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We show that string moduli have axionphilic nature owing to the model-insensitive derivative
interactions arising from the Kähler potential. The decay of a modulus into stringy axions occurs without
suppression by the mass of final states. Interestingly, it turns out to hold in general not only for the scalar
partner of the stringy axion but also for any other moduli. The decay into (pseudo)-Nambu-Goldstone
bosons (NGBs) also avoids such mass suppression if the modulus is lighter than or similar in mass to the
scalar partner of the NGB. Such axionphilic nature makes string moduli a natural source of an observable
amount of dark radiation in string compactifications involving ultralight stringy axions, and possibly in
extensions of the Standard Model that include a cosmologically stable NGB such as the QCD axion. In the
latter case, the fermionic superpartner of the NGB can also contribute to the dark matter as a feebly
interacting massive particle.
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I. INTRODUCTION

String compactification involves many moduli with vari-
ous masses. Their Planck-suppressed couplings make them
long-lived, and typically the lightest one most relevant to
cosmology. Displaced from the postinflationary potential
minimum during inflation, generically, moduli are coher-
ently generated after the end of inflation and come to
dominate the energy density of the universe before their
decay. The standard hot thermal universe for a successful big
bang nucleosynthesis (BBN) then requires the lightest
modulus to decay dominantly into the Standard Model
(SM) particles well before the BBN epoch. Accordingly,
the modulus has to be heavier than about 100 TeV [1–3], and
its non-SM decay channels should be suppressed at least by a
couple of orders of magnitude relative to the SM ones.
As the minimal interaction of a modulus with matter

fields, the coupling to matter kinetic terms is incapable of
rendering the modulus to dominantly decay into the SM
sector, questioning the compatibility of string moduli with a
successful cosmology. This is because the modulus decay
into matter particles is generally suppressed by the mass
of final states, whereas the decay into gravitinos or stringy

axions has no such suppression. The former may cause
the moduli-induced gravitino problem [4–6], while the
latter may lead to too much dark radiation [7–9]. A viable
reheating after modulus domination thus necessitates spe-
cific interactions between the modulus and the SM sector.
In the Kachru-Kallosh-Linde-Trivedi (KKLT) [10] and
LARGE volume scenarios [11], which are the explicit
realizations of four-dimensional de Sitter vacua with all
string moduli stabilized, one may rely on modulus-depen-
dent gauge couplings [12] or a modulus coupling to the
Higgs bilinear operator in the Kähler potential [7–9].
In this paper we point out that the decay of a modulus

into axions, which is induced by the derivative interactions
arising from its coupling to the Kähler potential, can occur
without suppression by the mass of final states. This is the
case for the decay into stringy axions regardless of from
which modulus the stringy axion comes. The decay into
Nambu-Goldstone bosons (NGBs) also avoids mass sup-
pression if the modulus is not much heavier than the scalar
partner of the NGB, i.e., the saxion. All these features are
insensitive to the details of moduli stabilization and string
compactification, indicating that string moduli are basically
axionphilic. Such axionphilic nature makes a crucial impact
on cosmology because a sizable amount of dark radiation
is produced from their decay in string compactifications
giving ultralight stringy axions, and possibly in SM
extensions including a cosmologically stable axion, like
the QCD axion solving the strong CP problem [13] or a
light hidden photon.
Recovering the standard hot big bang universe for the

successful BBN requires additional couplings to the SM
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sector if the universe undergoes a modulus-dominated
phase. As mentioned, modulus-dependent gauge couplings
and/or a modulus coupling to the holomorphic bilinear
operator of SM-charged matter superfields in the Kähler
potential may be necessary. On the other hand, if the
modulus couples to a holomorphic bilinear operator
involving the NGB superfield, NGBs are produced from
the modulus decay at the rate without mass suppression.
Also, the fermionic partner of the NGB can contribute to
dark matter as a feebly interacting massive particle (FIMP).
If sufficiently light, it may resolve the moduli-induced
gravitino problem.
This paper is organized as follows. In Sec. II, we explore

model-independent and -dependent interactions of a string
modulus inducing its decay without mass suppression, and
show that moduli are generally axionphilic insensitive to
the details of model. The cosmological implications of the
axionphilic nature of moduli are discussed in Sec. III.
Section IV is the conclusions.

II. MODULI INTERACTIONS

String moduli generally couple to a (pseudo)-NGB and
stringy axion, if it exists, through derivative interactions
irrespective of the details of string compactification. We
examine how significantly such interactions contribute to
their decay. We also explore model-dependent derivative
interactions, and discuss how to make moduli mainly decay
into the SM sector as required for successful cosmology.

A. Model-independent axionic decay modes

It is well known that, for a string modulus stabilized
while respecting the associated shift symmetry, the decay of
its real component into a pair of its imaginary one, dubbed
as stringy axion, is not mass suppressed [7–9]. It is also
known that the decays of moduli into matter particles
caused by derivative interactions arising from the Kähler
potential are however typically suppressed by the mass of
final states. In this work we show that, interestingly, such
mass suppression does not occur for the decay into NGBs
too if the scalar partner of the NGB, i.e., the saxion, is
heavier than or similar in mass to the modulus. We further
find that, regardless of from which modulus the stringy
axion originates, moduli decay into stringy axions without
mass suppression.
In order to see the effect of derivative interactions,

we consider a simple model with a single modulus S that
enjoys a shift symmetry, ImðSÞ → ImðSÞ þ constant, at the
perturbative level. The shift symmetry is not essential for
determining the modulus decay width, but makes our
discussion simpler because it ensures that the modulus
appears in the Kähler potential in the combination of
Sþ S�. The Kähler potential is written

K ¼ K0 þ ZΦΦ�; ð1Þ

where Φ ¼ ϕþ ffiffiffi
2

p
θψ þ θθF represents a matter super-

field, and we set the reduced Planck mass, MPl ¼ 1, unless
explicitly written. Here K0 and Z are a function of Sþ S�.
Expanding the modulus around its vacuum expectation
value (VEV)

δS≡ S − S0 ¼ sþ
ffiffiffi
2

p
θs̃þ θθFS; ð2Þ

one always finds the Kähler potential interaction of the
modulus with matter superfields

ðδSþ δS�ÞΦΦ�; ð3Þ

regardless of the details of the model, where the overall
coupling constant is proportional to h∂SZi. If matter fields
do not develop a VEV, the modulus decay is determined
simply by the interactions arising from theD term of (3). In
terms of the component fields, they read

δSΦΦ�jD ¼ sFF� þ ϕFSF� − sϕ∂2ϕ� − isψσμ∂μψ̄ ; ð4Þ

omitting total derivatives. Written in the above form, the
derivative interactions are directly combined with the equa-
tions of motion for ϕ and ψ to show that the decay rate of the
modulus is suppressed by the mass of decay products.
On the other hand, if ϕ develops a nonzero VEV, ϕ and ψ

are not the mass eigenstates anymore, and there also arises
kinetic mixing between the moduli and matter fields. To see
how the modulus decay is affected, we consider the case
where ϕ spontaneously breaks a global U(1) symmetry.
Then the matter scalar field is decomposed into the saxion
and the NGB

ϕðxÞ ¼ fffiffiffi
2

p
�
1þ σðxÞ

f

�
ei

aðxÞ
f ; ð5Þ

with f being the axion decay constant, while the modulus
field is written

sðxÞ ¼ 1ffiffiffi
2

p ðsrðxÞ þ isiðxÞÞ; ð6Þ

for the real scalars sr and si. The derivative interaction
from δSΦΦ�,

ΔL ¼
ffiffiffi
2

p
κðsϕ∂2ϕ� þ H:c:Þ; ð7Þ

gives rise to the kinetic mixing terms and scalar cubic
interactions

κ−1ΔLj2 ¼ fsr∂2σ þ fsi∂2a; ð8Þ

κ−1ΔLj3 ¼ −
1

2
aa∂2sr þ aσ∂2si

þ ðsrσ − siaÞ∂2σ þ ðsraþ siσÞ∂2a; ð9Þ
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up to total derivatives. Here the overall coupling constant is
determined by

κ ¼ −
1ffiffiffi
2

p hð∂2
SK0Þ−1

2∂S lnZi; ð10Þ

and it is generally of the order unity.1 As will be shown
shortly, the kinetic mixing has critical impacts on the
modulus decay when combined with the cubic interactions
arising from the matter Kähler potential,

ΦΦ�jD;3 ¼
1

2f
aa∂2σ −

1

f
σa∂2a; ð11Þ

up to total derivatives.
The mixing terms (8) should be removed to examine

how much the derivative interactions (9) contribute to
the modulus decay. The kinetic mixing between the
CP-odd scalar bosons is eliminated by taking the field
transformation,

si → si; a → aþ κfsi: ð12Þ

After the field transformation, i.e., in the canonical mass
basis, all the derivative cubic couplings of si vanish because
the contributions from (9) and (11) exactly cancel each
other. Hence there remain no interactions inducing the
decay of si. For the CP-even scalar bosons, one can remove
their kinetic mixing by taking the field transformation

sr → sr þ ϵ1κfσ; σ → σ þ ϵ2κfsr; ð13Þ

for f ≪ MPl, with the coefficients determined by

ϵ1 ≃ −
m2

σ

m2
sr −m2

σ
; ϵ2 ≃

m2
sr

m2
sr −m2

σ
; ð14Þ

where mi denotes the mass of the indicated scalar boson,
and we have neglected small corrections suppressed by
ðf=MPlÞ2. As a result, from (9) and (11), the derivative
interactions for sr read

ΔLj3 ¼ κsrσ∂2σ þ κ

2

m2
σ

m2
sr −m2

σ
aa∂2sr; ð15Þ

in the canonical mass basis. Therefore, if msr ≫ mσ , the
equations of motion lead to that both sr → aa and sr → σσ
are suppressed by the saxion mass. On the other hand, if

msr ≪ mσ , i.e., if the saxion is heavier than the modulus,
the relevant interaction for the modulus decay becomes2

ΔLj3 ∋ −
κ

2
aa∂2sr: ð16Þ

The above shows that the modulus gets axionphilic, and
decays into NGBs at the rate

Γðsr → aaÞ ¼ κ2

32π

m3
sr

M2
Pl

; ð17Þ

where the masses of final states have been neglected. It
should be noted that nonsuppression of the axionic decay
mode sr → aa, which holds as long as the modulus is lighter
than or similar in mass to the scalar partner of the NGB, is a
model-independent generic feature of string moduli.
The nonderivative interactions involving F and FS in (4)

also mediate the decay, which is however suppressed by
the mass of final states or further. This can be understood
as follows. The matter F component is expanded in powers
of ϕ as

F ¼ hFi þ h∂ϕFiϕþ h∂ϕ�Fiϕ� þ � � � ; ð18Þ

while the scalar mass, mϕ, is determined by

m2
ϕ ¼

� ∂2V
∂ϕ∂ϕ�

�
¼ jh∂ϕFij2 þ jh∂ϕ�Fij2 þ � � � ; ð19Þ

where V is the full scalar potential, and the ellipsis denotes
possible extra contributions. Hence, the coefficients of the
linear terms in (18) are bounded by

jh∂ϕFij; jh∂ϕ�Fij≲mϕ; ð20Þ

barring cancellation among various contributions to the
scalar mass. Expanded in terms of s and s�, the modulus F
component exhibits the similar feature.
Let us move on to stringy axions that appear in string

compactification such that a modulus, say T, is stabilized
while preserving the associated shift symmetry. The inter-
actions responsible for the modulus decay come from the
Kähler potential:

ðδSþ δS�ÞðδT þ δT�Þ2; ð21Þ

where δS and δT are moduli fluctuations around the
vacuum. The D term of the holomorphic cubic term,

1For Kähler moduli, κ is fixed by the location of the
corresponding matter field in extra dimensions. It is then possible
to suppress κ, but up to by a loop factor because it receives
quantum corrections from nonperturbative effects, string loops,
and higher-order α0 corrections.

2Equation (14) is valid for f=MPl ≪ jm2
sr −m2

σ j=ðm2
sr þm2

σÞ.
Although it is unlikely, if the masses of the modulus and saxion
are close to each other, the coupling of aa∂2sr induced by the
kinetic mixing can be much larger than κ. Such enhancement can
make the coupling of sr to NGBs suppressed not byMPl but by f
around the maximal mixing.
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δSδTδT, includes derivative interactions, which are how-
ever summed to be a total derivative. The relevant deriva-
tive interactions from the above Kähler potential term read

ΔLj3 ¼
ffiffiffi
2

p
κ̂

�
1

2
tt∂2s� þ st∂2t�

�
þ H:c:; ð22Þ

up to total derivatives. The coupling constant is deter-
mined by

κ̂ ¼ −
1ffiffiffi
2

p hð∂2
SK0Þ−1=2ð∂2

TK0Þ−1∂S∂2
TK0i; ð23Þ

which is of the order unity in general. Here t is the scalar
component of δT and is decomposed as

t ¼ 1ffiffiffi
2

p ðτ þ iφÞ; ð24Þ

for real scalars τ and φ. The stringy axion, φ, remains
massless until one adds nonperturbative effects breaking
the shift symmetry explicitly. It is easy to see that the
derivative interactions are written in terms of the real scalar
fields as

κ̂−1ΔLj3 ¼
1

2
ττ∂2sr −

1

2
φφ∂2sr þ φτ∂2si

þ ðτsr − φsiÞ∂2τ þ ðτsi þ φsrÞ∂2φ: ð25Þ

The first three interactions are expected to give a significant
contribution to the decays of sr and si, while the decay via
the others is mass suppressed.
To estimate correctly how fast the modulus decays via the

derivative interactions, we need to remove kinetic mixing in-
duced by the Kähler potential ðδSþ δS�ÞðδT þ δT�Þ.
Combined with the derivative interactions from ðδSþ δS�Þ3,
ðδSþ δS�Þ2ðδT þ δT�Þ, and ðδT þ δT�Þ3, the kinetic mix-
ing modifies the couplings of the moduli interactions invol-
ving ∂2sr and ∂2si. However, their values in the canonical
mass basis generally remain the same order of magnitude
because the kinetic mixing is independent of κ̂, differently
from the NGB case where the interactions (8) and (9) are all
originated from the same single Kähler potential term. The
modulus decay into stringy axions is therefore given by

Γðsr → φφÞ ¼ κ02

32π

m3
sr

M2
Pl

; ð26Þ

where κ0, which depends on κ̂ and kineticmixing between the
moduli, is generally of the order unity. Note that this non-
suppression of modulus decay into stringy axions is a quite
general feature of string compactification, and holds regard-
less of which one of sr and τ is heavier.
The importance of modulus decay to stringy axions has

been noticed for the case where S and T are identical, in the

LARGE volume scenario [7,8], and later in the generalized
setup [9]. It is worth noting that, if string compactification
involves a very light stringy axion, not only its scalar
partner but also any other moduli decay into stringy axions
with a sizable branching fraction insensitively to the
details of moduli stabilzation. For instance, a massless
stringy axion arises in the generalized KKLTwith multiple
Kähler moduli if a modulus, which does not appear in the
superpotential, is stabilized by Kähler mixing with the
others [14]. In such a case, the decay into stringy axions is
sizable for all the real components of moduli.

B. Model-dependent decay modes

In this subsection we explore model-dependent inter-
actions considerably contributing to the modulus decay,
and discuss how to make the modulus mainly decay into the
SM sector. Let us begin with a modulus coupling to the
holomorphic bilinear operator of matter superfields,

ðδSþ δS�ÞðΦ1Φ2 þ H:c:Þ; ð27Þ

in the Kähler potential. It is the derivative interactions
including only the scalar fields that can enhance the
modulus decay. Whereas the holomorphic cubic term,
δSΦ1Φ2, is irrelevant because its D term only gives a total
derivative, the nonholomorphic cubic term gives

δS�Φ1Φ2jD ¼ −ϕ1ϕ2∂2s�; ð28Þ

up to total derivatives. It is obvious that the decay of the
modulus via the interaction (28) is not suppressed by the
mass of final states. Hence, an interaction of the type (27)
can enhance the modulus decay into the SM sector if the
involved matter fields are SM charged.
More concretely, one can consider a modulus coupling to

QQc in the Kähler potential with a coupling constant of the
order unity or larger. Here the matter superfields QþQc

are vectorlike under the SM gauge groups, and are lighter
than the modulus. A natural candidate of such operators is
the Higgs bilinear HuHd [7–9], where Hu and Hd are,
respectively, the up- and down-type Higgs doublet. The
modulus coupling to HuHd in the Kähler potential

ΔK1 ¼ ξHuHd þ H:c: ð29Þ

includes the term

h∂SξiðδSþ δS�ÞHuHd þ H:c:; ð30Þ

where ξ is a function of Sþ S�. Meanwhile, it gives a
contribution to the Higgsino mass parameter μ and the
Higgs mixing parameter B as

Δμ ¼ hξim3=2; ΔB ¼ −m3=2; ð31Þ
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with m3=2 being the gravitino mass, because it explicitly
breaks the super-Weyl symmetry. It is then difficult to avoid
the Higgs μ=Bμ problem in the scenario where the gravitino
is much heavier than the visible sparticles, i.e., if anomaly
mediation, which is a model-independent source of soft
supersymmetry-breaking masses in supergravity, is sizable
as is the case in the KKLT moduli stabilization. To allow an
order unity coupling of δS to HuHd while suppressing the
contributions to μ and B, one can consider

ΔK2 ¼ ξ
X�

X
HuHd þ H:c:; ð32Þ

for a singlet X that is radiatively stabilized by the loop
potential [12]. As induced by the above super-Weyl
invariant Kähler potential term, both Δμ and ΔB are loop
suppressed relative to m3=2 as required for the correct
electroweak symmetry breaking, while the modulus cou-
pling to HuHd is still given by h∂Sξi and is generally of the
order unity.
Let us examine how the modulus decay is affected by

the interaction (27) when both ϕ1 and ϕ2 develop a VEV to
spontaneously break the global U(1) symmetry, under
which ϕ1 and ϕ2 carry charge 1 and −1, respectively, so
that ϕ1ϕ2 becomes U(1) invariant. The scalar fields are
decomposed as

ϕi ¼
fiffiffiffi
2

p
�
1þ σi

fi

�
ei

ai
fi ; ð33Þ

for i ¼ 1, 2. The massless NGB is then written

a ¼ f1a1 − f2a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f21 þ f22

p : ð34Þ

Through the interaction (28), the modulus couples to the
two massive scalar bosons composed of σi and the other
combination of ai proportional to f2a1 þ f1a2, but it is
forbidden to couple to the NGB due to the U(1) symmetry.
Nonetheless, in the presence of the coupling (28), NGBs
can be produced abundantly from the cascade decay of
moduli because the saxion generally decays mainly into
NGBs via the aa∂2σ interaction.
Another role of the interaction (28) is to induce kinetic

mixing between the modulus and σi after spontaneous U(1)
breaking. Combined with the interactions aiai∂2σi coming
from the kinetic term of ϕi, such kinetic mixing generates
the aa∂2sr interaction whose coupling is given by

2f1f2
f21 þ f22

ð35Þ

times the coupling of (28), for the case where the modulus
is much heavier than the massive scalar bosons composed

of σi. This implies that, after electroweak symmetry
breaking, the modulus coupling to HuHd in the Kähler
potential induces the modulus decay into the CP even and
odd neutral Higgs bosons, and the charged Higgs bosons
without mass suppression. In addition, due to the kinetic
mixing, it contributes to the modulus decay into the
associated NGBs, i.e., into the longitudinal modes of the
weak gauge bosons, according to the Goldstone boson
equivalence theorem [15,16].
As a model-dependent modulus decay mode, one can

also consider the decay into the gauge sector, which is
possible if the modulus appears in the gauge kinetic
function:

fa ¼ Sþ Δfa; ð36Þ

with Δfa being an S-independent constant. It is straightfor-
ward to see that the decay rate into gauge bosons reads [12]

Γðsr → ggÞ ¼ Ng

128π
κ2g

m3
sr

M2
Pl

; ð37Þ

where Ng ¼ 12 counts the number of gauge bosons, and the
order unity constant κg is determined by

κg ¼
�
ð∂2

SK0Þ−1
2

1

Refa

�
: ð38Þ

On the other hand, the decay rate into gauginos is written

Γðsr → g̃ g̃Þ ¼ β2rΓðsr → ggÞ; ð39Þ

with βr defined by

h∂sFSisþ h∂s�FSis� ≡ βrmsrsr þ βimsisi; ð40Þ

where βr and βi do not exceed order unity in size. Here the
decay rates have been evaluated neglecting the mass
of decay products. The decay rates of si can be read off
from those for sr by taking the replacements,msr → msi and
βr → βi. Note that the KKLT leads to βr ≃ βi ≃ 1 for
Δfa ¼ 0. In order to enhance the decay into the visible
sector further, one may consider the case where the Higgsino
mass parameter is generated from the Kähler potential
as (29) [7,8] or as (32).
We close this section by mentioning that the modulus

can decay to a gravitino pair at a sizable rate if kinemat-
ically allowed. In particular, the decay is dominated by
the coupling to the helicity �1=2 components, i.e., to
the Goldstino, which is proportional to the modulus F term
[4–6]. The decay rate into gravitinos reads

Γðsr → G̃ G̃Þ ¼ κ23=2
288π

m3
sr

M2
Pl

; ð41Þ

AXIONPHILIC COSMOLOGICAL MODULI PHYS. REV. D 104, 123528 (2021)

123528-5



in the limit m3=2 ≪ msr , with m3=2 being the gravitino
mass. Here κ3=2 is defined as follows:

κ3=2 ≡ hð∂2
SK0Þ12FSi msr

m2
3=2

; ð42Þ

whose size is below order unity because the modulus
interactions are gravitational. If it is of the order unity, as is
typically the case in the known examples of moduli
stabilization, a large gravitino yield after moduli decay
can cause cosmological difficulties, dubbed as the moduli-
induced gravitino problem.

III. COSMOLOGICAL IMPLICATIONS

Reheating takes place via moduli decay if the universe
passes through a modulus-dominated epoch as generally
expected in string compactifications. To catch the relevant
features of such driven reheating, we simply consider a
single modulus S under the assumption that its real and
imaginary component have a similar mass, ms.

3 In flux
compactifications, a modulus unfixed by flux can be
stabilized by nonperturbative dynamics or Kähler mixing
with others. Its mass is then tied to the scale of supersym-
metry breaking, ms ∼m3=2, up to a factor of order
lnðMPl=m3=2Þ [17,18]. On the other hand, in the LARGE
volume scenario, the mass of the large volume modulus can
be much smaller than m3=2 [11].
To allow successful BBN after the modulus-dominated

phase, the modulus should decay dominantly into the
visible sector while forming the standard thermal back-
ground with temperature Ts constrained by [19,20]

Ts ≃
�

90

π2g�

�1
4ðΓsMPlÞ12 ≳ 5 MeV; ð43Þ

where g� is the relativistic degrees of freedom at Ts, and Γs
is the total decay width of the modulus. Here we have
assumed an instantaneous conversion of the modulus
energy density to radiation. The constraint on Ts requires
the modulus to be heavier than about 100 TeV. Modulus
domination also constrains models for baryon and dark
matter genesis because a huge amount of entropy is
released from moduli decay. If the genesis occurs at the
early stage of moduli domination or before, the dilution

factor naively reads Δ ∼ 1012ðms=PeVÞ−1, since the initial
displacement of the modulus after inflation is generally of
the order of the Planck scale.
A viable reheating requires the modulus to decay

dominantly to the visible sector. This can be achieved
by adding model-dependent modulus couplings such as a
coupling to the bilinear operator QQc or HuHd in the
Kähler potential, or to the visible gauge sector as discussed
in Sec. II B. In the presence of such couplings, the decay
rate into the visible sector reads

Γs→SM ¼ κ2SM
32π

m3
s

M2
Pl

; ð44Þ

where κSM is a constant of order unity. As discussed
already, the modulus generally decays into axions without
mass suppression if string compactification involves a light
stringy axion, φ, or if there is a (pseudo)-NGB, a, whose
scalar partner has a mass larger than or comparable to the
modulus mass. A theoretically well-motivated NGB is the
QCD axion [21]. The branching ratio of the axionphilic
modulus into axions is written

Brðs → axionsÞ ¼ κ2 þ κ02

κ2SM
; ð45Þ

which naturally lies in the range of the order of 0.1. If the
axions are cosmologically stable, the produced axions form
dark radiation. The contribution to the effective number of
neutrino species is estimated by [22]

ΔNeff ¼
43

7

Brðs → axionsÞ
1 − Brðs → axionsÞ

�
g�ðTν;decÞ
g�ðTsÞ

�1
3

; ð46Þ

under the assumption that the branching ratio into the
visible sector is given by 1 − Brðs → axionsÞ. Here Tν;dec is
the neutrino decoupling temperature. An observable
amount of dark radiation is a natural prediction of the
axionphilic modulus insensitively to the detail of moduli
stabilization. Dark radiation can have interesting cosmo-
logical effects in the early universe. For instance, if
ΔNeff ≳ 0.5, which is the case for Brðs → axionsÞ larger
than about 0.07, it may relieve the Hubble tension [23,24].
It should be noted that the presence of a plenitude of light

stringy axions, an axiverse, has been suggested as evidence
for the extra dimensions of string theory [25]. In the
axiverse, the lightest modulus would dominantly decay
into these axions, producing too much dark radiation if
the universe undergoes a modulus-dominated phase. The
modulus coupling to HuHd or to the gauge sector would
not be sufficient to suppress Brðs → axionsÞ. To avoid
the moduli-induced axion problem, i.e., to enhance the
modulus decay into the visible sector, one may thus rely on
the modulus coupling to QQc in the Kähler potential, for
instance, for a number ofQþQc that form complete SU(5)
multiplets. Here the supersymmetric mass ofQþQc in the

3For the case of multiple moduli, the decay properties
discussed in Sec. II apply to all the moduli. If not much heavier
than the lightest one, heavy moduli can still be cosmologically
important. For instance, if there were two moduli, S1 and S2, with
masses m1 and m2 (m1 < m2), respectively, the energy density of
the decay products of S2 is diluted by the entropy released from
late-time decay of S1. The dilution factor is given by the ratio
between their decay temperatures, and reads Δ ∼ ðm2=m1Þ3=2,
assuming that the displacement of moduli at the onset of coherent
oscillation is of the order of the Planck scale.
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superpotential is assumed to be smaller than the modulus
mass. We also note that, depending on their masses, the
number of QþQc is constrained by the perturbativity of
the gauge interactions up to the grand unification scale. The
phenomenological and cosmological details of such par-
ticles are out of the scope of this paper, and hence will not
be touched here.
The cosmological features discussed so far remain the

same even if the saxion has an initial amplitude of the order
of the Planck scale, as long as it decays much faster than the
modulus, i.e., if

mσ ≳ 100 GeV

�
f

1012 GeV

�2
3

�
ms

PeV

�
: ð47Þ

However, the situation changes much if the saxion is
thermally trapped at the origin to drive thermal inflation
[26]. It is also a plausible scenario although we do not
consider it in this paper.
Moduli stabilization withms > 2m3=2 generally confronts

the moduli-induced gravitino problem unless one adds
R-parity violating interactions. Interestingly, the gravitino
problem can be relaxed if the fermionic partner of the axion,
the axino, is much lighter than the lightest observable
sparticle (LOSP) since otherwise LOSPs produced from
gravitino decay would overclose the universe under the
R-parity conservation. Even for moduli stabilization with
ms < 2m3=2, the axino is still an attractive particle because,
as a FIMP, it is a viable alternative to weakly interacting
massive particle (WIMP) cold dark matter.
In the moduli-dominated universe, axinos are nonther-

mally produced from the decays of the modulus, gravitino,
and LOSP. The axino abundance from LOSPs decay is quite
model dependent because LOSPs can efficiently annihilate
before their decay depending on the LOSP nature and the
value of f. Meanwhile, independently of model details, the
axino yield directly produced from the gravitationally
interacting moduli and gravitinos is estimated by

Yãjs→ã ¼ 2Bs
ã
3

4

Ts

ms
; ð48Þ

where Bs
ã is defined by

Bs
ã ≡ Brðs → ã ãÞ þ Brðs → G̃ G̃ÞBrðG̃ → ãÞ; ð49Þ

with Brðs → ã ãÞ ∼ ðmã=msÞ2 as follows from (4). Thus, in
the case with ms < 2m3=2, the axino should have mass,

mã ≲ 1 TeV

�
0.1 GeV

Ts

�1
3

�
ms

PeV

�
; ð50Þ

not to exceed the observed dark matter density. On the other
hand, if ms > 2m3=2, the gravitino produced from moduli

uniformly decays to the axino and all lighter visible
sparticles, and should be heavier than a few tens of TeV
in order to decay before BBN [27]. The branching fraction of
the modulus decay to gravitinos is generally sizable,
indicating that the axino should be much lighter than the
above bound. The axino mass and the LOSP nature may
further be constrained by the axino free-streaming scale at
the time of matter-radiation equality, which should be less
than the order of Mpc to be consistent with the observations
of Lyman-α forest [28]. Axinos are mostly produced from
the decay of LOSPs as long as the number of the visible
sparticles lighter than the gravitino is much larger than unity.
Then, the free-streaming constraint is relaxed if the LOSP
scattering rate is larger than its decay rate so that LOSPs
become nonrelativistic before their decay. See Refs. [12,29]
for some examples in the KKLT scenario. Finally, we note
that axinos are also produced via freeze-in processes, which
can be effective depending on the value of f if Ts is not much
lower than the freeze-out temperature of the LOSP [29].

IV. CONCLUSIONS

In this work we have showed that string moduli have
axionphilic nature. Induced by the model-insensitive deriva-
tive interactions, the decay of a modulus into stringy axions
occurs without suppression by the mass of decay products.
Interestingly, we found that this feature holds not only for the
scalar partner of the stringy axion but also for any other
moduli. The decay into (pseudo)-NGBs also avoids mass
suppression if the modulus is not much heavier than the
saxion. The axionphilic nature makes string moduli a natural
source of an observable amount of dark radiation in the
universe that passes through a modulus-dominated era as is
generally expected in scenarios of string compactification.
Proper reheating would then require moduli to have addi-
tional couplings to enhance their decay into the SM sector so
that a hot thermal bath composed of mostly SM particles is
formed. For instance, the modulus can couple to the gauge
sector if it appears in the gauge kinetic function. Another
way is to add a modulus coupling to the holomorphic
bilinear operator of matter superfields in the Kähler potential.
It is also interesting to note that the fermionic superpartner of
a NGB as well as coherently oscillating NGBs can be a
viable alternative to WIMP dark matter.
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