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When analyzing the galaxy bispectrum measured from spectroscopic surveys, it is imperative to account
for the effects of nonuniform survey geometry. Conventionally, this is done by convolving the theory model
with the window function; however, the computational expense of this prohibits full exploration of the
bispectrum likelihood. In this work, we provide a new class of estimators for the unwindowed bispectrum, a
quantity that can be straightforwardly compared to theory. This builds upon the work of Philcox [Phys. Rev.
D 103, 103504 (2021)] for the power spectrum and comprises two parts (both obtained from an Edgeworth
expansion): a cubic estimator applied to the data and a Fisher matrix, which deconvolves the bispectrum
components. In the limit of weak non-Gaussianity, the estimator is minimum variance; furthermore, we
give an alternate form based on Feldman-Kaiser-Peacock weights that is close to optimal and easy to
compute. As a demonstration, we measure the binned bispectrum monopole of a suite of simulations using
both conventional estimators and our unwindowed equivalents. Computation times are comparable, except
that the unwindowed approach requires a Fisher matrix, computable in an additional Oð100Þ CPU hours.
Our estimator may be straightforwardly extended to measure redshift-space distortions and the components
of the bispectrum in arbitrary separable bases. The techniques of this work will allow the bispectrum to
straightforwardly be included in the cosmological analysis of current and upcoming survey data.

DOI: 10.1103/PhysRevD.104.123529

I. INTRODUCTION

In the standard inflationary paradigm, the early Universe
is well described by statistics that are Gaussian and close
to scale invariant (see, e.g., [1,2]), an assumption that is
in exquisite agreement with cosmic microwave back-
ground (CMB) observations (see, e.g., [3]). In this limit,
all cosmological information is encapsulated within the
power spectrum of the observed field or, equivalently, the
two-point correlation function (2PCF), which can be easily
measured, modeled, and fit. As the Universe evolves,
nonlinear structure growth shifts information from the
primordial power spectrum into higher-order moments
(see, e.g., [4]), the simplest of which is the bispectrum,
or three-point correlation function (3PCF). At the epoch of
recombination, the power spectrum still encodes almost all
relevant information; thus, we may safely neglect higher-
order statistics when measuring ΛCDM parameters from
the CMB. By the redshifts corresponding to current and
future galaxy surveys, this is not the case; furthermore,
higher-order statistics can carry signatures of primordial
non-Gaussianity (PNG), which is a key probe of infla-
tionary physics.

The next decade will see the advent of vast large-scale
structure surveys such as DESI [5] and Euclid [6]. Unlike
the CMB, current observations are far from being cosmic
variance limited; thus, the upcoming data releases will lead
to significant enhancements in our constraining power on
cosmological parameters. To extract maximal information
from this treasure trove of information, we must combine
two-point statistics with their higher-order variants (includ-
ing the bispectrum) or apply some transformation of the
density field (see, e.g., [7]). Such a synergistic approach has
been oft proposed in the literature and is expected to give
notable improvements in ΛCDM parameter constraints
[8,9], as well as nonstandard parameters such as those
underlying PNG [10,11], the neutrino sector [12,13], and
modified gravity [14].
While there is a long history of estimating PNG para-

meters from the CMB using higher-order statistics (see,
e.g., [15–22]), comparatively few works have attempted to
make use of the higher-point functions of the late Universe.
There are notable exceptions, however, in particular, the
historical bispectrum analyses of Refs. [23–25], as well as
some more recent works [26–30], which make use of Sloan
Digital Sky Survey (SDSS) data, albeit with several caveats.
In configuration space, the situation is similar. Early 3PCF
estimates appear in the mid-1970s (see, e.g., [31–35]), and*ohep2@cantab.ac.uk
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there has been a recent resurgence of interest, proving the
3PCF to be a useful statistic in its own right [36–39]. Such
approaches are now being extended to even higher-point
functions, such as the 4PCF [40,41], though we caution that
configuration-space statistics are generically more difficult
to model.
Performing robust inference using the galaxy bispectrum

does not come without challenges. First, the statistic is
nontrivial to measure. Costs associated with its computation
are significantly larger than those of the power spectrum,
though a number of efficient estimators have recently been
developed (see, e.g., [42–46]). Theoretical modeling is simi-
larly difficult, despite being the subject ofmanyworks across
a number of decades (see, e.g., [47–54]). In particular, while
the matter bispectrum can be well modeled perturbatively
including its first-order corrections (one loop) [54], we still
lack a one-loop theory model for the galaxy bispectrum,
limiting any analysis to comparatively large scales. Many of
the current tree-level models, while capable of modeling the
bispectrum alone, are not self-consistent and will introduce
systematic errors if they are combined with the power
spectrum in future high-precision analyses. An important
goal of future work must be to develop and test bispectrum
theory models, including via blind challenges analogous to
Ref. [55] for the power spectrum.
An additional difficulty in bispectrum analyses concerns

dimensionality.With the power spectrum, the number of bins
in the data vector is usually far smaller than the number of
available simulations, facilitating straightforward mock-
based Gaussian analyses. In the bispectrum, this is rarely
the case, which has led to some analyses opting to reduce the
dimensionality by increasing thebinwidth, potentially losing
cosmological information [27]. A number of low-dimen-
sional analogs of the bispectrum have been proposed to
counter this, including the skew spectrum [56–58], line-
correlation function [59,60], integrated bispectrum [61,62],
and modal projections [63–66], though some lead to sig-
nificant loss of information [66]. An alternative route is to
compress the sample and model bispectra, significantly
decreasing the dimensionality while preserving the main
information content [52,66–72]. Previous work has shown
this to be a powerful option, capable of reducing the size of
the bispectrum data vector to ∼30 numbers for a DESI-like
survey, without appreciable loss of constraining power [71].
Finally, the situation is complicated by the effects of

nonuniform survey geometry. In practice, one does not
have access to the galaxy overdensity field; rather, we have
only the unnormalized density of galaxies and random
particles. This leads to the following transformation in real
and Fourier space:

δðxÞ → δWðxÞ≡WðxÞδðxÞ;

δðkÞ → δWðkÞ≡
Z

dp
ð2πÞ3Wðk − pÞδðpÞ; ð1Þ

where δ and δW are the true and windowed density fields,
respectively, andWðxÞ is the survey mask. In Fourier space
(where theory models are most naturally formulated), the
action of the window is that of a convolution. This applies
similarly to the bispectrum itself:

Bðk1;k2;k3Þ → BWðk1;k2;k3Þ

≡
Z

dp1

ð2πÞ3
dp2

ð2πÞ3
dp3

ð2πÞ3Wðk1 − p1Þ

×Wðk2 − p2ÞWðk3 − p3ÞBðp1;p2;p3Þ;
ð2Þ

where B is the true bispectrum (predicted by theory) and
BW its windowed equivalent, which is the quantity com-
puted by most estimators. To compare data and theory, we
have two choices: (a) Convolve the theory model with the
window via Eq. (2) or (b) estimate the unwindowed
bispectrum B directly. Traditionally, approach (a) is chosen,
yet this is nontrivial. Unlike for the power spectrum, it is
highly expensive to perform the window convolution in full
(though see [73] for an approach involving double Hankel
transforms), especially considering that this must be done
at each step in the eventual Markov chain Monte Carlo
(MCMC) analysis. Simplifying assumptions are usually
adopted; for example, Refs. [26,27,30] applied the window
only to the two power spectra appearing in the tree-level
bispectrum model. This assumption is uncontrolled and
unwarranted; indeed, Ref. [30] discarded any bispectrum
modes with kmin ≤ 0.04h Mpc−1 for this reason. While the
current size of survey error bars permits such approxima-
tions on all but the largest scales, this will soon change.
In this work, we construct estimators for the unwindowed

bispectrum. Measuring such a quantity allows data and
theory to be directly compared without the need for
window convolution, significantly simplifying the eventual
MCMC analysis. Our approach is analogous to Ref. [74],
which constructed unwindowed estimators for the galaxy
power spectrum (see also [75] and the historical approaches
of Refs. [76–85]). By optimizing the (non-Gaussian) like-
lihood for the pixelized galaxy field itself, we obtain a
bispectrum estimator that is unbiased and (under certain
assumptions) minimum variance, forward modeling the
effects of survey geometry. This is similar to the CMB
bispectrum estimators of Ref. [86]. Below, we derive the
estimators in full and consider their practical implementa-
tion, for both the binned bispectrum and an arbitrary
(separable) basis decomposition. Contrary to that claimed
in Ref. [74], the estimators do not have dependence on
external simulations; rather, they can be formulated in a
manner requiring only the data and knowledge of the
survey geometry. This approach will enable a future
measurement of the bispectrum of SDSS galaxies (follow-
ing Ref. [87] for the power spectrum), including a robust
treatment of the window function and a perturbative theory
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model encapsulating all effects relevant on quasilinear
scales. Although we focus on the rotation-averaged bis-
pectrum monopole in this work, the higher-order aniso-
tropic moments are known to be a useful source of
cosmological information [73,88–90]. Our approach may
be similarly applied to this scenario and, furthermore, can
be used to extract the information from the field directly,
without the need for binning or multipole decompositions,
if a suitable basis can be found.
The remainder of this paper is structured as follows. In

Sec. II, we give an overview of our power spectrum
estimator (building upon Ref. [74]), laying the necessary
groundwork for Sec. III, wherein our bispectrum estimator
is derived. In Sec. IV, we discuss specialization to spectro-
scopic surveys, before considering practical implementa-
tion of the algorithm in Sec. V. Bispectra of realistic mock
surveys are presented in Sec. VI, before we conclude in
Sec. VII. Appendixes A and B provide details of our
modeling of pixelation effects and limiting forms of the
bispectrum estimators, respectively. A PYTHON implemen-
tation of our algorithm can be found on GitHub [91].

II. OVERVIEW OF PREVIOUS WORK

We begin with a brief summary of the optimal power
spectrum estimators discussed in Ref. [74] (itself building
on Refs. [77,79,80,83–85]), serving as an introduction to
our bispectrum estimators. The treatment below is an
updated version of the previous work and removes the
need for a suite of simulations.

A. Quadratic estimators

Consider a vector d of observations, for example, the
unnormalized galaxy overdensity measured by some sur-
vey in a set of pixels. Usually, this can be modeled as a sum
of two components: a theory model m (i.e., the underlying
galaxy density field) and a stochastic noise contribution n
(i.e., Poisson noise), with covariances S≡ hmmTi and
N≡ hnnTi, respectively, assuming hmi ¼ hni ¼ 0.1 Since
both m and n are random fields, the dependence on the
underlying physical parameters p enters only through the
moments of the dataset; thus, it is useful to first write down
the likelihood of the data, L½d�. Under Gaussian assump-
tions, the negative log-likelihood is given by

lG½d�ðpÞ ¼ − logLG½d�ðpÞ

¼ 1

2
dTC−1ðpÞdþ 1

2
Tr logCðpÞ þ const; ð3Þ

where CðpÞ is the pixel covariance matrix, such that
CðptrueÞ ¼ hddTi≡ CD, where ptrue is the parameter set
that generates d. In this section, p is the set of power

spectrum amplitudes, according to some binning. The
assumption of Gaussianity holds if the number of modes
is large and the underlying density field is linear. Violation
of these constraints is the subject of Sec. III.
To obtain an estimate for the parameter vector p, we

need simply extremize the likelihood (3). In general, this is
nontrivial but can be performed straightforwardly if
one first expands lGðpÞ around some fiducial power
spectrum pfid:

lG½d�ðpfid þ δpÞ ≈ lGðpfidÞ þ δpT∇plG

þ 1

2
δpTð∇p∇p0lGÞδp0; ð4Þ

writing δp ¼ p − pfid and assuming all gradients to be
evaluated at pfid. If one assumes p to be close to pfid [such
that CðpfidÞ ≈ CD], this leads to the following Newton-
Raphson estimate:

p̂ ≈ pfid − ½∇p∇p0 �−1∇p0lG: ð5Þ

Inserting the gradients, we obtain the maximum-likelihood
(ML) power spectrum estimator

p̂ML
α ¼ pfid

α þ 1

2

X
β

F−1;ML
αβ Tr½C−1C;βC−1ðddT − CÞ�

¼ 1

2

X
β

F−1;ML
αβ Tr½C−1C;βC−1ðddT − NÞ�; ð6Þ

where p≡ fpαg, C;α ≡ ∂C=∂pα, and we define the
(realization-averaged) Fisher matrix

FML
αβ ¼ 1

2
Tr½C−1C;αC−1C;β�: ð7Þ

In the above, we assume all quantities to be evaluated at
the fiducial cosmology, i.e., C≡ CðpfidÞ. The estimator
is quadratic in the data and involves applying a filter
C−1C;αC−1 to two copies of d and then removing additive
and multiplicative bias terms. As shown in Ref. [74], it is
unbiased [assuming CðpfidÞ can be robustly computed]
and minimum variance if (a) the likelihood is Gaussian
and (b) CðpfidÞ ¼ CðptrueÞ.2 Extensions to include non-
Gaussian noise were also considered in the former work,
resulting in a cubic correction term.
While Eq. II A is the optimal estimator (subject to the

above caveats), it is just a special case of a more general
quadratic estimator, given by

1In this work, angle brackets represent an average over
realizations of the dataset and the underlying random fields.

2Note that the degree of nonoptimality is quadratic in
CðpfidÞ − CD and, thus, expected to be small.
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p̂α ¼ pfid
α þ 1

2

X
β

F−1
αβTr½H−1C;βH−1ðddT − CÞ�

¼ 1

2

X
β

F−1
αβTr½H−1C;βH−1ðddT − NÞ�;

Fαβ ¼
1

2
Tr½H−1C;αH−1C;β�; ð8Þ

where H is a positive-definite weighting matrix and C;α is
again the derivative of the full covariance with respect
to the parameters of interest. The ML estimator simply
requires the data to be inverse-covariance weighted,
i.e., H−1 ¼ C−1. Given that the full C−1 matrix is often
expensive to compute, Eq. (8) can lead to significant
expedition (though a slight loss of optimality) if some
straightforwardly invertible weighting matrix H can be
found that is close to CD.
Two forms of the power spectrum estimators are given in

Eqs. II A and (8). Previous work [74] focused on the first
choice, which explicitly requires a fiducial model, pfid, for
the power spectrum parameters. Both this and the pixel
covariance C can be defined using a suite of simulations;
thus, the equations take the form of difference estimators,
which are unbiased by construction if the data and simu-
lations share the same parameters. However, the reliance
on a suite of simulations is a practical restriction on the
estimator’s use. For this reason, we adopt the second form
of the estimators in this work; these do not require mocks
and significantly reduce the dependence on some fiducial
model [with the general quadratic estimator obviating it
entirely, assuming CðpÞ to be linear in p].

B. Power spectrum estimation

The principal utility of the above estimators is to measure
the galaxy power spectrum multipoles binned in wave
number (hereafter the “band powers”). This is convenient
since, neglecting non-Gaussianity of the noise, the band
powers enter only in the two-point covariance of the signal.
To implement the estimators, we must first specify the
covariance matrix and its dependence on p. Following
Ref. [74], we assume our dataset to be the measured
overdensity of galaxy survey, i.e., dðrÞ ¼ n̂gðrÞ − n̂rðrÞ,
where n̂gðrÞ and n̂rðrÞ are discretely sampled galaxy and
random density fields, respectively, at position r. Ignoring
weights and pixelation for simplicity, these have the
pairwise expectations

hn̂gðrÞn̂gðr0Þi ¼ nðrÞnðr0Þ½1þ ξðr; r0Þ� þ nðrÞδDðr − r0Þ;
hn̂rðrÞn̂rðr0Þi ¼ nðrÞnðr0Þ þ nðrÞδDðr − r0Þ;
hn̂gðrÞn̂rðr0Þi ¼ nðrÞnðr0Þ; ð9Þ

where nðrÞ is the background number density of the survey
and ξðr; r0Þ ¼ hδðrÞδðr0Þi is the two-point correlation

function of the galaxy overdensity field. The Dirac func-
tions δD arise due to the discrete nature of the density fields
and source the Poisson noise term. From this, we obtain the
signal and noise covariances between two points, r and r0:

Cðr; r0Þ≡ Sðr; r0Þ þ Nðr; r0Þ;

Sðr; r0Þ ≈ nðrÞnðr0Þ
Z
k
eik·ðr−r0ÞPðkÞ;

Nðr; r0Þ ≈ nðrÞδDðr − r0Þ; ð10Þ

where PðkÞ is the galaxy power spectrum and
R
k ≡

R
dk

ð2πÞ3.
If we wish to measure the monopole power spectrum in
some bin α, the relevant covariance derivative becomes

C;αðr; r0Þ ≈ nðrÞnðr0Þ
Z
k
eik·ðr−r0ÞΘαðkÞ; ð11Þ

where we have written PðkÞ ≈P
α pαΘαðkÞ, introducing

the binning functionΘαðkÞ, which is unity in bin α and zero
otherwise. In reality, the situation is complicated by the
effects of pixelation, particle weights, and redshift-space
distortions. These can be straightforwardly included, and
the full forms for C are presented in Appendix A 1,
including a more advanced treatment of pixelation than
Ref. [74].
Given the above covariances, one may compute esti-

mates for the band powers fpαg using either the ML
estimator II A or the general form (8). This requires appli-
cation of both C;α and C−1 or H−1 to the data d. Since the
pixelized density fields are usually of high dimension, it is
impractical to store any of the covariance matrices in full
and infeasible to invert them; we can avoid this by
considering only the matrices’ action on a pixelized field
(which can be straightforwardly computed using fast
Fourier transforms) and using conjugate-gradient descent
methods to invert C [80]. On small scales, a useful
approximation to C−1 is provided by

C−1ðr; r0Þ ≈ H−1
FKP ≡ δDðr − r0Þ

nðrÞ½1þ nðrÞPFKP�
; ð12Þ

with PFKP ∼ 104h−3 Mpc−3. This is analogous to the well-
known Feldman-Kaiser-Peacock (FKP) weighting scheme
of Ref. [92] and found to be a useful approximation in
Ref. [74], since it does not require numerical matrix
inversion. An analogous form for this including pixelation
effects and particle weights is given in Eq. (A10).
Finally, the quadratic estimators require the traces

Tr½H−1C;αH−1N�; Tr½H−1C;αH−1C;β� ð13Þ

[using the form of Eq. (8) which does not involve a fiducial
spectrum]. Given that the matrices are too large to be
directly computed, these may seem difficult to obtain.
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However, as in Refs. [80,86], they may be computed via
Monte Carlo methods, first writing

Tr½H−1C;αH−1C� ¼ haTH−1C;αH−1CA−1ai;
Tr½H−1C;αH−1C;β� ¼ haTH−1C;αH−1C;βA−1ai; ð14Þ

where fag are a set of simulated maps that satisfy
haaTi ¼ A, for some covariance matrix A. While one
could set A ¼ C and use mock catalogs for this purpose
(as proposed in Ref. [74]), this requires perfect knowledge
of C in the mock cosmology, which may be difficult to
obtain. In this work, we will use uniformly distributed
particles for this purpose, which have a simple, and
invertible, form for A given in Eqs. (A11) and (A12).
Computing the traces in this way is efficient and incurs a
Monte Carlo error scaling as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=Nmc

p
when using

Nmc maps.

C. Properties

Before continuing, we note a number of important
properties of the optimal power spectrum estimator.

(i) Window function.—Unlike the standard power spec-
trum estimator of Ref. [92] (and later Refs. [93,94]),
the quadratic estimators measure the unwindowed
power spectrum; i.e., the output is not convolved
with the survey window function. This occurs since
the effects of survey geometry are forward modeled
through the covariance matrix and allow us to
compare measured and theoretical power spectra
directly. When using the FKP weights of Eq. (12),
our approach is equivalent to that of Ref. [75].

(ii) Optimality.—Assuming Gaussianity, the quadratic
estimator with H ¼ C achieves the tightest possible
constraints on the band powers, in the sense that it
saturates the Cramér-Rao limit. This will be par-
ticularly notable for large-scale analyses, such as
those constraining primordial non-Gaussianity (see,
e.g., [95]).3

(iii) Compression.—As shown in Ref. [74], quadratic
estimators can be used to directly measure the
coefficients of the power spectrum under some linear
compression scheme. This significantly reduces
dimensionality and obviates the need for k-space
binning.

(iv) Gridding and shot noise.—The estimators may be
formulated as the difference between a quantity
measured in simulations and data [as in the first
line of Eqs. (6) and (8)]. This removes the leading-
order effects of unmeasured modes, discretization,
and non-Poissonian shot noise, facilitating the use
of coarser pixelation grids. Alternatively, the estima-
tors can be constructed without this [as in the second
line of Eqs. (6) and (8), which will be generally
assumed here], which removes the need for a
fiducial cosmology, and, thus, a suite of simulations.

(v) Integral constraint.—When analyzing the output
from conventional (windowed) power spectrum
estimators, we must account for the integral con-
straint, i.e., the fact that the overall survey density is
not known. In the quadratic estimator framework,
such effects are shunted into the fundamental kmode
and, thus,may be ignored if thismode is not analyzed.

We refer the reader to Ref. [74] for a more in-depth
discussion of these effects, as well as the estimator’s
application to the measurement of power spectrum multi-
poles from a suite of simulations.

III. THE CUBIC BISPECTRUM ESTIMATOR

A maximum-likelihood estimator for the bispectrum
may be derived in an analogous manner to the above.
Before doing so, we outline a number of reasons why this is
of use.

(i) While the window function can be straightforwardly
included in the theory model for the power spectrum
via 1D Hankel transforms, this is considerably
more difficult for the bispectrum, since it requires
a six-dimensional convolution integral. While some
procedures do exist (see, e.g., [73]), they are
computationally expensive, prohibiting full param-
eter exploration.

(ii) The maximum-likelihood estimator derived below is
optimal (in the Cramér-Rao sense) in the limit of
weak non-Gaussianity. This allows us to extract
maximal information from the bispectrum, effec-
tively giving an increase in survey volume.

(iii) We do not require a fiducial model for the bispec-
trum to use the cubic estimator, just a fiducial power
spectrum model (cf. Sec. II), if C−1 weights are
assumed. This is useful, since obtaining an accurate
fiducial bispectrum model, and simulations which
reproduce it, is difficult. Furthermore, our estimator
is stand alone; i.e., it does not require a suite of
realistic simulations.

(iv) Bispectra are generally high dimensional, often
involving measurements from ≳103 triangles. This
requires a large number of mocks to compute a
sample covariance, which has limited some previous
analyses [27]. Using analogous techniques to those
developed for the power spectrum in Ref. [74], we

3There is an important caveat to this statement, as noted in
Ref. [75]. If one uses the same maximum wave number kmax for
both unwindowed and windowed power spectrum estimates, the
signal to noise of the windowed estimates will be generically
slightly larger. This occurs since the window function mixes in
modes of larger k, which have smaller variance. If one restricts to
the same preconvolved k modes in both cases, the quadratic
estimator will be at least as constraining as the windowed FKP
approach.
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may avoid this by directly estimating a set of basis
coefficients rather than the full bispectrum, in a
similar vein to Ref. [66].

(v) To compare theoretical and observed bispectra, the
theory model should properly be integrated over the
finite k bins. This is expensive in practice and can be
avoided by directly estimating basis coefficients,
which are defined from the unbinned bispectra.

Below, we consider the derivation of the general bispec-
trum estimator, before specializing to the case of spectro-
scopic surveys in Sec. IV. Part of the below parallels a
similar derivation for the CMB bispectrum in Ref. [19],

and we will adopt several of the associated tricks used
in Ref. [86].

A. Non-Gaussian likelihood

To derive constraints on bispectrum parameters b (which
could be the binned bispectrum estimates or some other
summary statistic), we first require a likelihood for the data
which contains them. Since such parameters are necessarily
absent in the covariance, we require the non-Gaussian
likelihood, which, in the limit of mild non-Gaussianity, is
given by the Edgeworth expansion:

L½d�ðbÞ ¼ LG½d�
�
1þ 1

3!
BijkHijk þ

1

4!
TijklHijkl þ

1

6!
ðBijkBlmn þ 9 permsÞHijklmn þ � � �

�
ð15Þ

(see, e.g., [19,96]). Here, we have written the Gaussian likelihood of Eq. (3) as LG, which is independent of b, and denoted
the connected three- and four-point expectations of the density field by

Bijk ¼ hdidjdki; Tijkl ¼ hdidjdkdli − ½hdidjihdkdli þ 2 perms�: ð16Þ
We use Latin indices to denote pixels in the dataset, such that di ≡ dðriÞ, and assume Einstein summation over repeated
indices. The Hermite tensors H used in Eq. (15) may be defined in terms of hi ≡ ½C−1d�i by

Hijk ¼ hihjhk − ½hiC−1
jk þ 2 perms�;

Hijkl ¼ hihjhkhl − ½hihjC−1
kl þ 5 perms� þ ½C−1

ij C
−1
kl þ 2 perms�;

Hijklmn ¼ hihjhkhlhmhn − ½hihjhkhlC−1
mn þ 14 perms�

þ ½hihjC−1
kl C

−1
mn þ 44 perms� − ½C−1

ij C
−1
kl C

−1
mn þ 14 perms� ð17Þ

[96], where C−1
ij ≡ C−1ðri; rjÞ. Each tensor is symmetric under any permutation of its arguments, and all involve the data

weighted by the inverse covariance, just as in Sec. II. The likelihood (15) is an expansion in non-Gaussianity and, thus, valid
if its effects are small. In practice, this can be ensured by restricting the analysis to relatively large scales.
From the above, we may construct a negative log-likelihood for the data as

l½d�ðbÞ ¼ lG½d�ðbÞ −
1

3!
BijkHijk −

1

4!
TijklHijkl þ

1

72
BijkBlmn½HijkHlmn −Hijklmn� þOðB3Þ; ð18Þ

absorbing the ten permutations of BijkBlmn into the totally
symmetric tensor Hijklmn.

B. Cubic estimators

Toobtain an estimator for the bispectrumparametersb, we
need to simply extremize (18). Here, we assume b to be
encapsulated solely in the three-point expectation Bijk; i.e.,
we ignore contributions from the higher-order correlators
(arising due to Poisson corrections). As for the power
spectrum, we first expand the negative log-likelihood in a
Taylor series about some fiducial parameter set, here chosen
as bfid ¼ 0:

l½d�ðbÞ ¼ l½d�ð0Þ þ bT∇bl½d�ð0Þ

þ 1

2
bTð∇b∇b0l½d�ð0ÞÞp0 þ � � � : ð19Þ

This is simply an expansion in non-Gaussianity; i.e., the nth-
order term contains a product of n three-point correlators.
While one could instead expand around bfid ≠ 0 (and, thus,
obtain a closer-to-optimal estimator if bfid is well chosen),
this will introduce dependence on a fiducial bispectrum
model and is, thus, ignored. Maximization of Eq. (19) leads
to the estimator

bb ¼ h−½∇b∇b0l½d�ð0Þ�i−1∇b0l½d�ð0Þ þ � � � ; ð20Þ

where we have additionally taken the expectation of the
inverse term, as for the power spectrum case. In the limit of
vanishing three- and higher-point correlators in the data (i.e.,
equivalence of true and fiducial parameters), this is the ML
solution, as we show below. The relevant derivatives are
easily obtained from Eq. (18):
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∂αl½d�ð0Þ ¼ −
1

6
Bijk
;α Hijk þ � � � ;

∂α∂βl½d�ð0Þ ¼ −
1

36
Bijk
;α Blmn

;β ½Hijklmn −HijkHlmn� þ � � � ;
ð21Þ

noting that the Gaussian partlG and the four-point correlator
Tijkl are independent of the bispectrum coefficients.We have
additionally used that the Hermite tensors are totally sym-
metric and asserted that the three-point correlator Bijk is
linear in b (which is true for both the binned bispectrum and
the basis components in some linear compression scheme).
The ML bispectrum estimator becomes

b̂ML
α ¼

X
β

F−1;ML
αβ q̂ML

β ; ð22Þ

subject to the definitions

q̂ML
α ≡ 1

6
Bijk
;α Hijk;

FML
αβ ≡ 1

36
Bijk
;α Blmn

;β ½hHijkHlmni − hHijklmni�: ð23Þ

This requires the expectation of a Hermite 6-tensor and a pair
of 3-tensors [defined in Eq. (17)]; following a tedious, but
elementary, calculation, these give

hHijkHlmni ¼ ðhhihjhkihhlhmhni þ 9 permsÞ
þ ðhhihlihhjhmihhkhni þ 5 permsÞ

¼ ðC−1
ii0 C

−1
jj0C

−1
kk0B

i0j0k0C−1
ll0 C

−1
mm0C−1

nn0B
l0m0n0

þ 9 permsÞ þ ðC−1
il C

−1
jmC

−1
kn þ 5 permsÞ;

hHijklmni ¼ hhihjhkihhlhmhni þ 9 perms

¼ C−1
ii0 C

−1
jj0C

−1
kk0B

i0j0k0C−1
ll0 C

−1
mm0C−1

nn0B
l0m0n0

þ 9 perms; ð24Þ

dropping correlators above second order inB and noting that
the two-point piece of hHijklmni vanishes by orthonormality
(Hermite tensors are Gaussian orthonormal with the zeroth-
order tensor being unity). This leads to the simplified forms

q̂ML
α ¼ 1

6
Bijk
;α ½C−1d�ið½C−1d�j½C−1d�k − 3C−1

jk Þ; ð25Þ

FML
αβ ¼ 1

36
Bijk
;α Blmn

;β ½C−1
il C

−1
jmC

−1
kn þ 5 perms�

¼ 1

6
Bijk
;α Blmn

;β C−1
il C

−1
jmC

−1
kn ; ð26Þ

assuming Bijk to be symmetric under fi; j; kg permutations
and working to lowest nontrivial order in B. This matches
that found in, for example, Refs. [63,86].

Much like the power spectrum estimator of Eq. II A
involved a filter C;α applied to two copies of the inverse-
covariance-weighted data, C−1d, the bispectrum esti-
mator of Eq. (22), involves a filter B;α applied to three
copies of C−1d. In both cases, the Fisher matrix is a trace
over two copies of the filter, weighted by some number of
inverse covariance matrices. However, the bispectrum
Fisher matrix does not depend on any bispectrum ampli-
tudes, unlike for the optimal power spectrum estimator.
This occurs since we have assumed the non-Gaussianity
to be weak, fixing the fiducial bispectrum to zero. This
choice does not lead to a bias in the estimator, though it will
give a slight loss of optimality if the true bispectrum is
large. We further note the subtraction of a term involving
½C−1d�iC−1

jk in Eq. (25); this averages to zero and is not
included in the simple estimators of Refs. [25–27], though
Ref. [63] notes it to be important. In the limit of uniform
survey density, this contributes only to the k ¼ 0 mode
(Appendix B).
As for the power spectrum case, the form of Eq. (22)

motivates a more general cubic bispectrum estimator:

b̂α ¼
X
β

F−1
αβ q̂β;

q̂α ¼
1

6
Bijk
;α ½H−1d�ið½H−1d�j½H−1d�k − 3H−1

jk Þ;

Fαβ ¼
1

6
Bijk
;α Blmn

;β H−1
il H

−1
jmH

−1
kn ; ð27Þ

for invertible weight matrix H. This approaches the ML
solution in the limit H → CD, where C is the covariance of
the data.

C. Estimator properties

1. Bias

Taking the expectation of q̂α, the bias of the general
cubic estimator (27) is easily considered:

E½q̂α� ¼
1

6
Bijk
;α H−1

ii0 H
−1
jj0H

−1
kk0 ðhdi0dj0dk0 i − 3H−1

j0k0 hdi0 iÞ

¼ 1

6
H−1

ii0 H
−1
jj0H

−1
kk0B

ijk
;α

X
β

btrueβ Bi0j0k0
;β ¼

X
β

btrueβ Fαβ

⇒ E½b̂α� ¼ btrueα ; ð28Þ

where we have written ½H−1d�i ≡ H−1
ii0 di0 and assumed that

the bispectrum parameters b fully determine B, i.e., that
B ¼ P

α b
true
α B;α. This holds true also for the ML estimator

of Eq. (22), setting H ¼ C. Note that we ignore any biases
from higher-order terms in the likelihood, i.e., those second
order in B. These contribute if b ≠ 0 and could be removed
at leading order by including an additional “bias” term in
the estimator.
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When considering binned bispectrum estimates, relation
(28) strictly holds only if we measure all possible wave
number bins; thus, a more appropriate expansion is
B ¼ P

α b
true
α B;α þ ΔB, where ΔB contains the bispectrum

contributions outside the region of interest. This leads to a
bias

Δbα ≡ E½b̂α� − btrueα ¼
X
β

F−1
αβB

ijk
;β H−1

ii0 H
−1
jj0H

−1
kk0ΔBi0j0k0 :

ð29Þ

For optimal weights and a uniform survey of infinite
volume, C−1

ii0 ∝ δKii0 ; thus, the bias arises from the term

Bijk
;β ΔBijk. This is vanishing for all β, since ΔB contains

contributions only from modes not in fbβg. In more
realistic scenarios, this mode-coupling bias is expected
to be small, assuming the survey window to be relatively
compact. Reference [74] suggested that one should esti-
mate a slightly larger range of wave number bins than used
in an eventual analysis to ameliorate such a bias; we apply
this principle in Sec. V.
Special care is required if some bispectrum decompo-

sition scheme is adopted in which there is an additional
linear term B̄ not included in the parameter set b, i.e., if
B ¼ P

α bαB;α þ B̄. An example of this is the singular
value decomposition scheme proposed in Ref. [71], which

expands the statistic around some fiducial mean. In this
case, we must modify the general estimator to ensure it
remains unbiased:

b̄α →
X
β

F−1
αβ ½q̂β − q̄β�; q̄α ¼

1

6
H−1

ii0 H
−1
jj0H

−1
kk0B

ijk
;α B̄i0j0k0 :

ð30Þ

An alternative approach, which is somewhat easier to
estimate, is to expand the log-likelihood around the mean
B̄ instead of zero; in this instance, we estimate the differ-
ence between bα and b̄α and may drop the q̄α term.
Assuming B̄ to be a reasonable bispectrum estimate, this
will not lead to a significant loss of optimality.

2. Covariance

Assuming the optimal weighting H ¼ C, the covariance
of the bispectrum estimator (22) can be derived via Wick’s
theorem:

covðb̂ML
α ; b̂ML

β Þ ¼
X
γδ

F−1
αγ F−1

βδ covðq̂ML
γ ; q̂ML

δ Þ; ð31Þ

with

covðq̂ML
α ; q̂ML

β Þ≡ E½q̂ML
α q̂ML

β � − E½q̂ML
α �E½q̂ML

β � ¼ 1

36
Bijk
;α Blmn

;β ½hHijkHlmni − hHijkihHlmni�

¼ 1

6
Bijk
;α Blmn

;β C−1
il C

−1
jmC

−1
kn þ 5

18
C−1

ii0 C
−1
jj0C

−1
kk0C

−1
ll0 C

−1
mm0C−1

nn0B
i0j0k0Bl0m0n0Bijk

;α Blmn
;β : ð32Þ

This uses the expectation of two Hermite 3-tensors given in
Eq. (24) and is valid at second order in B. In the limit of a
small bispectrum, this is equal to the inverse Fisher matrix,
such that

covðb̂ML
α ; b̂ML

β Þ ¼ F−1;ML
αβ þOðB2Þ: ð33Þ

The calculation for general weighting H is analogous but
lengthy and is, thus, omitted from this publication.

3. Optimality

According to the Cramér-Rao theorem, for the estimator
b̂ML
α to be optimal, it must satisfy

covðb̂ML
α ; b̂ML

β ÞjCRbound ¼
�∂2l½d�ðbÞ

∂bα∂bβ
�−1

≡ I−1
αβ ; ð34Þ

where the right-hand side is the inverse Fisher informa-
tion for negative log-likelihood l½d�ðbÞ depending on

parameters b and data d (see, e.g., [97]). Since our Fisher
matrix FML

αβ is defined as the (realization-averaged) second
derivative of the log-likelihood, Iαβ ¼ FML

αβ , and Eq. (33)
demonstrates that the ML estimator satisfies its Cramér-Rao
bound in the limit B → 0. We thus obtain optimality in the
limit of weak non-Gaussianity, assuming inverse covariance
weighting and neglecting non-Gaussian contributions from
stochastic effects. A corollary of this is that any estimator
withH ≠ Cmust give larger error bars, since the covariance
of b̂α will necessarily be different from Eq. (33), and no
unbiased estimator can exceed its Cramér-Rao bound.

IV. SPECIALIZATION TO SPECTROSCOPIC
SURVEYS

We now consider the form of the bispectrum estimators
[Eqs. (22) and (27)] when applied to spectroscopic surveys.
We will specialize to the binned isotropic (i.e., rotationally
averaged) bispectrum in Sec. IV B before commenting on
alternative bases in Sec. IV C.
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A. General formalism

As in Sec. II, we assume the data vector to be a
(pixelized) field of data-minus-randoms, such that
dðrÞ≡ n̂gðrÞ − n̂rðrÞ. For clarity, we ignore the effects
of pixelation and particle weights in this section; the full

estimators including such phenomena are presented in
Appendix A 2.
Assuming Poisson statistics for the two discrete

density fields, the two- and three-point correlators are
given by

Cij ≡ hdidji ¼ nðriÞnðrjÞξðri; rjÞ þ nðriÞδDðri − rjÞ;
Bijk ≡ hdidjdki ¼ nðriÞnðrjÞnðrkÞζðri; rj; rkÞ þ ½nðriÞnðrjÞδDðri − rkÞξðri − rjÞ þ 2 perms�

þ nðriÞδDðri − rjÞδDðrj − rkÞ; ð35Þ
applying the results of Eq. (9). This uses the background number density field nðrÞ, the 2PCF ξðr1; r2Þ ¼ hδðr1Þδðr2Þi, and
the 3PCF ζðr1; r2; r3Þ ¼ hδðr1; r2; r3Þi, retaining dependence on all position vectors for generality. The terms involving
Dirac deltas arise from Poisson contractions of the density field; these take a slightly different form after incorporating
pixelation effects (Appendix A). Writing the 2PCF and 3PCF in terms of their Fourier-space counterparts PðkÞ and
Bðk1;k2;k3Þ, respectively, we obtain

Cij ¼ nðriÞnðrjÞ
Z
k
PðkÞeik·ðri−rjÞ þ nðriÞδDðri − rjÞ;

Bijk ¼ nðriÞnðrjÞnðrkÞ
Z
k1k2k3

Bðk1;k2;k3Þeik1·riþik2·rjþik3·rkð2πÞ3δDðk1 þ k2 þ k3Þ

þ
h
nðriÞnðrjÞδDðri − rkÞ

Z
k
PðkÞeik·ðri−rjÞ þ 2 perms

i
þ nðriÞδDðri − rjÞδDðrj − rkÞ; ð36Þ

where the Dirac delta function ð2πÞ3δDðk1 þ k2 þ k3Þ
arises from translation invariance. Additionally, we have
made the flat-sky approximation, assuming the power
spectrum and bispectrum to be independent of the position
vectors r. This is done only for clarity; we can retain
dependence of the statistics on the local line of sight (e.g.,
in the Yamamoto approximation [93]), as done for the
power spectrum multipoles in Ref. [74]. Full treatment of
the three-pixel correlator allowing for this and other effects
can be found in Eq. (A13).
In the estimators of Sec. III, Bijk does not enter directly;

instead, we require its derivatives with respect to a set of
bispectrum parameters. Here, we assume the gravitational

bispectrum Bðk1;k2;k3Þ to be a linear sum of templates,
such that

Bðk1;k2;k3Þ ¼
X
α

bαωαðk1;k2;k3Þ; ð37Þ

where b≡ fbαg are the parameters of interest and
ωαðk1;k2;k3Þ are some templates, which are of relevance
only if k1 þ k2 þ k3 ¼ 0.4 This decomposition is fully
applicable to the simple case of binned bispectrum esti-
mates as well as more nuanced schemes; the former is
discussed in Sec. IV B.
Using Eq. (37), the derivatives of Eq. (36) are

straightforward:

Bijk
;α ¼ nðriÞnðrjÞnðrkÞ

Z
k1k2k3

ωαðk1;k2;k3Þeik1·riþik2·rjþik3·rkð2πÞ3δDðk1 þ k2 þ k3Þ; ð38Þ

leading to the following q̂α estimator [from Eq. (27)]:

q̂α ¼
1

6
Bijk
;α ½H−1d�ið½H−1d�j½H−1d�k − 3H−1

jk Þ

¼ 1

6

Z
k1k2k3

ωαðk1;k2;k3ÞF ½nH−1d�ðk1ÞF ½nH−1d�ðk2ÞF ½nH−1d�ðk3Þð2πÞ3δDðk1 þ k2 þ k3Þ

−
1

2

Z
k1k2k3

ωαðk1;k2;k3ÞF ½nH−1d�ðk1ÞhF ½nH−1a�ðk2ÞF ½nA−1a�ðk3Þið2πÞ3δDðk1 þ k2 þ k3Þ: ð39Þ

4If necessary, we can introduce an offset such that Bðk1;k2;k3Þ ¼
P

bαωαðk1;k2;k3Þ þ B̄ðk1;k2;k3Þ. This is of relevance when
considering singular value decompositions and modifies the bispectrum estimator slightly, as discussed in Sec. III C.
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In the above, we have performed the spatial integrals
(which are simply Fourier transforms, denoted by F )
and, in the third line, written H−1

jk ≡ H−1
jj0A

j0k0A−1
k0k ≡

hH−1
jj0a

j0A−1
kk0a

k0 i, where fag are a set of simulated maps
with known covariance A, i.e., haaTi ¼ A. This is similar
to Ref. [86] and is the same trick used to evaluate the ML
power spectrum bias term in Sec. II. Unlike in previous
work, we do not enforce A ¼ H; instead, we use uniformly
distributed particles for this purpose (as in Sec. II), re-
moving the dependence on N-body simulations. The
corresponding form for A−1 (including pixelation effects)
is given in Eq. (A12).
In practice, the above expression is difficult to compute

due to the momentum-conserving delta function. A useful
assumption is that the filter functionsωα are separable, such
that

ωαðk1;k2;k3Þ ¼
Y3
i¼1

ωα;iðkiÞ: ð40Þ

This is the case for the binned bispectrum estimates
considered below. Writing the Dirac function as the integral
of a complex exponential, this yields a straightforward form
for the q̂α estimator:

q̂α ¼
1

6

Z
drgα;1½d�ðrÞgα;2½d�ðrÞgα;3½d�ðrÞ

−
1

6

Z
dr½gα;1½d�ðrÞhgα;2½a�ðrÞg̃α;3½a�ðrÞi þ 2 perms�;

ð41Þ
where we have defined the functions

gα;i½y�ðrÞ ¼
Z
k
e−ik·rωα;iðkÞ

Z
dr0eik·r0nðr0Þ½H−1y�ðr0Þ;

g̃α;i½y�ðrÞ ¼
Z
k
e−ik·rωα;iðkÞ

Z
dr0eik·r0nðr0Þ½A−1y�ðr0Þ:

ð42Þ
These may be efficiently computed using fast Fourier
transforms (FFTs).

In this manner, the q̂α estimator may be evaluated as a set
of FFTs and, for the r integrals, real-space summations. Note
that we have allowed the templates to depend explicitly on
the direction ki; while no such dependence is required when
measuring the rotationally averaged bispectrum, it will arise
in generalizations to higher-order moments.
To form the full bispectrum estimator, we additionally

require an explicit form for the Fisher matrix (26). When
using ML weighting schemes, one option is to compute
FML
αβ as the (inverse) sample covariance of a set of Nmc

Monte Carlo realizations of q̂ML
α , using Eq. (32). However,

this requires a suite of realistic simulations, works only for
ML weights, and is slow to converge, since the Fisher
matrix must be invertible. As in Refs. [74,86], we instead
compute the full matrix via Monte Carlo averages. This
proceeds similarly to that of q̂α; we first rewrite

1

2
H−1

il ðH−1
jmH

−1
kn þ H−1

jnH
−1
kmÞ

≡ 1

2
H−1

il H
−1
jj0H

−1
kk0A

−1
mm0A−1

nn0 ðAj0m0
Ak0n0 þ Aj0n0Ak0m0 Þ ð43Þ

(assuming interchange symmetry under fj; mg ↔ fk; ng)
and then replace the two-point cumulants with Monte Carlo
averages, using

Aj0m0
Ak0n0 þ Aj0n0Ak0m0 ¼ haj0ak0am0

an
0 i − haj0ak0 iham0

an
0 i;
ð44Þ

for Monte Carlo simulations a satisfying haaTi ¼ A,
assuming the contributions from higher-point correlators
to be small.5 This gives

Fαβ ¼
1

12
hðBijk

;α H−1
jj0H

−1
kk0a

j0ak
0 ÞH−1

il ðBlmn
;β A−1

mm0A−1
nn0a

m0
an

0 Þi

−
1

12
hBijk

;α H−1
jj0H

−1
kk0a

j0ak
0 iH−1

il hBlmn
;β A−1

mm0A−1
nn0a

m0
an

0 i:
ð45Þ

While Eq. (45) seems complicated, it can be expressed as
a vector product. To see this, first define

ϕi
α½a� ¼ Bijk

;α H−1
jj0H

−1
kk0a

j0ak
0

¼
Z
k1k2k3

eik1·riωαðk1;k2;k3Þð2πÞ3δDðk1 þ k2 þ k3ÞnðriÞ½nH−1a�ðk2Þ½nH−1a�ðk3Þ

¼ 1

3

Z
k1

dreik1·ðri−rÞðωα;1ðk1ÞnðriÞgα;2½a�ðrÞgα;3½a�ðrÞ þ 2 permsÞ

¼ 1

3
nðriÞðF−1½ωα;1ðkÞF ½gα;2½a�gα;3½a��ðkÞ�ðriÞ þ 2 permsÞ; ð46Þ

5When using a set of N uniformly distributed particles to define a, the two- and four-point correlators are Aij ¼ δKijaðriÞ and
Aijkl ¼ δKijδ

K
jkδ

K
klaðriÞ, respectively, indexing galaxies by i, j, k, l and ignoring pixelation effects for simplicity. Taking the trace,P

i Aiiii ¼ N,
P

i AiiAii ¼ N2, thus, the four-point correlator is negligible, for N ≫ 1.
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and analogously ϕ̃i
α½a� with H−1 → A−1, and, thus, g → g̃.

Each of these can be evaluated using FFTs, assuming
separability of the bispectrum templates. The Fisher matrix
is, thus,

Fαβ ¼
1

12
ðhϕi

αH−1
il ϕ̃

l
βi − hϕi

αiH−1
il hϕ̃l

βiÞ; ð47Þ

which can be evaluated using a matrix inversion and a real-
space sum. In practice, the second term is small except on
the largest scales, as discussed in Appendix B. When
considering the ML estimators, we must perform one
matrix inversion per element of b (as well as one to define
C−1a); thus, the computation time scales as ðNbins þ 1Þ,
indicating the benefits of an efficient data compression
scheme. As before, the error on Fαβ scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=Nmc

p
for Nmc simulations, implying that Nmc ∼ 50 is requires to
compute the statistic to percent-level accuracy. This applies
also to the second term in q̂α.

B. Application to the binned bispectrum

We now specialize to the measurement of the bispectrum
monopole in a set of k bins. This is the quantity obtained
from most standard estimators (see, e.g., [25–27]). Here,
we will assume the parameter bα to be the measured
bispectrum amplitude in an ordered triplet of k bins,
indexed by α≡ fa; b; cg with a ≤ b ≤ c. In this case,
the bispectrum can be decomposed separably as

Bðk1;k2;k3Þ≈
X
α

1

Δα
bα½Θaðk1ÞΘbðk2ÞΘcðk3Þþ 5perms�;

ð48Þ

where the binning function Θα is unity in bin a and zero
otherwise. We additionally require the symmetry factor Δα,
defined as

Δα ¼
8<:

6 if a ¼ b ¼ c;

2 if a ¼ b or a ¼ c or b ¼ c;

1 else;

ð49Þ

to account for the permutations of Eq. (48). This may be
familiar from the Gaussian covariance of the bispectrum
(see, e.g., [47]). The momentum conservation condition
k1 þ k2 þ k3 ¼ 0 places strong constraints on the triangle
bins, in particular, jka − kbj < kc < ka þ kb, where ki is
the center of bin i, if we ignore the effects of finite bin
widths. Note that our decomposition ignores any direc-
tional information about the triangle; i.e., we consider only
the rotationally averaged bispectrum. In the absence of
redshift-space distortions, this is expected to capture all
possible bispectrum information; in the alternate case, it
will encode only the dominant component. Generalizations
to the anisotropic moments are considered in Sec. IV C.
The cumulant derivative Bijk

;α [Eq. (38)] becomes

Bijk
;α ¼ nðriÞnðrjÞnðrkÞ

Δα

Z
k1k2k3

½Θaðk1ÞΘbðk2ÞΘcðk3Þ þ 5 perms�eik1·riþik2·rjþik3·rkð2πÞ3δDðk1 þ k2 þ k3Þ; ð50Þ

leading to the following form for q̂α [from Eq. (41)]:

q̂α ¼
1

Δα

Z
drfga½d�ðrÞgb½d�ðrÞgc½d�ðrÞ − ðga½d�ðrÞhgb½a�ðrÞg̃c½a�ðrÞi þ 2 permsÞg; ð51Þ

incorporating the permutation symmetries. This uses the definitions

ga½y�ðrÞ ¼
Z
k
e−ik·rΘaðkÞ

Z
dr0eik·r0nðr0Þ½H−1y�ðr0Þ≡ F−1½ΘaðkÞF ½nH−1y�ðkÞ�ðrÞ;

g̃a½y�ðrÞ ¼
Z
k
e−ik·rΘaðkÞ

Z
dr0eik·r0nðr0Þ½A−1y�ðr0Þ≡ F−1½ΘaðkÞF ½nA−1y�ðkÞ�ðrÞ; ð52Þ

analogous to Eq. (42). The Fisher matrix is given by

Fαβ ¼
1

12
ðhϕi

αH−1
il ϕ̃

l
βi − hϕi

αiH−1
il hϕ̃l

βiÞ; ð53Þ

as in Eq. (47), where the ϕ coefficients of Eq. (46) simplify to

ϕα½a�ðrÞ ¼
2nðrÞ
Δα

F−1½ΘaðkÞF ½gb½a�gc½a��ðkÞ�ðrÞ þ 2 perms;

ϕ̃α½a�ðrÞ ¼
2nðrÞ
Δα

F−1½ΘaðkÞF ½g̃b½a�g̃c½a��ðkÞ�ðrÞ þ 2 perms: ð54Þ
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Analogous definitions including the effects of pixela-
tion and particle weights can be found in Eqs. (A16)
and (A17).
The approach described above has several differences

from standard approach: (i) We subtract a (zero-mean) bias
term in Eq. (51), (ii) the data are weighted by nH−1 in
Eq. (52), (iii) we include a symmetry factor Δα, and (iv) we
normalize by a geometry-dependent factor Fαβ rather than
the bin volumes. The first three are included for the sake
of optimality and arise naturally from the ML solution,
while (iv) allows measurement of the unwindowed statistic.
In Appendix B, we demonstrate that the above procedure
reduces to conventional bispectrum estimators (see,
e.g., [42]) in the limit of uniform, and large, n̄ (B11),

additionally noting that we have not subtracted a
Poissonian shot-noise term.

C. Alternative bases

In the above discussion, we have assumed that the
bispectrum can be fully parametrized by the lengths of
three triangle sides, fk1; k2; k3g. In reality, redshift-space
distortions (RSDs) make the bispectrum anisotropic,
giving additional dependence on the relative orientation
of fk1;k2;k3g triplet and the (local) line of sight bn.
Thanks to azimuthal symmetry about bn, this is specified by
only two additional variables. A number of parametriza-
tions of the bispectrum anisotropy are possible (see, e.g.,
[43,73,89]); here, we will consider that of Ref. [43]:

Bðk1;k2;k3; bnÞ ≈X
α

1

Δα
bα½Θaðk1ÞΘbðk2ÞΘcðk3ÞLlðbk3 · bnÞ þ 5 perms�; ð55Þ

where Ll is a Legendre polynomial, bk3 · bn is the angle between k3 and the line of sight bn, and we have neglected
dependence on the second angular coordinate for simplicity. In this case, the binning is now specified by four numbers:
α ¼ fa; b; c;lg, with l ¼ 0 reproducing the bispectrum monopole of Sec. IV C.
Computation of the bispectrum multipoles bα appearing in Eq. (55) is possible via similar methods to before. In

particular, the cumulant derivative becomes

Bijk
;α ¼ nðriÞnðrjÞnðrkÞ

Δα

Z
k1k2k3

½Θaðk1ÞΘbðk2ÞΘcðk3ÞLlðbk3 · brkÞ þ 5 perms�eik1·riþik2·rjþik3·rk

× ð2πÞ3δDðk1 þ k2 þ k3Þ; ð56Þ

setting the local line of sight to bn ¼ brk (as in the Yamamoto approximation of Ref. [93]). Only the k3 part is more difficult to
compute: This leads to the form

q̂α ¼
1

Δα

Z
drfga½d�ðrÞgb½d�ðrÞgc;l½d�ðrÞ − ðga½d�ðrÞhg̃b½a�ðrÞgc;l½a�ðrÞi þ 2 permsÞg; ð57Þ

with

ga;l½y�ðrÞ ¼
Z
k
e−ik·rΘaðkÞ

Z
dr0nðr0Þ½H−1y�ðr0ÞLlðbk · br0Þ

¼ 4π

2lþ 1

X
m

F−1½ΘaðkÞY�
lmðbkÞF ½nH−1yYlm�ðkÞ�; ð58Þ

expanding the Legendre polynomial in terms of spherical
harmonics. The Fisher matrix can be computed similarly.
This estimator gives a practical manner with which to
estimate the bispectrum multipoles, and we note that its
computation time is not significantly greater than that of the
isotropic estimator, except due to the larger number of bins.
The estimators of Sec. IVA may also be applied to the

scenario in which the bispectrum is represented as a sum of
templates [e.g., Eq. (37)] rather than a large number of
binned estimates (cf. Ref. [74]). While a suitably chosen
decomposition scheme can significantly reduce the number

of bispectrum elements (and, thus, the computation time)
[71], this is nontrivial, since we require the templates to
follow the separable form of Eq. (40). A simple approach
would be to measure only the galaxy bias parameters from
the bispectrum, assuming tree-level perturbation theory to
be valid. In this case, the bispectrum is separable into a sum
of ∼6 distinct components [58,66]. However, this decom-
position becomes more difficult when higher-loop effects,
redshift-space distortions, and the Alcock-Paczynski effect
are included or when cosmological parameters must also be
constrained. It seems likely that approximate methods such
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modal decompositions [63] may assist with this; we leave a
comprehensive discussion of this and other subtleties to
future work.

V. PRACTICAL IMPLEMENTATION

While Sec. IV gives the explicit formulas required to
apply the bispectrum estimators to a galaxy survey, we are
left with a number of practical questions, including how to
estimate the underlying field nðrÞ and how to efficiently
implement the q̂α and Fαβ estimators. We discuss this
below, as well as details pertaining to our simulations and
computation.

A. Computation strategy

To compute the first term in q̂α (51), we require the
following intermediate quantities.

(i) H−1d.—Assuming FKP weights, this can be com-
puted via Eq. (A10) and requires four FFTs, or none,
if pixelation effects are ignored (12). For ML
weights with H ¼ C, the application of the inverse
is performed using conjugate gradient descent
(CGD), as in Ref. [74]. This generally converges
in a few tens of steps and requires repeated compu-
tation of Cx for some map x. This is achieved using
chained FFTs, as discussed in Appendix A 1.

(ii) ga½d�ðrÞ.—Using the pixelized definition given in
Eq. (A16), we require Nk þ 3 FFTs to compute all
relevant ga maps given H−1d (assuming Nk bins per
dimension). This reduces to Nk þ 1 FFTs if pix-
elation effects are not included. Assuming each map
contains Npix pixels and is stored as an array of
floats, the set of all ga maps requires 4NkNpix bytes
of memory, which may be large for high-resolution
maps or fine binning. As an example, using 512 grid
points per dimension with 30 k bins leads to a total
memory requirement of ≈2 GB.

(iii) Contribution to q̂α.—As in Eq. (51), this can be
computed by performing (inexpensive) real-space
sums over products of three ga functions, subject to
the triangle conditions on fa; b; cg. In total, this
gives Nbins ∼ N3

k scalar coefficients. Depending on
the machine requirements, one may need to store the
ga functions to disk and then load each sequentially
to compute q̂α.

The second term in q̂α requires the average of pairs of
ga½a� and g̃a½a� functions. We use uniformly distributed
particles to define fag, created by Poisson sampling a
spatially invariant background number density (here set to
n̄ ¼ 10−3h3 Mpc−3) and then assigning the sampled par-
ticles to a grid, with the normalization chosen such that
hai ¼ 0. Given a, we estimate both ga½a� and g̃a½a� filters
via Eq. (52), using the exact form of A−1 given in
Eq. (A12), whose implementation requires two FFTs.
The pairwise product of these filters are saved to disk

and can then be used in combination with the data ga½d�
maps to compute q̂α via Eq. (51). In practice, we useNmc ¼
50 realizations to define the average hgb½a�g̃c½a�i; since the
error scales as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=Nmc

p
, this is sufficient to give errors

well below the statistical threshold.
The Fisher matrix is obtained in a similar fashion using

the same set of a maps. Given the previously computed
ga½a� and g̃a½a� maps, we further compute the following.

(i) ϕα½a�.—By Eq. (54), this is simply computed using
two Fourier transforms per fa; b; cg permutation
or four when the pixelation effects are included
[Eq. (A17)]. Since the Fisher matrix requires hϕα½a�i,
a simple approach would be to save each map to disk.
We caution that this is not practically achievable in
many contexts, since it requires 4NbinsNpixNmc of
(temporary) storage if all bins are computed at once.
In practice, one needs only to save the partial sum of
all computed maps, greatly reducing the storage
requirements.

(ii) ϕ̃α½a�.—This is computed analogously to ϕα½a� but
using the g̃a½a� filters.

(iii) H−1ϕα½a�.—The action of H−1 on the ϕα maps can
be computed using FFTs and, if ML weights are
applied, CGD inversion. Since NbinsðNmc þ 1Þ such
maps must be computed, this is the rate-limiting
step of the ML algorithm, as each requires
Oð100Þ FFTs.

(iv) Fαβ.—The Fisher matrix is constructed using
Eq. (53), requiring hϕαH−1ϕ̃βi and hϕαiH−1hϕ̃βi.
The MC averages can be accumulated from each a
simulation and stored as amatrix of sizeNbins × Nbins.

It is clear that computation of the bispectrum using cubic
estimators is a relatively intensive procedure. The principal
work lies in computing ga andH−1ϕαmaps, requiringOðNkÞ
and OðNbinsÞ FFTs, respectively. The latter dominates in
practice, particularly when using ML weights, since we
must apply an inverse matrix H−1 to each of Nmc random
simulations in Nbins bins. However, computation of the
Fisher matrix (and the hgb½a�g̃c½a�i bias term) is independent
of both data and anyN-body simulations, with its estimation
requiring only the background number density nðrÞ and the
fiducial band powers (if using ML weights). Usually, one
computes summary statistics on both the data and a large
number of mock catalogs; each simulation requires only
computation of q̂α and is, thus, fast.

B. Mock catalogs

Foreshadowing the eventual application of the above
estimators to the BOSS DR12 galaxy sample [98], we first
consider their use on a set of mock galaxy catalogs taken
from the MultiDark-Patchy (hereafter “Patchy”) suite [99,100].6

These share the BOSS geometry and selection functions

6These are publicly available [101].
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and are calibrated to have a similar power spectrum and
bispectrum to the observational data. As in Ref. [74], we use
only the north Galactic cap with the “z1” redshift cut 0.2 <
z < 0.5 (see, e.g., [87,102]). This hasmean redshift z ¼ 0.38
and a total volume V ¼ 1.46h−3 Gpc3, containing∼5 × 105

galaxies.We additionally use a Patchy random catalogwhich
has the same selection functions as the data but 50× larger
particle density. The observed redshifts and angular positions
of both galaxies and randoms are converted to Cartesian
coordinates using the fiducial matter density Ωm ¼ 0.31
[102], before they are painted to a uniform grid using a
triangular-shaped cloud mass assignment scheme, imple-
mented using NBODYKIT [103]. The discretization grid uses
pixels of twice thewidth as those in the officialBOSS release;
this is more than sufficient for our purposes (cf. Sec. VI) and
gives a Nyquist frequency kNyq ¼ 0.3h Mpc−1. The data
vector d is then computed as the difference between galaxies
and (rescaled) random particles, including the incomplete-
ness weights wc of Ref. [102]. Note that we do not add FKP
weights at this point.
To define the background density field nðrÞ, we make

use of the publicly available survey mask files as well as
the redshift distribution n̄ðzÞ from the Patchy random
catalogs (themselves calibrated from the BOSS data). In
practice, we first histogram the randoms in redshift bins
(weighted by wc) before transforming these to volumetric
bins via the Jacobian dV=dz ¼ 4πr2ðzÞdr=dz, where rðzÞ
is the comoving distance to redshift z. We then evaluate
n̄ðzðrÞÞ at the center of each pixel, before multiplying by
the angular MANGLE mask ϕðbrÞ and normalizing such thatR
drn3ðrÞ matches the value obtained from the random

catalog (including completeness weights). This differs from
the approach of Ref. [74], which assumed nðrÞ to be equal
to the pixelized field of randoms, and is preferred since
(a) it does not include pixelation effects and (b) it gives a
smooth field; i.e., there are no regions within the survey
area where nðrÞ ¼ 0, which can cause instabilities upon
inversion.
To apply the ML estimators, we additionally require a

fiducial power spectrum for the signal covariance, as in
Eq. (A7). Since the bispectrum estimator is unbiased for
all choices of invertible H, the precise power spectrum is
not critical, though the procedure is suboptimal if it is far
from the true power spectrum.7 Here, we follow Ref. [74]
and model the unwindowed power spectra using a fit
to 1000 Patchy simulations using CLASS-PT [104]. No
fiducial spectrum is required when using FKP weights,
i.e., H ¼ HFKP.

C. Unwindowed bispectrum computation

Given the above, we may apply the bispectrum estima-
tors of Secs. III and IV to the Patchy simulations. For
this demonstration, we adopt a k-space binning with
widthΔk¼ 0.01hMpc−1 from kmin ¼ 0h Mpc−1 to kmax ¼
0.16h Mpc−1, giving Nk ¼ 16. Allowing for the effects of
finite bin widths, this gives Nbins ¼ 508 triplets obeying
the triangle conditions, i.e., containing wave vectors
fk1;k2;k3g satisfying k1 þ k2 þ k3 ¼ 0.8 After compu-
tation, we discard any bins with k < 0.01h Mpc−1 or
k > 0.15h Mpc−1, since these are not fully window cor-
rected (cf. [74]); this leaves Nbins ¼ 399 elements. A finer
binning would lead to a much larger dimensionality;
this does not pose problems in the analysis if a compres-
sion scheme is applied before the likelihood is computed
(see, e.g., [52,71]), though it will increase the computa-
tion time.
Here, we compute the bispectrum of 999 Patchy sim-

ulations, using Nmc ¼ 50 uniform random simulations to
define the linear q̂α term and the Fisher matrix. For our
fiducial run, we assume an FKP weighting matrix (12) and
do not include the forward modeling of pixelation effects
described in Appendix A.9 To test the various hyper-
parameters, we consider a number of alternative runs, each
with 100 simulations: (i) using a coarser pixel grid with
kNyq ¼ 0.2h Mpc−1, (ii) usingNmc ¼ 100MC simulations,
(iii) including the full pixelation effects of Appendix A,
(iv) omitting the second, variance reducing, term in
Eq. (51), and (v) using ML weights. The impact of these
assumptions will be assessed in Sec. VI B.
All computations are performed in PYTHON, making

extensive use of the pyfftw package to perform FFTs.10

When using FKP (ML) weights, we require 100 (140) CPU
hours to compute the data bispectrum contributions from all
999 mocks (matching the computation time of any standard
bispectrum estimator), plus an additional 150 (850) CPU
hours in total for the uniform random contributions. While
non-negligible, this run time is not unreasonable, especially
considering that the bulk of the time is spent computing the
Fisher matrix which needs to be done only once. This is
further reduced if the bin width is increased or when using a
coarser pixel grid.

7This is unlike the approach of Ref. [74], whereupon the
fiducial spectrum was a crucial component of the power spectrum
estimator. This was a consequence of using the first form of
Eqs. II A and (8) which contains explicit dependence on a fiducial
set of band powers. In this work, we focus on the second form,
which does not require such considerations.

8When comparing data and theory, it is common to evaluate
the theory model in the center of each k bin, i.e., at fk̄1; k̄2; k̄3g.
We caution that some of our allowed bins violate the triangle
conditions on k̄i; i.e., they do not satisfy jk̄1 − k̄2j ≤ k̄3 ≤ k̄1 þ k̄2
and should not be included in the fit. If the theory model is
integrated over a finer grid of wave numbers, these bins are
important to include, however.

9We do, however, include a factor ψ̃−1ðk1Þψ̃−1ðk2Þψ̃−1ðk3Þ in
the q̂α estimator (where ψ̃ is the Fourier-space pixelation
window) to ensure that our bispectra are not biased. This is
further discussed in Appendix A 2.

10Our code is publicly available [91].
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D. Windowed bispectrum estimators

To assess the impact of the survey window function on
the bispectrum, we additionally compute the statistic using
conventional estimators. In this case, the output bispectrum
is binned, FKP weighted (before gridding), and convolved
with the survey window function. Following Ref. [27], the
windowed bispectrum of data d can be written

b̂winα ¼ 1

I3

1

Vα

Z
k1k2k3

ð2πÞ3δDðk1 þ k2 þ k3Þdðk1Þ

× dðk2Þdðk3ÞΘaðk1ÞΘbðk2ÞΘcðk3Þ; ð59Þ

where the Dirac delta function enforces momentum con-
servation and the bin volume is given by

Vα ¼
Z
k1k2k3

ð2πÞ3δDðk1 þ k2 þ k3ÞΘaðk1ÞΘbðk2ÞΘcðk3Þ:

ð60Þ

Equation (59) also includes the normalization factor I3 ¼R
drn3ðrÞw3

FKPðrÞ, where wFKPðrÞ ¼ ½1þ nðrÞPFKP�−1 is
the FKP weight. This can be computed from the random
catalog (requiring the inclusion of completeness weights)
as in Ref. [27]. Rewriting the Dirac functions in Eqs. (59)
and (60) as complex exponentials as before gives a more
practical form for the estimator:

b̂winα ¼ 1

I3

R
drDaðrÞDbðrÞDcðrÞR
drUaðrÞUbðrÞUcðrÞ

; ð61Þ

defining

DaðrÞ ¼
Z
k
e−ik·rdðkÞΘaðkÞ; UaðrÞ ¼

Z
k
e−ik·rΘaðkÞ;

ð62Þ

the set of which can be computed using ð2Nk þ 1Þ FFTs.
Here, we apply the estimator to 999 Patchy simulations,
which requires ∼100 CPU hours in total.

VI. RESULTS

A. Bispectrum estimates

In Fig. 1, we display the main results of this work—a
set of binned bispectrum measurements from 999
Patchy mocks using FKP weights (12), which are not
convolved with the survey window function. The measure-
ments exhibit a distinctive “sawtooth” pattern (analogous to
those of Ref. [27]), which is a result of projecting a 3D
dataset into one dimension. In full, this arises since
k1k2k3Bðk1; k2; k3Þ is an increasing function of ki. Con-
sidering the fractional error, it is clear that we have detected
a nonzero bispectrum at high significance, with most bins
having a signal to noise above unity (ignoring correlations).

We note a clear distinction between the three types of
triangles shown in Fig. 1; scalene triangles exhibit signifi-
cantly smaller error bars than those of isosceles configu-
rations, themselves smaller than the equilateral triangles
error bars. This arises due to the number of ways in which
one can obtain a triangle of a given configuration [i.e., Δα,
Eq. (49)] and matches that found in previous works
(e.g., Ref. [69]).
Also shown in Fig. 1 are the windowed bispectrum

measurements from Patchy, computed using the estimators
of Sec. V D. On short scales (high k, corresponding to
the rightmost data points in Fig. 1), the mean bispectrum
measurements from the unwindowed and windowed esti-
mators appear highly consistent, implying that the win-
dow function’s impact is minimal. Moving to larger
scales (low k), the window function distortions become
significant, particularly for squeezed triangles (containing
two long sides and a short side). Given that the BOSS
window function primarily contains power on large scales
[74], this matches our expectations. Some of the most
important bispectrum parameters (such as fNL) have
signatures concentrated on large scales; thus, these results
highlight the importance of a proper window function
treatment.
To further assess the effects of window function con-

volution, it is useful to look at the Fisher matrix Fαβ

[Eq. (53)]. In the limit of an ideal survey geometry
(Appendix B), the matrix is diagonal and simply encodes
the bin volumes and normalization; outside this limit, it
has a more complex structure, including off-diagonal
contributions, which act to deconvolve the bispectrum
(cf. Ref. [75]). In Fig. 2, we plot the Fisher matrix for
the Patchy simulations, again assuming H ¼ HFKP. Here,
we find off-diagonal correlations up to ∼10% in neighbor-
ing bins (i.e., those in which a single element of α ¼
fa; b; cg and β ¼ fa0; b0; c0g differs by one) but small
corrections elsewhere. This indicates that the primary
effect of the window function is to convolve neighboring
bins (due to the compact nature of the window function)
and motivates our choice of scale cuts (Sec. V C).
From the fractional errors shown in Fig. 1, it may seem

that the windowed bispectrum estimator achieves signifi-
cantly higher precision than the unwindowed estimator. In
fact, this is not the case, since the individual windowed data
points are far more correlated than their unwindowed
equivalents, an effect sourced by the nonuniform geometry.
As a demonstration, we plot the bispectrum correlation
matrices (equal to the covariance matrices normalized by
their diagonals) in Fig. 3. In the unwindowed case, the
matrix is close to diagonal, though there remain some
off-diagonal correlations in closely separated bins.11

11For ML weights, and in the limit of zero bispectrum, the
covariance matrix is equal to the inverse of the Fisher matrix
[cf. Eq. (33)].
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In contrast, we observe a much increased correlation
structure in the windowed estimates, with correlation
coefficients approaching unity at low k (where the effects
of the window function are largest). This highlights the
utility of the windowed estimator and matches the con-
clusions of Ref. [74] for the power spectrum.12

B. Dependence on hyperparameters

To test the dependence of the output spectra on the
algorithm hyperparameters, we perform a number of addi-
tional bispectrum analyses, as noted in Sec. V C. First, Fig. 4
considers the effects of using a coarser Fourier-space grid,
reducing the Nyquist frequency from kNyq ¼ 0.3h Mpc−1 to

FIG. 1. Unwindowed bispectrum measurements from 999 Patchy simulations at z ¼ 0.57, obtained using the cubic estimators of this
work. In the first panel, we show the bin-averaged triangle sides fk1; k2; k3g corresponding to each one-dimension wavenumber bin,
with the second panel giving the associated binned bispectrum estimates (normalized by k1k2k3), averaged across all mocks. The third
panel displays the fractional error in the bispectrum relevant for a single mock dataset. We show triangle configurations corresponding to
scalene (k1 ≠ k2 ≠ k3), isosceles (k1 ¼ k2 < k3 or k1 < k2 ¼ k3) and equilateral (k1 ¼ k2 ¼ k3) triangles in green, blue and red
respectively; the error-bars for isosceles (equilateral) triangles are inflated by a factor ∼2 (∼6) as expected. To compute these bispectra,
we assume an FKP weighting (12), a Nyquist frequency of kNyq ¼ 0.3h Mpc−1,Nmc ¼ 50Monte Carlo simulations, and do not forward
model pixelation effects (cf. Appendix A). We additionally show results from the windowed bispectrum estimator in purple; whilst these
have smaller fractional errors, this is primarily due to increased bin-to-bin covariances, as demonstrated in Fig. 3. The figure shows
results only for the bispectrum monopole (averaged over triangle rotations); the estimators of this work could be simply extended to
include higher multipoles sourced by redshift-space distortions.

FIG. 2. Fisher matrix for the unwindowed bispectrum estimates
shown in Fig. 1. As discussed in the main text, this removes effects
of the survey window function, practically acting as a deconvo-
lution matrix. Here, we plot the matrix using the same binning
scheme as Fig. 1, normalizing by the diagonal elements for clarity.
The largest correlations are between bins k01 ¼ k1 � Δk, k02 ¼ k2,
k03 ¼ k3 (or permutations); other correlations are found to be small.

12Given that the bispectra obtained from the estimators of
Sec. IV are not convolved with the window function, it may be
tempting to model their covariance perturbatively, ignoring
window effects. This is not true, however, since the impact of
the window on the covariance is different to that on the data.
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0.2h Mpc−1 (which can be compared to kmax ¼
0.15h Mpc−1). Though the noise properties differ somewhat,
we find consistent results between the two datasets across all
triangle bins, except those in which all three triangle sides
have largewave numbers. Thismatches our expectations and
implies that the fiducial value of kNyq ¼ 0.3h Mpc−1 is more
than sufficient for our choice of kmax.
Figure 5 assesses the impact of Monte Carlo noise.

As noted in Sec. IV, we use a set of Nmc ¼ 50 uniform

random realizations to compute the Fisher matrix
(and the second term of q̂α), in order to sidestep a
computationally prohibitive matrix multiplication. When
Nmc is increased to 100, the results are statistically
consistent, yet we find an ∼2% reduction in the error
bar. Given that the expected error is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=Nmc

p
,

this matches expectations. In future runs, it may be
desired to use a larger number of simulations than the
fiducial Nmc ¼ 50, though we note that this is still a

FIG. 3. Correlation matrices for the unwindowed and windowed bispectrum measurements shown in Fig. 1. These are computed from
the sample covariance of 999 individual Patchy bispectra and follow the same bin ordering as Fig. 1. While the unwindowed spectra
have a close-to-diagonal covariance, this is not true for the windowed measurements and highlights the smoothing effect of the window
function.

FIG. 4. Dependence of the unwindowed bispectra on the Fourier-space grid size. This compares two sets of bispectra: those computed
with a Nyquist frequency kNyq ¼ 0.3h Mpc−1 (shown in Fig. 1) and those with kNyq ¼ 0.2h Mpc−1. The top panel shows the difference
between the two estimates as a fraction of the statistical error of the fiducial estimates, while, in the bottom panel, we give the ratio of
statistical errors. The bins are ordered in the same fashion as Fig. 1, and both datasets include 100 Patchy simulations. Here, increasing
the number of grid points is found to have an insignificant effect, except on the smallest scales.
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small (though multiplicative) contribution to the overall
error budget.
In Appendix A, we present a full treatment of the

two- and three-point cumulants of the gridded density
field. This allows one to forward model the pixelation
effects instead of simply dividing by the pixelation mask in
the final step of the bispectrum estimator computation.

Bispectra computed using this approach are compared to
the fiducial set in Fig. 6. In this case, we do not find any
marked improvement with this approach; rather, there
appears to be a slight increase in the variances (though
we caution that this may be sourced by a decrease in bin-to-
bin correlations). While this approach may be of use for
analyses with more complex window functions, it is not

FIG. 5. As in Fig. 4, but assessing the impact of the number of Monte Carlo simulations used to define the Fisher matrix. Here we
compare the case of Nmc ¼ 100 to the fiducial results with Nmc ¼ 50. The error is expected to scale as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=Nmc

p
; this matches that

found in the figure.

FIG. 6. As in Fig. 4, but testing the impact of forward modeling the pixelation effects, as described in Appendix A. This is found to
have a very small effect in practice, since the survey size is much larger than the pixel width.
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found to be important here and is disfavored, since it
requires more FFT operations.
An additional test concerns the second term appearing in

the q̂α quantity, i.e., that involving C−1
ij ½C−1d�k (and

permutations) in Eq. (25). On average, this is expected
to be zero, and, furthermore, it contributes only to the
k ¼ 0 mode for a uniform survey geometry (Appendix B).
Figure 7 shows the effects of removing it from the

FIG. 7. As in Fig. 4, but assessing the importance of the second term in q̂α [Eq. (51)], which is ignored in conventional bispectrum
estimators. Removal of this term is found to significantly increase the error on large scales; this is consistent with the expected behavior
found in Appendix B and highlights the importance of this contribution in fNL-based studies.

FIG. 8. As in Fig. 4, but adopting maximum-likelihood weights C−1 [Eq. (A4)] rather than the short-scale FKP approximation
[Eq. (12)]. As in Ref. [74], this is not expected to significantly improve constraints from a BOSS-like survey, since the window function
contains mostly large-scale power and the shot noise is large. Here, we find an ∼5% decrease in the error bars; however, this is associated
with a nontrivial underprediction of the bispectrum. This may arise from the difficulty of inverting the survey mask (since it contains
zeros, which do not quite match those of the dataset due to pixelation effects). In practice, we expect the difference to be absorbed in
bispectrum bias parameters in any cosmological analysis; thus, this is unlikely to be a cause for concern.
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bispectrum estimator; we find a large increase in the
bispectrum variances in the lowest k bin (with one leg
in the range ½0.01; 0.02�h Mpc−1) but negligible impact to
other bins.13 We conclude that this term should certainly be
included when the measuring large-scale bispectrummodes
but is of little importance if these are not included in the
analysis.
Finally, we assess the impact of using ML weights in

the bispectrum estimator [rather than the FKP scheme of
Eq. (12)]. A similar comparison was performed for the
power spectrum in Ref. [74]; in that case, the ML weights
were found to have negligible impact on both the output
power spectra and the corresponding cosmological param-
eter constraints. This was attributed to the compact nature
of the window function (i.e., with power concentrated on
large scales), the relatively high shot noise, and the narrow
k bins adopted. The analogous results for the bispectrum
are shown in Fig. 8. Unlike for the power spectrum, we find
a significant (∼5%) reduction in the bispectrum variances,
somewhat increasing on large scales. More troublingly, we
find also a shift in the spectrum compared to that of FKP
weights, which is not expected (since the bispectrum
estimators should be unbiased for any choice of weighting
matrix H). We hypothesize that this is caused by zeros in
the survey mask and the effects of gridding; since the data
are smoothed by the pixelation window but the underlying
density nðrÞ is not, there will be pixels in which nðrÞ is zero
but the data are nonzero. These can cause instabilities
upon inversion, which will affect the ML and FKP weights
differently, particularly impacting the ML weights due to
their more complex character. We defer further consider-
ation of this effect to future work; however, we note that the
principle effect is that of a global renormalization, which
may be degenerate with the galaxy bias parameters.

VII. SUMMARY

In the effort to harvest maximal information from current
and future spectroscopic surveys, the bispectrum plays a
key role. In combination with the galaxy power spectrum, it
has been shown to significantly enhance constraining
power on ΛCDM parameters [8,9], as well as strengthening
the bounds on additional phenomena such as primordial
non-Gaussianity, neutrino masses, and modified gravity
[10–14]. However, several challenges must be overcome
before its full potential can be realized, in particular,
regarding its measurement, modeling, and dimensionality.
In this work, we have introduced new estimators for the
bispectrum, which, unlike previous approaches, output
spectra which are not convolved with the survey window.
These are analogous to the “quadratic estimators” used in
power spectrum analyses of old (and Ref. [74]) and are
constructed by maximizing a pixel likelihood based on the

Edgeworth expansion. We provide general forms for the
estimator using both optimal and FKP-like [92] weighting
schemes, with the latter providing a simple-to-implement
approximation to the ML solution. The general estimator
consists of two parts: a cubic estimator applied to the data
and a Fisher matrix computed from the survey mask, which
acts as a deconvolution matrix (cf. Ref. [75]).
When considering the binned bispectrum monopole, the

bispectrum estimators may be straightforwardly imple-
mented using FFTs and, if optimal weights are adopted,
conjugate gradient descent methods. Their computation
requires only the data, a random catalog, and knowledge of
the survey mask. The estimators were applied to a suite of
Patchy simulations and shown to be efficient, with the
window function corrections taking ∼150 (850) CPU hours
to compute with FKP (ML) weights, irrespective of the
number of mocks analyzed. Comparison of the windowed
and unwindowed bispectra showed highly consistent
results on small scales but significant differences at low
k, due to the nonuniform survey geometry. Furthermore,
the unwindowed bispectrum bins were found to be sub-
stantially less correlated than the windowed bins, simplify-
ing their interpretation.
Measuring bispectra in this manner has a number of

benefits over standard approaches. First and foremost, it
avoids the need to window convolve the theory model in an
MCMC analysis. This is a computationally expensive
procedure (involving double Hankel transforms [73]); thus,
its removal will significantly expedite parameter inference
studies and obviate the need for survey-specific analysis
pipelines. Second, the estimators approach the minimum-
variance solution (assuming weak non-Gaussianity). While
this is unlikely to be of importance for relatively uniform
surveys such as BOSS [74] (with the ML weights, in fact,
causing a slight bias due to pixelation effects and FKP
weights being close to optimal), the unwindowed bispec-
trum estimator does feature an additional linear term which
is shown to significantly reduce the error bars on the large-
scale bispectrum. An additional use concerns the global
integral constraint, arising from the unknown mean survey
density. Since our measurements are, by definition, unwin-
dowed, these effects should be restricted to the first k bin
and, thus, may be ignored if this is not included in the
analysis.
There are a number of ways in which the ideas of this

work can be extended. In particular, one may wish to
construct analogous estimators for the anisotropic bispec-
trum multipoles [43,73,89,90]. This follows the procedure
noted in Sec. IV C and will allow all the information
present in the three-point statistic to be captured. More
abstract bases for the bispectrum would also be of use;
essentially, one decomposes the bispectrum into a set of
separable shapes, whose amplitudes can be directly esti-
mated. For the simple case of constraining galaxy biases
from a tree-level model, such a formalism exists [58,105],
though we caution that finding such a decomposition in a

13There is also a slight bias, though we again caution that error
bars are most strongly correlated on these scales.
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more general case may be difficult. An additional appli-
cation would be to compute windowless skew spectra using
cubic estimators; such statistics have been shown to capture
equivalent information to the galaxy bispectra [105,106] in
a friendlier form. Finally, an important application of the
windowless bispectra presented herein is to the BOSS
galaxy sample. Combining the above measurements with a
bispectrum theory model in a full-shape framework will
tighten parameter constraints from power-spectrum-based
analyses [87,107], further pinning down the Universe’s
composition and evolution.
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APPENDIX A: PIXEL CORRELATION
FUNCTIONS

Below, we present a full discussion of the pixel corre-
lators used in this work, including the effects of discretiza-
tion, particle weights, and redshift-space distortions. Our
covariance modeling represents an improvement to that of
Ref. [74], particularly with regards to the treatment of
pixelation, which was previously ignored.14

First, we define the data and random density fields as
weighted sums over Dirac delta functions:

n̂0gðrÞ ¼
X
a

wa
dδDðr − raÞ; n̂0rðrÞ ¼ α

X
b

wb
rδDðr − rbÞ;

ðA1Þ

where a and b represent data and random particle indices,
respectively, and α≡P

a w
a
d=

P
b w

b
r . We add primes

to indicate weighted fields. Under a Poisson average,

hn̂0gðrÞi ¼ nðrÞ½1þ δðrÞ� and hαn̂0rðrÞi ¼ nðrÞ, where
nðrÞ is the background number density (assuming that
the weights correct for sampling errors), i.e., nðrÞ ¼
limα→0αn̂rðrÞ.
After painting the density fields to a grid, the overdensity

in pixel i is given by

di ¼
Z

dr½n̂0gðrÞ − αn̂0rðrÞ�ψðr − riÞ

¼
X
a

wa
dψðri − raÞ − α

X
b

wb
rψðri − rbÞ; ðA2Þ

where ψðrÞ is some mass-assignment (compensation)
function with compact support. A typical choice for this
is the “triangle-shaped-cloud” interpolation scheme, whose
functional form can be found in Ref. [108].

1. Two-point statistics

Given the pixelized density field (A2), we may construct
the two-point covariance Cij ≡ hdidji. To do so, we first
define the pairwise expectations of the weighted fields,
analogously to Eq. (9):

hn̂0gðrÞn̂0gðr0Þi ¼ nðrÞnðr0Þ½1þ ξðr − r0Þ�

þ δDðr − r0Þ
�X

a

ðwa
dÞ2δDðr − raÞ

�
;

hαn̂0rðrÞn̂0gðr0Þi ¼ nðrÞnðr0Þ;
hα2n̂0rðrÞn̂0rðr0Þi ¼ nðrÞnðr0Þ

þ α2δDðr − r0Þ
�X

b

ðwb
r Þ2δDðr − rbÞ

�
;

ðA3Þ
giving

hdidji≡ Cij ¼ Sij þ Nij;

Sij ¼
Z

drdr0nðrÞnðr0Þξðr; r0Þψðr − riÞψðr0 − rjÞ;

Nij ≡
Z

drn0ðrÞψðr − riÞψðr − rjÞ½1þ α2=β�; ðA4Þ

where ξðr; r0Þ is the 2PCF of the underlying field δ.
Notably, the gridded number density field N is not diagonal
in pixel space. Equation (A4) uses the twice-weighted field
n0ðrÞ, defined by

n0ðrÞ¼ lim
β→0

β
X
b

ðwb
r Þ2δDðr−rbÞ¼

�X
a

ðwa
dÞ2δDðr− raÞ

�
;

ðA5Þ
assuming data and randoms to have the same weight dis-
tribution with β ¼ P

aðwa
dÞ2=

P
bðwb

r Þ2. For an alternative
approximation, we can write

14This does not affect the conclusions of the earlier work, since
their estimators were formulated as differences from a set of
simulations and, thus, unbiased by construction.
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�X
a

ðwa
dÞ2δDðr − raÞ þ α2

X
b

ðwb
r Þ2δDðr − rbÞ

�
≈
hw2

di þ αhw2
ri

hwdi
nðrÞ≡ SnðrÞ; ðA6Þ

in terms of the average squared weights. Note that the above relations depend on the ungridded density field nðrÞ. In
Ref. [74], it was assumed that this could be approximated by the gridded random field; however, this necessarily introduces
an extra factor of ψ and can cause inversion errors when the number of randoms in a cell is small. Motivated by this and
further testing of the power spectrum estimators, we instead use a smooth model for nðrÞ computed from the survey mask
and redshift distribution, as discussed in Sec. V.
To obtain a tractable form of Eq. (A4), we rewrite the 2PCF in Fourier space, leading to

Sij ¼
Z
k
drdr0nðrÞnðr0Þ

X
l

PlðkÞLlðbk · br0Þeik·ðr−r0Þ × ψðr − riÞψðr0 − rjÞ; ðA7Þ

where we have expanded the power spectrum as a Legendre series about the first galaxy’s line of sight using the Legendre
polynomial Llðbk · br0Þ, adopting the Yamamoto approximation [93].15 Given that the background density nðrÞ is also a
pixelized (but not ψ-convolved) field, the r and r0 summations can be evaluated as FFTs. Considering the action of Sij and
Nij on a map yj, we find

½Sy�i ¼
1

Vcell
FFT−1

�
ψ̃FFT

�
nFFT−1

�X
l

Pl
4π

2lþ 1

Xl
m¼−l

YlmFFT½Y�
lmnFFT

−1½ψ̃FFT½y���
���

i

;

½Ny�i ¼
S

Vcell
FFT−1½ψ̃FFT½nFFT−1½ψ̃FFT½y����i; ðA8Þ

where we have additionally normalized by the pixel volume Vcell, written ψ in terms of its Fourier transform ψ̃ , and
expanded Llðbk · br0Þ ¼ ð4πÞ=ð2lþ 1ÞPl

m¼−l YlmðbkÞY�
lmðbr0Þ for spherical harmonics Ylm. While somewhat imposing,

Eq. (A8) is simple to implement and requires just the gridded power spectrum, background number density field, and
spherical harmonics. We caution that ψ̃ is the forward gridding transform, which is the reciprocal of that usually applied in
conventional power spectrum estimators.
A similar form may be derived for the FKP covariance (12), including the effects of pixelation. Explicitly, we obtain

½HFKPy�i ¼
1

Vcell
FFT−1½ψ̃FFT½nðS þ nPFKPÞFFT−1½ψ̃FFT½y����i; ðA9Þ

for FKP power PFKP ∼ 104h−3 Mpc3. This can be straightforwardly inverted:

½H−1
FKPy�i ¼ FFT−1

�
ψ̃−1FFT

�
Vcell

nðS þ PFKPnÞ
FFT−1½ψ̃−1FFT½y��

��
i
: ðA10Þ

Additionally of interest to this work is the covariance of uniformly distributed random particles with constant number
density n̄. In continuous form, this can be shown to equal

Aij ¼ n̄
Z

drψðr − riÞψðr − rjÞ: ðA11Þ

The action of A−1 on a field y is straightforwardly expressed in discrete form as

½A−1y�i ¼
Vcell

n̄
FFT−1½ψ̃−2FFT½y��i: ðA12Þ

This can be straightforwardly tested by generating uniform maps a and verifying that haTA−1ai ¼ Npix.

15More nuanced approaches are also available, such as pairwise, or multiple, lines of sight [109,110].
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2. Three-point statistics

We now consider the pixel-space three-point correlator Bijk ≡ hdidjdki. Applying the same reasoning as before, this
takes the full form [cf. Eq. (36)]

Bijk ¼
Z

dr1dr2dr3nðr1Þnðr2Þnðr3Þ
Z
k1k2k3

Bðk1;k2;k3;br1;br2;br3Þeik1·r1þik2·r2þik3·r3

× ð2πÞ3δDðk1 þ k2 þ k3Þψðr1 − riÞψðr2 − rjÞψðr3 − rkÞ

þ
�Z

drdr0n0ðrÞnðr0Þ
Z
k
Pðk;br;br0Þeik·ðr−r0Þψðr − riÞψðr0 − rjÞψðr − rkÞ þ 2 perms

�
þ ½1þ α3=γ�

Z
drn00ðrÞψðr − riÞψðr − rjÞψðr − rkÞ; ðA13Þ

where we allow for dependence of the power spectrum and bispectrum on the various lines of sight, with, for example,
Pðk;br;br0Þ ¼ P

l PlðkÞLlðbk ·br0Þ in the Yamamoto formalism. Analogous to the two-point noise covariance N, we have
introduced the doubly weighted field n00ðrÞ ¼ hPaðwa

dÞ3δDðr − raÞi, with γ ¼ P
aðwa

dÞ3=
P

bðwb
rÞ3, to account for the

reweighted shot-noise contributions. These do not affect the statistics of this work.
From Eq. (A13), we can obtain the parameter derivatives:

Bijk
;α ¼

Z
dr1dr2dr3nðr1Þnðr2Þnðr3Þ

Z
k1k2k3

ωαðk1;k2;k3;br1;br2;br3Þeik1·r1þik2·r2þik3·r3

× ð2πÞ3δDðk1 þ k2 þ k3Þψðr1 − riÞψðr2 − rjÞψðr3 − rkÞ; ðA14Þ

where ωα arises from the basis decomposition of Eq. (37). Specializing to rotationally averaged binned bispectrum
estimates, as in Eq. (48), and performing the integral over r, we find

Bijk
;α ¼ 1

Δα

Z
dr

�Z
k1

dr1eik1·ðr1−rÞΘaðk1Þnðr1Þψðr1 − riÞ
��Z

k2

dr2eik2·ðr2−rÞΘbðk2Þnðr2Þψðr2 − rjÞ
�

×

�Z
k3

dr3eik3·ðr3−rÞΘcðk3Þnðr3Þψðr3 − rkÞ
�
þ 5 perms: ðA15Þ

Following a little algebra, we obtain the binned q̂α estimate of Eq. (51), but with the redefinition

ga½y�ðrÞ ¼
Z
k
e−ik·rΘaðkÞ

Z
dr0eik·r0nðr0Þ

Z
dxψðr0 − xÞ½H−1y�ðxÞ;

ga½y�i ¼ FFT−1½ΘaFFT½nFFT−1½ψ̃FFT½H−1y����i ðA16Þ

[cf. Eq. (52)], where we give the (properly normalized) gridded form involving discrete Fourier transforms in the second
line. g̃a½y�i follows similarly. Similarly, the Fisher matrix retains the form of Eq. (53) but with the redefined ϕ coefficients
(and likewise the ϕ̃ coefficients)

ϕα½y�ðxÞ ¼
2

Δα

Z
drgb½y�ðrÞgc½y�ðrÞ

Z
k
e−ik·rΘaðkÞ

Z
dr0nðr0Þψðr0 − xÞ þ 2 perms;

ϕi
α½y� ¼

2

VcellΔα
FFT−1½ψ̃FFT½nFFT−1½ΘaFFT½gb½y�gc½y�����i þ 2 perms ðA17Þ

[cf. Eq. (54)], which can again be implemented using FFTs. We note an additional overall normalization factor of Vcell.
One further comment is of note. In Sec. VI, we consider the estimators both with and without the pixelation corrections

given above. Even when these effects are not included, it is important to add a factor ψ̃−2ðkÞ to q̂α for the power spectrum
estimators or ψ̃−1ðk1Þψ̃−1ðk2Þψ̃−1ðk3Þ for the bispectrum estimators. This is necessary to remove the leading-order
pixelation effects in the statistic and is included in all standard estimators. The treatment above forward models this effect
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rather than simply dividing it out in the final step and, thus, should somewhat reduce the dependence on the grid size and
slightly decrease the estimator error.

APPENDIX B: LIMITING FORMS OF THE ESTIMATORS

It is instructive to consider the limiting forms of the ML bispectrum estimator on large and small scales. Assuming a
uniform number density nðrÞ ≈ n̄ and ignoring pixelation effects and RSD, the covariance matrix given in Eq. (10) becomes

Cðr; r0Þ → n̄2
Z
k
eik·ðr−r0ÞPðkÞ þ n̄δDðr − r0Þ ≈

�
n̄2

R
k e

ik·ðr−r0ÞPðkÞ n̄P ≫ 1;

n̄δDðr − r0Þ n̄P ≪ 1
ðB1Þ

for some characteristic power spectrum amplitude P. The two approximations are appropriate on large [PðkÞ-dominated]
and small (shot-noise-dominated) scales, respectively. Both forms are invertible:

C−1ðr; r0Þ →
(

1
n̄2
R
k e

ik·ðr−r0Þ 1
PðkÞ n̄P ≫ 1;

1
n̄ δDðr − r0Þ n̄P ≪ 1;

ðB2Þ

such that the full form of the estimators may be computed analytically.

1. Large-scale limit

Following some computation, the large-scale limiting forms of ga, g̃a, ϕα, and ϕ̃α are found to be

ga½y�ðrÞ ≈ 1

n̄

Z
k
e−ik·rΘaðkÞ yðkÞ

PðkÞ ; g̃a½y�ðrÞ ≈ n̄
n̄2A

Z
k
e−ik·rΘaðkÞyðkÞ;

ϕα½a�ðrÞ ≈
2

n̄Δα

Z
kk0k00

ð2πÞ3δDðkþ k0 þ k00Þeik·rΘaðkÞΘbðk0ÞΘcðk00Þ aðk
0Þaðk00Þ

Pðk0ÞPðk00Þ þ 2 perms;

ϕ̃α½a�ðrÞ ¼
2n̄3

n̄4AΔα

Z
kk0k00

ð2πÞ3δDðkþ k0 þ k00Þeik·rΘaðkÞΘbðk0ÞΘcðk00Þaðk0Þaðk00Þ þ 2 perms ðB3Þ

[from Eqs. (52) and (54)], where we have assumed that the quantity of interest is the binned bispectrum monopole as in
Eq. (48) and written the number density of uniform randoms as n̄A. Note that all C−1-weighted density fields are multiplied
1=PðkÞ in this limit, as in Ref. [63]. The expectations of these are also of use:

hgb½a�ðrÞg̃c½a�ðrÞi ≈ δKbc

Z
k
ΘbðkÞ 1

PðkÞ ;

hϕα½a�ðrÞi ≈ δKa0δ
K
bc ×

2n̄2A
n̄Δα

Z
k0

1

P2ðkÞΘ
bðkÞ þ 2 perms;

hϕ̃α½a�ðrÞi ≈ δKa0δ
K
bc ×

2n̄3

n̄2AΔα

Z
k
ΘbðkÞ þ 2 perms; ðB4Þ

where we assume haðkÞaðk0Þi ¼ n̄2Að2πÞ3δDðkþ k0Þ for Fourier-space maps aðkÞ. Notably, hgbg̃ci is diagonal with respect
to a, b and the hϕαi and hϕ̃αi contribute only if one k bin includes k ¼ 0 (designated by δKa0).
These lead to the following q̂ML

α and FML
αβ forms [from Eqs. (51) and (53)]:

q̂ML
α ≈

1

n̄3Δα

Z
kk0k00

ð2πÞ3δDðkþ k0 þ k00ÞΘaðkÞΘbðk0ÞΘcðk00Þ dðkÞdðk
0Þdðk00Þ

PðkÞPðk0ÞPðk00Þ ;

FML
αβ ≈

1

12
hϕi

αC−1
il ϕ

l
αi

≈
δKaa0 ðδKbb0δKcc0 þ δKbc0δ

K
cb0 Þ

3ΔαΔβ

Z
kk0k00

ð2πÞ3δDðkþ k0 þ k00ÞΘaðkÞΘbðk0ÞΘcðk00Þ 1

PðkÞPðk0ÞPðk00Þ þ 8 perms; ðB5Þ
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dropping any zero-lag terms. Notably, neither the second term in q̂ML
α nor the Fisher matrix terms involving hϕi

αi contribute
in this limit. In the final line of Eq. (B5), we label the bins by α ¼ fa; b; cg, β ¼ fa0; b0; c0g and note that the Fisher matrix is
nonzero only when the two triplets of indices contain the same members. Fixing a ≤ b ≤ c, the permutation symmetries
allow simplification:

FML
αβ ≈ δKαβ ×

1

Δα

Z
kk0k00

ð2πÞ3δDðkþ k0 þ k00ÞΘaðkÞΘbðk0ÞΘcðk00Þ 1

PðkÞPðk0ÞPðk00Þ ; ðB6Þ

giving a diagonal Fisher matrix. This estimator matches that of Ref. [63].

2. Small-scale limit

The small-scale (shot-noise-dominated) form is simpler still. Via a similar calculation, we find

ga½y�ðrÞ ≈
Z
k
e−ik·rΘaðkÞyðkÞ; g̃a½y�ðrÞ ≈ n̄

n̄2A

Z
k
e−ik·rΘaðkÞyðkÞ;

ϕα½a�ðrÞ ≈
2n̄
Δα

Z
kk0k00

ð2πÞ3δDðkþ k0 þ k00Þeik·rΘaðkÞΘbðk0ÞΘcðk00Þaðk0Þaðk00Þ þ 2 perms;

ϕ̃α½a�ðrÞ ≈
2n̄3

n̄4AΔα

Z
kk0k00

ð2πÞ3δDðkþ k0 þ k00Þeik·rΘaðkÞΘbðk0ÞΘcðk00Þaðk0Þaðk00Þ þ 2 perms; ðB7Þ

with expectations

hgb½a�ðrÞg̃c½a�ðrÞi ≈ δKbcn̄
Z
k
ΘbðkÞ;

hϕα½a�ðrÞi ≈ δKbcδ
K
a0 ×

2n̄n̄2A
Δα

Z
k
ΘbðkÞ þ 2 perms;

hϕ̃α½a�ðrÞi ≈ δKa0δ
K
bc ×

2n̄3

n̄2AΔα

Z
k
ΘbðkÞ þ 2 perms: ðB8Þ

The hϕαi and hϕ̃αi terms contribute only to zero-lag configurations, as before. These lead to the short-scale limits of the
estimators

q̂ML
α ≈

1

Δα

Z
kk0k00

ð2πÞ3δDðkþ k0 þ k00ÞΘaðkÞΘbðk0ÞΘcðk00ÞdðkÞdðk0Þdðk00Þ;

FML
αβ ≈

n̄3δKaa0 ðδKbb0δKcc0 þ δKbc0δ
K
cb0 Þ

3ΔαΔβ

Z
kk0k00

ð2πÞ3δDðkþ k0 þ k00ÞΘaðkÞΘbðk0ÞΘcðk00Þ þ 8 perms; ðB9Þ

again ignoring zero-lag contributions. As before, incorporating the permutation symmetries leads to the simplified Fisher
matrix

FML
αβ ≈ δKαβ ×

n̄3

Δα

Z
kk0k00

ð2πÞ3δDðkþ k0 þ k00ÞΘaðkÞΘbðk0ÞΘcðk00Þ≡ δKαβ
n̄3

Δα
Vα; ðB10Þ

where Vα is the combined bin volume. The limit of the full binned bispectrum estimator is, thus,

b̂α ≈
1

Vα

Z
kk0k00

ð2πÞ3δDðkþ k0 þ k00ÞΘaðkÞΘbðk0ÞΘcðk00ÞδðkÞδðk0Þδðk00Þ; ðB11Þ

where we have written dðkÞ ¼ n̄δðkÞ for fractional overdensity δðkÞ. This is the simple bispectrum estimator used in
N-body simulations (see, e.g., [42]), often implemented by Fourier transforming the density field and then counting
triangles.

COSMOLOGY WITHOUT …. II. CUBIC ESTIMATORS … PHYS. REV. D 104, 123529 (2021)

123529-25



[1] A. D. Linde, Scalar field fluctuations in the expanding
universe and the new inflationary universe scenario, Phys.
Lett. 116B, 335 (1982).

[2] A. Albrecht and P. J. Steinhardt, Cosmology for Grand
Unified Theories with Radiatively Induced Symmetry
Breaking, Phys. Rev. Lett. 48, 1220 (1982).

[3] N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C.
Baccigalupi et al. (Planck Collaboration), Planck 2018
results. VI. Cosmological parameters, Astron. Astrophys.
641, A6 (2020).

[4] M. Schmittfull, Y. Feng, F. Beutler, B. Sherwin, and M. Y.
Chu, Eulerian BAO reconstructions and N -point statistics,
Phys. Rev. D 92, 123522 (2015).

[5] A. Aghamousa, J. Aguilar, S. Ahlen, S. Alam, L. E. Allen
et al. (DESI Collaboration), The DESI Experiment Part I:
Science, targeting, and survey design, arXiv:1611.00036.

[6] R. Laureijs, J. Amiaux, S. Arduini, J. L. Auguères, J.
Brinchmann, R. Cole et al., Euclid definition study report,
arXiv:1110.3193.

[7] D. J. Eisenstein, H.-J. Seo, E. Sirko, and D. N. Spergel,
Improving cosmological distance measurements by
reconstruction of the baryon acoustic peak, Astrophys.
J. 664, 675 (2007).

[8] P. Gagrani and L. Samushia, Information content of the
angular multipoles of redshift-space galaxy bispectrum,
Mon. Not. R. Astron. Soc. 467, 928 (2017).

[9] N. Agarwal, V. Desjacques, D. Jeong, and F. Schmidt,
Information content in the redshift-space galaxy power
spectrum and bispectrum, J. Cosmol. Astropart. Phys. 03
(2021) 021.

[10] D. Karagiannis, A. Lazanu, M. Liguori, A. Raccanelli,
N. Bartolo, and L. Verde, Constraining primordial non-
Gaussianity with bispectrum and power spectrum from
upcoming optical and radio surveys, Mon. Not. R. Astron.
Soc. 478, 1341 (2018).

[11] A. Moradinezhad Dizgah, M. Biagetti, E. Sefusatti, V.
Desjacques, and J. Noreña, Primordial non-Gaussianity
from biased tracers: likelihood analysis of real-space
power spectrum and bispectrum, J. Cosmol. Astropart.
Phys. 05 (2021) 015.

[12] A. Chudaykin and M.M. Ivanov, Measuring neutrino
masses with large-scale structure: Euclid forecast with
controlled theoretical error, J. Cosmol. Astropart. Phys. 11
(2019) 034.

[13] C. Hahn and F. Villaescusa-Navarro, Constraining Mν with
the bispectrum. Part II. The information content of the
galaxy bispectrum monopole, J. Cosmol. Astropart. Phys.
04 (2021) 029.

[14] S. Alam, A. Aviles, R. Bean, Y.-C. Cai, M. Cautun, J. L.
Cervantes-Cota et al., Testing the theory of gravity with
DESI: estimators, predictions and simulation require-
ments, arXiv:2011.05771.

[15] A. F. Heavens, Estimating non-Gaussianity in the micro-
wave background, Mon. Not. R. Astron. Soc. 299, 805
(1998).

[16] L. Verde, L. Wang, A. F. Heavens, and M. Kamionkowski,
Large-scale structure, the cosmic microwave background
and primordial non-Gaussianity, Mon. Not. R. Astron. Soc.
313, 141 (2000).

[17] A. Gangui and J. Martin, Best unbiased estimators for the
three-point correlators of the cosmic microwave back-
ground radiation, Phys. Rev. D 62, 103004 (2000).

[18] M. G. Santos, A. Heavens, A. Balbi, J. Borrill, P. G.
Ferreira, S. Hanany et al., Multiple methods for estimating
the bispectrum of the cosmic microwave background with
application to the MAXIMA data, Mon. Not. R. Astron.
Soc. 341, 623 (2003).

[19] D. Babich, Optimal estimation of non-Gaussianity, Phys.
Rev. D 72, 043003 (2005).

[20] P. Creminelli, A. Nicolis, L. Senatore, M. Tegmark, and M.
Zaldarriaga, Limits on non-Gaussianities from WMAP
data, J. Cosmol. Astropart. Phys. 05 (2006) 004.

[21] J. R. Fergusson and E. P. S. Shellard, Shape of primordial
non-Gaussianity and the CMB bispectrum, Phys. Rev. D
80, 043510 (2009).

[22] P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M.
Arnaud, M. Ashdown et al. (Planck Collaboration), Planck
2013 results. XXIV. Constraints on primordial non-Gaus-
sianity, Astron. Astrophys. 571, A24 (2014).

[23] J. N. Fry and M. Seldner, Transform analysis of the
high-resolution Shane-Wirtanen Catalog—The power
spectrum and the bispectrum, Astrophys. J. 259, 474
(1982).

[24] R. Scoccimarro, H. A. Feldman, J. N. Fry, and J. A.
Frieman, The bispectrum of IRAS Redshift catalogs,
Astrophys. J. 546, 652 (2001).

[25] E. Sefusatti and R. Scoccimarro, Galaxy bias and halo-
occupation numbers from large-scale clustering, Phys.
Rev. D 71, 063001 (2005).

[26] H. Gil-Marín, J. Noreña, L. Verde, W. J. Percival, C.
Wagner, M. Manera, and D. P. Schneider, The power
spectrum and bispectrum of SDSS DR11 BOSS gal-
axies—I. Bias and gravity, Mon. Not. R. Astron. Soc.
451, 539 (2015).

[27] H. Gil-Marín, W. J. Percival, L. Verde, J. R. Brownstein,
C.-H. Chuang, F.-S. Kitaura, S. A. Rodríguez-Torres, and
M. D. Olmstead, The clustering of galaxies in the SDSS-III
baryon oscillation spectroscopic survey: RSD measure-
ment from the power spectrum and bispectrum of the
DR12 BOSS galaxies, Mon. Not. R. Astron. Soc. 465,
1757 (2017).

[28] Z. Slepian, D. J. Eisenstein, F. Beutler, C.-H. Chuang, A. J.
Cuesta, J. Ge et al., The large-scale three-point correlation
function of the SDSS BOSS DR12 CMASS galaxies, Mon.
Not. R. Astron. Soc. 468, 1070 (2017).

[29] D. W. Pearson and L. Samushia, A detection of the baryon
acoustic oscillation features in the SDSS BOSS DR12
galaxy bispectrum, Mon. Not. R. Astron. Soc. 478, 4500
(2018).

[30] G. d’Amico, J. Gleyzes, N. Kokron, K. Markovic, L.
Senatore, P. Zhang, F. Beutler, and H. Gil-Marín, The
cosmological analysis of the SDSS/BOSS data from the
effective field theory of large-scale structure, J. Cosmol.
Astropart. Phys. 05 (2020) 005.

[31] P. J. E. Peebles and E. J. Groth, Statistical analysis of
catalogs of extragalactic objects. V. Three-point correlation
function for the galaxy distribution in the Zwicky catalog,
Astrophys. J. 196, 1 (1975).

OLIVER H. E. PHILCOX PHYS. REV. D 104, 123529 (2021)

123529-26

https://doi.org/10.1016/0370-2693(82)90293-3
https://doi.org/10.1016/0370-2693(82)90293-3
https://doi.org/10.1103/PhysRevLett.48.1220
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1103/PhysRevD.92.123522
https://arXiv.org/abs/1611.00036
https://arXiv.org/abs/1110.3193
https://doi.org/10.1086/518712
https://doi.org/10.1086/518712
https://doi.org/10.1093/mnras/stx135
https://doi.org/10.1088/1475-7516/2021/03/021
https://doi.org/10.1088/1475-7516/2021/03/021
https://doi.org/10.1093/mnras/sty1029
https://doi.org/10.1093/mnras/sty1029
https://doi.org/10.1088/1475-7516/2021/05/015
https://doi.org/10.1088/1475-7516/2021/05/015
https://doi.org/10.1088/1475-7516/2019/11/034
https://doi.org/10.1088/1475-7516/2019/11/034
https://doi.org/10.1088/1475-7516/2021/04/029
https://doi.org/10.1088/1475-7516/2021/04/029
https://arXiv.org/abs/2011.05771
https://doi.org/10.1046/j.1365-8711.1998.01820.x
https://doi.org/10.1046/j.1365-8711.1998.01820.x
https://doi.org/10.1046/j.1365-8711.2000.03191.x
https://doi.org/10.1046/j.1365-8711.2000.03191.x
https://doi.org/10.1103/PhysRevD.62.103004
https://doi.org/10.1046/j.1365-8711.2003.06438.x
https://doi.org/10.1046/j.1365-8711.2003.06438.x
https://doi.org/10.1103/PhysRevD.72.043003
https://doi.org/10.1103/PhysRevD.72.043003
https://doi.org/10.1088/1475-7516/2006/05/004
https://doi.org/10.1103/PhysRevD.80.043510
https://doi.org/10.1103/PhysRevD.80.043510
https://doi.org/10.1051/0004-6361/201321554
https://doi.org/10.1086/160184
https://doi.org/10.1086/160184
https://doi.org/10.1086/318284
https://doi.org/10.1103/PhysRevD.71.063001
https://doi.org/10.1103/PhysRevD.71.063001
https://doi.org/10.1093/mnras/stv961
https://doi.org/10.1093/mnras/stv961
https://doi.org/10.1093/mnras/stw2679
https://doi.org/10.1093/mnras/stw2679
https://doi.org/10.1093/mnras/stw3234
https://doi.org/10.1093/mnras/stw3234
https://doi.org/10.1093/mnras/sty1266
https://doi.org/10.1093/mnras/sty1266
https://doi.org/10.1088/1475-7516/2020/05/005
https://doi.org/10.1088/1475-7516/2020/05/005
https://doi.org/10.1086/153390


[32] P. J. E. Peebles, The galaxy and mass N-point correlation
functions: A blast from the past, Astron. Soc. Pac. Conf.
Ser. 252, 201 (2001), arXiv:astro-ph/0103040.

[33] Y. P. Jing and G. Börner, The three-point correlation
function of galaxies determined from the Las Campanas
redshift survey, Astrophys. J. 503, 37 (1998).

[34] I. Kayo, Y. Suto, R. C. Nichol, J. Pan, I. Szapudi, A. J.
Connolly et al., Three-point correlation functions of SDSS
galaxies in redshift space: Morphology, color, and lumi-
nosity dependence, Publ. Astron. Soc. Jpn. 56, 415 (2004).

[35] R. C. Nichol, R. K. Sheth, Y. Suto, A. J. Gray, I. Kayo,
R. H. Wechsler et al., The effect of large-scale structure on
the SDSS galaxy three-point correlation function, Mon.
Not. R. Astron. Soc. 368, 1507 (2006).

[36] F. Marín, The large-scale three-point correlation function
of Sloan digital sky survey luminous red galaxies,
Astrophys. J. 737, 97 (2011).

[37] H. Guo, Z. Zheng, Y. P. Jing, I. Zehavi, C. Li, D. H.
Weinberg et al., Modelling the redshift-space three-point
correlation function in SDSS-III., Mon. Not. R. Astron.
Soc. 449, L95 (2015).

[38] Z. Slepian, D. J. Eisenstein, J. R. Brownstein, C.-H.
Chuang, H. Gil-Marín, S. Ho et al., Detection of baryon
acoustic oscillation features in the large-scale three-point
correlation function of SDSS BOSS DR12 CMASS
galaxies, Mon. Not. R. Astron. Soc. 469, 1738 (2017).

[39] Z. Slepian, D. J. Eisenstein, J. A. Blazek, J. R. Brownstein,
C.-H. Chuang, H. Gil-Marín et al., Constraining the
baryon-dark matter relative velocity with the large-scale
three-point correlation function of the SDSS BOSS DR12
CMASS galaxies, Mon. Not. R. Astron. Soc. 474, 2109
(2018).

[40] O. H. E. Philcox, Z. Slepian, J. Hou, C. Warner, R. N.
Cahn, and D. J. Eisenstein, ENCORE: Estimating galaxy
N-point correlation functions in OðN2

gÞ time, arXiv:2105
.08722.

[41] O. H. E. Philcox, J. Hou, and Z. Slepian, A First Meas-
urement of the BOSS Non-Gaussian Four-Point Function,
arXiv:2108.01670 [Phys. Rev. D (to be published)].

[42] C. A. Watkinson, S. Majumdar, J. R. Pritchard, and R.
Mondal, A fast estimator for the bispectrum and beyond—
A practical method for measuring non-Gaussianity in
21-cm maps, Mon. Not. R. Astron. Soc. 472, 2436 (2017).

[43] R. Scoccimarro, Fast estimators for redshift-space cluster-
ing, Phys. Rev. D 92, 083532 (2015).

[44] D. Regan, An inventory of bispectrum estimators for
redshift space distortions, J. Cosmol. Astropart. Phys.
12 (2017) 020.

[45] O. H. E. Philcox and D. J. Eisenstein, Computing the
small-scale galaxy power spectrum and bispectrum in
configuration space, Mon. Not. R. Astron. Soc. 492,
1214 (2020).

[46] O. H. E. Philcox, A faster Fourier transform? Computing
small-scale power spectra and bispectra for cosmological
simulations inOðN2Þ time, Mon. Not. R. Astron. Soc. 501,
4004 (2021).

[47] R. Scoccimarro, S. Colombi, J. N. Fry, J. A. Frieman, E.
Hivon, and A. Melott, Nonlinear evolution of the bispec-
trum of cosmological perturbations, Astrophys. J. 496, 586
(1998).

[48] S. Matarrese, L. Verde, and A. F. Heavens, Large-scale bias
in the universe: Bispectrum method, Mon. Not. R. Astron.
Soc. 290, 651 (1997).

[49] L. Verde, A. F. Heavens, S. Matarrese, and L. Moscardini,
Large-scale bias in the universe—II. Redshift-space bis-
pectrum, Mon. Not. R. Astron. Soc. 300, 747 (1998).

[50] R. Scoccimarro, H. M. P. Couchman, and J. A. Frieman,
The bispectrum as a signature of gravitational instability in
redshift space, Astrophys. J. 517, 531 (1999).

[51] R. Scoccimarro and H. M. P. Couchman, A fitting formula
for the non-linear evolution of the bispectrum, Mon. Not.
R. Astron. Soc. 325, 1312 (2001).

[52] R. Scoccimarro, The bispectrum: From theory to obser-
vations, Astrophys. J. 544, 597 (2000).

[53] T. Baldauf, L. Mercolli, M. Mirbabayi, and E. Pajer, The
bispectrum in the effective field theory of large scale
structure, J. Cosmol. Astropart. Phys. 05 (2015) 007.

[54] R. E. Angulo, S. Foreman, M. Schmittfull, and L. Sen-
atore, The one-loop matter bispectrum in the effective field
theory of large scale structures, J. Cosmol. Astropart. Phys.
10 (2015) 039.

[55] T. Nishimichi, G. D’Amico, M. M. Ivanov, L. Senatore, M.
Simonović, M. Takada, M. Zaldarriaga, and P. Zhang,
Blinded challenge for precision cosmology with large-
scale structure: Results from effective field theory for the
redshift-space galaxy power spectrum, Phys. Rev. D 102,
123541 (2020).

[56] A. Cooray, Squared temperature-temperature power spec-
trum as a probe of the CMB bispectrum, Phys. Rev. D 64,
043516 (2001).

[57] D. Munshi, A. L. Melott, and P. Coles, Generalised
cumulant correlators and hierarchical clustering, arXiv:
astro-ph/9812271.

[58] M. Schmittfull, T. Baldauf, and U. Seljak, Near optimal
bispectrum estimators for large-scale structure, Phys. Rev.
D 91, 043530 (2015).

[59] D. Obreschkow, C. Power, M. Bruderer, and C. Bonvin, A
robust measure of cosmic structure beyond the power
spectrum: Cosmic filaments and the temperature of dark
matter, Astrophys. J. 762, 115 (2013).

[60] A. Eggemeier, T. Battefeld, R. E. Smith, and J. Niemeyer,
The anisotropic line correlation function as a probe of
anisotropies in galaxy surveys, Mon. Not. R. Astron. Soc.
453, 797 (2015).

[61] C.-T. Chiang, C. Wagner, F. Schmidt, and E. Komatsu,
Position-dependent power spectrum of the large-scale
structure: a novel method to measure the squeezed-limit
bispectrum, J. Cosmol. Astropart. Phys. 05 (2014) 048.

[62] C.-T. Chiang, C. Wagner, A. G. Sánchez, F. Schmidt, and
E. Komatsu, Position-dependent correlation function from
the SDSS-III baryon oscillation spectroscopic survey data
release 10 CMASS sample, J. Cosmol. Astropart. Phys. 09
(2015) 028.

[63] J. R. Fergusson, D. M. Regan, and E. P. S. Shellard, Rapid
separable analysis of higher order correlators in large-scale
structure, Phys. Rev. D 86, 063511 (2012).

[64] D. M. Regan, M. M. Schmittfull, E. P. S. Shellard, and
J. R. Fergusson, Universal non-Gaussian initial condi-
tions for N-body simulations, Phys. Rev. D 86, 123524
(2012).

COSMOLOGY WITHOUT …. II. CUBIC ESTIMATORS … PHYS. REV. D 104, 123529 (2021)

123529-27

https://arXiv.org/abs/astro-ph/0103040
https://doi.org/10.1086/305997
https://doi.org/10.1093/pasj/56.3.415
https://doi.org/10.1111/j.1365-2966.2006.10239.x
https://doi.org/10.1111/j.1365-2966.2006.10239.x
https://doi.org/10.1088/0004-637X/737/2/97
https://doi.org/10.1093/mnrasl/slv020
https://doi.org/10.1093/mnrasl/slv020
https://doi.org/10.1093/mnras/stx488
https://doi.org/10.1093/mnras/stx2723
https://doi.org/10.1093/mnras/stx2723
https://arXiv.org/abs/2105.08722
https://arXiv.org/abs/2105.08722
https://arXiv.org/abs/2108.01670
https://doi.org/10.1093/mnras/stx2130
https://doi.org/10.1103/PhysRevD.92.083532
https://doi.org/10.1088/1475-7516/2017/12/020
https://doi.org/10.1088/1475-7516/2017/12/020
https://doi.org/10.1093/mnras/stz3335
https://doi.org/10.1093/mnras/stz3335
https://doi.org/10.1093/mnras/staa3882
https://doi.org/10.1093/mnras/staa3882
https://doi.org/10.1086/305399
https://doi.org/10.1086/305399
https://doi.org/10.1093/mnras/290.4.651
https://doi.org/10.1093/mnras/290.4.651
https://doi.org/10.1111/j.1365-8711.1998.t01-1-01937.x
https://doi.org/10.1086/307220
https://doi.org/10.1046/j.1365-8711.2001.04281.x
https://doi.org/10.1046/j.1365-8711.2001.04281.x
https://doi.org/10.1086/317248
https://doi.org/10.1088/1475-7516/2015/05/007
https://doi.org/10.1088/1475-7516/2015/10/039
https://doi.org/10.1088/1475-7516/2015/10/039
https://doi.org/10.1103/PhysRevD.102.123541
https://doi.org/10.1103/PhysRevD.102.123541
https://doi.org/10.1103/PhysRevD.64.043516
https://doi.org/10.1103/PhysRevD.64.043516
https://arXiv.org/abs/astro-ph/9812271
https://arXiv.org/abs/astro-ph/9812271
https://doi.org/10.1103/PhysRevD.91.043530
https://doi.org/10.1103/PhysRevD.91.043530
https://doi.org/10.1088/0004-637X/762/2/115
https://doi.org/10.1093/mnras/stv1602
https://doi.org/10.1093/mnras/stv1602
https://doi.org/10.1088/1475-7516/2014/05/048
https://doi.org/10.1088/1475-7516/2015/09/028
https://doi.org/10.1088/1475-7516/2015/09/028
https://doi.org/10.1103/PhysRevD.86.063511
https://doi.org/10.1103/PhysRevD.86.123524
https://doi.org/10.1103/PhysRevD.86.123524


[65] M.M. Schmittfull, D. M. Regan, and E. P. S. Shellard, Fast
estimation of gravitational and primordial bispectra in
large scale structures, Phys. Rev. D 88, 063512 (2013).

[66] J. Byun, A. Oddo, C. Porciani, and E. Sefusatti, Towards
cosmological constraints from the compressed modal
bispectrum: a robust comparison of real-space bispectrum
estimators, J. Cosmol. Astropart. Phys. 03 (2021) 105.

[67] A. F. Heavens, R. Jimenez, and O. Lahav, Massive lossless
data compression and multiple parameter estimation
from galaxy spectra, Mon. Not. R. Astron. Soc. 317,
965 (2000).

[68] D. Gualdi, M. Manera, B. Joachimi, and O. Lahav,
Maximal compression of the redshift-space galaxy power
spectrum and bispectrum, Mon. Not. R. Astron. Soc. 476,
4045 (2018).

[69] D. Gualdi, H. Gil-Marín, R. L. Schuhmann, M. Manera, B.
Joachimi, and O. Lahav, Enhancing BOSS bispectrum
cosmological constraints with maximal compression, Mon.
Not. R. Astron. Soc. 484, 3713 (2019).

[70] D. Gualdi, H. Gil-Marín, M. Manera, B. Joachimi, and O.
Lahav, Geometrical compression: a new method to en-
hance the BOSS galaxy bispectrum monopole constraints,
Mon. Not. R. Astron. Soc. 484, L29 (2019).

[71] O. H. E. Philcox, M. M. Ivanov, M. Zaldarriaga, M.
Simonović, and M. Schmittfull, Fewer mocks and less
noise: Reducing the dimensionality of cosmological ob-
servables with subspace projections, Phys. Rev. D 103,
043508 (2021).

[72] J. Alsing and B. Wandelt, Generalized massive optimal
data compression, Mon. Not. R. Astron. Soc. 476, L60
(2018).

[73] N. S. Sugiyama, S. Saito, F. Beutler, and H.-J. Seo, A
complete FFT-based decomposition formalism for the
redshift-space bispectrum, Mon. Not. R. Astron. Soc.
484, 364 (2019).

[74] O. H. E. Philcox, Cosmology without window functions:
Quadratic estimators for the galaxy power spectrum, Phys.
Rev. D 103, 103504 (2021).

[75] F. Beutler and P. McDonald, Unified galaxy power
spectrum measurements from 6dFGS, BOSS, and eBOSS,
arXiv:2106.06324.

[76] M. Tegmark, How to measure CMB power spectra without
losing information, Phys. Rev. D 55, 5895 (1997).

[77] M. Tegmark, A. J. S. Hamilton, M. A. Strauss, M. S.
Vogeley, and A. S. Szalay, Measuring the galaxy power
spectrum with future redshift surveys, Astrophys. J. 499,
555 (1998).

[78] M. Tegmark, A. N. Taylor, and A. F. Heavens, Karhunen-
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