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We study scalar-tensor-tensor and tensor-scalar-scalar three-point cross-correlations generated by the
dynamics of a transiently rolling spectator axion-U(1) gauge field model during inflation. In this
framework, tensor and scalar fluctuations are sourced by gauge fields at the nonlinear level due to
gravitational interactions, providing a chiral background of gravitational waves while keeping the level of
scalar fluctuations at the observationally viable levels at cosmic microwave background (CMB) scales. We
show that the gravitational couplings between the observable sector and gauge fields can also mediate
strong correlations between scalar and tensor fluctuations, generating an amplitude for the mixed-type
three-point functions that is parametrically larger—fNL ≃Oð1 − 10Þðr=0.01Þ3=2—compared to the single-
field realizations of inflation. As the amplification of the gauge field sources are localized around the time
of horizon exit, the resulting mixed bispectra are peaked close to the equilateral configurations. The shape
dependence along with the scale dependence and the parity violating nature of the mixed bispectra can
serve as a distinguishing feature of the underlying axion-gauge field dynamics and suggest a careful
investigation of their signatures on the CMB observables including cross-correlations between temperature
T and E,B polarization modes.
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I. INTRODUCTION

The production of primordial gravitational waves (GWs)
(see, e.g., reviews [1,2]) is a robust prediction of the
inflationary paradigm [3–5]. A positive detection of such
fossil GWs would therefore provide strong evidence for
inflation in the early Universe. The amplitude of this signal
is conventionally parametrized by the so-called tensor-to-
scalar ratio r which is a quantity targeted by a number of
probes aiming to observe B-mode polarization patterns
[6,7] in the cosmic microwave background (CMB) sky [8].
Current limits on the tensor-to-scalar ratio from Planck
and BICEP/Keck restrict r≲ 0.06 [9,10] and are expected
to be improved by an order of magnitude by the forth-
coming experiments such as CMB-S4 [11] and
LiteBIRD [12].
In simplest realizations of inflation based on a scalar

field minimally coupled to Einstein gravity, primordial
GWs originate from the quantum vacuum fluctuations of
the metric amplified by the quasi–de Sitter (quasi-dS)
expansion. In this framework, the amplitude of the
produced GWs is directly related to the expansion rate
Hinf of the quasi-dS background, and thus, if GWs are
observed, they would provide us the energy scale of
inflation Hinf ∼ 10−5ðr=0.01Þ1=2Mpl and give us the first
hints on the quantum nature of gravity. More importantly,
in this setup, the resulting GW signal is expected to posses
the following properties: (i) near-scale invariance (with a
slight red tilt), (ii) near Gaussianity, and (iii) parity

conservation.1 In order to have a firm understanding of the
fundamental nature of inflation, it is therefore crucial to test
the robustness of these predictions by exploring viable alter-
native mechanisms that can generate GWs during inflation.
In fact, the properties (i)–(iii) of tensor fluctuations do

not generically hold and can be invalidated if additional
energetic enough field configurations present during infla-
tion (see, e.g., [17,18]). From a top-down model-building
perspective, a rich particle content during inflation is not
just an interesting possibility but appears to be a common
outcome of many theories beyond the Standard Model of
particle physics (see, e.g., [19]). For example, low energy
effective descriptions of string theory and supergravity
generically predict a plethora of scalar fields (moduli or
axionlike fields) along with gauge sectors that interact with
each other at the nonlinear level through dilaton or Chern-
Simons-like couplings.2 In the presence of such couplings,

1Within the generalized scalar-tensor theories of single-field
inflation, a blue-tilted tensor spectrum can be generated for back-
grounds that exhibit a transient nonattractor era [13,14].On the other
hand, parity violation in the tensor sector can be induced by
nonminimal couplings between inflaton and the metric [15,16].

2The phenomenological roles played by these couplings are
initially considered in the context of primordial magnetogenesis
[20,21] and more recently to realize axion inflation with sub-
Planckian decay constants, e.g., through strong dissipative
dynamics induced by U(1) [22] or SU(2) [23] gauge sectors.
For explicit embeddings of the SU(2) model in supergravity and
string theory constructions, see [24] and [25,26], respectively.
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the classical role of the scalar background fields can “lift” the
gauge field fluctuations and enhance their amplitude during
inflation in a parity violating manner. Produced gauge field
modes in this way then can influence the observed tensor
fluctuations and can generate a large “synthetic” component
of chiralGWs. However, for vector fields that exhibit direct
coupling with the observable scalar sector, this is a chal-
lenging task because the induced GW emission is also
accompanied by the strong production of non-Gaussian
scalar fluctuations [27–30]which puts a bound on the size of
the sourced GW component at CMB scales3 [38,39].
To resolve this tension, an extension of these models is

proposed that utilizes a spectator axion-U(1) gauge sector
endowed with localized gauge field production [40,41]. In
this framework, the model is equipped with an additional
scalar field that drives inflation and controls observable
fluctuations in the scalar sector.4 Armed with this property
and thanks to the localized nature of gauge field production,
scalar fluctuations in this model can be kept in observatio-
nally viable levels while keeping its original intriguing
features such as the generation of chiral GWs of nonvacuum
origin. Remarkably, a scan of the parameter space in these
models shows that the parity violating tensor power spec-
trum reveals that such a signal may be observable through
themixed angular power spectra5 of the CMB temperature T
anisotropies and E,B polarization modes [40].
In these models, intriguing parity violating signatures of

tensor fluctuations also appear in the tensor-tensor-tensor
correlator. In particular, a sizeable scale-dependent tensor
non-Gaussianity can be induced by the amplified gauge field
fluctuations [40,41] and the parity violation associated with
hhλhλhλi can reveal itself in the CMBbispectrum of Bmodes
[51]. Since scalar fluctuations are also enhanced to a certain
extent by the gauge fields, it is then natural to ask if there exist
three-point cross-correlations between scalar and tensor
fluctuations. In the spectator axion-U(1) gauge field models,
we expect suchmixed correlations to appear on the following
grounds: First of all, as we mentioned before, the transient
instability in the vector fields can directly influence themetric
fluctuations through the inevitable cubic gravitational inter-
action of hAA type. On the other hand, the scalar fluctuations
δϕ in the observable inflaton sector can linearly mix with the
scalar fluctuations in the spectator axion sector which have
direct cubic interactions of σAA type with the gauge
fieldmodes. Therefore,mediated by theAbelianvector fields,
a bridge between the comoving curvature perturbation
R ∝ δϕ and tensor fluctuations h can be built to induce

scalar-tensor-tensor Rhh-type and tensor-scalar-scalar
hRR-type mixed three-point correlators (see Fig. 2).
Considering the preferred handedness of tensor fluctua-

tions, along with the scale dependence and the non-
Gaussian nature of the cosmological fluctuations in these
models, a detailed analysis of the mixed bispectra of tensor
and scalar perturbations could provide us invaluable
information on their underlying production mechanism
and guide us to compare these predictions with that of
the conventional single-field models, as well as other
nonconventional scenarios.6 Therefore, for a complete
understanding of parity violating signatures in the spectator
axion-U(1) gauge field models [40,41], it is timely to
consider three-point cross-correlations between scalar and
tensor fluctuations which is the main focus of this work.
This paper is organized as follows: In Sec. II, we review

the transiently rolling spectator axion-gauge fieldmodel and
its predictions at the level of power and autobispectra. In
Sec. III, we present our results on the scalar-tensor-tensor
and tensor-scalar-scalar bispectrum and discuss their ampli-
tude and shape dependence. We conclude in Sec. IV.
We supplement our results with five Appendixes where
many details about the computations we carry out can
be found.
Notations and conventions: Our metric signature is

mostly plus sign ð−;þ;þ;þÞ. Greek indices stand for
space-time coordinates, while latin indices denote spatial
coordinates. Overdots and primes on time-dependent quan-
tities denote derivatives with respect to coordinate time t and
conformal time τ, respectively. At leading order in slow-roll
parameters, we take the scale factor as aðτÞ ¼ 1=ð−HτÞ
whereH ¼ _a=a is the physical Hubble rate during inflation.

II. COSMOLOGICAL FLUCTUATIONS FROM
AXION-GAUGE FIELD DYNAMICS

As we mentioned in the Introduction, the Lagrangian that
describes the model contains an inflationary sector together
with a spectator axion-gauge field sector both minimally
coupled to gravity [40–42,56],

Lffiffiffiffiffiffi−gp ¼ M2
plR

2
þ Lϕ

−
1

2
ð∂σÞ2 − VσðσÞ −

1

4
FμνFμν −

αcσ

4f
FμνF̃μν;|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Spectator sector

ð2:1Þ
3At sub-CMB scales, however, the same mechanism can be

utilized to obtain sufficient enhancement in the scalar fluctuations
required for primordial black hole production [31–37].

4For early studies of the spectator axion-U(1) gauge field
model, see [42,43]; for a discussion on the issues regarding the
scalar fluctuations in this model, see [44,45].

5For earlier studies of probing chiral GWs with CMB
anisotropies, see [46–50].

6See, e.g., [52,53] for an analysis of mixed bispectrum of
scalar and tensor fluctuations in the spectator axion-SU(2) gauge
field model. On the other hand, parity violating hRhhi bispec-
trum can also arise through the gravitational Chern-Simons-type
coupling to the inflation; see, e.g., [54,55] for the detectability of
this signal through TBB and EBB CMB bispectra, respectively.
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where Lϕ is the Lagrangian that drives inflation and is
responsible for the generation of curvature perturbation
consistent with CMB observations, and σ is a spectator
pseudo-scalar axion rolling on its potential Vσ. The strength
of the interaction [i.e., the last term in (2.1)] between the
spectator σ and the gauge field is parametrized by the
scale f together with the dimensionless coupling constant
αc where Fμν ¼ ∂μAν − ∂νAμ is the field strength tensor
of the U(1) gauge field, F̃μν ≡ ημνρσFρσ=ð2 ffiffiffiffiffiffi−gp Þ is its
dual, and alternating symbol ημνρσ is 1 for even permutation
of its indices, −1 for odd permutations, and zero
otherwise.

A. Gauge field production

If the spectator axion rolls on its potential Vσ with a
nonvanishing background velocity _σ ≠ 0, the interaction in
(2.1) introduces a tachyonic mass for the gauge field and
leads to the enhancement of gauge field modes in a parity
violating manner. This can be seen from the equation of
motion of the gauge field polarization states A� in a
Friedmann-Robertson-Walker background [22],

�
∂2
x þ 1� aH

k
2ξ

�
A� ¼ 0; ð2:2Þ

where we defined x≡ −kτ and ξ≡ −αc _σ=ð2HfÞ
(ξ > 0 & _σ < 0) is the dimensionless measure of the
axion’s velocity that represents the effective coupling
strength between σ and Aμ. From (2.2), we see that when
the last term dominates over unity for k=ðaHÞ < 2ξ, only
the − polarization state of the gauge field experiences
tachyonic instability which reflects the parity violating
nature of the σFF̃ interaction.

B. Tensors sourced by vector fields

The gauge field fluctuations produced in this way exhibit
an amplitude A− ∝ eπξ [22], which in turn acts as an
additional source of tensor perturbations through gravita-
tional interactions [42]. This can be seen clearly from the
mode equation of graviton polarization states hλ which is
sourced by the transverse traceless part of the energy-
momentum tensor composed of gauge field fluctuations:

�
∂2
τ þ k2 −

2

τ2

�
ðaĥλÞ ¼ −

2a3

M2
pl

Πij;λðk⃗Þ
Z

d3p

ð2πÞ3=2 ½Êiðτ; k⃗ − p⃗ÞÊjðτ; p⃗Þ þ B̂iðτ; k⃗ − p⃗ÞB̂jðτ; p⃗Þ�; ð2:3Þ

where Êi ¼ −a−2Â0
i, B̂i ¼ a−2ϵijk∂jÂk are “electric” and

“magnetic” fields, and ĥλðτ; k⃗Þ ¼ Πij;λðk⃗Þĥijðτ; k⃗ÞwithΠij;λ

being the polarization tensor obeying k̂iΠij;λðk⃗Þ ¼ 0,

Π�
ij;λΠij;λ0 ¼ δλλ0 and Π�

ij;λðk⃗Þ ¼ Πij;−λðk⃗Þ ¼ Πij;λð−k⃗Þ.

C. Scalars sourced by vector fields

The influence of particle production on the visible scalar
sector is also encoded indirectly by the presence of
gravitational interactions [44]. In particular, integrating
out the nondynamical lapse δN and the shift Ni reveals
a mass mixing between δϕ and δσ and opens up a channel
that can influence the curvature perturbation7 R ≃
−Hδϕ= _ϕ through the inverse decay of gauge fields:

Ai þ Ai → δσ → δϕ ∝ R. Dynamics of this contribution
can be understood by first studying the influence of particle
production on the spectator fluctuations δσ through� ∂2

∂τ2þk2−
2

τ2

�
ðaδσ̂Þ≃a3

αc
f

Z
d3p

ð2πÞ3=2 Êiðτ;k⃗−p⃗ÞB̂iðτ;p⃗Þ:

ð2:4Þ
Focusing on the inhomogeneous solution of the δσ fluc-
tuations in (2.4), one can then compute the conversion of
the resulting δσ to δϕ via

� ∂2

∂τ2 þ k2 −
2

τ2

�
ðaδϕ̂Þ ≃ 3a2

_ϕ_σ

M2
pl

ðaδσ̂Þ ð2:5Þ

to find the part of the curvature perturbation that is sourced
by the amplified gauge fields.
It has recently been shown that if σ rolls for a large

amount of time (ΔNσ ≫ 1) during inflation, the sourced
contributions to theR can be sizeable due to the sensitivity
of gauge field amplitudes and δϕ − δσ mixing on the
spectator axion’s velocity ξ ∝ j _σj [44]. In particular, this
would lead to an exceedingly large CMB non-Gaussianity,
and once the CMB limits on it are respected, the sourced
GW signal is bounded by r < 10−3 − 10−4 at CMB scales
[44,45]. To minimize the influence of the enhanced gauge
fields on the curvature perturbation and to render

7In the multifield model we are considering, late-time R also
obtains direct contributions from fluctuations linear in the
spectator axion δσ and the gauge fields at nonlinear order. For
a spectator axion that rolls down to its minimum long before the
end of inflation—as we assume in this work—the contribution of
δσ can be neglected [40,43]. The contribution from gauge fields,
on the other hand, is roughly proportional to the absolute value of
the Poynting vector ajS⃗j ¼ ajE⃗ × B⃗j, which is also negligible at
late times as the particle production saturates at superhorizon
scales, and the resulting electromagnetic fields decay as E⃗; B⃗ ∼
a−2 [41]. For the purpose of evaluating mixed correlators, we
therefore adopt the standard relation R≡ −Hδϕ= _ϕ in this work.
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observable GWs sourced by gauge fields viable, more
realistic models that lead to localized gauge field produc-
tion have been proposed where the spectator axion tran-
siently rolls on potentials of the following form [40,41]:

VσðσÞ¼
(
Λ4½1−cosðσfÞ�; Model 1 ðM1Þ;
μ3σþΛ4½1−cosðσfÞ�&Λ4≲μ3f; Model 2 ðM2Þ:

ð2:6Þ
The first model (M1) features a spectator axion with

standard shift symmetric potential (see, e.g., [57]) where
the size of the axion modulations is set by the mass
parameter Λ. In this model, the motion of the axion is
contained within the maximum (σ ¼ πf) and the minimum
(σ ¼ 0) of the potential, whereas in the second model (M2),
the axion field range is extended via a monodromy term
[58,59] proportional to a second mass parameter μ, and σ is
assumed to probe steplike feature(s) in the “bumpy”
regime Λ4 ≲ μ3f.8

For the typical field ranges dictated by the scalar
potentials (2.6) and assuming a slow-roll σ̈ ≪ 3H _σ con-
dition, the spectator field velocity _σ and the effective
coupling ξ ¼ −αc=ð _σ=2HfÞ in (2.2) obtain a peaked
time-dependent profile given by [40,41]

ξðτÞ ¼
( 2ξ�

ðτ�=τÞδþðτ=τ�Þδ ; Model 1ðM1Þ;
ξ�

1þln½ðτ=τ�Þδ�2 ; Model 2ðM2Þ;
ð2:7Þ

where ξ� ¼ fαcδ=2 ðM1Þ; αcδ ðM2Þg is the maximum
value of ξ when the axion’s velocity becomes maximal
at the conformal time τ�. In (2.7), we defined the dimen-
sionless ratios δ ¼ Λ4=6H2f2 (M1) and δ ≃ μ3=3H2f (M2)
in terms of the model parameters. Physically, δ is a measure
for the acceleration [_ξ=ðξHÞ ¼ σ̈=ð _σHÞ ∼ δ] of the specta-
tor axion as it rolls down on its potential. Note that since the
slow-roll approximation σ̈ ≪ 3H _σ is assumed to derive
(2.7), we require δ < 1. In this work, without loss of
generality, we will adopt δ ¼ 0.39 to derive phenomeno-
logical implications of spectator axion-gauge field
dynamics.

As we review in Appendix A, the time-dependent profile
(2.7) for ξ translates into a scale-dependent growth of the
gauge fields in (2.2) where only modes that have a size
comparable to the horizon, i.e., k ≃Oð1Þa�H� at τ ¼ τ�, are
efficiently amplified. Below, we review the impact of such a
scale-dependent vector field production on the autocorre-
lators of tensor and scalar fluctuations during inflation.

D. Chiral GWs from gauge field sources

In the presence of gauge field amplification, the pertur-
bations in the observable sector X̂ ¼ fR̂; ĥ�g pick up a
sourced contribution that can be described by the particular
solutions of (2.3) and (2.5) [see also (2.4)] in addition to the
vacuum counterpart generated by quasi-dS background:
X̂ ¼ X̂ ðvÞ þ X̂ ðsÞ. These contributions are statistically
uncorrelated, and therefore, the total power spectra can be
simply described by the sum of the vacuum and sourced part

PRðkÞ¼PðvÞ
R ðkÞþPðsÞ

R ðkÞ; P�ðkÞ¼PðvÞ
� ðkÞþPðsÞ

� ðkÞ;
ð2:8Þ

where the vacuum contributions are given by the standard
expressions

PðvÞ
R ¼ H2

8π2ϵϕM2
pl

; PðvÞ
� ¼ H2

π2M2
pl

; ð2:9Þ

where ϵϕ ≡ _ϕ2=ð2H2M2
plÞ is the slow-roll parameter con-

trolled by the inflaton sector. On the other hand, the sourced
power spectra in (2.8) inherits the scale dependence of the
gauge field sources, which can be shown to acquire a
Gaussian form [40,41]

PðsÞ
j ðkÞ ¼ ½ϵϕPðvÞ

R ðkÞ�2f2;j
�
ξ�;

k
k�

; δ

�
;

f2;j

�
ξ�;

k
k�

; δ

�
≃ fc2;j½ξ�; δ� exp

�
−

1

2σ22;j½ξ�; δ�

× ln2
�

k
k�xc2;j½ξ�; δ�

��
; ð2:10Þ

where j ¼ fR;�g. The functions fc2;j; σ2;j; x
c
2;j control,

respectively, the amplitude, width, and position of the peak
of the sourced signal, which depend on the background
model of the spectator axion through the parameters ξ� and δ
that we discussed above and therefore to the underlying
scalar potential (2.6) in the spectator axion sector. For a
representative choice of the background parameter δ, we
present accurate formulas for fc2;j; σ2;j; x

c
2;j in terms of the

effective coupling ξ� in Table IV.
At this point, it is intriguing to ask if the gauge field

sources can be sufficiently large to alter the tensor-to-scalar
ratio defined by [40,41]

8In the bumpy regime, depending on the initial conditions
(σ ≫ f) the spectator axion can probe multiple steplike features
during inflation. In this work, we assume that σ traverses only one
such region on its potential, during which the observable scales
associated with CMB exit the horizon.

9We note that this choice is not a unique requirement for
successful phenomenology, and other values for δ can be adopted
(see, e.g., [40]) as far as we restrict ourselves to 0 ≤ δ < 1.
However, different choices of δ within this range influence the
properties of the scale-dependent signals as we explain in Sec. III.
For example, the δ → 0 limit corresponds to the standard scale
invariant production of gauge fields (with a constant ξ) for an axion
rolling at a constant rate [22,27]. We refer the reader to [40,41] for
many details regarding the parameter δ including its relation with
axion dynamics, particle production in the gauge field sector, and
the resulting phenomenology of scalar and tensor correlators.
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rðkÞ ¼
X
λ

PðvÞ
λ ðkÞ þ PðsÞ

λ ðkÞ
PðvÞ

R ðkÞ þ PðsÞ
R ðkÞ

: ð2:11Þ

To address this question, in Fig. 1 we show constant curves
of tensor-to-scalar ratio r (2.11) evaluated at the peak of the
sourced GW signal rðkp ¼ k�xc2;−Þ ¼ rp in the ϵϕ − ξ�
plane for both models (see Appendix B). In this plot, the

region spanning between the Rt ≡ PðsÞ
− =PðvÞ

h > 1 and Rs ≡
PðsÞ

R =PðvÞ
R ≪ 1 locates the parameter space where sourced

GWs dominate over the vacuum fluctuations while keeping
the amplitude of scalar fluctuations sourced by the gauge
fields under control.10 In this region, tensor-to-scalar ratio r
acquires an exponential sensitivity to gauge field produc-
tion [see (B3)], breaking the standard relation between r
and H of single-field inflation. Excitingly, the GW signal
produced by the gauge field sources is maximally chiral
χ ≡ ðP− − PþÞ=

P
λ Pλ ∼Oð1Þ (see, e.g., [60]), which is

an essential distinguishing feature of the inflationary
models we consider in this work.11

E. Scalar and tensor bispectrum

The scale-dependent amplification of gauge fields also
influences three-point correlators of scalar and tensor
perturbations. An immediate worry at this point is to keep
the scalar bispectrum hR̂k1R̂k2R̂k3i below the CMB obser-
vational limits while preserving a large chiral GW signal
from gauge field sources. This issue is addressed in [40,41]
for both spectator axion-gauge field models where it was
shown that stringent constraints on scalar non-Gaussianity
at CMB scales can be avoided for much of the parameter
space of these models, thanks to the localized nature of
particle production in the gauge field sources. Remarkably,
a sizeable parity violating tensor non-Gaussianity
hĥk1 ĥk2 ĥk3i12 can also be generated by the gauge field
sources, providing an opportunity to test these models
through the CMB B-mode bispectrum [51].
For the distinguishability of these signals, shape-

dependent three-point autocorrelators will provide further
information. The shape analysis is carried out for the first
model discussed [see M1 in (2.6)] [40], where it was shown
that both bispectra are maximal at the equilateral configu-
rations k1 ≈ k2 ≈ k3 ≃Oð1 − 10Þk�. In Appendix C, we
likewise perform the shape analysis of the bispectra for the
noncompact axion model (M2) in (2.6) to confirm that both
scalar and tensor bispectra are also maximal at the equi-
lateral configuration in this model. The appearance of the
equilateral shape in the autocorrelators is closely tied to the
gauge field sources which have maximal support only for
modes satisfying q ≃Oð1Þa�H� (see Table III).
Because of scale-dependent amplifications of tensor (T)

and scalar (S) fluctuations, their three-point cross-
correlations may also contain invaluable information on
the production mechanism of primordial GWs and more
importantly on the inflationary field content. Considering
the chirality of the tensor fluctuations present in these

FIG. 1. Constant r curves in the ϵϕ − ξ� plane for Model 1 (left) and Model 2 (right). Orange dotted (respectively, gray dotted) lines
show the ratio between the sourced and the vacuum scalar (respectively, tensor) power spectrum Rs (Rt) (see Appendix B for details).

10In the Rs ≪ 1 regime, additional limitations on the model
parameter space arise from the CMB constraints on the spectral
tilt and its running. For both models (M1, M2) we consider, a
detailed discussion on these limitations appeared in [41,56]
where it was found that axion decay constants that roughly obey
f=Mpl < 0.1 (at fixed δ) are preferred in order to grant observable
GWs of nonvacuum origin. Note that this bound does not lead to
an additional constraint on the amplitude of the signals sourced
by the gauge fields as the latter mainly controlled by ξ� or
equivalently by the dimensionless coupling constant αc at fixed δ,
considering the relation ξ� ∝ αcδ.

11In contrast to standard predictions of inflation, chiral
GWs can produce a nonvanishing cross-correlation between
CMB temperature (T) anisotropies and polarization modes (E,B)
[46–48]. See, e.g., [40] for an analysis of the observability of the
CMB TB correlator within the first model we present here. On
the other hand, the observability of a chiral GW signal in the
spectator axion-SU(2) gauge field model is studied in [61].

12Observably, large tensor non-Gaussianity can also arise from
spectator axion-SUð2Þ gauge field dynamics during inflation
[62,63].

PARITY VIOLATING NON-GAUSSIANITY FROM AXION-GAUGE … PHYS. REV. D 104, 123523 (2021)

123523-5



models, the size and shape of the mixed non-Gaussianity is
complementary to the autocorrelators of R̂ and ĥ in
extracting this unique information and can help us dis-
tinguish this class of models from other scenarios. In what
follows, we will study the mixed non-Gaussianity of
scalar-tensor-tensor hR̂ĥĥi (STT) and tensor-scalar-scalar
hĥR̂R̂i (TSS) types during inflation focusing on the
spectator axion-gauge field dynamics described by the
potentials (2.6).

III. MIXED NON-GAUSSIANITY FROM AXION-
GAUGE FIELD DYNAMICS

In the theory described by the Lagrangian (2.1), the last
two terms contain three-legged vertices ∝ δσFF̃ and ∝
hijf _Ai

_Aj þ…g that capture the inverse decay of amplified
gauge field fluctuations to the spectator scalar and tensor
fluctuations, respectively [42,45]. The presence of these
vertices ensure correlations between the observable scalar
sector δϕ ∝ R and the metric hij perturbations thanks to the
mass mixing between δϕ − δσ that we discussed earlier.
Therefore, we expect the effects of the particle production
processes in the gauge field sector to propagate to the three-
point functions of mixed type such as hR̂ ĥ ĥi13 and
hĥ R̂ R̂i. The diagrams that contribute to these non-
Gaussianities can be pictorially represented as in Fig. 2.

In Appendix D, we calculate both types of mixed non-
Gaussianity for the two different rolling axion spectator
models [see Eq. (2.6)] that we introduced in the previous
section. In the following sections, we present our results
and discuss their size and shape dependence.

A. Results for TSS- and STT-type correlators

We are interested in the three-point cross-correlation of
comoving curvature perturbation and gravity wave polari-
zation modes, in particular, in the following mixed-type
non-Gaussian correlators that are defined by

hR̂ð0; k⃗1Þĥλð0; k⃗2Þĥλð0; k⃗3Þi≡ BRλλðk⃗1; k⃗2; k⃗3Þδðk⃗1 þ k⃗2 þ k⃗3Þ;
hĥλð0; k⃗1ÞR̂ð0; k⃗2ÞR̂ð0; k⃗3Þi≡ BλRRðk⃗1; k⃗2; k⃗3Þδðk⃗1 þ k⃗2 þ k⃗3Þ: ð3:1Þ

As we mentioned in the case of two-point correlators
above, mixed-type non-Gaussianities are given by a
simple sum of vacuum and sourced contributions:

Bj ¼ BðvÞ
j þ BðsÞ

j . In this work, we will disregard the
vacuum component of mixed correlators as they are
subdominant in the presence of particle production proc-
esses involving vector fields.
As in the case of two-point functions, mixed three-point

correlators of R̂ðsÞ, ĥðsÞ− inherit the scale-dependent

amplification of vector fields triggered by the transient
motion of the spectator axion σðtÞ. In particular, we found
(see Appendix D) that both bispectra can be factorized as

BðsÞ
j ðk⃗1; k⃗2; k⃗3Þ ¼

½ϵϕPðvÞ
R �3

ðk1k2k3Þ2
fð3Þj ðξ�; δ; x�; x2; x3Þ; ð3:2Þ

where fð3Þj with j ¼ fRλλ; λRRg are dimensionless func-
tions that parametrize the scale and shape dependence of
the bispectrum noting the definitions x� ¼ k=k� and
k1 ¼ k; x2 ¼ k2=k1; x3 ¼ k3=k1. In the following, we will
first focus on the scale dependence of the mixed bispectra
to set the stage for a discussion on its amplitude and shape
dependence. In our analysis, we found some qualitative
differences between TSS- and STT-type mixed three-point
correlators, and hence, we will discuss each case sepa-
rately below.

1. TSS correlators

To study the scale dependence of fð3ÞλRR, we focus on the
equilateral configuration to work out the x� ¼ k=k�

FIG. 2. Diagrammatic representation of the interactions that
contribute to the mixed non-Gaussianity of STT-type hRhhi (a)
and TSS-type hhRRi (b) correlators in the rolling spectator
axion-gauge field models.

13There is an additional four-legged vertex hhAA that appears
at the same order as the three-legged vertex hAA (see Fig. 2) in
the gravitational coupling M−2

pl [64]. Combined with a three-
legged scalar vertex δσAA and δϕ − δσ mixing, hhAA leads to an
additional diagram that contributes to the STT correlator. How-
ever, such a diagram contains fewer internal gauge field modes
compared to the left diagram in Fig. 2 and thus carry less particle
production effects. In particular, counting the number of gauge
field modes that contribute to the loop integral [see, e.g., (D8)],
we anticipate that the diagram that includes hhAA will be
suppressed by a factor of e−2cπξ� [c ≃Oð1Þ, see Table III]
compared to the diagram we are computing in this work.
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dependence of (D9) at fixed values of the background
parameters fξ�; δg. In the following, we will discuss −RR-
and fþRRg-type correlators separately.
−RR bispectrum.—Computing (D9) numerically for a

grid of x� ¼ k=k� values at the equilateral configuration
x2 ¼ x3 ¼ 1, we found that the −RR bispectrum can be
accurately captured by a sum of two distinctive peaks

fð3Þ−RR ¼ fð3;SÞ−RR þ fð3;LÞ−RR that have the Gaussian form

fð3;αÞj

�
ξ�;

k
k�

; δ

�
≃ fc;α3;j ½ξ�; δ� exp

�
−

1

2σα3;j½ξ�; δ�2

× ln2
�

k
k�x

c;α
3;j ½ξ�; δ�

��
; ð3:3Þ

where we use α ¼ fS; Lg to label each peak (i.e., a small
one and a large one) and j ¼ −RR. As in the case of two-
point correlators we mentioned earlier, the height fc3;j,

width σ3;j, and location xc3;j of f
ð3Þ
j ’s peak is controlled by

the background motion of the spectator axion, namely, by
the maximal velocity reaches ξ� ¼ −αc _σ�=2Hf and the
total number of e-folds _σ significantly differs from zero
during its rollover: ΔN ∼ δ−1 ∼H2=m2

axion where maxion is

the mass of σ in its global minimum. At a fixed value of ξ�,
increasing δ would generically reduce fc3;j, width σ3;j, and
location xc3;j because fewer gauge field modes can be
amplified to excite cosmological perturbations as _σ will
be large for a shorter amount of time in this case. For
δ ¼ 0.3, we determined the ξ� dependence of fc3;j, σ3;j, and
xc3;j by fitting the right-hand side of Eq. (3.3) to reproduce
the position, height, and width of the sourced peaks
parametrized by the integral (D9). In Table I, we present
the ξ� dependence of these fitting formulas that appear in
(3.3) that approximates the result from the direct numerical
integration of (D9). For both models we study in this work,
the accuracy of the expression (3.3) is shown in Fig. 3.
A distinctive feature of the −RR correlator is its doubly

peaked structure which occurs with different signs and
locations in k space. In particular, hĥ−R̂R̂i exhibits a small
positive peak fc;S3;j > 0 that occurs slightly earlier in k space

(xc;S3;j < xc;L3;j ) compared to the following large peak realized

in the opposite direction (fc;S3;j < 0). It is worth mentioning
that such a feature is absent in the autocorrelators of
sourced curvature R and h metric perturbations [40,41].
It would be interesting to investigate quantitatively whether

FIG. 3. The scale dependence of total fð3Þ−RR for Model 1 (left) and Model 2 (right). The red points are obtained by direct numerical
evaluation of (D9) for a grid of x� ¼ k=k� values. Using Table I, we represent the accuracy of the Gaussian expression (3.3) (dashed

lines) in parametrizing the large and small peaks that constitute the total signal. Note that the first peak occurs while fð3Þ−RR > 0, while for

the second peak fð3Þ−RR < 0.

TABLE I. The height fc3;j, location xc3;j, and width σ3;j of f
ð3;αÞ
hRR (3.3) for δ ¼ 0.3. For the large peak associated (α ¼ L) with the

j ¼ −RR correlator and j ¼ þRR, the fitting formulas are valid and 3.5 ≤ ξ� ≤ 6.5, while for the small peak (α ¼ S) of the j ¼ −RR
correlator, they are valid for 4 ≤ ξ� ≤ 5. The amplitude of the j ¼ −RR correlator is positive fc3;j > 0 for the small peak and fc3;j < 0 for
the large peak. The j ¼ þRR bispectrum has a single peak with a negative amplitude fc3;j < 0.

fjgα lnðjfc3;jjÞ xc3;j σ3;j

f−RRgS;M1 −20.75þ 17.87ξ� − 0.109ξ2� −2.59þ 1.336ξ� − 0.0366ξ2� 0.48 − 0.166ξ� þ 0.0234ξ2�
f−RRgL;M1 −8.20þ 14.60ξ� þ 0.121ξ2� 2.94þ 0.980ξ� þ 0.0294ξ2� 0.85 − 0.133ξ� þ 0.0076ξ2�
fþRRgM1 −10.10þ 14.69ξ� þ 0.119ξ2� 2.66þ 0.516ξ� þ 0.0195ξ2� 0.83 − 0.108ξ� þ 0.0065ξ2�
f−RRgS;M2 −29.67þ 17.53ξ� − 0.121ξ2� −0.78þ 1.345ξ� − 0.0295ξ2� −0.34þ 0.224ξ� − 0.0222ξ2�
f−RRgL;M2 −20.34þ 14.88ξ� þ 0.0708ξ2� 7.10þ 0.345ξ� þ 0.0832ξ2� 0.63 − 0.095ξ� þ 0.0048ξ2�
fþRRgM2 −22.84þ 15.17ξ� þ 0.0503ξ2� 6.03 − 0.128ξ� þ 0.0748ξ2� 0.69 − 0.100ξ� þ 0.0069ξ2�
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the presence of such a small peak increases the observ-
ability of the TSS bispectrum. We present an analysis of the
double-peak structure of the −RR correlator (D9) by
comparing it with the R − − (see below) correlator in
Appendix D where we show that the reason for this
behavior stems from the product of polarization vectors
[see, e.g., Eq. (D10)] which serve the purpose of angular
momentum conservation at each vertex in the diagrams of
Fig. 2. In particular, within the range of loop momenta
where the gauge field sources have appreciable contribu-
tion to the −RR diagram, we found that the product of
polarization vectors in (D10) have a sufficiently large
negative and positive peak depending on the orientation
of the loop momentum (i.e., nonplanar vs planar) with
respect to the plane (x-y) where external momenta lives (see
Fig. 10). Integrating over such configurations of the loop
momentum [see Eq. (D9)] therefore yields a double-peaked
structure that occurs in opposite directions as we explain in
detail in Appendix D 3. In what follows, in our discussion
on the amplitude and shape of the TSS-type bispectrum in
Sec. III B, we will focus our attention on the large peak that
appears in Fig. 3 which constitutes the dominant scale-
dependent signal within the parameter space where rs ≫
rvac (see Fig. 1).
Another conclusion that can be drawn from Table I and

Fig. 3 is that Model 2 generically generates signals that
have a smaller width compared to Model 1 for the same
parameter choice δ ¼ 0.3 (σðM1Þ

3;j > σðM2Þ
3;j ), which in turn

implies that the former requires a larger maximal value for
the effective coupling ξ� between σ and Aμ to generate a
signal comparable in amplitude with Model 1.
þRR bispectrum.—We found that the j ¼ þRR cor-

relator consists of a single peak that has the same Gaussian
form as in (3.3). We provide the fitting formulas for this
case in the third and sixth rows of Table I. We see that due
to the parity violation in the tensor sector, the amplitude of

fð3ÞþRR is about an order of magnitude smaller than the j ¼
−RR bispectrum. Note that this parity violation is not
dramatic because hĥλR̂ R̂i-type non-Gaussianity contains
only a single external state of the tensor perturbation with a
definite polarization λ ¼ �. In general, we expect the parity
violation in mixed three-point amplitudes to increase for an
increasing number of external hλ in the bispectrum. In fact,
as we will show, this is the case for the STT-type
bispectrum hR̂ĥλĥλi below (see Sec. III A 2).

2. STT correlator

Repeating the analysis we performed for the TSS-type

correlator, we found that the scale dependence of fð3ÞRλλ in
(D8) can instead be described by a single Gaussian peak
(see Appendix D 3) that takes the same form as in (3.3). For
3.5 ≤ ξ� ≤ 6.5, its height, width, and location can be well
fitted by the second order formulas we provide in Table II,
and the accuracy of these formulas compared to the exact
numerical computation of (D8) is shown in Fig. 4. From
Table II, we see that parity violation presents itself stronger
for the STT compared to the TSS bispectrum, as expected
since it has a more external tensor mode that carries a
definite polarization. On the other hand, Rhλhλ carries
similar features to the TSS correlator; e.g., the width of the
signal in Model 1 is larger than the second, which in turn
implies that Model 2 requires a larger effective coupling ξ�
to generate the same amount of signal. This situation
appears to hold generically for any correlator containing
observable fluctuations X ¼ fR; hλg and stems from the
fact that in the second model (M2), the spectator axion
probes a sharper region of its potential (i.e., clifflike
regions) compared to Model 1, leading to the excitation
of a smaller number of gauge field modes when the particle
production is maximal, i.e., around τ ∼ τ�.

B. Amplitude and shape dependence of mixed
non-Gaussianities

Having studied the scale-dependent amplification of
non-Gaussian signals of mixed type, in this section we
investigate their amplitude and shape.

1. Amplitude of the bispectra

To quantify the size of the mixed non-Gaussianity, we
will make use of the standard definition of the nonlinearity
parameter evaluated at the equilateral configuration
[28,65],

fjNLðkÞ ¼
10

9

k6

ð2πÞ5=2
BðsÞ
j ðk⃗; k⃗; k⃗Þ
P2

RðkÞ
; ð3:4Þ

where we restrict our analysis to the dominant correlators
j ¼ fR − −;−RRg (see Tables I and II). As we showed in
the previous section, the transient particle production in the
gauge field sector leads to a scale-dependent bump in the

TABLE II. Fitting formulas for the height fc3;j, location xc3;j, and width σ3;j that parametrize the scale-dependent enhancement of the
j ¼ fRλλg-type mixed bispectrum in (3.2). Formulas are obtained for δ ¼ 0.3 and 3.5 ≤ ξ� ≤ 6.5.

fjg lnðjfc3;jjÞ xc3;j σ3;j

fR − −gM1 −7.21þ 14.77ξ� þ 0.117ξ2� 3.15þ 0.665ξ� þ 0.0213ξ2� 0.82 − 0.109ξ� þ 0.0066ξ2�
fRþþgM1 −15.6þ 14.74ξ� þ 0.121ξ2� 1.24þ 0.232ξ� þ 0.0147ξ2� 0.80 − 0.123ξ� þ 0.0085ξ2�
fR − −gM2 −18.9þ 15.15ξ� þ 0.0526ξ2� 6.60þ 0.050ξ� þ 0.0731ξ2� 0.65 − 0.089ξ� þ 0.0058ξ2�
fRþþgM2 −27.7þ 15.25ξ� þ 0.0484ξ2� 1.92þ 0.290ξ� þ 0.0083ξ2� 0.57 − 0.064ξ� þ 0.0034ξ2�
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three-point correlators of mixed type. To estimate the
maximal size of the nonlinearity parameters fjNL, we
therefore use (3.2) to evaluate (3.4) at the peak of the
sourced GW signal, k ¼ k�xc2;− (see Table IV).
To visualize the relevant parameter space where mixed

non-Gaussianity is significant, in Fig. 5, we plot fjNL ¼ 10
curves in the model parameter space (ϵϕ − ξ�). We see that
the parameter space where the GWs sourced by the gauge
field sources dominate (on the right-hand side of the Rt ¼ 1

line in Fig. 5) overlaps the sizeable values of fjNL. In this
regime, fjNL can be parametrized in terms of the peak value
of the tensor-to-scalar ratio rp (B3) as

fR−−
NL ≃

8>><
>>:

24
�

rp
0.01

	
3=2

e0.025ξ� ðModel 1Þ;

11
�

rp
0.01

	
3=2

e0.082ξ� ðModel 2Þ
ð3:5Þ

and

f−RR
NL ≃

8>><
>>:

8
�

rp
0.01

	
3=2

e−0.099ξ� ðModel 1Þ;

1.6
�

rp
0.01

	
3=2

e−0.009ξ� ðModel 2Þ;
ð3:6Þ

where the ξ� dependence is weak and hence can be ignored
for the parameter space of interest 3.5 ≤ ξ� ≤ 6.5. The
origin of fjNL ∝ r3=2p scaling for the STT and TSS corre-
lators can be understood as follows. In the effective particle
production regime we are interested in (Rt > 1), the tensor
power spectrum arises through a loop diagram that contains
two copies of the three-legged vertex in Fig. 2, i.e.,
ðhAAÞ2 ∝ A6, and thus carries a weight factor of ðecπξ� Þ4
(see Table III) that characterizes the amplification of gauge
modes by the transiently rolling spectator axion. Therefore,
evaluated at the peak of scale-dependent signals, the one
loop diagram involving two external gravitons gives Ph ∝
rp ∝ e4cπξ� for Rs < 1. On the other hand, we notice from
Fig. 2 that the diagrams that contribute to the TSS and STT
correlators originate from the fusion of three-point tensor
and scalar vertices of the form ðhAAÞ2 × ð½δϕ ← δσ�AAÞ
and ðhAAÞ × ð½δϕ ← δσ�AAÞ2, and thus, we roughly have

FIG. 4. The scale dependence of fð3ÞR−− for Model 1 (left) and Model 2 (right) described by the potentials (2.6) in the spectator axion-
gauge field model (2.1). The red dots are obtained by numerical evaluation of (D8) at x2 ¼ x3 for a grid of x� ¼ k=k� values, and dashed
lines show the accuracy of the Gaussian expression (3.3) where we utilized Table II.

FIG. 5. Constant fjNL curves superimposed with constant r curves in the ϵϕ − ξ� plane for Model 1 (left) and Model 2 (right). The color
coding and the parameter choices are the same as in Fig. 1.
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fjNL ∝ Bj ∝ A6 ∝ e6cπξ� for Rs < 1. Putting together the

arguments above thus gives the scaling fjNL ∝ r3=2p .
At this point, it is useful to compare these results with the

TSS- and STT-type non-Gaussianity obtained in single-
field inflation where fR−−

NL ∼ r2 and f−RR
NL ∼ r is expected

[66]. In this respect, the results in (3.5) and (3.6) can be
considered as a new set of consistency conditions that can
be utilized to distinguish particle production scenarios
involving Abelian gauge fields from the conventional ones.
In particular, these results indicate that the gauge field
production induced by the rolling axions can clearly alter
the parametric dependence of nonlinearity parameters on r,
and STT and TSS mixed non-Gaussianity shows a signifi-
cant enhancement with respect to the standard results from
single-field inflation. Furthermore, the relative locations of
the f−RR

NL and fR−−
NL curves in Fig. 5 indicated that the non-

Gaussianity associated with the latter is larger for a given ξ�
that parametrizes the strength of gauge field production. On
the other hand, a comparison between Tables I and II
reveals that the level of parity violation is more emphasized
for the STT bispectrum compared to TSS. As we men-
tioned above, this result is expected since the STT-type
correlator contains a more external tensor mode with a
definite parity λ ¼ �.

2. Shape of the mixed bispectra

We now turn our attention to the shape of the mixed non-
Gaussianity. For this purpose, it is customary to extract the
overall k−6 scaling of the bispectrum in (3.2) by defining
the shape function Sj as [67,68]

Sjðk1; k2; k3Þ ¼ N ðk1k2k3Þ2BðsÞ
j ðk⃗1; k⃗2; k⃗3Þ

∝ fð3Þj ðξ�; x�; δ; x2; x3Þ; ð3:7Þ

where N is an arbitrary normalization factor. We pick a
normalization factor N to ensure Sj ¼ 1 at the triangle

configuration fð3Þj becomes maximal (obtained numeri-
cally). Then, focusing on isosceles triangles k2 ¼ k3
(x2 ¼ x3), we evaluate the shape function on a grid of
values in the k1=k� − k2=k� plane for j ¼ fR − −;−RRg
and plot the resulting constant contour lines corresponding
to Sj ¼ f0.9; 0.7; 0.5; 0.3g values of the shape function in
Fig. 6. We note that, due to the triangle inequality
k2 þ k3 ≥ k1, only triangle configurations that satisfy k1 ≤
2k2 (x2 ≥ 1=2) are allowed, as shown by the limiting blue
dashed lines shown in Fig. 6.
We observe from the shape of the contour lines (such as

their spread in the k1 − k2 plane and the approximate
locations of the maximum) that both of the rolling axion
models lead to a qualitatively similar result for each type of
mixed bispectrum. A slightly different behavior appears for

the TSS correlator in the rolling axion monodromy model
(M2) where the spread of the contour lines take up a smaller
area in the k1 − k2 plane. The reason for this is the fact that
for the same parameter choices, the second model contains
a sharper feature in its dynamics compared to M1. In
particular, the physical quantity that controls the gauge
field production, i.e., the velocity of _σ; has a more spiky
behavior in the second model, leading to the excitation of a
smaller range of gauge field modes that can in turn source
tensor and scalar fluctuations. This effect becomes more
emphasized as the number of external R in the three-point
function increases because the sourced curvature perturba-
tion is more susceptible to the background evolution of the
rolling axion, as can be verified explicitly by comparing
Eqs. (A6)–(A9). The similarity of the shapes of the contour
lines in the STT correlators (top row) in Fig. 6 also supports
these arguments.
As indicated by the location of the black dots in Fig. 6, a

common feature of the mixed correlators is that they are
maximized for triangle configurations close to the equi-
lateral shape. In particular, away from the maximum, the
shape function reduces considerably in magnitude toward
the folded k1=k� → 2k2=k� and squeezed configurations
k1=k� → 0, implying that the shape of the STT and TSS
bispectra are distinct from such configurations. Besides the
general features we covered so far, there are some quanti-
tative differences in the properties of the shape functions
which we discuss in detail below.

(i) STT: From the top panel in Fig. 6, notice that mixed
correlators are maximal at scales that slightly deviate
from the exact equilateral configuration; i.e.,
SR−− ¼ 1 (black dots) at k2 > k1 for both models.

This slight deviation from the exact equilateral
configuration is closely tied to the offset that appears
in the locations of the sourced curvature perturbation
R and h−. In particular, a close inspection of the
peak location of the two-point correlators (see
Table IV) reveals xc2;R < xc2;− and naturally leads
to the expectation that the peak location of the
external momenta (k1) associated withRwill satisfy
k1 < k2 in the STT correlator.

(ii) TSS: From the bottom panels of Fig. 6, we notice that
the TSS bispectrum also takes its maximal value for
triangles satisfying k2 > k1. Considering the discus-
sion we presented above for the STT correlator, this
result contradicts with the expectation that the maxi-
mum of the TSS bispectra should appear below the
equilateral line k2 < k1 in Fig. 6. We speculate that
this peculiarity stems from the products of helicity
vectors ϵð−RRÞ [defined in (D10)] that appear inside

the integral (D9) of fð3Þ−RR that characterize the shape

function S−RR ∝ fð3Þ−RR, which should have more
support for x2 > 1 (k2 > k1).
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To speed up its analysis with the actual data, in
Appendix E, we derive approximate expressions for
the mixed bispectra written as a sum of factorized
terms. In particular, we provide approximate expres-
sions for the bispectra such that each term in these
expressions [see, e.g., (E1) and (E2)] is written as a

product of source functions f2;j and f
ð3Þ
j that depend

on only one external momenta, ki. In Fig. 6, we
illustrate the accuracy of these approximate expres-
sions by the orange dashed lines and orange dots
corresponding to Sj ¼ 0.9, 0.7, 0.5 contour lines and
theSj ¼ 1 point, respectively. As shown in the figure,

we observe that the maxima derived from the
approximate formulas (orange dots) are nearly
coincident with the actual ones (black dots), and
the approximate expressions provide an accurate
description of the exact bispectra, particularly around
the maximum.

IV. CONCLUSIONS

In this work, we focused our attention on a class of
inflationary scenarios characterized by a system (2.1) of
spectator axion and U(1) gauge fields coupled by a Chern-
Simons-type interaction [40,41]. In these models, the

FIG. 6. Constant contour lines of the shape SR−− (top panel) and S−RR (bottom panel) in the k1=k� − k2=k� plane, respectively, for the
TSS and STT mixed bispectrum and for both rolling axion models we consider in this work. The black dots locate the triangle
configuration for which the bispectrum is maximum (Sj ¼ 1). Orange dashed lines indicate the Sj ¼ 0.9, 0.7, 0.5 contour lines derived
from the approximate expressions (E1) (top) and (E2) (bottom), while the orange dot locates the triangle configuration of their
corresponding maximum. The red dotted line and the blue dashed line refer to equilateral triangles k1 ¼ k2 and folded triangles
k1 ¼ 2k2, respectively.
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transient roll of the spectator axion triggers a localized
enhancement in the gauge field fluctuations, which in turn
induces several phenomenologically interesting signatures
in the CMB observables, including a low energy scale
realization of inflation endowed with a scale-dependent
chiral GW signal accessible by forthcoming observations
[40] together with observable tensor non-Gaussianity [51].
While bounds on the scalar two-point and three-point
autocorrelators from the CMB observables can be avoided
for the parameter space that leads to interesting phenom-
enology in the tensor sector, the spectator axion-U(1) gauge
field dynamics also predict enhanced scalar fluctuations by
the gauge fields. Therefore in this setup, mixed non-
Gaussianities including scalar and tensor fluctuations
appear to be as important as the information one can gain
from their autocorrelators. In particular, the nontrivial
parity violating structure of these correlators may provide
additional predictive power, help us constrain the model
parameters, and reveal distinguishing features that can
provide effective model comparison, e.g., considering
the absence/presence of the analog signals that are present
within the standard single-field inflation or the close SU(2)
cousin [69,70] of the model we consider in this work.
To shed some light on these issues, we derived pre-

dictions for the scalar-tensor-tensor and tensor-scalar-scalar
bispectrum focusing on spectator axion-U(1) gauge field
dynamics during inflation (see Sec. III). We find that both
bispectra exhibit a scale-dependent amplification, and at the
their respective peaks, they are significantly enhanced
compared to their counterparts in the minimal single-field
inflationary scenario [see, e.g., Eqs. (3.5) and (3.6)]. In
particular, in the efficient particle production regime, we
found that mixed non-Gaussian correlators satisfy a new
consistency condition fjNL ≃Oð1 − 10Þðr=0.01Þ3=2 that
distinguishes these models from the conventional single-
field scenarios. More importantly, due to the parity violat-
ing nature of gauge field production, the resulting mixed
bispectra also exhibit a preferred chirality. In Sec. III B, we
studied the shape dependence of these amplified signals
and found that both bispectra are maximal close to the
equilateral shape, slightly deviating from the exact equi-
lateral configuration (see Fig. 6). Given that the sources
(gauge fields) of these correlators have maximal amplitudes
at around the horizon crossing (see Table IV), this result is
expected.
The detectability of the scale-dependent parity violating

hR̂ĥλĥλi and hĥλR̂ R̂i signals we studied in this work
require a detailed analysis of the CMB observables. A
possibility in this direction would be to consider cross-
correlations between the CMB temperature T and E,B
polarization modes. In particular, to search for a primordial
STT bispectrum, a suitable observable would be TBB and
EBB cross-correlations of the CMB (see, e.g., [55,71,72]),
whereas the observability of the TSS bispectrum can be
analyzed through BTT or BEE (see, e.g., [73]). In this

respect, the approximate factorized expressions we derived
for both bispectra (see Appendix E) can be utilized to test
mixed non-Gaussian signals of the rolling spectator axion
models. On the other hand, although we focused much of
our attention on the impact of scalar and tensor cross-
correlations at CMB scales in this work, rolling spectator
axion models can also produce interesting signals at much
smaller cosmological scales (see, e.g., [34,41]). In this
context, it would be interesting to explore observables that
parity violating STT and TSS correlators may induce at
sub-CMB scales. We leave further investigations of these
issues for a future publication.
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APPENDIX A: GAUGE FIELD MODES AS
SOURCES OF SCALAR AND TENSOR

PERTURBATIONS

We now summarize some important aspects of the gauge
field production and their subsequent sourcing of cosmo-
logical perturbations. Considering the time-dependent pro-
file (2.7) of the effective coupling ξ�, Eq. (2.2) describes the
standard Schrödinger equation of the “wave function” A−
for which an analytic solution can be derived by employing
WKB approximation methods [40]. In particular, the late-
time growing solution to Eq. (2.2) can be parametrized in
terms of a scale-dependent normalization (real and positive)
factor as [40,41]

A−ðτ;kÞ≃
NAðξ�;−kτ�;δÞffiffiffiffiffi

2k
p

�
−kτ
2ξðτÞ

�
1=4

exp½−EðτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ξ�kτ

p
�;

τ=τ�<1; ðA1Þ

where the time-dependent argument of the exponential
factor depends on the model as

EðτÞ ¼
(

2
ffiffi
2

p
ð1þδÞðτ=τ�Þ−δ=2 ; Model 1ðM1Þ;

2
δj lnðτ=τ�Þj ; Model 2ðM2Þ:

ðA2Þ

The scale dependence (x� ¼ k=k�) of the normalization
factor NAðξ�; x�; δÞ in (A1) can be determined by
solving (2.2) numerically for different values of x� ¼
−kτ� and matching it to the WKB solution (A1) at late

OGAN ÖZSOY PHYS. REV. D 104, 123523 (2021)

123523-12



times −kτ ≪ 1. In this way, one can confirm that
NAðξ�; x�; δÞ can be accurately described by a log-normal
distribution,

NAðξ�;x�;δÞ≃Nc
A½ξ�;δ�exp

�
−

1

2σ2A½ξ�;δ�
ln2

�
x�

qcA½ξ�;δ�
��

;

ðA3Þ

where the functions Nc
A, qcA, and σA parametrize the

background dependence of gauge field production, and
hence depend on ξ� and δ. For an effective coupling to
gauge fields within the range 3 ≤ ξ� ≤ 6.5, these functions
can be described accurately by a second order polynomial
in ξ� provided in Table III. Since the growing solution to the

mode functions A− is real, its Fourier decomposition can be
simplified as

Âiðτ; x⃗Þ ≃
Z

d3k

ð2πÞ3=2 e
ik⃗:x⃗ϵ−i ðk⃗ÞA−ðτ; k⃗Þ½â−ðk⃗Þ þ â†−ð−k⃗Þ�;

ðA4Þ

where the helicity vectors obey kiϵ�i ¼ 0, ϵijkkjϵ�k ¼
∓ ikϵ�i , ϵ�i ϵ

�
i ¼ 0, ϵ�i ϵ

∓
i ¼ 1, and ðϵλi ðk⃗ÞÞ� ¼ ϵλi ð−k⃗Þ ¼

ϵ−λi ðk⃗Þ, and the annihilation/creation operators satisfy

½âλðk⃗Þ; â†λ0 ðk⃗0Þ� ¼ δλλ0δðk⃗ − k⃗0Þ. Using the definitions of
“electric” and “magnetic” from the main text [see below
Eq. (2.3)], we obtain their Fourier modes as

Êiðτ; k⃗Þ ¼ −
ffiffiffi
k
2

r
ϵ−i ðk⃗Þ
aðτÞ2

�
2ξðτÞ
−kτ

�
1=4

NAðξ�;−kτ�; δÞ exp ½−EðτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ξ�kτ

p
�Ô−ðk⃗Þ;

B̂iðτ; k⃗Þ ¼ −
ffiffiffi
k
2

r
ϵ−i ðk⃗Þ
aðτÞ2

�
−kτ
2ξðτÞ

�
1=4

NAðξ�;−kτ�; δÞ exp ½−EðτÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2ξ�kτ

p
�Ô−ðk⃗Þ; ðA5Þ

where we defined the following shorthand notation for the
superposition of gauge field annihilation and creation
operators: Ôλðq⃗Þ≡ ½âλðq⃗Þ þ â†λð−q⃗Þ�.
Electric and magnetic fields defined in (A5) act as

sources to cosmological scalar and tensor perturbations.
The main channel of contribution to curvature perturbation
in this model is schematically given by δAþ δA → δσ →
δϕ ∝ R [44,45] and can be expressed as [40,41]

R̂ðsÞðτ; k⃗Þ ≃ 3
ffiffiffi
2

p
Hτ

Mpl

Z
dτ0Gkðτ; τ0Þ

×

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵσðτ0Þ

p
τ02

Z
dτ00Gkðτ0; τ00ÞĴσðτ00; k⃗Þ; ðA6Þ

where Gk is the Green’s function for the operator
∂2
τ þ k2 − 2=τ2, and the source term Ĵσ is given by

Ĵσðτ00;k⃗Þ¼
αcaðτ00Þ3

f

Z
d3p

ð2πÞ3=2 Êiðτ00;k⃗−p⃗ÞB̂iðτ00;p⃗Þ: ðA7Þ

On the other hand, metric fluctuations are inevitably
sourced by the traceless transverse part of the anisotropic
energy-momentum tensor as

ĥðsÞλ ðτ; kÞ ¼ 2

aðτÞMpl

Z
τ

−∞
dτ0Gkðτ; τ0ÞĴλðτ0; k⃗Þ; ðA8Þ

where Jλ can be expressed as a bilinear convolution of
electric and magnetic fields

Ĵλðτ; k⃗Þ ¼ −
a3ðτÞ
Mpl

Πij;λðk⃗Þ
Z

d3p

ð2πÞ3=2 ½Êiðτ; k⃗ − p⃗ÞÊjðτ; p⃗Þ

þ B̂iðτ; k⃗ − p⃗ÞB̂jðτ; p⃗Þ�; ðA9Þ

with Πij;� ¼ ϵ∓i ðk⃗Þϵ∓j ðk⃗Þ the transverse traceless projector
with the properties listed below (2.3).

APPENDIX B: FITTING FORMULAS FOR f 2;j
AND THE TENSOR-TO-SCALAR RATIO

Here we provide some details regarding the two-point
power spectra in the rolling spectator axion-gauge field
model. Using the definition (2.11) of the tensor-to-scalar
ratio with Eqs. (2.9) and (2.10), the full expression for r can
be written as

TABLE III. ξ� dependence of the functions Nc
A, location qcA, and width σA that appear in the late-time amplitude NA [Eq. (A3)] of the

gauge field modes for δ ¼ 0.3 and 3 ≤ ξ� ≤ 6.5.

lnðNc
AÞ qcA σA

M1 0.290þ 2.83ξ� þ 0.00100ξ2� −0.097þ 0.633ξ� − 0.00110ξ2� 2.11 − 0.321ξ� þ 0.0208ξ2�
M2 0.325þ 2.72ξ� − 0.00069ξ2� 0.013þ 0.710ξ� − 0.00105ξ2� 1.69 − 0.254ξ� þ 0.0164ξ2�
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rðkÞ ≃ 16ϵϕ

�
1þ ϵϕ

16
PðvÞ

R ðkÞf2;−ðξ�; k
k�
; δÞ

1þ ϵ2ϕP
ðvÞ
R ðkÞf2;Rðξ�; k

k�
; δÞ

�
; ðB1Þ

where
P

λ P
ðvÞ
λ ≡ PðvÞ

h ¼ 16ϵϕP
ðvÞ
R is the total tensor vac-

uum power spectrum, and we have neglected the subdomi-
nant positive helicity mode of sourced fluctuations
f2;þ ≪ f2;−. In the parametrization provided in (B1), the
second terms in the numerator and denominator give the
ratio between the sourced and vacuum power spectrum for
tensor/scalar fluctuations, respectively,

Rt ≡ ϵϕ
16

PðvÞ
R ðkÞf2;−

�
ξ�;

k
k�

; δ

�
;

Rs ≡ ϵ2ϕP
ðvÞ
R ðkÞf2;R

�
ξ�;

k
k�

; δ

�
: ðB2Þ

To evaluate the expressions (B1) and (B2), in Table IV, we
provide fitting formulas for the height, width, and the
position of the peak of f2;j in (2.10) using the exact
expressions of these functions that appeared in the
Appendixes of [40,41]. We can then use the fitting formulas
in Table IV to evaluate the tensor-to-scalar ratio (B1) and
the ratios of the sourced to vacuum power spectra in (B2) at
the peak scale of the GW signal k ¼ k�xc2;−. The constant r
curves, together with the various Rt and Rs obtained in this
way, are shown in the ϵϕ − ξ� plane in Fig. 1. When the
sourced contribution dominates Rt ≫ 1, we found that
tensor-to-scalar ratio (B1) evaluated at its peak k ¼ kp ¼
k�xc2;− can be well approximated by the formula

rp ≃ ϵ2ϕ



e10.61ðξ�−2.81Þ ðModel 1Þ;
e10.40ðξ�−3.46Þ ðModel 2Þ;

ðB3Þ

where we linearized the exponent of (lnðfc2;−Þ) in Table IV
within the range 3.5 ≤ ξ� ≤ 6.5.

APPENDIX C: SHAPE ANALYSIS OF SSS AND
TTT CORRELATORS

In this Appendix, we study shape of the scalar and tensor
autobispectrum in the noncompact axion monodromy
model we described in the main text [see, e.g., (2.6)].
Similar to the mixed non-Gaussianity, the bispectrum can
be factorized as [41]

BðsÞ
j ðk⃗1; k⃗2; k⃗3Þ ¼

½ϵϕPðvÞ
R �3

ðk1k2k3Þ2
fð3Þj ðξ�; δ; x�; x2; x3Þ; ðC1Þ

where j ¼ fRRR;− − −g and k1 ¼ k; x2 ¼ k2=k;
x3 ¼ k3=k. To analyze the shape, we use the definition
of the shape function (3.7) and utilize the explicit formulas
derived in Appendixes B and C of [41] [see, e.g.,
Eqs. (B.19) and (C.15) in [41]]. We then focus on isosceles
triangles x2 ¼ x3 to numerically evaluate these exact
expressions on a grid of values in the k1=k� vs k2=k�
plane and plot in Fig. 7 the constant contour lines (black
solid lines) of Sj that correspond to 0.9,0.7,0.5,0.3 of its
maximal value (black dots) where Sjðk1; k2Þ ¼ 1. We see
that similar to Model 1 studied in [40], both bispectra are
maximal on an equilateral triangle of scales k1 ≃ k2 ¼
k3 ≃Oð5 − 10Þk� that is approximately equal to the scales
at which the power spectra have a peak (see Table IV).
Motivated by this and the invariance of autobispectra under
the exchange of any pair of external momenta, an approxi-

mate factorized form for the shape function S ∝ fð3Þj is
postulated in [40]

fð3Þj ðk1; k2; k3Þ ≃
�
fð3Þj ðk1; k1; k1Þ
3f2;jðk1Þ3=2

þ fð3Þj ðk2; k2; k2Þ
3f2;jðk2Þ3=2

þ fð3Þj ðk3; k3; k3Þ
3f2;jðk3Þ3=2

�Y3
i¼1

f2;jðkiÞ1=2; ðC2Þ

where we omit the dependence of the sourced quantities f2;j and f
ð3Þ
j on ξ�, δ, and k� for the simplicity of the notation. The

accuracy of (C2) in capturing the actual shape of the bispectra is shown in Fig. 7.

TABLE IV. Fitting formulas for the height fc2;j, location x
c
2;j, and width σ2;j of the peak of the scale-dependent enhancement functions

f2;j in (2.10) for δ ¼ 0.3 and 3 ≤ ξ� ≤ 6.5 in Model 1 (top) and Model 2 (bottom).

fi; jgα lnðfci;jÞ xci;j σi;j

f2;RgM1 −5.97þ 9.69ξ� þ 0.0895ξ2� 2.30þ 0.518ξ� þ 0.0117ξ2� 1.10 − 0.134ξ� þ 0.0087ξ2�
f2;−gM1 −7.50þ 9.69ξ� þ 0.0920ξ2� 3.84þ 0.652ξ� þ 0.0291ξ2� 1.06 − 0.147ξ� þ 0.0094ξ2�
f2;RgM2 −15.13þ 10.09ξ� þ 0.0389ξ2� 6.63 − 0.403ξ� þ 0.0856ξ2� 0.89 − 0.101ξ� þ 0.0066ξ2�
f2;−gM2 −14.78þ 9.91ξ� þ 0.0487ξ2� 7.78 − 0.166ξ� þ 0.0992ξ2� 0.83 − 0.110ξ� þ 0.0070ξ2�
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APPENDIX D: COMPUTATIONS OF THE MIXED BISPECTRA

We present here our derivation of the STT and TSS bispectrum. For this purpose, we first note Eq. (A6) and the
definitions of electric and magnetic fields in (A5) to write R as [40,41]

R̂ðsÞð0; k⃗Þ ¼
�

H
Mpl

�
2 3

ffiffiffiffiffiffiffi
2π3

p
ξ�

8k4

Z
d3p

ð2πÞ3=2 ϵ
−
i ðk⃗ − p⃗Þϵ−i ðp⃗Þp1=4jk⃗ − p⃗j1=4ðp1=2 þ jk⃗ − p⃗j1=2Þ

× NAðξ�;−jk⃗ − p⃗jτ�; δÞNAðξ�;−pτ�; δÞÔ−ðk⃗ − p⃗ÞÔ−ðp⃗ÞIR

�
ξ�; x�; δ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk⃗ − p⃗j

k

s
þ

ffiffiffiffi
p
k

r �
: ðD1Þ

In (D1), IR includes a time integration over the gauge field mode functions [40,41],

IR½ξ�;x�;δ;Q�≡
Z

∞

0

dx0

x0
J3=2ðx0Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
ϵσðx0Þ
ϵσ;�

s Z
∞

x0
dx00x003=2exp½−Eðx00Þ

ffiffiffiffiffiffiffiffiffiffiffi
2ξ�x00

p
Q�½J3=2ðx0ÞY3=2ðx00Þ−Y3=2ðx0ÞJ3=2ðx00Þ�; ðD2Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵσðx0Þ=ϵσ;�

p ¼ ð1þ ln ½ðx�=x0Þδ�2Þ−1.
Similarly, plugging the definitions (A5) in (A8) and noting (A9), ĥðsÞλ is given by [40,41]

ĥðsÞλ ð0; kÞ ≃
ffiffiffiffiffi
2

k7

r �
H
Mpl

�
2
Z

d3p

ð2πÞ3=2 ϵλ½k⃗; k⃗ − p⃗; p⃗�p1=4jk⃗ − p⃗j1=4NAðξ�;−jk⃗ − p⃗jτ�; δÞ

× NAðξ�;−pτ�; δÞIh

�
ξ�; x�; δ;

jk⃗ − p⃗j
k

;
p
k

�
Ô−ðk⃗ − p⃗ÞÔ−ðp⃗Þ; ðD3Þ

where we defined the product of helicity vectors

ϵλ½k⃗; k⃗ − p⃗; p⃗�≡ ϵλi ðk⃗Þ�ϵ−i ðk⃗ − p⃗Þϵλjðk⃗Þ�ϵ−j ðp⃗Þ ðD4Þ

and

FIG. 7. Constant contour lines of the shape functions SRRR and S−−−, respectively, of the hR̂R̂R̂i and hĥ−ĥ−ĥ−i bispectra in (3.7) in
the noncompact axion model (M2) for an isosceles triangle k2 ¼ k3 and for fξ� ¼ 5; δ ¼ 0.3g. The black dots locate the triangle
configuration at which the bispectrum is maximum, whereas the orange dot represents the location of the maximum obtained from the
approximate expression (C2). The dotted lines are drawn for reference to equilateral triangles k1 ¼ k2 and folded triangles k1 ¼ 2k2.
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Ih½ξ�; x�; δ; p̃; q̃�≡ I ð1Þ
h ½ξ�; x�; δ;

ffiffiffiffĩ
p

p
þ

ffiffiffĩ
q

p
� þ

ffiffiffiffiffiffiffi
p̃ q̃

p
2

I ð2Þ
h ½ξ�; x�; δ;

ffiffiffiffĩ
p

p
þ

ffiffiffĩ
q

p
�; ðD5Þ

where I ð1Þ
h and I ð2Þ

h contain temporal integration of the gauge field sources [40,41]

I ð1Þ
h ½ξ�; x�; δ; Q�≡

Z
∞

0

dx0ðx0 cos x0 − sin x0Þ
ffiffiffiffiffiffiffiffiffiffi
ξðx0Þ
x0

r
exp ½−Eðx0Þ

ffiffiffiffiffiffiffiffiffiffi
2ξ�x0

p
Q�;

I ð2Þ
h ½ξ�; x�; δ; Q�≡

Z
∞

0

dx0ðx0 cos x0 − sin x0Þ
ffiffiffiffiffiffiffiffiffiffi
x0

ξðx0Þ

s
exp ½−Eðx0Þ

ffiffiffiffiffiffiffiffiffiffi
2ξ�x0

p
Q�: ðD6Þ

Note that for the sourced scalar and tensor perturbations, the dependence of ξðxÞ and EðxÞ on the axion potential in the
spectator sector are provided in (2.7) and (A2), respectively.

1. STT and TSS bispectrum

Noting the definitions of the mixed bispectra in (3.1), we are ready to calculate hRhλhλi and hhλRRi using ĥλ (D3) and
R̂ (D1). For this purpose, we employ Wick’s theorem to compute the products of Ô− operators to obtain the following form
for the mixed bispectra:

BðsÞ
Rλλðk⃗1; k⃗2; k⃗3Þ ≃

½ϵϕPðvÞ
R �3

ðk1k2k3Þ2
fð3ÞRλλðξ�; δ; x�; x2; x3Þ;

BðsÞ
λRRðk⃗1; k⃗2; k⃗3Þ ≃

½ϵϕPðvÞ
R �3

ðk1k2k3Þ2
fð3ÞλRRðξ�; δ; x�; x2; x3Þ; ðD7Þ

where we used the standard vacuum contribution to the scalar power spectrum (2.9) to replace the factors of ðH=MplÞ6, and
we have fixed k1 ¼ k, k2 ¼ x2k, and k3 ¼ x3k. As indicated by the diagrams in Fig. 2, mixed correlators arise as a result of a
“loop” computation over the internal momentum that labels gauge field modes. Defining the rescaled internal momentum as
⃗p̃ ¼ p⃗=k, we found that dimensionless fð3Þ functions that parametrize this computation are given by

fð3ÞRλλ ¼
192π3ξ�
ðx2x3Þ3=2

Z
d3p̃ϵðRλλÞ½ ⃗p̃; k̂1; k̂2; k̂3�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃jk̂1 − ⃗p̃jj ⃗p̃þ x2k̂2j

q � ffiffiffiffĩ
p

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk̂1 − ⃗p̃j

q �
N2

Aðξ�; p̃x�; δÞN2
Aðξ�; jk̂1 − ⃗p̃jx�; δÞ

× N2
Aðξ�; j ⃗p̃þ x2k̂2jx�; δÞIR

�
ξ�; x�; δ;

ffiffiffiffĩ
p

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk̂1 − ⃗p̃j

q �
Ih

�
ξ�; x2x�; δ;

p̃
x2

;
j ⃗p̃þ x2k̂2j

x2

�

× Ih

�
ξ�; x3x�; δ;

jk̂1 − ⃗p̃j
x3

;
j ⃗p̃þ x2k̂2j

x3

�
; ðD8Þ

and

fð3ÞλRR ¼ 72π9=2ξ2�
ðx2x3Þ2

Z
d3p̃ϵðλRRÞ½ ⃗p̃; k̂1; k̂2; k̂3�

� ffiffiffiffĩ
p

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ⃗p̃þ x2k̂2j

q �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ⃗p̃þ x2k̂2j

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk̂1 − ⃗p̃j

q �

×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̃jk̂1 − ⃗p̃jj ⃗p̃þ x2k̂2j

q
N2

Aðξ�; p̃x�; δÞN2
Aðξ�; jk̂1 − ⃗p̃jx�; δÞN2

Aðξ�; j ⃗p̃þ x2k̂2jx�; δÞIh½ξ�; x�; δ; p̃; jk̂1 − ⃗p̃j�

× IR

2
64ξ�; x2x�; δ;

ffiffiffiffĩ
p

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ⃗p̃þ x2k̂2j

q
ffiffiffiffiffi
x2

p

3
75IR

2
64ξ�; x3x�; δ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jk̂1 − ⃗p̃j

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ⃗p̃þ x2k̂2j

q
ffiffiffiffiffi
x3

p

3
75: ðD9Þ

For the numerical evaluation of the integrals, keeping the definition (D4) in mind, we note the product of helicity vectors in
(D8) and (D9) as
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ϵðRλλÞ ≡ ϵ−i ðk̂1 − ⃗p̃Þϵ−i ð ⃗p̃Þϵλ½k̂2;− ⃗p̃; ⃗p̃þ x2k̂2�ϵλ½k̂3;−ðk̂1 − ⃗p̃Þ;−ð ⃗p̃þ x2k̂2Þ�;
ϵðλRRÞ ≡ ϵλ½k̂1; k̂1 − ⃗p̃; ⃗p̃�ϵ−i ð− ⃗p̃Þϵ−i ð ⃗p̃þ x2k̂2Þϵ−j ð−ðk̂1 − ⃗p̃ÞÞϵ−j ð−ð ⃗p̃þ x2k̂2ÞÞ: ðD10Þ

Finally, we align k⃗1 along the x axis, k⃗1 ¼ kð1; 0; 0Þ and express k⃗2 and k⃗3 in terms of x2 and x3,

k⃗2 ¼ kx2

�
−1 − x22 þ x23

2x2
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1 − x2 þ x3Þð1þ x2 − x3Þð1 − x2 − x3Þð1þ x2 þ x3Þ

p
2x2

; 0

�
;

k⃗3 ¼ kx3

�
−1þ x22 − x23

2x3
;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ð1 − x2 þ x3Þð1þ x2 − x3Þð1 − x2 − x3Þð1þ x2 þ x3Þ

p
2x3

; 0

�
; ðD11Þ

and define the polarization vector for a given momentum q⃗
in terms of its components as

ϵλðq⃗Þ¼ 1ffiffiffi
2

p

0
B@qxqz− iλqyjq⃗j

jq⃗j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2xþq2y

q ;
qyqzþ iλqxjq⃗j
jq⃗j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2xþq2y

q ;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2xþq2y

q
jq⃗j

1
CA:

ðD12Þ

The shape and scale dependence of the fð3Þ functions
can then be obtained numerically by fixing the back-
ground parameters fξ�; δg that parametrize the efficiency
of the particle production process in the gauge field
sector.

2. Properties of the mixed bispectra

Let us verify some basic properties of the mixed bispectra
(D7)we derived here. To show the invariance ofBj under the
exchange of k⃗2 ↔ k⃗3, we first replace k⃗2 → k⃗3 and k⃗3 → k⃗2
on both sides of the expressions in (D7) using (D8)–(D10).
Then, changing the integration variable p⃗ → −p⃗þ k⃗1 and
noting

P
i k⃗i ¼ 0, it is easy confirm that the resulting

expressions are equivalent to (D9) and (D8). To prove that
Bj is real, we first use the reality of hij and R in the

configuration space, which implies hλðk⃗Þ ¼ h�λð−k⃗Þ and

Rðk⃗Þ ¼ R�ð−k⃗Þ. Using the last two identities, then

Bjðk⃗1; k⃗2; k⃗3Þ ¼ B�
jð−k⃗1;−k⃗2;−k⃗3Þ follows immediately.

Finally, focusing on the latter quantity, we perform a 180°

rotation around the axis⊥ to the plane defined by
P

i k⃗i ¼ 0

to change the orientation of the external momenta −k⃗i → k⃗i
in its arguments and note the invariance of the bispectrum
under this action due to isotropy of the background,

which together implies B�
jð−k⃗1;−k⃗2;−k⃗3Þ¼B�

jðk⃗1; k⃗2; k⃗3Þ
and hence, Bjðk⃗1; k⃗2; k⃗3Þ ¼ B�

jðk⃗1; k⃗2; k⃗3Þ. From these
arguments, we also infer the following relation:

Bjð−k⃗1;−k⃗2;−k⃗3Þ ¼ Bjðk⃗1; k⃗2; k⃗3Þ.

3. Peak structure of f ð3Þ−RR vs f ð3ÞR− −
at the equilateral configuration

To understand the peak structure of the mixed −RR
and R−− correlators, we focus our attention on the
integrands of Eqs. (D8) and (D9) at the equilateral
configuration x2 ¼ x3 ¼ 1. The integrands depend on the
magnitude of momentum p̃ running in the loop (see Fig. 2),
and its orientation—parametrized by the polar θ and
azimuthal angle ϕ—with respect to the plane (x-y) where
external momenta k⃗i live [see Eq. (D11)]. At fixed δ, their
structure can be schematically written as

Ifð3Þj ðξ�; x�; p̃; θ;ϕÞ ∝ ϵðjÞ½ ⃗p̃; k⃗1; k⃗2; k⃗3�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
ðaÞ

Ihð…ÞIh=Rð…ÞIRð…Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðbÞ

Nc
A½ξ��6p̃ne

− 3

σA ½ξ��2
ln2ð p̃x�

qc
A
½ξ��Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðcÞ

; ðD13Þ

where n ¼ f4; 9=2g for the R − − and −RR correlators,
respectively. We discuss the physical implications of the
parts contributing to the integrand (D13) below.

(i) (c): These terms identify the scale-dependent am-
plitudes of gauge field mode functions in (A3) and
the manifestly ˜̃p-dependent terms using the second
and first lines of the loop integrals in (D8) and (D9).
Physically, they characterize the scale-dependent

x� ¼ ki=k� ¼ k=k� enhancement of the gauge
modes running in the internal lines whose overall
amplitude is dictated by the normalization factors
Nc

A½ξ��6 (see Table III). Notice that, in writing these
terms, we ignored their θ and ϕ dependence in the
p̃n exp½…� part, as the orientation of the loop mo-
mentum with respect to the plane of external mo-
menta has a slight impact on the overall amplitude of
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gauge field modes compared to p̃. An essential
feature of the terms labeled by (c) is that they acquire
a peak (with an amplitude set by the Nc

A½ξ��6 factor)
located at

p̃peakx� ¼ e
nσA ½ξ��2

6 qcA½ξ��; ðD14Þ

which is important for understanding the scale depend-
ence of the mixed correlators. In particular, (D14)
implies that for larger (smaller) x� ¼ k=k�, the loop
integrals that characterize the correlators will have
support around smaller (larger) values of p̃peak because
for p̃ > p̃peak or p̃ < p̃peak, the terms labeled by
(c) decay away quickly due to their exponential
dependence. We illustrate these facts in Fig. 8 where
we plot the terms labeled by (c) as a function of the
magnitude of loop momentum p̃ for both correlators
that we focus on and for different k=k�.

(ii) (b): The product of integrals Ih=R in (D13) captures
the propagation of the amplified gauge modes from
the internal lines to the external lines characterized

by the late-time curvatureR or tensor perturbation h
through the vertices shown in Fig. 2. For the purpose
of understanding the peak structure of the mixed
correlators we are interested in, we plot them in
Fig. 9 in terms of p̃ for different x� and loop
momentum configurations. We observe that for
the range of p̃ values where the gauge field modes
have appreciable contribution to the correlators (see
Fig. 8), the propagation effects associated with
tensors are always negative Ih < 0, whereas for
the curvature perturbation, the same quantity is
strictly positive IR > 0. We found that this con-
clusion holds irrespective of the choice of loop
momentum configurations parametrized by the polar
θ and azimuthal angle ϕ.

(iii) (a): These terms represent the scalar product of
polarization vectors defined by (D10) and (D4) in
the equilateral configuration x2 ¼ x3 ¼ 1 and serve
the purpose of helicity conservation at each vertex.
Their behavior with respect to the magnitude of the
loop momentum p̃ is crucial in understanding the
double-peak vs single-peak structure of the−RR and

FIG. 8. Dependence of the amplified gauge field modes on the magnitude of loop momentum p̃ for −RR (left) and R − − (right).
Both plots are normalized with Nc

A½ξ��6; see, e.g., (c) in (D13).

FIG. 9. Dependence of the Ih=R [Eqs. (D5), (D6), and (D2)] on the magnitude of loop momentum p̃.
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R − − correlators as we explain below. For orienta-
tions of loop momentum that leads to maximal
results, we show the behavior of ϵð−RRÞ½ ⃗p̃; k⃗1; k⃗2; k⃗3�
and ϵðR−−Þ½ ⃗p̃; k⃗1; k⃗2; k⃗3� as a function of p̃ in Fig. 10.

From the left panel of Fig. 10, we see that ϵð−RRÞ has a
significant negative support for loop momentum configu-
rations that does not lie in the x-y plane (θ ≠ π=2) in the
p̃≳ 1 regime. In this region, the integrand (D13) of
the −RR correlator (D9) has significant support from
the amplified gauge field mode functions at small k=k�
(black curve in the left panel of Fig. 8), and integrating it
over such loop momentum configurations leads to a
positive peak at small k=k� ¼ xc;S3;−RR, recalling the overall
negative sign of propagation effects IhIRIR < 0. On the
other hand, for loop momentum that lives in the same plane
with the external momenta (θ ¼ π=2), the product of the
polarization vectors has a positive support in the p̃≲ 1
region. In this regime, the integrand (D13) still has support
from the peak of the amplified gauge field modes at larger
k=k� ¼ xc;L3;−RR (orange curve in the left panel of Fig. 8).
Therefore, the −RR correlator obtains a second peak
occurring in the negative direction due to the overall
negative contributions that arise from the propagation
effects IhIRIR < 0.
For the R − − correlator, setting the product of polari-

zation vectors aside, the integrand (D13) has an overall
positive sign due to propagation effects IRIhIh > 0. More
importantly, contrary to the case of the −RR correlator, the
range of loop momenta p̃≲ 1, where the amplified gauge
field modes can contribute to the integrand (see the right
panel in Fig. 8), overlaps with the range where the product
of helicity vectors takes its maximal values which is
positive for θ ¼ π=2 as can be seen from Fig. 10.
Integrating (D13) over such configurations therefore leads
to a single peak for the R − − correlator (D8) occurring in
the positive direction as the dominant support for ϵðR−−Þ is
positive in this regime.

Considering that the −RR and R − − correlators differ
from each other by an external scalar/ tensor state (R=h) and
comparing the left/right panel of Fig. 10, we can physically
make sense of these results. In particular, for large enough
transverse momentum p̃≳ 1, conservation of angular
momentum allows two internal photons to generate an
external scalar perturbation R even if the latter lies in a
plane different from the internal photons (θ ≠ π=2). In this
way, one can generate soft R’s to induce sizeable correla-
tions between external states of−RR in the form of an early
peak located at ki=k� ¼ k=k� ¼ xc;S3;−RR < xc;L3;−RR (see
Fig. 3). On the other hand, for soft internal momenta
p̃≲ 1, internal photon states can still induce sizeable
correlations between the external states of the −RR
correlator as far as the external momentum k⃗i lies in the
same planewith the loopmomentum ⃗p̃ (θ ¼ π=2). Since the
loop momentum does not leak beyond the plane of external
momenta in this case, a sizeable −RR correlation can be
induced at harder external momenta satisfying ki=k� ¼
k=k� ¼ xc;L3;−RR > xc;S3;−RR, explaining the presence of a
second peak in the −RR correlator (see Fig. 3).
However, as can be seen from the right panel of Fig. 10,
the same situation is more restrictive if the external state is a
graviton. In this case, angular momentum conservation
strictly prefers the production of an external graviton from
two internal photons (preferably soft p̃≲ 1) that lie in the
same plane, and the resulting correlation between the
external states of the R − − correlator is thus maximal at
a single location parametrized by ki=k� ¼ xc3;R−−. In light of
the discussion above, we conclude that the product of the
polarization vectors is the key quantity that determines the
double-peak vs single-peak structure of mixed correlators.

APPENDIX E: APPROXIMATE FACTORIZED
FORMS FOR THE MIXED BISPECTRA

Wenowderive factorized approximate expressions for the
STT (D8) and TSS (D9) bispectrum as a sum of terms given

FIG. 10. The product of helicity vectors defined in (D10) for x2 ¼ x3 ¼ 1 as a function of p̃ and for different loop momentum

orientation with respect to the plane of external momenta k⃗i. In both panels, the maximal positive contributions to the product arise when
the loop momentum lies in the x-y plane, namely, when θ ¼ π=2.
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by the products of sourced signalsf2;jðkiÞ andfð3Þj ðki; ki; kiÞ
that contains only a single external momenta ki.

(i) STT: Similar to the three autocorrelators, we
expect that the mixed spectra have a peaked structure
so that we can utilize the two-point and three-point

correlators (evaluated at the equilateral configura-
tion) to describe it in a factorized form. Motivated by
these considerations and the k⃗2 ↔ k⃗3 symmetry of
the STT bispectrum, we start with the following
ansatz:

fð3;appÞRλλ ≃ C



fð3ÞRλλðs1k1; s1k1; s1k1Þ
f2;Rðs̄1k1Þ1=2f2;λðs̃1k1Þ

þ
�
fð3ÞRλλðs2k2; s2k2; s2k2Þ
f2;Rðs̄2k2Þ1=2f2;λðs̃2k2Þ

þ k2 → k3

��Y
i¼2;3

½f2;Rðs̄1k1Þf2;λðs̃2kiÞ�1=2; ðE1Þ

where we introduced scaling factors for the external
momenta in the sourced quantities f2;j and fð3Þj to be able
to locate the maximum of the bispectra accurately in the
k1 − k2 (recall that we focus on isosceles triangles k2 ¼ k3).
C is an overall coefficient that we will fix to reproduce the
correct normalization of the exact bispectra as we describe
below.
To ensure that the approximate expression (E1) describes

the actual one accurately around its maximum, we can
utilize the peak locations of the two-point functions xc2;j
(see Table IV) and three-point functions evaluated at the
equilateral configuration xc3;Rλλ (see Table II). In particular,
since we know (by numerical evaluation) the triangle
configuration at which the exact bispectra is maximal,
say, at k1;2 ¼ km1;2, we can fix the scaling factors s; s̄; s̃ in

(E1) appropriately as s1;2 ¼ xc3;j=k
m
1;2, s̄1;2 ¼ xc2;R=k

m
1;2, and

s̃1;2 ¼ xc2;λ=k
m
1;2 for a given set of model parameters ξ� and

δ. Considering the Gaussian forms of the two-point (2.10)
and three-point mixed correlators [see, e.g., (3.3)], the
aforementioned choices of scaling factors provide a very
accurate guess for the exact location of the maximum in the
k1 − k2 plane. To fix the overall normalization C, we then
enforce the approximate expression (E1) at its maximum to
be equal to the maximum of the exact one derived from

(D8), i.e., f3;max
Rλλ ¼ fð3ÞRλλðkm1 ; km2 Þ.

(ii) TSS: For the TSS-type correlators, following the
same procedures above, we found that the following
expression provides an accurate description of the
exact bispectrum:

fð3;appÞλRR ≃D


fð3ÞλRRðs1k1; s1k1; s1k1Þ

f2;λðs̃1k1Þ3=2
þ
�
fð3ÞλRRðs2k2; s2k2; s2k2Þ

f2;Rðs̄2k2Þ3=2
þ k2 → k3

��Y
i¼2;3

½f2;λðs̃1k1Þf2;Rðs̄2kiÞ�1=2; ðE2Þ

where s1;2 ¼ xc3;λRR=k
m
1;2, s̃1 ¼ xc2;λ=k

m
1 , and s̄2 ¼ xc2;R=k

m
2 .

Using Tables IVand I for a given set of model parameters ξ�
and δ, one can fix the overall coefficient D by matching the
approximate expression (E2) at its maximum to the exact
bispectrum at the triangle configuration where it peaks,

i.e., f3;max
λRR ¼ fð3ÞλRRðkm1 ; km2 Þ. For δ ¼ 0.3 and ξ� ¼ 5, the

accuracy of (E1) and (E2) derived through the procedure
we described above is shown in the top and bottom panels
of Fig. 6. Since this process does not require a specific
choice of the model parameters, we anticipate that it will
also generate accurate factorized forms of the mixed
bispectra for other choices of model parameters δ; ξ�.
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