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We develop a cosmographic framework for analyzing redshift drift signals of nearby sources model
independently, i.e., without making assumptions about the metric description of the Universe. We show that
the Friedmann-Lemaître-Robertson-Walker (FLRW) prediction is altered nontrivially by regional anisot-
ropies and inhomogeneities. In particular, we find that the position drift of the sources is nontrivially linked
to the redshift drift signal. The redshift drift signal for nearby sources might be formulated in terms of an
effective deceleration parameter, which reduces to the FLRW deceleration parameter in the homogeneous
and isotropic limit. The presented cosmographic framework can be used for model-independent data
analysis, exploiting the fact that the exact anisotropic redshift drift signal at lowest order in redshift is given
by a finite set of physically interpretable coefficients. We discuss physical limits of interest as well as
challenges related to the framework.
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I. INTRODUCTION

Cosmological data analysis has historically relied on
exact symmetry assumptions in order to infer information
about the kinematics of the Universe. Isotropic modeling
assumptions go back to the founding of general-relativistic
cosmology, and to the first measurements indicating the
expansion of space [1–3]. The Λ cold dark matter (ΛCDM)
cosmological paradigm is based on the class of homo-
geneous and isotropic Friedmann-Lemaître-Robertson-
Walker (FLRW) models, and the majority of modern
cosmological data analyses are carried out assuming a
class of FLRW models for describing observables. When
cosmological data is analyzed within the ΛCDM model, a
number of tensions1 and “curiosities” emerge [6,7]. Such
tensions, if not due to unaccounted-for astrophysical biases,
might be a sign that the precision in cosmological data has
surpassed the accuracy of the dynamical space-time model
employed. With next-generation surveys we will be able to
make precise cosmological measurements, which will
require an equal precision in theoretical modeling and
schemes for data analysis.
Optical drift effects [8–12] are temporal changes of

cosmological observables such as angular position, red-
shift, flux, and luminosity distance, which are detected by
measuring the same astrophysical sources over time. Since

lifetimes of experiments on Earth—typically of the order of
a few decades—are very small compared to cosmological
time scales of gigayears, the detection of optical drift
effects requires extreme precision. Due to the great recent
improvement in facilities for observation to meet the
required precision, measurements of cosmological drift
effects are within reach. In particular, the redshift drift
effect [13–15] has received attention as a cornerstone of
near-future observations. Modern instruments, such as the
Extremely Large Telescope (ELT) [16,17] and the Square
Kilometer Array (SKA) [18–20], are estimated to require
one to a few decades of observation time for detection of
the redshift drift signal [9,21,22]. Forecasts relating to
Phase2 of SKA predict observation times down to
∼0.5 years for significant detections of redshift drift, albeit
these estimates are associated with a high level of uncer-
tainty [22]. Flux drift effects could be detected within a few
decades with SKA and ELT [12], while position drift
effects are detectable within the same time frame using data
from the Gaia observatory [23,24].
The direct detection of changes in cosmological observ-

ables with time opens the door for model-independent
detection strategies of kinematic properties of our Universe.
However, most existing papers concerning the upcoming
optical drift measurements assume the FLRW class of
models; however, see, e.g., Refs. [11,25–34] for theoretical
and numerical investigations of the redshift drift signal in
more general settings.
Cosmography without assumptions on field equations or

space-time geometry [35–41] is a powerful tool for fully
model-independent data analysis when the quality of data
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1The ‘‘Hubble tension” [4,5] is perhaps the most significant

tension currently, and arises from disagreement between the
FLRW Hubble parameter as determined by nearby probes and by
data from the cosmic microwave background (CMB).
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and sky coverage is sufficient. So far, no cosmographic
framework for analyzing redshift drift data without assump-
tions about the space-time geometry has been developed. In
this paper we formulate such a framework for model-
independent inference of cosmological kinematics and
curvature using redshift drift measurements of nearby
astronomical sources and position drift measurements of
the same sources. Our derivations rely on multipole
expansion techniques for the redshift drift signal, which
were first considered in Ref. [31] for FLRW space-times
with noncomoving observers and Bianchi I space-times,
and later formulated in an arbitrary space-time congruence
setting [33,34].

A. Notation and conventions

Units are used in which c ¼ 1. Greek letters μ; ν;… label
space-time indices in a general basis. The signature of the
space-time metric gμν is ð−þþþÞ and the connection ∇μ

is the Levi-Civita connection. Round brackets () containing
indices denote symmetrization in the involved indices and
square brackets [] denote antisymmetrization. Bold nota-
tion V for the basis-free representation of vectors Vμ is used
occasionally.

II. REDSHIFT DRIFT SIGNAL FOR
A GENERAL SPACE-TIME

CONGRUENCE

We first review the formulation of the redshift drift signal
in terms of a multipole representation in the general setting,
making no assumptions about the metric tensor of space-
time or the field theory determining the metric. Following
Refs. [33,34] we consider a general space-time with an
unconstrained congruence of emitters and observers
(denoted the “observer congruence” in the following),
associated with the 4-velocity field u, a proper time
function τ, and with kinematic decomposition

∇νuμ ¼
1

3
θhμν þ σμν þ ωμν − uνaμ;

θ≡∇μuμ; σμν ≡ hβhνh
α
μi∇βuα;

ωμν ≡ hβνhαμ∇½βuα�; aμ ≡ _uμ; ð1Þ

where _≡uμ∇μ is the directional derivative along the
observer congruence flow lines, where hνμ ≡ uμuν þ gνμ is
the spatial projection tensor relative to the observer
congruence, and where hi is the traceless and symmetric
part of a spatially projected tensor.2 Let k denote the

generator of a geodesic congruence of null rays (henceforth
the “photon congruence”) passing between a pair of
causally connected members of the observer congruence.
We have that

E≡ −uμkμ; eμ ≡ uμ −
1

E
kμ; ð2Þ

denote the photon energy as measured by a member of the
observer congruence and the spatial unit vector of obser-
vation of the null ray as seen by the same observer. We
introduce the variables

dμ ≡ hμνeα∇αeν; κμ ≡ hμν _eν; ð3Þ

which we denote the “acceleration vector” and the
“position drift.” The acceleration vector describes the
acceleration of e as projected onto the spatial tangent
plane defined by u. When e is associated with an axis of
local rotational symmetry, d vanishes [43], and the norm
of d can thus be thought of as a measure of anisotropy
around the spatial axis of propagation of the photons.
The position drift3 describes the shift of spatial direction of
incoming light from the emitting source as seen relative to
an unrotated coordinate system in the observer’s frame;
see Sec. 4.2 in Ref. [11] for the relation between position
drift and classical parallax in a generic perturbative
setting.
The drift of the redshift, z, as associated with emitters

and observers of the congruence description and measured
in proper time of the observer can be represented by the
integral [34]

dz
dτ

����
O
¼ EE

Z
λO

λE

dλΠ; z≡ EE

EO
− 1 ð4Þ

where λ is an affine parameter along the null geodesics of
the photon congruence with kμ∇μλ ¼ 1, and where sub-
scripts E and O denote evaluation at the points of emission
and observation. The integrand, Π, is given by the exact
series expansion in e and d [34]

Π ¼ Πo þ eμΠe
μ þ dμΠd

μ þ eμeνΠee
μν þ eμdνΠed

μν

þ eμeνeρΠeee
μνρ þ eμeνeρeκΠeeee

μνρκ ð5Þ

with coefficients
2See Ref. [42] for a general method of decomposing tensors in

three dimensions into isotropic and traceless parts, and Appen-
dix A of Ref. [41] for the explicit expressions for the decom-
position for symmetric tensors with up to six indices.

3The position drift is equal to the Fermi-Walker transport of e
[11] along u: δueμ ≡ _eμ þ eνFμ

ν ¼ κμ, with Fμ
ν ≡ −uμaν þ aμuν.
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Πo ≡ −
1

3
uμuνRμν − dμdμ

þ 1

3
Dμaμ −

1

3
aμaμ −

3

5
σμνσμν − ωμνωμν;

Πe
μ ≡ −

1

3
θaμ þ

7

5
aνσνμ − aνωμν − hνμ _aν;

Πd
μ ≡ −2aμ;

Πee
μν ≡ 2ahμaνi −

9

7
σαhμσανi − 3ωαhμωα

νi − 6σαμω
α
ν

þDhμaνi − uρuσCρμσν −
1

2
hαhμh

β
νiRαβ;

Πed
μν ≡ 4ðσμν − ωμνÞ;

Πeee
μνρ ≡ −4ahμσνρi;

Πeeee
μνρκ ≡ 3σhμνσρκi; ð6Þ

where Rμν is the Ricci curvature tensor, Cρμσν is the Weyl
curvature tensor, the operator Dμ is the spatial covariant
derivative,4 and where the decomposition of the terms in the
series expansion has been made such that coefficients with
more than one space-time index are traceless.

III. COSMOGRAPHY FOR
MODEL-INDEPENDENT DATA

ANALYSIS OF NEARBY SOURCES

The representation (5) of Π in terms of a multipole
expansion in the vectors ðe; dÞ is not directly suitable for
formulating a model-independent redshift drift cosmogra-
phy for observational analysis, since the acceleration vector
dO is in general not a measurable quantity. We make use of
the relation [41]

kν∇νeμ

E
¼ ðeμ − uμÞH − eν

�
1

3
θhμν þ σμν þ ωμ

ν

�
þ aμ ð7Þ

and the definition of e given in Eq. (2) to rewrite d in terms
of e and κ in the following way:

dμ ¼ κμ − aμ þ eνðσμν þ ωμ
νÞ þ eμeνaν − eμeνeρσνρ: ð8Þ

The realization that d can be rewritten in terms of κ, e, and
kinematic quantities of the observer congruence is crucial
for the formulation of a general cosmographic expression
that is applicable for data analysis. This is because the
position drift vector as evaluated at the observer location
κO, unlike the acceleration vector dO, is a measurable
quantity (see the discussion below), which in turn makes it
a good expansion variable for the anisotropic cosmography.
Substituting d with Eq. (8) in the series expansion (5)

and rearranging terms, Π can be written as the following
series expansion in e and κ:

Π ¼ −κμκμ þ Σo þ eμΣe
μ þ eμeνΣee

μν þ eμκνΣeκ
μν ð9Þ

with coefficients

Σo ≡ −
1

3
uμuνRμν þ

1

3
Dμaμ þ

1

3
aμaμ;

Σe
μ ≡ −

1

3
θaμ − aνσμν þ 3aνωμν − hνμ _aν;

Σee
μν ≡ ahμaνi þDhμaνi − uρuσCρμσν −

1

2
hαhμh

β
νiRαβ;

Σeκ
μν ≡ 2ðσμν − ωμνÞ: ð10Þ

The representation (9) ofΠ in terms of the position drift κ is
a simple truncated expression at quadratic order in ðe; κÞ.
[Compare to the representation (5) with the expansion in
ðe; dÞ, which has terms up to fourth order in e.] This
representation is furthermore of observational interest,
since position drifts of galaxies are detectable with facilities
such as Gaia5 [24]. It is interesting to note that a general
relation between redshift drift and position drift has also
been obtained in Ref. [11].6

We now consider the redshift drift signal of nearby
sources by expanding the signal in the affine parameter
along the incoming null geodesic. Expanding Eq. (4)
around the point of observation O, the redshift drift signal
to lowest order in affine distance along the null ray reads

dz
dτ

����
O
¼ −EEΠOΔλþOðΔλ2Þ; ð11Þ

where Δλ≡ λE − λO. We can rewrite Eq. (11) as a first-
order Taylor series expansion in redshift by noting that

dE
dλ

¼ −kμ∇μðkνuνÞ ¼ −E2H; ð12Þ

with

H≡ 1

3
θ − eμaμ þ eμeνσμν; ð13Þ

which, assuming that the function λ ↦ zðλÞ is invertible,
gives [41]

Δλ ¼ −
1

EOHO
zþOðz2Þ ð14Þ

4The action of Dμ on a tensor field Tν1;…;νn
γ1;…;γm is defined as

DμTν1;…;νn
γ1;…;γm ≡ hα1ν1 ::h

αn
νn h

γ1
β1
::hγmβmh

σ
μ∇σTα1;…;αn

β1;…;βm .

5The identification of an irrotational coordinate system is
needed for isolating the position drift effect from local kinematics
of the observer [24]. Such a nonrotating reference frame might be
defined relative to a “background” of extragalactic sources [44].

6The formalism presented in Ref. [11] does not rely on a
congruence description of the observers and emitters of light, but
instead introduces vector fields from parallel transport of the
observer and emitter 4-velocities along the null ray, with respect
to which observables are decomposed. Therefore the results
found for redshift drift in Ref. [11] are not directly comparable to
those of the present paper.
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along each null ray. Using Eq. (14) in Eq. (11), we
finally have the first-order cosmographic expression for
redshift drift

dz
dτ

����
O
¼ −QOHOzþOðz2Þ; Q≡ −Π=H2: ð15Þ

Thus, we see that the redshift drift signal of nearby sources
is given by HO and ΠO, which are truncated series
expansions in the direction of incoming light from the
source eO and its position drift κO. We note that this
truncation is exact, and that no model assumptions have
been used in the expressions (9), (10) and (13).
We might identify H as a natural generalized “Hubble

parameter” prescribing the evolution of photon energy
along null rays,7 and identify Q as an effective observa-
tional deceleration parameter for the redshift drift signal as
motivated by the well-known FLRW limit of Eq. (15):
−q0H0zþOðz2Þ, where q0 and H0 are the present-epoch
deceleration parameter and Hubble parameter of the FLRW
model [45,46]. We note that an alternative effective
observational deceleration parameter, Q, has been defined
from the expansion of luminosity distance dL ¼ z=HO þ
ð1 −QOÞz2=ð2HOÞ þOðz3Þ valid for general space-time
geometries [39–41]. Thus, the redshift drift data and
distance-redshift data motivate two different generaliza-
tions of the FLRW deceleration parameter. This is not
surprising, since we might expect different observations to
be sensitive to inhomogeneities in the underlying space-
time solution in different ways.
Equation (15), together with Eqs. (9), (10) and (13), is

the main result of this paper. In the OðzÞ vicinity of
the observer, the general expression for redshift drift is
given in terms of a finite number of physically interpretable
coefficients, which can be measured given sufficient
data and sky coverage: given data eO and κO for each
source, the effective observational Hubble parameter HO
represents 9 degrees of freedom,8 fθ; aμ; σμνgjO, while
ΠO represents 12 independent degrees of freedom,9

fΣo;Σe
μ;Σee

μν;Σeκ
μνgjO.

In a fully model-independent analysis, the coefficients
fθ; aμ; σμνgjO and fΣo;Σe

μ;Σee
μν;Σeκ

μνgjO are to be treated
as free parameters giving a total of 21 independent degrees
of freedom to be determined from data. However,

complementary data10 or physically motivated assumptions
can reduce the number of independent parameters. In the
following section we shall consider approximations that
reduce the number of degrees of freedom in various
situations.

IV. PHYSICALLY MOTIVATED
APPROXIMATIONS

We shall now discuss limits of the general cosmographic
expression for redshift drift (15). We first discuss the
“monopole limit” relevant for when the sources in the
cosmological survey are sufficiently uniformly distributed
over the observer’s sky. Next we shall discuss the potential
of measuring the cosmological position drift effect with
upcoming surveys, and perform an order-of-magnitude
analysis of the terms in the expansion (9) involving the
position drift. We then discuss the limiting case κO ¼ 0 and
aO ¼ 0, valid for when position drift is subdominant in the
expression for redshift drift and the observer congruence is
well approximated as being geodesic.

A. Monopole limit

We might analyze the monopole limit HO → θO=3 and
ΠO → −κμκμjO þ Σo

O, corresponding to the situation where
the redshift drift signal is isotropic (independent of eO) as

seen by the observer dz
dτ jO → 3

−κμκμjOþΣo
O

θO
zþOðz2Þ. For a

uniform sky distribution of sources in the observer’s
catalogue, the average redshift drift signal is expected to
be well probed by this monopole limit—even if higher-
order multipoles are significant in the case of individual
sources—since any traceless component is expected to
cancel when averaged uniformly over directions.
A uniform sky distribution of sources will in practice not

be fully obtained in realistic surveys, which are subject to
limitations of instrumentation, astrophysical foregrounds,
and the underlying anisotropic distribution of galaxies over
the observer’s sky. However, it might in some situations
apply as a good lowest-order approximation. The limit of a
fairly sampled sky is also of theoretical interest, as it
constitutes an observationally motivated monopole limit
which might be compared with other monopole limits in
cosmological modeling, such as that of the FLRW metrics.
The monopole limit of the redshift drift signal leaves the

two independent degrees of freedom θO and Σo
O to be

determined from data.11 In this limit, the redshift drift signal7The identification of H as a generalization of the FLRW
Hubble parameter can further be motivated by noting that the
first-order term in the Taylor series expansion of luminosity
distance is given by z=H, as detailed in Ref. [40].

8Spatial vectors represent three degrees of freedom, whereas
spatially symmetric and trace-free tensors with two indices
represent five degrees of freedom.

9The shear term in Σeκ
μνjO is specified by the quadrupole moment

σμνjO of HO. This leaves ωμνjO to be determined independently,
which is specified by the three degrees of freedom of a three-
dimensional antisymmetric tensor with two indices.

10If for instance the coefficients fθ; aμ; σμνgjO of HO have
already been measured by analysis of distance-redshift
data as proposed in Ref. [41], this leaves the coefficients
fΣo;Σe

μ;Σee
μν;Σeκ

μνgjO to be determined.
11Under the approximation κO ¼ 0 for each source (see

below), the OðzÞ monopole signal reduces to 3Σo
Oz=θO, which

renders θO and Σo
O degenerate, leaving one effective parameter

Σo
O=θO to be determined from data.
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contains contributions from space-time structure via the
position drift (see the below discussion on position drift),
4-acceleration of the observer congruence, and the Ricci
curvature term Rμνuμuν, as can be seen from the expression
for Σo

O in Eq. (10). The extrapolation of the FLRW result
for redshift drift to the general case is thus nontrivial, even
in the monopole limit of a fairly sampled sky. In particular
we note that the isotropized OðzÞ redshift drift signal does
not in general probe the deceleration of length scales in the
observer frame directly.
The contributions to the monopolar redshift drift signal

from position drift are nonpositive—as can be seen directly
from Eqs. (9) and (10)—while the 4-acceleration can
contribute with terms of either sign, depending on its
spatial gradient DμaμjO. If the 4-acceleration and its spatial
gradient are subdominant,12 the only way to obtain a
positive monopolar redshift drift signal in the OðzÞ vicinity
of the observer, is thus to have Rμνuμuν < 0 which in a
general-relativistic context is equivalent to the violation
of the strong energy condition. This conclusion for low
redshift measurements is similar to that found in Ref. [34]
for redshift drift signals of sources located at distances
much greater than an approximate homogeneity scale,
where positive values of redshift drift were found to be
likely caused only by violation of the strong energy
condition or by a special 4-acceleration profile of the
observer congruence.

B. Accounting for position drift

We note that a full model-independent analysis requires
knowledge of eO and κO for each astrophysical source.
While the position of the source on the sky, eO, is
immediately known, its drift, κO, is a measurement that
is at least as delicate as the redshift drift signal itself. Even
though position drift effects associated with light propa-
gation through large-scale cosmic structure could be
determined with upcoming Gaia data [23,24], it might
be nontrivial to combine such detections with detections of
redshift drift for a combined analysis of the two effects. In
the following we shall estimate the magnitude of the
position drift effect relative to the expected redshift drift
effect from existing order-of-magnitude estimates in the
literature.

1. Model universes with extreme structures

We shall now use estimates from extreme universe
structures as modeled by Lemaître-Tolman-Bondi (LTB)
and Bianchi metrics as crude upper bounds on position
drift. These estimates are complimentary to low-redshift

estimates within the perturbed FLRW framework given
below.
Cosmological position drifts of galaxies with z ∼ 1 have

been estimated to be of order ≲10−6 arcsec=year ≈
10−12 rad=year for off-center observers situated in
∼1 Gpc scale voids as modeled by LTB solutions
[23,24]. Estimates of cosmic position drift within
Bianchi I metrics incorporating anisotropic expansion of
space with a shearing rate of order 1% have been found to
be ∼10−7 arcsec=year ≈ 10−13 rad=year for sources
located at z ∼ 1 [47]. We might use such estimates as
crude upper bounds13 on position drift effects of sources
located at z ∼ 1 in realistic universe models with more
moderate structure, and write κO ≲ 10−12 year−1.
For local expansion rates comparable to current esti-

mates of the “background” FLRW Hubble parameter,
HO ∼H0 ∼ 10−10 year−1, we have that the contribution
from the first term of Eq. (9) in Eq. (15) is of size
κμκμ=H≲ 10−14 year−1 ∼ 10−4H0, where the evaluation
at the point of observation O is implicit here and below
for ease of notation. Similarly, the coupled term eμκνΣeκ

μν of
Eq. (9) contributes in Eq. (15) with a term of size
jeμκνΣeκ

μν=Hj ≲ 10−2jeμκ̂νΣeκ
μνj ¼ 10−2jeμκ̂ν2ðσμν − ωμνÞj,

where κ̂≡ κ=jκj is the unit vector aligned with κ.
Assuming that shear and vorticity are subdominant to the

isotropized expansion rate, such that14 2jeμκ̂νðσμν−ωμνÞj≲
0.1H, we have that jeμκνΣeκ

μν=Hj≲ 10−3H0. For compari-
son, the lowest-order redshift drift signal in the FLRW
model is −q0H0z. Position drift contributes well below 1%
for q0 ≈ −0.5 to the OðzÞ redshift drift term within these
order-of-magnitude estimates when approaching redshifts
of unity.

2. Perturbed FLRW models in the small-redshift regime

In first-order FLRW perturbation theory, assuming a dust
universe model, cosmological position drift is of order the
classical parallax effect [27] jκj ∼ jvjD−1

P , where v is the
spatial velocity of the observer relative to the Poisson
frame, and DP is the parallax distance in the background
FLRW model. In the low-redshift regime, the term propor-
tional to D−1

P dominates, and DP ≈ z=H0. In this regime,
we thus have jκj ∼ jvjH0=z.
This estimate leads to κμκμ=H ≈ jv2j

z2 H0, where we have
used that H ≈H0 at lowest order in the linearized pertur-
bative scheme. We also have jeμκνΣeκ

μν=Hj ≈ 2
jvj
z e

μκ̂ν∇μvνj,

12Vanishing 4-acceleration occurs for instance when the energy
content of the Universe is well described by a dust source, which
is typically assumed to be the case in general-relativistic model-
ing of the late Universe.

13Since the estimates are provided at z ∼ 1, we expect the first-
order term in the redshift drift cosmography to be a poor
approximation of the underlying redshift drift signal on such
scales, irrespective of the exact nature of the underlying space-
time. The estimates are however still valid for investigating the
relative size of various contributions in the first-order term of the
series expansion.

14This is indeed a conservative estimate in the Bianchi I space-
times considered in Ref. [47], where the shearing rate is ∼1%.
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where we have used that the shear and vorticity in the
matter frame are given by σνμ ≈∇hμvνi and ωνμ ≈∇½μvν�
respectively [48] to lowest order in v. Comparing these
coefficients involving position drift to the magnitude of the
leading-order redshift drift coefficient in the FLRWexpres-
sion, q0H0, we see that the position drift terms contribute

with correction terms of order 2
jv2j
z2 and 4

jvj
z
jeμκ̂ν∇μvνj

H0
for

q0 ≈ −0.5.
For typical cosmological bulk flow velocities v ∼ 10−3—

representative of for instance the bulk motion of our cosmic
neighborhood at the ∼100 Mpc scale relative to the CMB
frame [49]—we can thus expect ∼1% correction terms on
the ∼100 Mpc scale15 (corresponding to z ∼ 0.02). For
comparison, a similar order-of-magnitude estimate for the
electric Weyl tensor contribution in the quadrupole coef-
ficient (10) term gives correction terms of up to order16

jeμeνuρuσCρμσνj
H2

0

∼ jeμeν∇hμvνij
H0

∼ 0.1 at the ∼100 Mpc scale.

C. Geodesic and position drift-free approximation

Let us suppose that the above relative order of estimates
concerning position drift apply to the low-redshift regime
of interest, such that we can set κO ¼ 0 for a lowest-order
description of redshift drift. Let us further suppose that the
cosmological congruence description is well approximated
as being geodesic, such that aO ¼ 0. This is a reasonable
assumption above scales of virialized structure, where
effective hydrodynamic pressure from velocity dispersion
tends to be negligible [50].
Under this approximation, the expression (9) as evalu-

ated at the observer reduces to

ΠO ¼ ΣojO þ eμeνΣee
μνjO ðlimit∶ aμO ¼ 0; κμO ¼ 0Þ ð16Þ

with coefficients

ΣojO ≡ −
1

3
uμuνRμνjO ðlimit∶ aμO ¼ 0; κμO ¼ 0Þ;

Σee
μνjO ≡ −uρuσCρμσνjO −

1

2
hαhμh

β
νiRαβjO; ð17Þ

while HO in the case of zero 4-acceleration it reads

HO ≡ 1

3
θO þ eμeνσμνjO ðlimit∶ aμO ¼ 0Þ: ð18Þ

In this case we are left with the coefficients fΣo;Σee
μνgjO

representing six degrees of freedom in addition to the six

degrees of freedom incorporated in the coefficients
fθ; σμνgjO of HO. This gives a total of 12 parameters, of
which one degree of freedom is redundant.17 When the
coefficients of HO can be determined by complementary
data, for instance by analysis of standardizable candles
[41], the redshift drift signal is given by the six degrees of
freedom fΣo;Σee

μνgjO.
Let us consider the significance of the coefficients in

Eq. (17). The monopole Σo is given by the source term,
uμuνRμν, of the focusing of the observer congruence
worldlines. The quadrupole Σee

μν is given in terms of the
electric part of the Weyl tensor in the observer frame,
uρuσCρμσν, together with the trace-free part of the spatially

projected Ricci tensor, hαhμh
β
νiRαβ, which are source terms of

the evolution of shear in the observer frame. In a general-
relativistic hydrodynamical description, the latter term is
identified as the anisotropic stress in the observer frame.
The electric part of the Weyl tensor, uρuσCρμσν is not
necessarily small in the “weak field” or “small relative
velocity” limit of gravity. See Eq. (113) of Ref. [51] for the
expression for the electric part of the Weyl tensor in
linearized perturbation theory around a flat FLRW model.
In the Newtonian limit, the electric part of the Weyl tensor
translates into the tidal tensor [52].
We can further remark that the eigenbases of σμν and

uρuσCρμσν coincide in irrotational dust space-times with
vanishing divergence of the magnetic Weyl tensor [53].
Under this model assumption, which might be thought of
as a stable approximation in the linear regime of density
contrasts [53], the number of independent degrees of
freedom represented by fΣo;Σee

μνgjO decreases from six
to three degrees of freedom. Under the present approxi-
mation, and independent determination of HO, the redshift
drift signal at low redshifts directly measures these curva-
ture invariants.

V. DISCUSSION OF UPCOMING SURVEYS AND
LIMITATIONS OF THE FORMALISM

An upcoming probe for the detection of redshift drift is
the Lyman-α forest, which is the observed absorption lines
in the spectra of quasars coming from the Lyman-α
transition of the hydrogen atom [21,54]. The Lyman-α
forest is most efficiently probed in the range 2≲ z≲ 5
[9,21], and is therefore not suitable for the cosmographic
framework developed in this paper. Another promising
experiment is to measure redshift drift with the neutral
hydrogen 21-cm emission lines of galaxies, as is the aim
with the SKA experiment [19,55]. Significant detections of
the redshift drift signal at z≲ 0.3 are currently predicted to
be within reach in ∼40 years of observation time for SKA

15We use the order-of-magnitude estimate jeμκ̂ν∇μvνj=H0 ∼jvj=H0=ð100 MpcÞ ∼ 100jvj for the components of the spatial
gradient of v on the 100 Mpc scale.

16This order-of-magnitude estimate is based on juρuσCρμσνj ∼jθσμνj [see, e.g., Eq. (111) of Ref. [48]], and jσνμj ≈ j∇hμvνij ∼
jvj=ð100 MpcÞ at the 100 Mpc scale.

17An overall scaling of the coefficients fΣo;Σee
μνgjO by a scalar

can be absorbed into an overall rescaling of fθ; σμνgjO by the
inverse of the same scalar, in the case where κO ¼ 0.
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Phase1, while for SKA Phase2 the observation time needed
for a significant detection could drop to ∼0.5 years [22,55].
See also Ref. [56] for an outline of potential complemen-
tary measurements of redshift drift in the low-redshift
regime.
In this paper, we use a congruence description for the

emitters and observers of light in the space-time, in order
to make a cosmographic representation of redshift drift
signals possible. The cosmography has the advantage that it
can be directly applied to model-independent analysis of
redshift drift, as detailed in the above analysis.
However, the congruence description is also a limitation

of the presented framework, as it necessarily implies the
(implicit) coarse graining over scales where caustics in
the matter distribution appear. Furthermore, regularity of
the cosmographic expression (15) requires invertibility
of the function λ ↦ zðλÞ which prevents the inclusion
of physics below and around the scales of virialized
structure; see the discussion in Ref. [41] in the context
of luminosity distance cosmography. Changes in the red-
shift signal due to local motion effects within gravitation-
ally bound structures are thus unaccounted for in the
presented framework.
The special-relativistic acceleration of the Solar System

relative to an idealized “background” of extragalactic
sources, has been inferred through the secular aberration
drift of radio sources and quasars [57,58], with an inferred
acceleration smaller than, but of the same order as, the
Hubble constant, and might thus be expected to contribute
significantly to the redshift drift signal.
The implications for redshift drift of the Newtonian

3-acceleration of the Solar System relative to a hypoth-
esized frame of idealized Hubble flow was formulated in
Ref. [9], and investigated in detail in Ref. [59], where a
dipolar signature in the redshift drift signal with amplitude
comparable to the predicted monopole signal from the rate
of change of cosmic expansion in the ΛCDM model was
found. This predicted dipolar signal is independent of
redshift of the sources [59], and the effect might thus be
distinguished from the cosmological signal, which will in
general be redshift dependent. In particular, we note that the
dipolar and quadrupolar effects in Eq. (15) caused by the
4-acceleration of the observers in the expanding cosmo-
logical congruence description through the appearance of a
in Eqs. (13) and (10) are not identical to the signatures of
local aberration effects.
We expect the dipole in the redshift drift signal to be

dominated by the local secular aberration drift, while a
quadrupole in data might be a signature of cosmological
Weyl curvature/shearing effects, cf. Eq. (16) and the
discussions below this equation. Local aberration effects
might be corrected for separately, or alternatively be
integrated in the cosmological analysis, by for instance
employing a formalism for combining the full hierarchy of
scales relevant for cosmological observation [11,30].

In order to apply cosmographic expressions of observa-
tional signals, the convergence and level of approximation
of the Taylor series must be examined. In FLRW models,
the radius of convergence of cosmographies is typically
given by z ¼ 1 due to a pole at the future null cone at
z ¼ −1 [46]. We might expect other expanding universe
models to exhibit the same divergence of cosmographic
expressions beyond redshifts of unity, since z ¼ −1 generi-
cally corresponds to the physical singularitywhere the energy
function of the photon tends to zero.18

The ratio of the second-order and first-order coefficients
in the FLRW redshift drift cosmography is [46]
ðj0 − q20Þ=ð2q0Þ, where j0 is the FLRW jerk parameter
as evaluated at the present epoch. For j0 ∼ 1 and q0 ∼ 0.5,
this ratio of coefficients is of order unity, and the fractional
error term of the first-order Taylor series is roughly 1 × z.
Thus, a precision of 1% (10%) in the redshift drift
cosmography can be achieved in an FLRW universe with
j0 ∼ 1 and q0 ∼ 0.5 by considering redshifts no higher than
z ∼ 0.01 (z ∼ 0.1).
The convergence properties and level of approximation of

the general first-order cosmography (15) must in principle
be examined for each universe model of interest. The
goodness of approximation of the truncated cosmography
to the physical signal is in general expected to break down
sooner for universe models where more structure on small
scales is taken into account, giving rise to highly oscillatory
signals. For a discussion of the convergence properties of the
luminosity distance cosmography as a function of smooth-
ing scale in the context of realistic general-relativistic
universe simulations, see Appendix A of Ref. [61].
The higher-order polynomial terms in the cosmography

(15) are naturally of interest. A challenge of formulating
these in a representation useful for data analysis, is that
gradients of the position drift, κ, appear in the higher-order
coefficients. The derivative of κ along the observerworldline
is a second-order position drift effect and is therefore
observationally challenging. Derivatives of κ would have
to be dealt with for formulating useful higher-order expres-
sions for redshift drift, either by reparametrizing the expres-
sions in terms of more accessible physical quantities or by
making it plausible that higher-order position drift effects are
subdominant in classes of realistic universe models.

VI. CONCLUSION

We have presented a framework for model-independent
analysis of redshift drift data from nearby sources. Due to
the representation of the redshift drift signal in terms of
truncated multipole series in the incoming direction of the
null ray and the position drift of the source as seen by the

18See Ref. [60] for a suggested reparametrization of the
redshift function appropriate for formulating cosmographies
that are convergent for arbitrary redshifts in expanding FLRW
universe models.
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observer, the exact anisotropic expression for redshift drift
in the OðzÞ vicinity of the observer is given by a finite
number of coefficients.
A fully model-independent analysis, making no use of

complementary constraints or assumptions about the space-
time congruence or the metric tensor of the Universe,
implies 21 independent degrees of freedom to be deter-
mined. These degrees of freedom describe combinations of
kinematic and curvature variables associated with the
observer congruence and projections of the Ricci and
Weyl curvatures of the space-time.
The formalism allows for transparently making assump-

tions on the observer congruence description and the
curvature of space-time, which might reduce the number
of independent degrees of freedom to be determined from
data. In the approximation of subdominant position drift
and 4-acceleration of the congruence description, the
number of independent degrees of freedom reduces to
11, and further decreases to six independent degrees of
freedom in the case where the effective Hubble constant
HO can be measured by complementary data.
In a general-relativistic hydrodynamic setting with sub-

dominant anisotropic stress, these six independent degrees
of freedom are given by the focusing term uμuνRμν (one
degree of freedom) and the electric part of the Weyl tensor
uρuσCρμσν (five degrees of freedom). The number of
degrees of freedom might be even further reduced; see
the discussion below Eq. (18). The curvature invariants
uμuνRμν and uρuσCρμσν can in this case be determined
directly from redshift drift data given sufficient con-
straining power for sources at low redshift.

For an approximately isotropic sky sampling, the
monopole term (given by the source term uμuνRμν) of
the redshift drift signal dominates, constituting a single
scalar degree of freedom to be determined from data. The
framework in the present paper has formal similarities with
that presented in Ref. [41] for the analysis of distance-
redshift data. The frameworks can be combined for joint
model-independent constraints on the kinematics of the
Universe.
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