¼ 16.8 km=s=Mpc and χ0 ¼ 1400 Mpc, while the
ΛLTB scenario has best fitting parameters H0ð∞Þ ¼
58 km=s=Mpc, ΔH ¼ 8 km=s=Mpc, χ0 ¼ 600 Mpc and
ΩΛ0ð0Þ ¼ 0.33.
The second set includes more sophisticated models that

are tuned to agree with multiple observational probes, not
just the Hubble diagram of SNIa. They are also meant to
satisfy theoretical stability constraints. For example the
simple inhomogeneous models MLTB and ΛLTB share the
assumption that the Universe has an inhomogeneous big
bang, i.e., it came into being at different times at different
positions χ. However, variations in the cosmic age function
can be related to the decaying modes in the theory of linear
perturbations [61] which, in turn, would imply the exist-
ence of large fluctuations at remote epochs, in contradiction
with the remarkable homogeneity of the CMB spectrum.
On the contrary, it is much more constructive, from a
physical point of view, to assume that spherical inhomo-
geneities develop and grow over time, due to gravitational
instabilities, in an otherwise uniform Universe. Therefore,
we would like to consider scenarios in which a spherically
symmetric inhomogeneity is asymptotically embedded in

the uniform FRW spacetime, i.e., converge to the standard
metric of the Universe at large distances and at early times.
This is achieved by considering models in which the
present day reduced matter density parameter is

Ωm0ðχÞ ¼ Ωs
m0ð1þ δΩÞ; ð30Þ

where Ωs
m0 is the reduced density of the embedding

standard flat ΛCDM model. We thus extend the set to
include the constrained Garcia-Bellido & Haugbolle
(GBH) model [21]

δΩ ¼ δv
1 − tanhðχ−χs

2Δχs
Þ

1þ tanhð χs
2Δχs

Þ ; ð31Þ

where δv is the relative difference between the reduced
density parameter at the center of the void and the asymptotic
FRWvalue χs is the typical size of thevoid, and theparameter
Δχs controls the steepness of the transition between the
interior and exterior of the underdensity.When implemented
with carefully tuned parameters, this model is in agreement
with the Hubble diagram of SNIa, the Baryon Acoustic
Oscillation (BAO), the CMB and also the age of old high
redshift objects [62]. For the purposes of the present analysis,
we adopt the best parameters fitted by [63] (Ωs

m0 ¼ 1;
δv ¼ −0.88; χs ¼ 3.72 Gpc, Δχs ¼ 1.68 Gpc).
Additionally, we also consider the Gaussian void

model [64],

δΩ ¼ δve
−ð χχsÞ2 ; ð32Þ

where the parameters have the same physical interpretation
as in the previous case. We implement this void profile
by setting Ωs

m0 ¼ 1; δv ¼ −0.81; χs ¼ 5.04 Gpc, which,
according to [63], provide an equally satisfactory fit to
the SNIa, BAO and CMB data. For both the constrained
GBH and the Gaussian LTB models the spatial hypersur-
face at the big bang does not depend on the radial
coordinate χ, meaning that the radial scaling of the present
day transverse expansion rate is fixed by the relation

H0ðχÞ ¼
H0

1 −Ωm0

"
1 −

Ωm0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωm0

p sinh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −Ωm0

Ωm0

s #
;

where H0 is chose so that the age of the Universe is
13.8 Gyrs. For both these matter þ curvature models the
time and spatial evolution of the transverse scale factor is
given by the parametric equations

Aðη; χÞ ¼ χ
Ωm0

1 −Ωm0

ðcosh η − 1Þ;

tðη; χÞ ¼ 1

H0ðχÞ
Ωm0

2ð1 −Ωm0Þ3=2
ðsinh η − ηÞ:

FIG. 3. Upper: distance modulus calculated in ΛCDM (solid
line),ΛLTB (dashed line) and in MLTB (dotted line) respectively.
Lower: redshift drift expected in the models presented in the
upper panel. The 1σ error bars and the data range are those
predicted for CODEX observations over a 13-year time span.
Data points and error are taken from [54].
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The resulting void density profiles, obtained by using
Eqs. (8) and (10), are shown in the upper panel of Fig. 4.

A. Discussion

The luminosity distance of an object at redshift z is given
by (see for example [65])

dLðzÞ ¼ ð1þ zÞ2AðχðzÞ; tðzÞÞ; ð33Þ

where χðzÞ and tðzÞ are computed along the null geodesics
of the photon using Eqs. (20) and (21). The resulting
distance modulus μ as a function of the redshift for the
ΛCDM model and the MLTB and ΛLTB models is shown
in the upper panel of Fig. 3. By construction they do not
differ appreciably. Indeed, because of the additional func-
tional degrees of freedom induced by the spatial depend-
ence of the transverse expansion rate, the Hubble diagrams
of many physically distinctive inhomogeneous models are
degenerate. This is mostly the consequence of this observ-
able being an integral quantity of the redshift. If instead
of the distance to cosmic objects we consider the time
change of their redshift, we can restore some degree of

predictability. This is shown on the bottom panel of Fig. 3
where the redshift drift for these very same three cosmo-
logical models is plotted as a function of redshift. LTB
models whose magnitude-redshift predictions are degen-
erate with the standard Hubble diagram can be easily
distinguished because they predict very different behaviors
for the redshift drift. By inspecting Fig. 3 one can also
appreciate how the data expected from future observational
projects (the CODEX survey in this case) have the power
necessary to discriminate not only the standard model from
more exotic LTB-type scenarios but also between various
LTB models that would otherwise be indistinguishable on
the basis of their Hubble diagram.
There are also LTB models that are compatible with a

wider range of data, particularly the BAO and CMB
measurements, which, in addition to predicting the same
luminosity distance, are also characterized by void density
profiles that are observationally indistinguishable. This is
the case, for example, of the constrained GBH model and
the Gaussian model shown in the top panel of Fig. 4.
Interestingly, also these models predict redshift drift signals
that are significantly different not only from the expect-
ations of the standard ΛCDM model, but also from each
other.
One can better appreciate the specificity of this phe-

nomenon by contrasting it to what happens in the standard
model. Even in a homogeneous and isotropic spatial
background, two different models of dark energy (one
for example in which the acceleration of the scale factor of
the metric is contributed by the cosmological constant and
another in which it originates from the “negative” pressure
exerted by a scalar field) can be fine-tuned to reproduce the
same Hubble diagram of SNIa (see for example [66]).
However, the redshift drift cannot disentangle these two
different physical models since the predicted amplitude will
also be degenerate.
The ability of the redshift drift probe in discriminating

different inhomogeneous LTBmodels relies entirely on two
essential features. First, although LTB models have a large
number of functional degrees of freedom, at most only a
subset of structural functions characterizing different void
models can be indistinguishable. In particular, the various
models considered in our analysis all exhibit the same
spatial and temporal dependence of the transverse expan-
sion rate H, although the scaling of the longitudinal
expansion rate Hk turns out to be very different and model
dependent. For example, the maximum amplitude of the
ratio H=Hk, which occurs at about χ ∼ χs, is significantly
larger ð∼20%Þ in the constrained GBH model than in the
Gaussian model. Consequently, observables such as red-
shift drift, which are sensitive to multiple structural
parameters [in particular to Hkðt; χÞ; Hð0; tÞ, and αðt; χÞ
as can be seen in Eq. (25)] and not only to the transverse
expansion rate, as in the case of the luminosity distance, can
be effectively used to singularize LTBmodels. In this sense,

FIG. 4. Upper: the spatial scaling of the present day physical
matter density profile ρ0ðχÞ (in units M⊙Mpc−3) for the con-
strained GBH (red dotted line) and the Gaussian (black dashed
line) void models. Lower: comparison of the redshift drift
expected in the standard ΛCDM scenario (blue solid line) and
in the above LTB models which best fit SNIa, BAO and CMB
data. Data points and 1σ error are the same as in Fig. 3.
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the Hubble diagram, like any observable sensitive to a
limited set of LTB structural functions, is a poor diagnos-
tic tool.
In addition, the functional nature of the redshift drift in

spherically symmetric spaces is a key feature that facilitates
model discrimination. This observable does not depend
only on the redshift of the emitting source, as in the
standard model of cosmology, but also on the geodesics
taken by the photons to reach the observer. The path
integral that goes into its definition [cf. (25)] makes the
redshift drift in spherically symmetric spaces a nonlocal
and explicitly model-dependent quantity. For example, fine
tuning the scaling of H in different LTB models to
reproduce the luminosity distance comes at the price of
making the geodesic path of photon to vary from model to
model. Observable as the redshift drift, being sensitive to
the entire geodetic history of the signal, are therefore
optimal tools for distinguishing various inhomogeneous
patterns.
The nonlocal nature of the redshift drift in LTB cosmol-

ogies is responsible of some interesting phenomenology.
The behavior of the redshift drift at low z follows from
taking the lowest order terms of the series expansion of
Eq. (25) around t ¼ t0

δz
δt0

≈ −
H0

k
_α

����
0

δt0 þHkð0; t0Þz − _Hkð0; t0Þδt0 −H0ð0; t0Þδχ;

which reduces to

δz
δt0

≈
α̈0
_α0
z ¼ −

1

2
H0ð0ÞzðΩm0ð0Þ − 2ΩΛ0

ð0ÞÞ: ð34Þ

According to the above equation, the redshift of a low-z
source decreases in time in a purely matter-dominated LTB
model. In other terms, if dust is the only source of gravity,
the redshift drift cannot be positive for objects close to the
center of symmetry. In this respect, the matter-dominated
LTB models behave as a homogeneous and isotropic
Universe filled with dust. However, contrary to standard
model results, the redshift drift might eventually becomes
positive at higher redshifts. This effect is shown in Fig. 5
together with the peculiar radial matter density profile that
generates it. The phenomenon is induced by the non-
monotonic scaling of αðχÞ which causes the functions Hk
and ∂χHk to change sign along the photon geodesc. In this
specific case Hk becomes progressively more negative as
the radial coordinate of the source increase, forcing the sign
of the redshift drift to turn positive [see Eq. (25)].
Other unconventional effects characterizes the redshift

drift in LTB cosmologies. One can engineer the shape of
H0ðχÞ such that redshift itself is no longer a monotonic
function of the spacetime coordinates t and χ, or, which
is equivalent, the time and radial coordinates are no
longer single valued functions of the redshift along the

null-geodesic path. One can exploit this functional degree
of freedom associated to H0ðχÞ, for example, to design
models where the redshift of very distant objects turn
negative. More intriguingly, one can also devise physical
models, i.e., LTB models with a strictly non-negative
matter density function ρm, where objects at different radial
coordinates χ (thus emitting the photons at different
epochs) have the same redshift and, thus, the same radial
scale factor AðtðzÞ; χðzÞ, or, equivalently, the same distance
modulus μðzÞ. This peculiar phenomenon is shown in
Fig. 6, where the Hubble diagram is plotted as a function
of redshift. As the photons coming from these sources are
not following the same geodesics path, the Hubble diagram

FIG. 5. Redshift drift in a cosmological model where the
redshift is a nonmonotonic function of the radial coordinate χ.
Upper: matter density profile. Lower: redshift drift.

ROMAIN CODUR and CHRISTIAN MARINONI PHYS. REV. D 104, 123531 (2021)

123531-10



degeneracy is broken when the redshift drift is analyzed.
Indeed, since the redshift drift is a nonlocal, path dependent
function, two different values of the redshift drift can

correspond to the same redshift value. In this context,
means that the density matter is strictly non-negative
function.

VII. CONCLUSION

Providing evidences of cosmological changes on human
timescales [60,67,68] is challenging. While the physics
is transparent and fascinating, the signal is characteristi-
cally weak. Nevertheless, measurements of the redshift
drift are certainly within the reach of large telescopes in
the next 20 years [69]. It is thus worthwhile exploring the
possibilities for using this observable to understand the
cosmological impact of inhomogeneities in the large-scale
structure of the Universe.
In this context, our goal was to provide an analytical

formula for calculating the redshift drift in spherically
symmetric spaces. As a result, we have highlighted the
functional character of this probe, a quantity that depends
not only on the time instants at which photons from a
source are emitted and received, but also on the null
geodesics traveled by the photons to reach the observer.
The nonlocal nature of the redshift drift in spherically

symmetric spaces is at the origin of some peculiar phe-
nomena. Arguably, the most interesting is the possibility of
disentangling inhomogeneous models predicting the same
Hubble diagram. Since the LTB spacetime has fewer
symmetries than the standard metric of the Universe, the
distance-redshift relation of the standard ΛCDMmodel can
be reproduced with arbitrary precision using, for example,
the freedom in the specification of the transverse expansion
rate function H0ðχÞ. Even more maliciously, various
inhomogeneous models, characterized by widely different
structural parameters, predict distance moduli so similar
that they resist the resolving power of data.
We have shown that the redshift drift has the potential to

break this degeneracies and restore some predictive power
to LTB models. This is important if we consider that the
linear perturbation theory of LTB cosmological models,
because of the technicalities it implies, is still in its infancy
and that observable features of the large-scale structure of
the Universe, such as peculiar velocities, growth rates or
power spectra matter density fluctuations etc., cannot be
effectively used to resolve degeneracies appearing in the
background sector of the theory.
One possible way to progress further and complete the

study would be to evaluate the consequences of moving the
observer’s position away from the center of symmetry and
quantify the dependence of the redshift drift on the specific
off-centric location. We plan to expand on these issues in a
forthcoming paper.
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APPENDIX A: EVOLUTION OF THE SCALE
FACTORS OF THE LTB METRIC

The Einstein field equations for a LTB spacetime con-
taining a nonrelativistic perfect fluid, i.e., dust with an
equation of state (p ¼ 0), and a nondilutive dark energy
component ρΛ ¼ const are

1

A2
þ
�
_A
A

�2

þ 2
A0α0

Aα3
− 2

A00

Aα2
þ 2

_α _A
Aα

−
�
A0

Aα

�
2

¼ 8πGðρm þ ρΛÞ; ðA1Þ

_A0 ¼ A0 _α
α
; ðA2Þ

1

A2
þ 2

Ä
A
þ
�
_A
A

�2

−
�
A0

Aα

�
2

¼ 8πGρΛ; ðA3Þ

Ä
A
−

A00

Aα2
þ

_A _α

Aα
þ A0α0

Aα3
þ α̈

α
¼ 8πGρΛ: ðA4Þ

Equation (A2) can be integrated with respect to t
resulting in

αðχ; tÞ ¼ CðχÞA0ðχ; tÞ; ðA5Þ

where C is a function of χ only which, being arbitrary,
we redefine as CðχÞ ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − kðχÞp

. Once Eq. (A5) is
inserted in (A1), (A3) and (A4), the system reduces to the
two independent equations:

_A2 þ k
A2

þ 2 _A _A0 þ k0

AA0 ¼ 8πGðρm þ ρΛÞ ðA6Þ

and

_A2 þ 2AÄþ k
A2

¼ 8πGρΛ: ðA7Þ

We can further simplify by multiplying Eq. (A7) by A2 _A
and integrating it over time. We find

A _A2 ¼ 8πG
3

ρΛA3 − kAþ 8πG
3

A3ρ̃ ðA8Þ

and, thus,

�
_A
A

�2

þ k
A2

¼ 8πG
3

ðρ̃þ ρΛÞ; ðA9Þ

where ρ̃ðt; χÞ is an arbitrary integration function such that
the product A3ρ̃ depends only on the radial coordinate χ.

Its relation to the physical matter density ρm, the quantity
that appears in the stress energy tensor, is obtained as
follows. First we derive (A8) with respect to the radial
coordinate and replace the result into Eq. (A6) to obtain

ðA3ρ̃Þ0 ¼ 3ρmA2A0; ðA10Þ

which, upon integration, gives

ρ̃ðt; χÞ ¼ 3

R χ
0 ρmA

2A0dχ
A3

; ðA11Þ

where we used the fact that ρ̃ð0; tÞA3ð0; tÞ ¼ 0. The inverse
relationship can be recovered by performing the differ-
entiation in (A10)

ρm ¼ ρ̃þ ρ̃0
A
3A0 : ðA12Þ

The flat average density of matter ρ̃ allows us to rewrite
the equations of motion of the scale factor Aðt; χÞ of the
LTB metric in a way similar to those governing the
evolution of the scale factor aðtÞ of the RW metric in
the standard model of cosmology, i.e., in a Friedmann-like
form. Indeed, by deriving with respect to time Eq. (A9) as
well as the time-independent product A3ρ̃ we get

Ä
A
¼ −

4πG
3

ðρ̃ − 2ρΛÞ ðA13Þ

and

_̃ρþ 3
_A
A
ρ̃ ¼ 0; ðA14Þ

i.e., the acceleration and continuity equations, respectively.
The acceleration of the longitudinal scale factor is

α̈

α
¼ Ä0

A0 ¼ −
4

3
πG

�ðρ̃AÞ0
A0 − 2ρΛ

�
;

¼ Ä
A
−
4

3
πG

�ðρ̃AÞ0
A0 − ρ̃

�
; ðA15Þ

which, in the FRW limit (no radial inhomogeneities),
gives α̈=α ¼ Ä=A.
The longitudinal and transverse expansion rates are

related as

Hk ¼ H þ A
A0 H

0 ¼ H þ A2

2 _AA0

�
8πG
3

ρ̃0 −
�
k
A2

�0�
ðA16Þ

and, at the center of symmetry (χ ¼ 0), they coincide
with Hkð0; tÞ ¼ Hð0; tÞ.
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APPENDIX B: TIME DILATION FORMULA
IN A LTB COSMOLOGY

Although the time dilation formula (24) can be taken as
the very definition of what redshift is, i.e., the relative
change in the proper frequency of a signal as measured at
emission and at reception [65], it is instructive to see how
this result can be explicitly derived in the framework of the
LTB spacetime. In doing so, wewill have the opportunity to
restate the formula we obtained for redshift [cf. Eq. (18)] by
means of an alternative argument.
Consider two light rays emitted at t and tþ δt by the

very same source. Suppose they are received by the same
detector at time t0 and t0 þ dt0. The geodesic equation of
the first ray is

t1 ¼ tðχÞ;

while that of the second ray is

t2 ¼ tðχÞ þ δtðχÞ:

It is clear that they are both solutions of the geodesic
equation with the boundary conditions t1ðχÞ ¼ tðχÞ,
t1ð0Þ ¼ t0, δtðχÞ ¼ δt, δtð0Þ ¼ δt0 and t2ð0Þ ¼ t0 þ δt0.
By inserting them into (16) one gets

dtðχÞ
dχ

¼ −αðχ; tðχÞÞ; ðB1Þ

dδtðχÞ
dχ

¼ −δtðχÞ _αðχ; tðχÞÞ: ðB2Þ

The second equation describes the time dilation and can
be straightforwardly solved to give

δt0
δt

¼ e
R

χ

0
_αðχ;tðχÞÞdχ ; ðB3Þ

where the integral is calculated along the null geodesic of
the photon. Since Eq. (18) can be rewritten as

1þ z ¼ e
R

χ

0
_αðχ;tðχÞÞdχ ; ðB4Þ

we deduce that

1þ z ¼ δt0
δt

: ðB5Þ

APPENDIX C: NUMERICAL REDSHIFT DRIFT

The numerical algorithm for calculating the redshift drift
(referenced asmethod 3 in Sec. V) is here briefly discussed.
The null geodesics of a photon (labeled by the index 1)
emitted at time t and received at time t0 by two galactic
sources is parametrized by the equations

z1 ¼ zðχÞ;
t1 ¼ tðχÞ

as a function of the radial comoving coordinate χ. A second
photon, emitted and received by the same sources at the
later times δt and δt0, will move along the path

z2 ¼ zðχÞ þ δzðχÞ; ðC1Þ

t2 ¼ tðχÞ þ δtðχÞ; ðC2Þ

where the following boundary conditions are assumed

tð0Þ ¼ t0;

zð0Þ ¼ 0;

δzð0Þ ¼ 0;

δtð0Þ ¼ δt0:

By substituting the photon path (C1) and (C2) into the
equations for the redshift (20) and (21) one gets, at leading
order,

dδz
dχ

¼ _αðχ; tðχÞÞδzþ ð1þ zÞα̈ðχ; tðχÞÞδt; ðC3Þ

dδt
dχ

¼ − _αðχ; tðχÞÞδt; ðC4Þ

which, once solved along the geodesic t1 ¼ tðχ; t0Þ, pro-
vide a numerical estimate of the redshift drift.
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