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In theΛCDMmodel, cosmological observations from the late and recent Universe reveal a puzzling∼4.5σ
tension in the current rate of Universe expansion. In addition to the various scenarios suggested to resolve the
tension, a nonparametric modeling may provide useful insights. In this paper, we look at three well-known
nonparametric methods: the smoothing method, the genetic algorithm, and the Gaussian process. Considering
these three methods, we employ the recent Hubble parameter data to reconstruct the rate of Universe
expansion and supernovae Pantheon sample to reconstruct the luminosity distance. In contrast to similar
studies in the literature, the chi-squared distribution has been used to construct a reliable criterion to select a
reconstruction. Finally, we compute the current rate of Universe expansion (H0) for each method, provide
some discussions regarding the performance of each approach, and compare the results.
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I. INTRODUCTION

The analysis of supernova type Ia (SNIa) data in
Refs. [1,2] revealed for the first time that the expansion
of the Universe is accelerating. Several independent mea-
surements since then, including the cosmic microwave
background (CMB) [3,4], baryon acoustic oscillation
(BAO) [5–8], cosmic chronometers [9,10], and large-scale
structures [11–13], confirmed such exotic behavior of the
Universe at the recent time. Many attempts have been made
to describe this phenomenon after these confirmations.
There are mainly two avenues to find a solution: exotic
matter with a negative equation of state (EOS) [14–18] or
modification of gravity at large scales [19–23]. Among all
the alternatives, a cosmological constant with EOS w ¼ −1
and cold dark matter, the so-called ΛCDM, gives a good
model to describe practically all datasets. However, the
model suffers from severe theoretical problems which have
not been resolved yet [24–26].
Considering a Friedman universe, the present rate of

expansion (H0) is one of the most essential characteristics
in a cosmological scenario. Unfortunately, there is a strange
discrepancy between measurement of H0 considering late
and early cosmological data. Assuming the ΛCDM model,
the CMB data yield a relatively lower value of
H0 ∼ 67 Kms−1Mps−1 [4], whereas local SNs anticipate
H0 ∼ 74 Kms−1Mps−1 [27]. It is worth noting that the
former requires a model to measure H0, whereas the latter
relies solely on a distance ladder and the absolute magni-
tude of SNs. There have been numerous attempts to tackle
this problem (see Ref. [28] and its references), but no
adequate solution has yet been found.
Given a dataset, a model with some free parameters can

be chosen to describe the data. The free parameters should

be constrained using a statistical method in this
circumstance. In terms of statistics, the frequentist and
Bayesian scenarios are the two options for constraining
the free parameters. In the frequentist point of view, some
estimators have been defined to estimate the values of
parameters and their uncertainty. In the Bayesian scenario,
on the other hand, the Bayes theorem has been used
to determine the posterior probability distribution of
the parameters. The distribution was then utilized to
determine the optimal parameter values as well as their
uncertainty [29].
On the other hand, using a nonparametric (NP) approach

to describe data collection is a viable option. In machine
learning scenarios, this type of modeling was created to
have as much capacity to describe a dataset as possible. An
NP is a unique way to investigate a data collection without
having to assume any particular parametric shape.
Furthermore, the NP generates a large number of recon-
structions at once, some of which may have novel features.
The Gaussian process (GP) is the most well-known NP
modeling in cosmology, and it has been frequently
employed in cosmic data analysis [30–38]. In this case,
the data have been modeled by a sequence of Gaussian
random values. The genetic algorithm (GA), on the other
hand, given a set of base functions, can reconstruct multiple
curves that are consistent with the data. This method has
been used in Ref. [39] to study SNIa data and in Ref. [40] to
investigate a null test on the cosmological constant.
Moreover, this method has been used to study the dark
energy in Ref. [41]. The smoothing method (SM) is the last
procedure, which involves reconstructing a function using
a smoothing kernel. In this case, a series of initial guesses at
random sites has been improved with each iteration,
resulting in a better fit to the data after each step.
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This method was utilized in Refs. [42–44] to investigate
various cosmological data.
We select these methods because they all rely on a

sample of reconstructions, allowing us to compare them.
However, with an NP approach, estimating errors is a
challenging issue, which is a drawback in such cases.
Reconstructions in the GP are obtained by sampling from a
multivariate Gaussian distribution, with the standard
deviation (mean) of a quantity at each point indicating
the quantity’s uncertainty (central value). In contrast to the
GP, there is no unique way to select a reconstruction and
make a sample in the GA and SM. Considering the SM
method, in Refs. [42–44], a reconstruction with χ2 < χ2ref
has been selected, where χ2ref is the χ

2 of a reference model,
e.g., the ΛCDM. On the other hand, considering the GA, in
Refs. [40,41,45,46], only the best reconstruction was
obtained, and the uncertainty of that reconstruction was
calculated in a different approach. In this paper, we
introduce a more reliable sampling method to estimate
the central value, with optimized chi-squared values that
select the reconstructions.
The structure of this paper is as follows: We present the

statistical tools needed for our analysis in Sec. II, as well as
the chi-squared distribution and our new criterion for
selecting a reconstruction in NP modeling. A brief dis-
cussion of parameter inference in a model-dependent
technique has also been included. All three NP approaches
are described in depth in Sec. III. Furthermore, given a
dataset, we discuss how each method provides a consistent
reconstruction. In Sec. IV, we present the results for
different methods and discuss how different criterion affect
the estimation of H0. Finally, in Sec. V, we provide our
findings, explain, and compare them to similar efforts in the
literature.

II. PARAMETER INFERENCE AND χ 2

DISTRIBUTION

Given a dataset as ðxi; yi; σiÞ and knowing the distribu-
tion of noise, it is an easy task to construct a likelihood
function. The likelihood contains all information relating to
observed data and is a necessary requirement to infer the
free parameters of a model. The Gaussian likelihood is
given by

Lðθ⃗Þ ∝ ΠN
i¼1 exp

�
−
1

2

ðfðxi; θ⃗Þ − yiÞ2
σ2i

�
; ð1Þ

where fðxi; θ⃗Þ is the model prediction at xi, θ⃗ indicates all
free parameters, and N is the number of data points. It is
common to write the likelihood as

Lðθ⃗Þ ¼ L0 exp

�
−
1

2
χ2
�
; ð2Þ

where χ2 ¼ P
N
i¼1

ðfðxi;θ⃗Þ−yiÞ2
σ2i

and L0 is a normalization
constant. Since the likelihood is Gaussian, the quantity

Xi ¼ fðxi;θ⃗−yiÞ
σi

is a Gaussian random variable with zero
mean and var ¼ 1. Summing up the square of Xi gives a
quantity Q ¼ P

k
i¼1 X

2
i , which is distributed according to

the chi-squared probability distribution function (PDF) for
x ¼ χ2:

PðxjkÞ ¼ x
k
2
−1e−

x
2

2
k
2
Γðk

2
Þ ; ð3Þ

where k is the number of the degree of freedom (NDF).
Furthermore, the PDF shows a peak at χ2 ∼ k for a
moderately big k and the probability for χ2 ≫ k and
χ2 ≪ k are negligible. In fact, if χ2 ≫ k, the majority of
data points are away from the model prediction, indicating
an underfitting case. On the other hand, if χ2 ≪ k, the
majority of the data points are unexpectedly near to the
model prediction, and we have an overfitting case. It is
worth noting that neither of these scenarios is a good fit for
the data. The chi-squared PDF could be used as a criterion
to select a reconstruction based on its probability, according
to the aforementioned reasoning. Given a percentage
number, such as 95%, it is straightforward to compute
the range (χ2min; χ

2
max) of the interval that lie within this

percentage:

Prðχ2min < x < χ2maxÞ ¼
Z

χ2max

χ2min

dxPðxjkÞ: ð4Þ

The probability of a reconstruction with a χ2 within the
interval ðχ2min; χ

2
maxÞ is equal to the Pr. Reconstructions in a

sample chosen based on the chi-squared are free from both
underfitting and overfitting, indicating that the sample is
reliable for estimating the value of a parameter. As we
mentioned above, the authors of Refs. [44,47,48] utilized
the condition χ2 < χ2ref to select a reconstruction for the SM
technique. In such a procedure, there might be some
overfitting reconstructions, making the sample not reliable
for estimation of a quantity.
In contrast to an NP modeling, for a parametric model-

ing, observational data can be used to constrain its
parameters. In a frequentist scenario, one might use the
maximum likelihood estimator (MLE) to estimate the
optimal values of the parameters. There are several ways
for determining the MLE given a likelihood function. In
addition, expanding the likelihood around its peak gives an
estimation of the parameter uncertainties [29]. In contrast to
this point of view, the Bayes theorem may be used to find
the PDF of parameters, and, from the PDF, the best values
and their uncertainties can be easily determined. The Bayes
theorem is given by

Pðθ⃗jdÞ ¼ Lðθ⃗ÞPðθ⃗Þ
PðdÞ ; ð5Þ

where Pðθ⃗Þ is the prior information on parameters and PðdÞ
is the Bayesian evidence. With the exception of a few cases
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that have an analytic solution, the majority of problems
should be addressed numerically. In these cases, a numeri-
cal approach such as Markov chain Monte Carlo has been
used to estimate the posterior Pðθ⃗jdÞ by sampling from the
numerator of the above equation.

III. NP MODELING OF A DATASET

In the machine learning domain, an NP approach is used
to have as much as possible capacity to describe a dataset.
The NP methods have been used in a number of studies
(some of them are listed in the introduction) in cosmology
to describe a dataset. Because little is known about dark
energy, using NP modeling could provide new insights or
show a new feature in the data. In this work, we consider
three NP methods, all reliant upon a sample of
reconstruction, and compare the results. Since the results
depend on the sample, a reliable selection criterion is
required. In this section, we go over the basics of three well-
known NP methods: GP, GA, and SM. Then, in the
following section, we compare the results after finding
all viable reconstructions using two separate cosmological
datasets. This study helps us understand the performance of
each method as well as advantages and disadvantages of
each approach.

A. Gaussian process

A Gaussian process is a sequence of Gaussian random
variables (RVs) that can be presented by a multivariate
Gaussian distribution. In this case, the diagonal entries
represent uncertainty at each point, whereas off-diagonal
terms represent correlation between points. Assuming that
a dataset can be modeled by a Gaussian process, we have

fðxÞ ∼GPðμðxÞ; Kðx; x̃ÞÞ; ð6Þ

where Kðx; x̃Þ is the kernel function and x and x̃ are two
different observational points. The μðxÞ is the mean
function which provides the mean of Gaussian RVs at
each observational point. The kernel gives the covariance
matrix of the multivariate Gaussian distribution and
depends on some hyperparameters. The most well-known
kernel is the squared exponential given by

Kðx; x̃Þ ¼ σ2f exp
−ðx − x̃Þ2

2l2
;

where σ2f and l are two hyperparameters. Given a GP at
some observational points x, it is simple to find the GP
at some arbitrary points x⋆. The function’s values at
these points are given by sampling from a multivariate
Gaussian Nðμ⋆;Σ⋆Þ, where the mean and covariance are
given by [49]

μ⋆¼Kðx;x⋆Þ½Kðx;x⋆ÞþCD�−1Y;
Σ⋆¼Kðx⋆;x⋆Þ−Kðx⋆;xÞ½Kðx;x⋆ÞþCD�−1Kðx;x⋆Þ; ð7Þ

respectively, where CD is the covariance matrix of the data
and Y ¼ ½yi� is the column vector of observational data [as
in the previous section, we assume a dataset as ðxi; yi; σiÞ].
Notice that, in the above equations, a zero mean prior has
been considered for the μ⋆.
Given a dataset, one can easily compute the mean and

covariance of the multivariate Gaussian distribution and
then by sampling from that find many reconstructions.
Notice that, since the derivative of a GP is another GP, it is
also easy to find the derivative of reconstructed function (to
see more details, refer to Refs. [34,49]). We use the
GaussianProcessRegressor class of scikit learn to find
the mean and covariance matrix of a GP [50].

B. Genetic algorithm

GA is an optimization method inspired by the process of
natural selection. It relies on the biologically inspired
operators such as crossover, mutation, and selection. The
process starts from a population of individuals and pro-
duces a new generation through mutation, which is a
random change in an individual, and crossover, which is
a combination of many individuals. In this scenario, the
probability of a next generation is given by a fitness
function which is also our objective function for optimi-
zation. For more details on the algorithm, we refer the
reader to Ref. [39].
One of the methods of GA is symbolic regression (SR).

In this case, the method attempts to produce a mathematical
expressions to describe a dataset. To do so, the SR
generates an initial random population of individuals using
a set of basic functions. Then individuals evolve through
the GA process to find a new generation with a smaller
fitness function. The process repeats until either a minimum
fitness function or a certain number of generations is
reached. We set the fitness function to the χ2, and, hence,
the next generation provides a mathematical expression
with smaller χ2. In our analysis, we use the public package
gplearn, which is an extension of the scikit-learn machine
learning library, to perform the SR. We have examined
the hyperparameter space empirically to find the optimum
values. In our code, we have set the tournament
size ¼ 30, probability of mutation ¼ 0.03, probability of
crossover ¼ 0.9, and population size ¼ 2000. In addition,
we use only “add,” “subtract,” and “multiplication” for the
base functions.
The GA method has been used to study the expansion of

the Universe in Ref. [51], dark energy anisotropic stress in
Ref. [52], the cosmic distance duality relation in Ref. [53],
and null tests for the spatial curvature and homogeneity of
the Universe in Ref. [54]. However, in these works, the
authors found the best fit among all reconstructions and
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estimated its uncertainty using some methods base on the
path integral. In contrary, in our analysis, we run our code
with several different random seeds to generate many
reconstructions and then use our new selection criterion
to make a reliable sample.

C. SM method

In addition to the above approaches, SM is also a tool to
study a dataset in a model-independent manner. It has only
a hyperparameter, the smoothing width Δ, which depends
on the number of data points as well as their qualities. In
this scenario, SM begins with a sequence of arbitrary guess
values and tries to generate a new smooth curve that is
closer to the data points at each step.
Given the CD, the covariance of data, to reconstruct a

function at arbitrary x⋆ points, one can start from an initial
guess and find the improved values ½f̂nþ1ðx⋆Þ� at the next
iteration by

f̂nþ1ðx⋆Þ ¼ f̂nðx⋆Þ þ
δfTn :C−1

D :Wðx⋆Þ
1T:C−1

D :Wðx⋆Þ ; ð8Þ

where the kernel function Wðx⋆Þ and δfTn are given,
respectively, by

Wiðx⋆Þ ¼ exp

�−ln2 ð1þx⋆Þ
ð1þxiÞ

2Δ2

�
; ð9Þ

δfn ¼ fðxiÞ − f̂nðxiÞ; ð10Þ

the 1T is a unite column vector (its size is the same as
the size of data), and fðxiÞ ¼ yi are the observed values.
Notice that, similar to the GP, xi (x⋆) indicates observa-
tional (arbitrary) points. This method was used in
Refs. [44,47,48] to reconstruct the expansion history using
cosmological data. However, in these works, the authors
chose reconstructions under condition χ2 < χ2ΛCDM to make
a sample. Since the method relies on a sample of
reconstructions, we also consider this scenario to inves-
tigate our datasets. In contrast to previous works, we use a
different strategy to set the initial guess. The Taylor
expansion of the Hubble parameter up to the fourth order
in z gives us a Hubble parameter in terms of ðH0; q0; j0; l0Þ
(the cosmography parameters), which is independent of any
model [55–58] (to see the expansion coefficients as a
function of cosmography parameters, refer to Ref. [58]).
Notice that, in order to expand the range of the conver-
gence, the redshift has changed to the so-called y redshift
y ¼ z

1þz. We sample ðH0; q0; j0; l0Þ from a wide uniform
distribution for each initial guess and then utilize them to
generate the initial Hubble parameter at x⋆. Note that we
have double-checked the results to ensure that they are
robust and unaffected by the initial guess.

IV. DATASET AND RESULTS

In order to investigate the output of the above-mentioned
NP methods, we consider two separate cosmological data.
At the background level, the luminosity and angular
diameter distances, as well as direct measurements of the
Hubble parameter, have provided information about the
Universe’s expansion rate. From the luminosity and angular
diameter distances, one can measure the source comoving
distance and then derive the Hubble parameter. Assuming a
flat geometry, the Hubble parameter is given by

DðzÞ ¼
Z

z

0

dz
HðzÞ ;

HðzÞ ¼ 1

D0ðzÞ ; ð11Þ

where DðzÞ is the comoving distance at redshift z. Notice
that, if D0ðzÞ ¼ 0 at a point, we cannot use the equation to
find the Hubble parameter. For all reconstructions of the
comoving distance, we check this condition and discard
those that have D0ðzÞ ¼ 0 at one or more points.
The most up-to-date and precise measurement of lumi-

nosity distance at this moment is the SNIa Pantheon sample
[59]. This sample contains 1048 spectroscopically con-
firmed SNIa up to redshift z ¼ 2.26. To avoid the degen-
eracy between H0 and the absolute magnitude of the SNIa,
we set M ¼ −19.3 through our study. Using this dataset,
we generate a large number of reconstructions through each
method, and then we used the chi-squared PDF with
probability pr ¼ 68% and pr ¼ 95% to make a sample.
These two intervals for the SNIa data are presented in
Fig. 1. Finally using Eq. (11), these reconstructions con-
verted to the Hubble parameter.
The second dataset is the measurement of the Hubble

parameter data collected in Ref. [10]. The dataset includes

FIG. 1. The chi-squared PDF (solid red line) for SNIa data and
the range of χ2 for pr ¼ 68% and pr ¼ 95%.
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FIG. 2. Reconstructions of the luminosity distance and derived Hubble parameter considering the SNIa data. The upper, middle, and
lower panels present the results for GP, GA, and SMmethods, respectively. The best ΛCDM (the best reconstruction) is shown by a solid
black (dashed black) curve in each panel. The color bar shows the difference between χ2 and the best fit ΛCDM, χ2ΛCDM. In all scenarios,
the left panel (right panel) presents reconstruction for probability pr ¼ 68% (pr ¼ 95%).
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measurement of the cosmic chronometer as well as the
radial BAO. In addition to the 38 data points in the
collection, we add the measurement of H0 from nearby
SNs [27]. Note that the BAO data points are correlated, but,
for the sake of simplicity, we ignore such correlations in the
current study.

A. Results for the SNIa data

As has been previously stated, the methods provide a
reconstruction of the luminosity distance in the case of
SNIa data, and the Hubble parameter is a derived param-
eter. In this subsection, we present the results of our
analysis using the SNIa data. For all techniques, the
reconstructions of the luminosity distance and their corre-
sponding Hubble parameter are displayed in Fig. 2. Along
with all reconstructions, the best fit ΛCDM and the best
reconstructions (the lowest χ2) have been presented in each
panel. The solid black (dashed black) curve in each panel
presents the best ΛCDM (best reconstruction), and the
color bar shows the Δχ2 ¼ χ2 − χ2ΛCDM quantity. The upper
panels show the GP results for pr ¼ 68% and pr ¼ 95%,
which are almost the same. In fact, all of the reconstructions
are within a small range of χ2, so adjusting the PDF
probability has little effect on the outcome.
The best-reconstructed Hubble has a peak at z ∼ 2 and a

smaller value at z ¼ 3 compared to the best ΛCDM (for the
best reconstruction, Δχ2 ¼ −22). Notice that almost all of
these reconstructed curves have χ2 values lower than the
bestΛCDM and also the range of χ2 values is narrower than
in the other two scenarios.
Considering the GA method, the reconstructed luminos-

ity distance and corresponding Hubble parameter have
been presented in the middle panel in Fig. 2. The best
reconstruction provides a Hubble parameter which has a
peak around z ∼ 2 similar to the GP but with an even
smaller χ2 value (Δχ2 ¼ −24). Furthermore, the results for
pr ¼ 68% and pr ¼ 95% are different, with more curves
having a larger χ2 value in the case of pr ¼ 95%. These
findings suggest that GA provides more flexibility to
investigate a dataset compared to GP.
Finally, the results of the SM method have been

presented in the lower panel. In contrast to the other
methods, the best reconstruction in the SM is very close
to the best ΛCDM. In the SM method, the best
reconstruction has Δχ2 ¼ −14, which is relatively larger
than other methods. Notice that, since in the case of SNIa
the number of data points is larger than the number of
Hubble data, a larger χ2 could be selected based on the chi-
squared PDF. For example, in the case of GA and SM the
Δχ2 might be large up to 105, while for the Hubble data it is
around 25.

B. Results for the Hubble data

The reconstructions of the Hubble parameter considering
the Hubble data are shown in Fig. 3 for all the scenarios.

The upper panel shows the GP results for pr ¼ 68% and
pr ¼ 95% cases. The range of χ2 in pr ¼ 68% is narrower
than pr ¼ 95% as is expected from the chi-squared PDF.
Because of the constraint in the GP [see Eq. (7)], a
considerable number of reconstructions have a χ2 around
or less than χ2ΛCDM. Moreover, at high redshifts z ∼ 2.5–3,
reconstructions provide a lower HðzÞ value compare to the
ΛCDM, with the best reconstruction being roughly 25%
smaller than the best ΛCDM at z ¼ 3. Considering the GA
method, the results have been shown in the middle panel in
Fig. 3. Similar to GP, among all reconstructions, only those
reconstructions with probability 68% and 95% have been
selected and presented in the panels. While the results are
similar to GP up to redshifts (z < 1.5), GA provides more
scattered curves at z ¼ 3 and the best reconstruction is
closer to the bestΛCDM than GP. There are also two curves
with χ2 − χ2ΛCDM ∼ 10 that have a minor peak around
z ¼ 2. These results suggest that GA may be more useful
and adaptable than GP when it comes to discovering a new
feature in a dataset.
Finally, the results of the SMmethod are displayed in the

lower panel. The χ2 range is similar to that of GA, although
there are more curves with large χ2. Moreover, reconstruc-
tions with a high χ2 had a lower HðzÞ (purple curves) at
z ∼ 1.5 and a higher value at z ¼ 3. The best reconstruction
is nearly identical to the bestΛCDM up to redshift z ∼ 2 but
gives a slightly larger (smaller) value in the case pr ¼ 68%
(pr ¼ 95%) at redshift z ¼ 3.
Our findings suggest that using the chi-squared PDF to

select reconstructions provides a better insight in analyzing
a dataset, and in this scenario some reconstructions may
reveal a new feature. In contrary, selecting reconstructions
with χ2 smaller than a threshold value may not offer a
comprehensive sample. It is important, since in the majority
of cases our main objective is the estimation of a quantity
(like H0) from the sample.

C. Estimation of H0

For both Hubble and SNIa data, the distribution of χ2 for
all reconstructions, as well as the χ2 PDF, is presented in
Fig. 4. In these diagrams, the probability has been set to
pr ¼ 95%, the red solid line indicates the χ2 PDF, and the
vertical black line shows the location of the best ΛCDM.
For both datasets, SM produces a nearly uniform distri-
bution, but GA and GP provide more reconstructions with
smaller χ2. Notice that the results of SM (GA) are
dependent on the number of iterations (generations), and
raising this number results in more reconstructions with
less χ2 (albeit χ2 does not reduce significantly after some
steps). The distribution of χ2 in GP, on the other hand,
covers a narrow region and is unaffected by sample size.
Moreover, whereas the Hubble data reconstruction covers
the whole range of χ2min < χ2 < χ2max for pr ¼ 95%, the
SNIa reconstructions are unable to reach the minimum
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value χ2min, and all GP reconstructions have a χ2 smaller
than the best ΛCDM.
As we mentioned above, the reconstructions may be used

to estimate the value of H0 as well as its uncertainty in a
model-independent manner. In fact, estimating the central
value is an easy task, but estimating the uncertainty is more
difficult. While the central value can be easily estimated
from the mean or median, there are different approaches for
estimation of the uncertainty. Considering the SM method,

in Refs. [42–44,47,48], the authors used the maximum and
minimum values at each redshift to find an interval of the
uncertainty. In the GA scenario, on the other hand, the path
integral approach has been used to estimate the uncertainty
[41,60]. Note that in this case the method gives only the
uncertainty of the best reconstruction, not the overall
uncertainty. In a GP approach, however, estimate of these
quantities is simple, and the mean (standard deviation) at
each redshift gives the central value (uncertainty). In order

FIG. 3. Reconstructions of the Hubble parameter considering the Hubble data. The upper, middle, and lower panels present the results
for GP, GA, and SM methods, respectively. The best ΛCDM (the best reconstruction) is shown by a solid black (dashed black) curve in
each panel. The color bar shows the difference between χ2 and the best fit ΛCDM, χ2ΛCDM. In all scenarios, the left panel (right panel)
presents reconstruction for probability pr ¼ 68% (pr ¼ 95%).
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to estimate the value ofH0 as well as its uncertainty, we use
a similar process as GP.
The distributions ofH0 for both datasets are illustrated in

Fig. 5. The solid vertical line shows the location of the best
ΛCDM, and distributions of H0 from different methods are
presented by different colors. For the Hubble data, the SM
method provides a peak near to the ΛCDM, whereas results
from GA and GP are scattered over a large area. In contrast
to the other two approaches, the peak of the distribution in
GP gives a substantially greater value H0 ∼ 74. This is a
direct consequence of the SHOES [27] data point, which
shifts H0 toward a larger value. Since GP has been widely
utilized in the literature, it is important to remember that
one data point (especially one with a small error) can
significantly alter the results. Unlike GP, GA is unaffected
by this data point and provides a relatively smaller H0. On
the other hand, for the SNIa data, we see a narrow
distribution around the value of ΛCDM in GP and a
relatively wider distribution for both SM and GA.

In contrast to Hubble data, the results of GP in the case of
SNIa show a tight peak around the best ΛCDM, indicating
that the central value is close to the ΛCDM and its
uncertainty is smaller than other methods. In this case,
the SM method yields a relatively wider distribution, and
we have H0 in a range of (68.5–74.5). Since the results
might depend on the probability in our selection criterion,
we perform our analysis with both pr ¼ 68% and
pr ¼ 95%. The results are presented schematically in
Fig. 6 and quantitatively in Table I. The main points
regarding the H0 estimation are as follows.

(i) The results of all methods are consistent with
ΛCDM at 1σ level.

(ii) The results for pr ¼ 68% and pr ¼ 95% are con-
sistent with each other, but uncertainties are around
10%–20% larger for pr ¼ 95% in GA and SM.

(iii) The uncertainties in GP for the SNIa data are the
same for both pr ¼ 68% and pr ¼ 95%. This is
mainly due to the fact that reconstructions in GP are
concentrated in a small area of the chi-squared PDF,

FIG. 5. The distribution of estimated H0 considering pr ¼ 95% in different methods. The left panel (right panel) shows the results for
the Hubble parameter (the SNIa data).

FIG. 4. Distribution of the reconstructions χ2 in each method for pr ¼ 95%. The solid red line indicates the χ2 PDF corresponding to
the number of degrees of freedom for each dataset. The left panel (right panel) shows the results for the Hubble data (the SNIa data).
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which does not change with probability. On the other
hand, pr ¼ 68% offers a 6% lower uncertainty for
Hubble data than pr ¼ 95%.

(iv) The SHOES data point shifts the H0 toward a larger
value in GP, but the other two methods are not
sensitive to this data point.

(v) GP has the least uncertainty among all the methods,
and uncertainties in GP are only slightly larger
than ΛCDM.

V. CONCLUSION

In this work, we consider three well-known NP methods,
all reliant upon a sample of reconstructions, namely, GP,
GA, and SM methods, and introduce a novel approach to
select a consistent reconstruction. We compare the results
of employing the SNIa (the Pantheon sample) and a recent
collection of Hubble parameters to the NP techniques and
check the consistency of our selection criterion. Unlike
previous studies, we use the probability of each
reconstruction based on the chi-squared PDF to select a

consistent reconstruction. Given the NDF of a dataset, it
is straightforward to find the probability of each
reconstruction (according to its χ2 value), and setting a
probability threshold, such as pr ¼ 68% or pr ¼ 95%, one
can separate reconstructions with these probabilities
according to the chi-squared PDF. However, a different
strategy has been utilized in Refs. [42–44,47,48] to select a
reconstruction. In these works, the authors have considered
a reference χ2ref as a threshold and selected all reconstruc-
tions with a χ2 smaller than the threshold.
Considering the Hubble data, we reconstruct the Hubble

parameter directly and compare the results for the cases of
pr ¼ 68% and pr ¼ 95% in all three methods. On the
other hand, the Hubble parameter is computed from the
reconstructed luminosity distance for the SNIa data.
According to our results, GA is more flexible in finding
a new feature compare to the other methods. Moreover, for
both datasets, GP provides a smaller range of χ2 with the
majority of them having a χ2 smaller than the concordance
ΛCDM. In addition, our analysis indicates that GP is more
efficient than the other two methods in terms of computa-
tional time, whereas SM is the slowest.
The reconstructions could also be used to estimate the

value of H0, an essential quantity in cosmology. It is worth
noting that estimating H0 requires a reliable sample of
reconstructions. For all reconstructions in the sample, we
obtain H0 and investigate its distribution for each dataset
considering all methods. Notice that the estimating uncer-
tainty in an NP technique is a difficult task.
Specifically, in Refs. [42–44,47,48], the authors have

used the maximum and minimum values at each redshift to
determine an uncertainty interval. The authors of
Refs. [41,51,53,60], on the other hand, have employed a
path-integral-based method to estimate the uncertainty in
the GA. In this paper, we adopt the same procedure as GP

FIG. 6. Estimation of H0 and its 1σ uncertainty in GP, GA, and SM for pr ¼ 68% and pr ¼ 95%. The left panel (right panel) shows
the results for the Hubble data (the SNIa data).

TABLE I. Estimation of H0 (km/s/Mpc) and its 1σ uncertainty
in GP, GA, and SM for pr ¼ 68% and pr ¼ 95%. The left
column (right column) shows the results for the Hubble data (the
SNIa data).

Method=data Hubble data SNIa

SM (Pr ¼ 68%) 71.99� 1.43 71.09� 1.41
SM (Pr ¼ 95%) 72.02� 1.64 71.16� 1.59
GA (Pr ¼ 68%) 71.07� 1.57 72.04� 1.02
GA (Pr ¼ 95%) 71.32� 1.80 71.80� 1.14
GP (Pr ¼ 68%) 73.33� 1.27 72.02� 0.38
GP (Pr ¼ 95%) 73.35� 1.35 72.02� 0.38
ΛCDM 72.1� 1.1 71.85� 0.22
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and estimate the central value using the sample main at
each redshift and the uncertainty using the standard
deviation. Our results indicate that GP has the lowest
uncertainties, which are slightly higher than those found in
the concordance ΛCDM. On the other hand, while all the
estimated central values are consistent with each other, in
SM and GA, the estimation of uncertainty for pr ¼ 95% is
roughly 10%–20% more than the results for pr ¼ 68%.
Furthermore, changing the chi-squared probability has no
significant effect on the estimated uncertainty in GP for
both datasets. This is primarily owing to the fact that GP
gives a limited range of χ2 compared to the other two
methods. Based on our findings, it may be preferable to use
GA or SM in conjunction with GP when studying a dataset.
Estimation of HðzÞ in a model-independent manner is

not new. In particular, the authors of Ref. [61] have
combined the Pantheon and BAO measurements and
utilized a parametric form of HðzÞ to find the value of
H0. They have assumed some priors on the sound horizon

at the drag epoch and obtained two H0 estimates that were
significantly closer to the Planck ΛCDM estimate than the
SHOES estimation. Our estimate is around 1.5 − 3σ larger
than theirs, owing to the fact that our results are indepen-
dent of the sound horizon. On the other hand, our results are
very similar to those presented in Ref. [62], which used the
Hubble data alone as well as a combination of Hubble data
and the SNIa to estimate H0 from a GP. In addition, the
authors of Ref. [51] employed GA to estimate the H0 using
a similar dataset. They found a considerably larger uncer-
tainty (∼12 km=s=Mpc) using the path integral approach
than what we obtained (∼2 km=s=Mpc).
Finally, our results indicate that the SHOES data point

has a significant impact on estimation ofH0 in GP, whereas
the other two methods are less affected by this data point. In
fact, when GP is used instead of the other two approaches,
the data point shifts the peak of theH0 distribution toward a
bigger value. This finding also suggests that considering
GA or SM along with GP may be beneficial.
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