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We study the evolution of cosmological domain walls in models with asymmetric potentials. Our
research goes beyond the standard case of spontaneous breaking of an approximate symmetry. When the
symmetry is explicitly broken the potential exhibits nearly degenerate minima which can lead to creation of
a metastable network of domain walls. The time after which the network will decay depends on the
difference of values of the potential in minima, its asymmetry around the maximum separating minima, and
the bias of the initial distribution of the field. The effect of asymmetry around the maximum separating
minima is a novel one that we study with a new type of potential. Using numerical lattice simulations we
determine relative importance of these factors on decay time of networks for generic potentials. We find
that even very small departures from the symmetric initial distribution case leads to rapid decay of the
domain wall network. As a result creation of a long lasting network capable of producing observable
gravitational wave signals is much more difficult than previously thought. On the other hand details of the
shape of the potential turn out to be much less important than expected and the evolution of network from
symmetric distribution is controlled by the difference of values of the potential in the minima.
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I. INTRODUCTION

Domain walls are topological defects1 which could be
formed in the early Universe at boundaries of regions,
called domains, in which certain field ϕ takes different
vacuum expectation values. Usually domain walls are
associated with spontaneous breaking of a discrete sym-
metry. In this case domains are patches of the Universe
occupied by the field strength corresponding to different
minima of the potential and domain walls are transition
regions at which field strength smoothly interpolates
between these minima.
Domain walls are usually considered to form during

cosmological evolution from primordial fluctuations gen-
erated by some random process in the early Universe for
example from quantum fluctuations during inflationary
eras. Domain walls form when fluctuations at the character-
istic scale, corresponding to width of domain walls, cross
the horizon. Percolation theory predicts that domain walls
produced by a stochastic process can form networks of
twofold topologies:

(i) separated bubbles of one vacuum submerged in the
background of the another one,

(ii) infinite domain walls stretching through the whole
Universe,

depending on the initial contributions of the vacua [1–8].
During further evolution domains are stretched by the
expansion of the Universe; thus, both the surface and the
curvature radius of domain walls grow. On the other hand,
if a domain is too small and the gain of the energy
contained in the enclosing wall from shrinking it over-
comes the expansion, the domain will collapse.
Evolution of domain walls in the simplest case of

degenerate minima and symmetric initial distribution leads
to the so-called scaling regime. This type of evolution is
marked by simple scaling of average quantities such as
surface area or averaged energy of domain walls per
Hubble horizon. In the scaling regime the number of
domain walls in the horizon stays nearly constant, while
average domain size and curvature radius are of order of
Hubble horizon [9]. Maintaining the scaling requires
domain walls to frequently interact with each other,
changing their configuration or collapsing into closed
walls, to reduce their energy. The effective equation of
state of a network of cosmological domain walls is
generically predicted with barotropic parameters −2=3 <
wDW < −1=3 [10,11]. The energy density of the network of
stable domain walls decreases (with the expansion) slower
than the energy density of both: the radiation and the dust,
so long-lived domain walls tend to dominate the energy
density of the Universe. Moreover the effective average
pressure generated by the network is negative; thus, it acts
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as Dark Energy. However, Dark Energy with such an
equation of state is ruled out by the present experimental
data [12–16]. Moreover, domain walls which pose a
significant fraction of the total energy density of the
Universe at recombination would produce unacceptably
large fluctuations of the Cosmic Microwave Background
Radiation (CMBR).
However, if minima of the potential are not degenerate,

pressure coming from the difference of vacuum energy in
different domains will act on domain walls and render them
unstable.2 As a result they will annihilate on a time scale
which depends on the fraction of space occupied by the
field strength corresponding to the global minimum of
the potential, the width of the initial distribution of the field,
the bias between the minima and the steepness of the
potential on both sides of the local maximum separating the
minima. While the effects of the bias in initial distribution
and in the minima have been extensively studied (see
[1–8,17]) the other two factors, haven’t been discussed in
the literature.
To study those we implement a new type of potential that

extends the analysis done before. The introduced family of
potentials allow for independent parametric control of all
four factors in our numerical simulations. In this work we
study the impact of these factors on decay time. We discuss
experimental prospects for detection through gravitational
waves (GWs) signals produced upon domain wall annihi-
lation. We find a hierarchy of strength of the dependence of
the lifetime of the network on the parameters of interest.
Every non-negligible departure from the exactly symmetric
initial distribution case leads to rapid decay of the domain
wall network, thus confirming the previous analytical and
numerical studies [1–8,18]. On the other hand the asym-
metry of the potential around maximumwhich has not been
studied in the past turns out to introduce a negligible effect
on the stability of networks. Due to the described hierarchy,
compensating for the influence of one of the factors by the
other requires severe fine tuning. As a result, formation of a
long lasting network capable of producing an observable
GW signal seems to be much more difficult than previously
thought.

II. MODELS OF INTEREST

Domain walls in models with symmetric or nearly
symmetric potentials were a main object of studies in

the past. The evolution of these defects in models with
asymmetric potentials is much less known although such
models are frequently considered in modern cosmology.
Asymmetric potentials with a number of nonequivalent
minima appear in many cosmological models at various
energy scales. Let us present just a few examples of such
models.

A. Radiatively generated minima

Even when tree level potential of the model has one
minimum, radiative quantum corrections can result in
formation of a second minimum. This is exactly the case
of the Standard Model (SM), where quantum corrections
(mainly due to interaction with top quark) force the running
quartic coupling constant of the Higgs field to acquire
negative values for renormalization scale of the order
of 1010 GeV. This leads to formation of the local maximum
of the effective potential for the field strength of the order of
zero of the running coupling (the position of the maximum
is gauge dependent) and second deeper minimum at super-
Planckian field strengths. The dynamics of domain walls
driven by this highly asymmetric potential was studied in
detail in [19–21]. It is worth stressing that even though the
Higgs field breaks the symmetry, it is a gauge symmetry;
thus, all the minima of the effective potential connected by
the symmetry transformation are physically equivalent.
However, the radiative corrections lead to formation of a
second physically nonequivalent family of minima. In this
case families of minima are not connected by any sym-
metry transformation and nothing forces them to be
degenerate or the potential to be symmetric in between
them. Studying Higgs domain walls we have found that
their dynamics differ from previously investigated models.
This observation motivated us to a more detailed inves-
tigation of the influence of the asymmetry of the potential
on the evolution of domain walls whose result we present in
this manuscript.

B. Runaway potentials

Runaway potentials frequently appear in models of
dynamical supersymmetry breaking and play an important
role in modern attempts of nonperturbative supersymmetry
breaking and moduli stabilization. The local minima in
such potentials are separated by a barrier from otherwise
monotonically decreasing, yet bounded from below poten-
tial. It has been pointed out by Dine [22] that spatial
inhomogeneities may help to stabilize the moduli at
shallow but finite minima. The dynamics of domain-
wall-like structures in the model with the runaway potential
of the form

VrunawayðϕÞ¼
1

2ϕ
ðAð2ϕþN1Þe−ϕ=N1 −Bð2ϕþN2Þe−ϕ=N2Þ;

ð1Þ

2A model with potential with nondegenerate minima does not
provide a solution of the equation of motion in Minkowski
background which is a soliton and can be interpreted as a domain
wall. However, when the minima are nearly degenerate one can
expect existence of a solution which is slowly varying in time and
similar to the domain wall. Some authors distinguish these two
cases and call the later solution a domain-wall-like structure. We
are considering cosmological evolution in nontrivial time-
dependent Friedman-Robertson-Walker background and we will
use name domain walls in both cases.
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expected in a wide class of supersymmetry breaking
models based on gaugino condensation was investigated
in [6]. The shape of this potential for the choice of
parameters A, B, N1, and N2 used in [6] is presented in
Fig. 1. It has been found that in this scenario evolution of
the network of inhomogeneities is very similar to a better
known case of symmetric potentials. However, dependence
on parameters of this model was not studied due to limited
available computational resources. Thus, it cannot be
determined if this is a generic feature of this class of
models.

C. Models of out-of-equilibrium phase transitions

In a first-order phase transition a metastable vacuumwith
expectation value of the field strength equal to a local
minimum of a potential is separated from the so-called true
vacuum corresponding to the global minimum of the
potential by a potential barrier. Initially the field is assumed
to be trapped in a false vacuum, due to its earlier evolution.
Thus, time-dependent potentials are considered, usually
realized by temperature dependence. In the early Universe,
when the temperature was high, thermal corrections to the
effective potential modified it in such a way that it had only
one minimum. The field strength evolved toward this high
temperature minimum. During evolution of the Universe,
when the temperature was decreasing, second minimum
was formed. If the potential barrier developed before the
second minimum became the global one, the field was
trapped in a metastable vacuum, due to the inability of
classically traversing the barrier. As a result the unstable
vacuum decays through nucleation of bubbles, correspond-
ing to the field trapped in the false vacuum quantum
mechanically tunneling through the barrier [23–25].
After nucleation, bubbles grow until they collide, even-

tually converting the whole Hubble volume into the new
phase. During the collision phase of the transition when
many bubbles collide with each other, an intermediate state
similar to a network of cosmological domain walls is
formed. The main difference between this state and the

network formed from superhorizon fluctuations is that
boundaries of domains keep large velocities generated
during expansion of bubbles before collisions.

D. Axion monodromy models

Axions have a periodic potential conventionally para-
metrized as cosine type:

VaxionðϕÞ ¼ Λ4

�
1 − cos

�
ϕ

f

��
;

where f is the decay constant and Λ is the scale of
nonperturbative effects that generate the potential. Such a
form of periodic potentials is derived in dilute instanton gas
approximation. The dynamically generated potential breaks
shift symmetry of axion (a pseudo-Nambu-Goldstone boson
of spontaneously broken global symmetry) to its discrete Z
subgroup acting as Z ∋ n∶ϕ ↦ ϕþ 2πfn. Due to this
symmetry the axion field strength is bounded to
0 ≤ ϕ < 2πf. In the presence of a monodromy the potential
contains additional terms which explicitly break remaining
discrete symmetry and enlarge field strength range. The
monodromy term is usually chosen as a monomial, fre-
quently as the quadratic term 1

2
m2ϕ2, less often as the linear

gϕ. Let us concentrate on the former choice which gives the
potential in the form:

VmonodromyðϕÞ ¼ m2ϕ2 þ Λ4

�
1 − cos

�
ϕ

f

��
: ð2Þ

For the proper choice of values of parameters of the model,
the potential consists of quadratic potential decorated with
wiggles coming from the periodic term as can be seen in
Fig. 2. The potential develops a family of local minima
separated by asymmetric potential barriers whose number
depends on the relative strength of both terms quantified by
the fraction Λ2

mf.

FIG. 1. Shape of the potential used in [6] for simulating the
dynamics of domain walls in models with runaway potentials.

FIG. 2. Shape of axion monodromy type potentials given by
Eq. (2) for various value of the fraction Λ2

mf.
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Axionlike particles can play important role in cosmology
(for a review see e.g., [26]). If produced in appropriate
abundance, they are good candidates for cold dark matter
[22,27–29]. Moreover, axion potentials with monodromy
are considered as suitable for inflationary models (also
models with nonminimal couplings [30]). Presence of local
minima which drift slowly rolling inflaton to ultra-slow-roll
regime leading to enhancement of primordial scalar fluc-
tuations was proposed as an origin of primordial black
holes [31–34]. The production of GWs emitted when
inflaton field traverse features of axion monodromy poten-
tial were studied in [35–37]. Moreover, the possibility of
population of global minimum of monodromy type poten-
tials and neighboring local ones during reheating due to
oscillations of inflatons was discussed in [38].
On the other hand, the latter choice with the linear

symmetry breaking term leads to the potential in the form:

VrelaxionðϕÞ ¼ gϕþ Λ4

�
1 − cos

�
ϕ

f

��
: ð3Þ

Potentials of this type play a crucial role in cosmological
relaxation models proposed in order to solve the hierarchy
problem of the Standard Model Higgs boson mass [39–42].
In this scenario the dimensionful coupling g is assumed to
depend on the Higgs field strength. Then, the wiggles
produced by the periodic term stop the slowly rolling field
ϕ (called relaxion) at the point which generates proper
Higgs boson vacuum expectation value. The original idea
based on QCD axion was broadly extended and modified
recently [43–47].
Topological defects were studied with various methods

in the past. The Nambu-Goto effective action was first used
in the case of cosmic strings [48] and later generalized to
domain walls [49,50]. In this approach topological defects
are treated as very thin; thus, effects of finite thickness of
these structures are neglected. This approximation works
the better the larger are structures and distances between
them compared to their thickness. Thus, this method is
useful in investigation of the late evolution of networks of
topological defects when they are diluted and stretched by
the expansion of the Universe.
From the Nambu-Goto action the velocity-dependent

one scale (VOS) can be derived [18,49,51–53] under the
assumption that only one scale is present in the problem;
i.e., the curvature radius, distances between defects, and
Hubble radius are of the same order. It is a semianalytical
model which needs to be calibrated by numerical methods.
It predicts the existence of the scaling regime in which the
number of defects in each Hubble radius stays nearly
constant and the time at which it ends, i.e., decay of the
network for models with (nearly) symmetric potentials.
Obviously, this semianalytical method is not able to
properly model subtle effects caused by the shape of the
potential.

Due to the nonlinear character of topological defects, the
most reliable methods of investigating their dynamics are
lattice simulations. In these simulations the equation of
motion of field forming defects is numerically integrated
by the finite difference method. The majority of lattice
numerical simulations of the dynamics of domain walls
performed in the past [3,5,6,52,54–58] were based on simple
potentials known in analytical form. Most attention was
given to domain walls in the case of spontaneous breaking of
global discrete symmetries. In this scenario, minima of the
potential of the model are degenerated. When the symmetry
isweakly, explicitly broken the symmetricminima are nearly
degenerated.Up toour knowledge, in all previous studies one
symmetry breaking term was introduced into the potential
whose coupling constant controlled both degeneracy on
minima and a shape of the potential in between them, or
an asymmetric potential motivated by certain model was
studied. In order to understand what really determines the
fate of network of domain walls—is it a degeneracy of
the minima or the shape of the potential around the top of the
barrier or rather both—we go beyond these simple models in
our studies.
During the process of the decay of domain walls the

energy of the field is transferred to other degrees of freedom,
and a part of itwill be carried byGWs.The recent observation
of GWs at the LIGO and the Virgo experiments [59]
promoted the spectrum of GWs to one of the most promising
cosmological observables for many models. GWs can in
principle probe domain walls in the early Universe.
Moreover, GWs produced from networks of domain walls
could partially polarize CMBR, marking it with a distinctive
pattern. We try to estimate a spectrum of GWs produced
during the decay of domain walls using semianalytical
approximations introduced in previous studies [58,60].
The paper is organized as follows. In Sec. III we

introduce the analytic form of potentials which we used
to model asymmetry of potentials throughout the paper.
The method we use to estimate the width of domain walls is
presented in Sec. III A. The set of asymmetric potentials
that we used in our numerical simulations is given in
Sec. III B. Section IV is dedicated to estimation of the
lifetime of networks of domain walls. We discuss the
dependence of the lifetime on initial conditions: the average
value of the field strength and its standard deviation at the
initialization andon scale of asymmetryof the potential of the
model. Dependence of the duration of the scaling regime on
parameters of the model and initial conditions is studied in
Sec.V.Wediscuss the possible influence of asymmetry of the
potential on the spectrum of GWs emitted from the network
in Sec. VI. We conclude in Sec. VII. In Appendix A we
discuss the origin of quantity called width of domainwalls in
the case of simple, toy models in which the analytic
expression is known. In Appendix B we present the param-
eters of thepotential and initial conditions for the field thatwe
have used in our simulations.
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III. MODEL OF ASYMMETRIC POTENTIALS

In the past, mainly spontaneous breaking of Z2 sym-
metry in a simple model defined by the Lagrangian density
of the form

L ¼ 1

2
∂μϕ∂μϕ − VZ2

≔
1

2
∂μϕ∂μϕ − V0

�
ϕ2

ϕ0
2
− 1

�
2

ð4Þ

was studied in lattice simulations. Z2 symmetry guarantees
that minima of the potential VZ2

are degenerated and the
potential is symmetric around the local maximum (ϕ ¼ 0).
In order to avoid experimental constraints the explicit

symmetry breaking is usually considered. In the past
studies the symmetry breaking term was added to the
potential

VEBðϕÞ ¼ VZ2
ðϕÞ þ ϵV0ϕ ð5Þ

to destabilize domain walls. ϵ is a parameter that deter-
mines the strength of explicit symmetry breaking. It was
found [6] that if the Z2 is explicitly broken, domain walls
interpolating between minima of the potential are unstable
and they annihilate on a time scale which depends on the
fraction of the space occupied by the field strength
corresponding to the global minimum of the potential,
the bias between minima (i.e., the difference between
values of the potential at minima), and the value of the
derivative on both sides of the local maximum separating
the minima. However, the relationship between the influ-
ence of the last and the other factors has not been
determined so far. The model given by Eq. (5) is unsuitable
for such studies. Both the difference of values of the
potential at the minima and the asymmetry of the potential
around its local maximum are controlled by the value of
one parameter ϵ and cannot be changed independently.

The aim of this paper is to overcome limitations of the
simple model (5) and prepare the set of potentials con-
venient for further studies in lattice simulations. From the
point of view of lattice simulations it is convenient to define
the potential of the model by its derivative which is directly
used in simulations. The equation of motion for the
symmetry breaking field with the canonical kinetic term
and general potential V is of the form:

∂2ϕ

∂η2 þ
2

a

�
da
dη

� ∂ϕ
∂η − Δϕþ a2

∂V
∂ϕ ¼ 0; ð6Þ

assuming the Friedman-Robertson-Walker metric back-
ground:

g ¼ dt2 − a2ðtÞδijdxidxj ¼ a2ðηÞðdη2 − δijdxidxjÞ; ð7Þ

where Latin indices correspond to spatial coordinates, t is
cosmic time, and η denotes conformal time (such that
dη ¼ 1

aðtÞ dt). Equation (6), which depends on the derivative

of the potential ∂V∂ϕ, is solved in lattice simulations using the
finite difference scheme. Moreover, the position of the local
extrema of the potential are easier to determine from its
derivative.
Thus, we decided to give the potential by passing its

derivative. We assumed the derivative in the form:

∂VAS

∂ϕ ðϕÞ≔V0ðϕ−aÞðϕ−bÞðϕ−cÞðe2ðϕ−dÞ2þ1Þ; ð8Þ

where a, b, c determine positions of the extrema of the
potential and parameters e, d control the shape of the
potential. Then the potential VAS takes the complicated
form:

VASðϕÞ ¼
V0

60
ϕð−60abcðd2e2 þ 1Þ þ 15ϕ3ðe2ð2dðaþ bþ cÞ þ abþ acþ bcþ d2Þ þ 1Þ

− 20ϕ2ðe2ðd2ðaþ bþ cÞ þ 2dðaðbþ cÞ þ bcÞ þ abcÞþaþ bþ cÞ
þ 30ϕðde2ðadðbþ cÞ þ 2abcþ bcdÞ þ abþ acþ bcÞ
−12e2ϕ4ðaþ bþ cþ 2dÞ þ 10e2ϕ5Þ: ð9Þ

We quantitatively estimate the asymmetry of the potential around the local maximum as a value of the third derivative of the
potential:

∂3VAS

∂ϕ3
ðϕÞ ¼ 2V0ðe2ða − ϕÞðϕ − bÞðcþ 2d − 3ϕÞ þ ð−a − bþ 2ϕÞðe2ðd − ϕÞð2cþ d − 3ϕÞ þ 1Þ

þðϕ − cÞðe2ðd − ϕÞ2 þ 1ÞÞ ð10Þ

at the maximum.
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Our aim is to find a family of potentials of the form (9)
with the given difference of values at minima VASðbÞ −
VASðaÞ (where we assume without loss of generality that b
and a are minima of the potential and c is its local
maximum) and the value of the third derivative at the

maximum ∂3VAS
∂ϕ3 ðcÞ. However, these conditions are not

sufficient to perform simulations whose results will reveal
dependence of the dynamics of domain walls on the
asymmetry of the potential. Above those, the same energy
scale for all cases given by the width of the walls which we
will define in the next section (III A) is needed to compare
the results.

A. The width of domain walls

The estimation of the physical width of domain walls is
critical for numerical simulations of their dynamics. The
width must be at least a few times larger than the lattice
spacing (i.e., the physical distance between neighboring
points) used in the simulation in order to assure sufficient
accuracy to model profiles of walls. On the other hand, if
we choose the lattice spacing too small (walls will spread
over too many lattice points) only a few walls will fit into
the finite lattice. If only a small number of walls will be
present on the lattice, then the dynamics of the network of
domain walls will be reproduced poorly in the simulation.
Many authors [3,6,52,54–58] used simulations with the
physical width of walls varying from 2 to 100 lattice
spacing.
We estimate the width of domain walls using the

approach presented in Appendix A based on the first
integral of the equation of motion. Firstly, we calculate
the value ϕ2 of the field which gives the same value of the
potential as the value ϕmin taken by the field in the local
minimum and bigger than the local maximum. Next, we use
the integral expression [analog of the Eq. (A7)]:

Σðφ1;φ2Þ ≔
Z

φ2

φ1

VASðφÞdφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðVASðφÞ − VASðϕminÞÞ

p ; ð11Þ

to compute tension (surface energy density) of walls
σwall ≔ Σðϕmin;ϕ2Þ. Then, we use the generalization of
Eq. (A6) for the calculation of distance in the physical
space in the direction perpendicular to the wall:

Xðφ2Þ − Xðφ1Þ ¼
Z

φ2

φ1

dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðVASðφÞ − VASðϕminÞÞ

p : ð12Þ

Finally, the width of walls is given as w ≔ Xðφ̃2Þ − Xðφ̃1Þ
for the pair of field strengths φ̃1 and φ̃2 such that
VASðφ̃1Þ ¼ VASðφ̃2Þ and

Σðφ̃1; φ̃2Þ
Σðϕmin;ϕ2Þ

≈ 97%: ð13Þ

Thus, the width of walls is a characteristic length of the
distance in the direction perpendicular to the wall at which
the majority of potential energy density is stored. Based on
the results of [6] we chose the value of the width of domain
walls to be w ¼ 5.

B. Family of asymmetric potentials

Our aim is to prepare a family of potentials with a given
difference of the values at minima δV, the value of the third
derivative at local maximum d3V, and the constant width
equal to 5. In order to resolve this problem we need to solve
the following set of equations:

δV ¼ VASðbÞ − VASðaÞ;

d3V ¼ ∂3V
∂ϕ3

ðcÞ;

5 ¼ w; ð14Þ

where the width is calculated numerically using the
algorithm presented in Sec. III A.
However, the presented set of equations (14) is not fully

determined due to certain symmetries. First of all, the
potential has translational symmetry in ϕ value which we
fix by assuming that the local maximum lies at the value
c ¼ 0. Secondly the field strength may be rescaled
ϕ ↦ αϕ. This rescaling combined with V0 ↦ α−4V0 and
e ↦ α−1e left the form of the set of equations unchanged.
In order to get rid of this symmetry we take the one
minimum to be at a ¼ −1. Finally, the dynamics of domain
walls will stay unchanged if we add a constant value to the
potential, as far as one neglects backreaction from gravity.
Thus, we assume that VASð0Þ ¼ 0. In addition we set
e ¼ 1. With these assumptions the considered equations
take simplified form:

δV ¼ −
V0

60
ðbþ 1Þ3ð5ðb − 1Þd2 þ 2ð4 − 3bÞbd

þ bðbð2b − 3Þ þ 8Þ − 6d − 7Þ;
d3V ¼ 2V0ð−bðd − 1Þ2 þ d2 þ 1Þ;

5 ¼ w: ð15Þ

By dividing the first equation by the second, one obtains the
equation that is independent of V0, connects b and d and
can be solved in favor of d. Moreover it can be easily shown
that the width scales as w ∝ V−1=2

0 with V0. Finally, one
need to solve numerically two equations from which one is
given by the complicated numerical algorithm. Examples
of potentials obtained in our procedure are plotted in Figs. 3
and 4. Figure 3 presents solutions with various differences
of values of potentials in their minima and with third
derivative vanishing at the local maximum. Figure 4 shows
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solutions for δV ¼ 0.0625 and various values of the third
derivative.
The values of parameters b, d, and V0 obtained by the

described procedure and used in our numerical lattice
simulations are presented in Appendix B. Our final results
are presented in Table I containing numerically obtained
solutions for b, d, and V0 for various values of d3V and δV.

IV. INFLUENCE OF ASYMMETRY OF A
POTENTIAL ON DECAY TIME OF THE

NETWORK

Cosmological domain walls are subject to many exper-
imental constraints. Generally, the energy density of a
network of domain walls is predicted to decrease slower
than the energy density of both: the radiation and the dust,
so long-lived domain walls would dominate the Universe.
The equation of state of the network of domain walls is
restricted to −2=3 < wDW < −1=3, which is ruled out by
the present data for a single component Dark Energy.
Domain walls which lived long enough to be present during
the recombination would produce unacceptably large

fluctuations of CMBR. This results in the Zel’dovich
bound on the characteristic scale of physics producing
domain walls present during recombination of the order of
< 1 MeV [61,62].
We concentrated on the evolution of domain walls during

the radiation domination era which are less constrained
experimentally. In our numerical simulation based on
Press-Ryden-Spergel (PRS) algorithm [54] we assumed that

aðηÞ ¼ η

ηstart
; ð16Þ

according to the fact that scale factor a scales as a ∝ η with
conformal time η during radiation domination.
On the basis of discussion in [3] we assumed that an

initial distribution of the field strength is given by the
Gaussian probability distribution

PðϕÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
e−

ðϕ−θÞ2
2σ2 : ð17Þ

We studied the evolution of networks of domain walls
initialized with different values of θ and σ in order to
accommodate variety of processes leading to formation of
walls. According to [6] the final state and length of decay
time of networks of domain walls depend on the fraction of
the space occupied by the field strength corresponding to
the basin of attraction of the global minimum of the
potential, the bias between minima (i.e., the difference
between values of the potential at minima), and the value of
the derivative on both sides of the local maximum sepa-
rating the minima.
Our simulations were started with three initial

conditions:
(i) initial conformal time ηstart,
(ii) initial mean value of the field strength θ,
(iii) initial standard deviation σ.

Initial conformal time ηstart is determined by the time at
which domain walls are formed in the early Universe.
However, the initial time of the simulation must be earlier,
in order to smooth out the initial numerical fluctuations by
the field evolution. The time of the formation of a network
of domain walls can be determined from the evolution of
statistical quantities calculated in the simulation. Our
simulations were run with the initial conformal time equal
to ηstart ¼ cl where l is the lattice spacing.
Initial conditions cannot be deduced from the dynamics

of domain walls by itself and must be derived from a model
of the evolution of the early Universe (for example an
inflationary model). Hence, our results can also be thought
as a constraint on the space of models of the early Universe.
For each set of initialization conditions we run five

simulations on the lattice of the size of 5123 if the decay
time of the network is longer than 256 cl and only one
simulation on the lattice of the size of 5123 and four on
smaller lattices of the size 2563 otherwise. This choice is

FIG. 4. Shape of potentials obtained as solutions to the problem
(15) for various values of d3V and δV ¼ 0.0625.

FIG. 3. Shape of potentials obtained as solutions to the problem
(15) for various values of δV and d3V ¼ 0.
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motivated by the fact that, conservatively, the dynamic
range of lattice simulations with periodic boundary con-
ditions is bounded and conformal time needs to be smaller
than the size of the lattice (multiplied by the speed of the

light). On the other hand we cannot guarantee that decay
times longer than 512 are reliably computed, and networks
will not decay later than observed in simulations.
Fortunately, only a very small fraction of simulated cases

FIG. 5. Dependence of the decay time ηdec − ηstart on δV and d3V for initialization distribution with θ ¼ 0, σ ¼ 1 (top left), σ ¼ 0.25
(top right), σ ¼ 0.125 (bottom left), and σ ¼ 0.0625 (bottom right).
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are touched by this issue. The described five runs were the
base for analysis of statistical fluctuations of results
obtained from simulations which proved that they are
highly consistent.
In Fig. 5 we presented the length of the decay time of

networks as a function of parameters δV and d3V for
unbiased initial distributions with four different values of
the standard deviation σ ¼ 1, σ ¼ 0.25, σ ¼ 0.125, and
σ ¼ 0.0625. Blue regions in these plots were extrapolated
from simulations in which the evolution of networks ended
in the basin of the attraction of the global minimum of the
potential and red ones from networks decaying to the local
minimum. It can be deduced from plots of 5 that the main
factor determining the lifetime of networks is the difference
of values of the potential in its minima. A much smaller
effect, however still recognizable, is associated with the
asymmetry of potential around the local maximum para-
metrized in this case by d3V.
For wide initial distributions (σ ¼ 1), networks tend to

decay to the global minimum of the potential and only
networks in models with δV ¼ 0 decayed into an unstable
vacuum. These observations are in agreement with the
naive expectation that for wide distributions evolution of
the network will probe the shape of the potential at large
distance, especially around minima, more efficiently; thus,
the shape in the neighborhood of the maximum will not
take much effect. Decay times are slightly longer for
positive d3V, thus for models in which potential is steeper

on the side of the local minimum. This is again consistent
with the naive prediction that steepness of the potential
around the maximum opposite in the direction to the
evolution of the network may slow down the process of
the decay. With the decreasing width of the initial dis-
tribution this effect increases. Moreover, the range of
parameter δV for which networks decay to the unstable
vacuum increases.
Plots from Figs. 6 and 7 illustrate influence of bias in the

initial distribution. The estimated decay time of networks in
the function of degeneracy of minima δV of a potential and
the mean value θ of the field at the initialization is plotted in
Fig. 6 for two values of the standard deviation of the
initialization distribution σ ¼ 1 and σ ¼ 0.0625. It turns
out that the shift of the initial mean value of the field
strength from the position of the local maximum of the
potential determines the fate of the network. Even small
initial bias toward unstable vacuum makes the network
decay into this minimum. Moreover, for both wide and
narrow initial distributions the effect is nearly insensitive to
values of both δV and d3V if the network decays into
unstable vacuum, thus details of the shape of the potential
do not influence the evolution of the network. On the other
hand, if bias is in the direction toward the global minimum
of the potential and the initial distribution has large
standard deviation σ, only potentials with nearly degenerate
minima lead to long-living networks. For initial distribu-
tions with small standard deviations this effect is much

FIG. 6. Dependence of the decay time ηdecay − ηstart on δV and the mean value of initialization distribution θ with σ ¼ 1 (left panel) and
σ ¼ 0.0625 (right panel) for models with d3V ¼ 0.
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FIG. 7. Dependence of the decay time ηdecay − ηstart on d3V and the mean value of initialization distribution θ with σ ¼ 1 (left panel)
and σ ¼ 0.0625 (right panel) for models with δV ¼ 0.

FIG. 8. Dependence of the decay time ηdecay − ηstart on δV and the standard deviation of initialization distribution σ with θ ¼ 0 for
models with d3V ¼ 0 (left panel) and d3V ¼ 0.1 (right panel).
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smaller and decay time of networks depends mainly on the
initial value of the field strength θ. Finally, narrow
distributions lead to formation of long-living networks
only when they are very weakly biased.
Figure 7 shows dependence of the decayed conformal

time on the scale of asymmetry of the potential d3V and the
bias of initial distributions θ for large σ ¼ 1 and small σ ¼
0.0625 standard deviations. For both cases the final state of
the evolution is determined by the mean value of the field θ
at the initialization time. Lifetimes of networks are in both
cases nearly independent of asymmetry of the potential
with only a slight increase for nearly symmetric potentials.
Formation of long-living networks is possible only with
small bias of the initial field strength distribution.
Strong dependence on the bias we find is consistent with

our earlier studies [19–21] of the dynamics of domain walls
of the Higgs field. We could easily produce networks of
domain walls decaying into electroweak vacuum using
biased initial distributions even though this vacuum is
strongly disfavored by both the difference of values of the
effective potential and asymmetry of it around the local
maximum. We have shown that only a small dominance of
lattice sites belonging to the basin of attraction of the
electroweak vacuum is needed for ending decay of the
network in this vacuum for distributions centered around
symmetry preserving field strength equal to 0.
Finally, in Fig. 8 we have plotted the extrapolated

dependence of the decay time on the level of degeneracy
δV of the minima and the standard deviation σ of the
symmetric initial distribution of field strengths for poten-
tials symmetric and highly asymmetric around maximum.
The main effect of asymmetry in this case is the formation
of networks of domain walls that decay into unstable
vacuums for models with nearly degenerate minima. As
mentioned previously dependence of the decay time of
networks decaying into the global minimum of the poten-
tial on the difference of its values at minima δV is much
stronger than on the asymmetry of the potential around the
maximum described by d3V; thus, both plots in Fig. 8
present similar values. Furthermore, plots in Fig. 8 show
that the influence of δV on the stability of networks is
stronger for initial distributions with large standard devia-
tions σ.

V. DURATION OF SCALING REGIME

In order to deeper understand the issue of metastability
of simulated networks we studied the appearance of the so-
called scaling regime. The period of simple scaling of
average quantities such as surface area or averaged energy
of domain walls per Hubble horizon was recognized as an
attractor of the evolution of stable networks of topological
defects many years ago. In the scaling regime the number
of domain walls in the Hubble horizon stays nearly
constant; the sizes of domain and average curvature radius
of domain walls are of order of the Hubble horizon [9]. In

order to maintain these scaling properties domain walls
frequently interact with each other, changing their con-
figuration or collapsing into closed walls, to reduce their
energy.
It has been found [1–8,18] that if the network of domain

walls is unstable due to nondegeneracy of minima of the
potential, the evolution in the scaling regime ends when the
tension of walls no longer compensates for the pressure
produced by the difference of the potential energy density in
different vacua on opposite sides of walls and domains of
unstable vacuum (the onewith the vacuum expectation value
of the field corresponding to the minima of the potential
which is not the global one) collapse, leading to rapid decay
of the network. Thus, it is expected that the longer the
network will follow the scaling regime the longer it will live.
The VOS model derived from Nambu-Goto action has a

scaling solution representing this regime for both domain
walls and cosmic strings. For former VOS describes a time
evolution of average length scale L which is defined as:

L ≔
σwall
ρwall

; ð18Þ

where σwall is a surface energy density (tension) of domain
walls and ρwall is an energy density of walls averaged over a
patch of the Universe containing many of them. The second
variable in this model is the average velocity norm of
walls v. Equations of the VOS model take the form:

dL
dt

¼ ð1þ 3v2ÞHLþ FðvÞ
dv
dt

¼ ð1 − v2Þ
�
kðvÞ
L

− 3Hv

�
; ð19Þ

where H is value of the Hubble parameter and kðvÞ is an
effective parameter measuring influence of the Gauss
curvature of domain walls on their evolution. Another
effective parameter FðvÞ was introduced in order to
account for the energy lost of the network. Both kðvÞ
and FðvÞ as effective parameters need to be tuned by other
methods (mainly numerical simulations). Independently of
forms of kðvÞ and FðvÞ, the set of equations (19) has a
simple scaling solution

L ¼ ϵt; v ¼ const; ð20Þ

for the scale factor with power law dependence on
time a ∝ tλ.
According to (20), the average energy density of domain

walls ρwall during the scaling regime evolves as

ρwall ∝
σwall
t

: ð21Þ

Direct calculation of ρwall in numerical simulations is
complicated, because it requires integration in a direction
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perpendicular to the surface of the wall. When domain
walls are large compared to their width, their energy is
approximately proportional to their surface area Swall as:

ρwall ≈
σwallSwall
H−3 : ð22Þ

Furthermore, in numerical lattice simulation in order to
estimate Swall one computes the comoving area of walls
averaged over lattice volume:

A
V
¼ aðtÞSwall

H−3 ∝
aðtÞ
t

: ð23Þ

We calculated A according to algorithm presented in [54].
Finally, in the radiation domination epoch A scales as

A ∝ t−
1
2 ∝ η−1. Many numerical studies based on lattice

simulations confirmed the appearance of such scaling in the
evolution of domain walls [6,50,52–56,63,64]. Moreover,
using numerical simulations performed for simple models
with degenerated minima of the potential, the authors of
[58] estimated the proportionality coefficient

A
V
¼ Aη−1; ð24Þ

to be of the order of A ≃ 0.8� 0.1.
In order to capture this effect we perform a linear

regression and find the longest period such that the
evolution followed:

log

�
A
V

�
¼ −ν log ηþ logA; ð25Þ

where ν and logA were the fitted parameters. In our
numerical procedure we dynamically estimated the

beginning and the end of the scaling regime. We accepted
the period for which the score R2 of linear regression is
bigger than 0.8 with R2 given by:

R2 ¼
�
1 −

P
iðyi − ŷiÞ2P
iðyi − ȳÞ2

�
; ð26Þ

where yi is the value computed in simulations, ŷi is the
predicted value, and ȳ ¼ P

i yi.
The plot on the left panel of Fig. 9 shows the best

obtained fit (R2 closest to 1) and the one on the right panel
the worst fit that we accepted. The visual inspection of
these plots reveals that the main contribution to our quality
measure R2 come from edges of the fitted period. In our
procedure the end of scaling regime is effectively deter-
mined by the deviation from the linear relationship of
Eq. (25) saturating our bound on R2. On the other hand, we
do not want to restrict R2 to be too close to 1, because we
believe that early period when oscillations of surface area
appear (as visible in Fig. 9) should be included as a part of
the scaling regime.
Obtained fitted exponent ν of scaling behavior ranges

from ν ¼ 0.81 up to ν ¼ 1.0. The highest obtained value of
ν is in good agreement with predictions of semianalytical
VOS model while the lowest one corresponds to the
network decaying a bit slower than one expects from thin
walls approximation. However, many authors [2,54,55]
have noted that numerical simulations performed in the past
predict ν to be lower than 1 and even as low as ν ¼ 0.6,
mentioned in [55]. Scaling parameter A obtained by this
procedure ranges from 0.08 up to 0.34. These values are
smaller than the one calculated previously by the authors of
[58]. The probable cause of the discrepancy is asymmetry
of the potential in our simulations which destabilizes
domain walls in contrast to stable domain walls in the

FIG. 9. The evolution of conformal surface area of domain walls per unit volume A
V in function of conformal time η (blue) and the fitted

scaling behavior defined by Eq. (25) (orange) for the best (left panel) and the worst (right panel) fits obtained by the procedure described
in the main text. Vertical dashed lines correspond to the estimated beginning and end of the scaling regime.
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model with the symmetric potential studied in [58]. The
duration of the period to which we fitted scaling law from
Eq. (25) ranges from 8.5w up to 29.7w in units of the width
of walls w.
The described procedure performed on the data gathered

from lattice simulations revealed that only networks formed
from unbiased or weakly biased initial distributions enter the
scaling regime.Moreover, only small values of δV parameter
are allowed; thus, the approximated degeneracy of minima is
needed to observe the scaling behavior of the network. We
have not observed networks evolving in scaling regime in
models with a difference of values of the potential in minima
larger than δV ¼ 0.0625. Moreover, we have found that
networks formed from narrow initial distributions enter
scaling regime easier with smaller fluctuations of the
conformal surface area. In the case of wide distributions
with standard deviation σ ¼ 1, oscillations were so large that
we were not able to reliably determine the period of the
scaling regime.

VI. GRAVITATIONAL WAVES EMITTED FROM
DOMAIN WALLS

After the recent discovery of GWs in collaborating LIGO
and Virgo [59] experiments, the direct detection of pri-
mordial GWs emitted from cosmological sources is widely
discussed. Gravitational waves are a new unique source of
information about the early Universe. After emission they
interact very weakly with other constituents of the Universe
and simply continue to propagate until present time. Thus,
they still carry direct information about the processes which
produced them.
Topological defects are one of the possible sources of

GWs. During the decay of the network, energy density
stored in defects is transferred to other degrees of freedom
including GWs. In order to determine if GWs produced by
domain walls can be observed in current or future detectors
one needs to estimate their strength and frequencies. In the
case of possible detection, its distinction form signal
produced by other sources will rely on our knowledge
of the shape of the spectrum.
However, direct calculation of the spectrum of GWs in

lattice simulations encounters many complications. The
algorithm of PRS [54] cannot be used, because the
modification of the equation of motion disturbs the dynam-
ics of the short wavelength fluctuations. For the unmodified
eom the width of domain walls decreases as ∝ a−2. This
effect significantly restricts the dynamical range of the
simulation. Moreover, as noted in [58], the algorithm
presented there which is widely used produces a spectrum
that diverges as k3 for random initialization of the field
strength. An insufficient number of small wave vectors
fitting into finite lattice is another problem. Our experience
shows that currently available methods are not precise
enough to fully track the subtle effect of asymmetry of the
potential on the shape of the spectrum of GWs.

Thus, in this paper we limit our research to estimation of
the influence of asymmetry of the potential on the peak
frequency and the amplitude of the spectrum of GWs based
on the semianalytical approximation. We postpone direct
calculation of the spectrum for future work. With that said,
we expect that the complete spectra could carry interesting
information on the main reason for the rapid decay of the
network. Features of the potential have been shown to
influence the GW spectra produced by bubble collisions in
first order phase transitions [65], which is a related system.
In fact, the GW spectra we show here are identical to the
ones produced with the envelope approximation [66] first
envisaged as an approximate description of bubble colli-
sions taking place in a first order phase transition.
We are interested in the spectrum of GWs’ energy

density ρGW per unit logarithmic frequency interval as a
fraction of the critical density ρc:

ΩGWðηÞ ≔
1

ρcðηÞ
dρGW
d log jkj ðη; kÞ: ð27Þ

During scaling regime domain walls’ averaged energy
density decreases with expansion slower than energy
density of the radiation, especially GWs. Thus, one expects
that the peak of the spectrum of the waves emitted from
domain walls will be located at the frequency correspond-
ing to the Hubble scale around the time of the decay of the
network [58]. For nearly degenerate minima one can
estimate the energy density of GWs at the peak using
the semianalytic expression [58,60]:

ΩGWðηdecÞjpeak ¼
ϵ̃GWA2σwall

2

24πHdec
2MPl

4
; ð28Þ

where ϵ̃GW is the efficiency parameter determined in
numerical simulations of λϕ4 model [60] to be equal to
ϵ̃GW ≃ 0.7. In our computations we assume that ϵ̃GW in
considered models does not differ much from the value
computed previously and should be of order Oð1Þ.
Tension σwall (energy density per unit surface area) of

domain walls for considered models calculated according
to the algorithm presented in Sec. III A manifests weak
dependence on parameters δV and d3V of our family of
potentials. For the models in question σwall changes
slightly, ranging from 51.0w−3 up to 102.3w−3.
Peak amplitude given by (28) corresponds to the value at

the time when the network decays. Redshifting the value up
to today we find [67]

ΩGWðη0Þ ¼
�
aðηdecÞ
aðη0Þ

�
4
�
HðηdecÞ
Hðη0Þ

�
4

ΩGWðηdecÞ

¼ 1.67 × 10−5h−2
�

100

g�ðηdecÞ
�1

3

ΩGWðηdecÞ: ð29Þ

Using this to rewrite (28) the amplitude of the peak of the
GW spectrum measured today can be estimated as:
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ΩGWðη0Þjpeak ¼ 4.6 × 10−81A2

�
GeV
Hdec

�
2

×
�
σwall
GeV3

�
2

h−2
�

100

g�ðηdecÞ
�1

3

: ð30Þ

In addition, we have to calculate the present day
frequency of the peak. The wavelength λðηÞ of the GW
with the comoving wave vector k at the conformal time η
satisfies:

kaðηÞ−1λðηÞ ¼ 2π: ð31Þ

Equating k
2π from Eq. (31) for the time of the decay ηdec and

the present time η0 we estimated the redshift of the wave
frequency to be equal to:

f0jpeak ¼
aðηdecÞ
aðη0Þ

Hdec ¼ 1.63 × 102
�
Hdec

GeV

�1
2

Hz; ð32Þ

where we assume that the wavelength of the peak is equal to
the Hubble radius λdec ¼ Hdec

−1. We performed our sim-
ulations assuming that the evolution of domain walls took
place during the radiation domination era; thus, the lowest
value of Hdec for which our numerical results are reliable
corresponds to matter-radiation equality HEQ which gives
the lower bound on the frequency of the peak to be of the
order of f0jpeak ≳ 10−16 Hz.
Finally, it is convenient to express both Eqs. (30) and

(32) in terms of the lifetime of the network ηdec and the
width of domain walls w:

ΩGWðη0Þjpeak ¼ 0.29 × 10−77A2

×
�
ηdec
w

�
4
�
σwall
w−3

�
2
�
GeV−1

w

�
4

; ð33Þ

f0jpeak ¼ 3.3 × 101
�

w
ηdec

��
GeV−1

w

�1
2

Hz; ð34Þ

where we have assumed the scale factor dependence on
conformal time given by the Eq. (16) with ηstart ¼ cl ¼
0.04w, as in our lattice simulations.Thus,we see that both the
peak frequency and amplitude decrease as the width of
domain walls increases. On the other hand, with increasing
lifetime of the network the amplitude of the peak increases
and the frequency decreases.
We have estimated overall factors present in Eqs. (33)

and (34) based on values of A, ηdec obtained in simulations
in which networks entered scaling regime and previously
computed σwall. The maximal value of the prefactor in
Eq. (33) obtained in this way is equal to:

Ωmax
GWðη0Þjpeak ¼ 0.1 × 10−66

�
1 ℏc
GeV

w

�4

; ð35Þ

fmax
0 jpeak ¼ 0.7

�
1 ℏc
GeV

w

�1
2

Hz; ð36Þ

where the frequency of the peak for this network is denoted
as fmax

0 . On the other hand, the minimal prefactor computed
from data from simulations is equal to:

FIG. 10. The blue band shows hypothetical peak amplitudes of GWs emitted from cosmological domain walls as a function of the
peak frequency f. The width of the band comes from the possible range on the prefactor controlling the amplitude of the signal [see
Eqs. (35) and (37)]. The shape of the spectra peaking in the allowed region is indicated by the dashed blue lines. These should be
compared to predicted sensitivities of currently operating and planned detectors LIGO [68–71], LISA [72,73], AEDGE [74], AION-
1 km [75], ET [76,77], as well as the upper bound induced by the CMB/BBN [78,79].
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Ωmin
GWðη0Þjpeak ¼ 0.6 × 10−68

�
1 ℏc
GeV

w

�4

; ð37Þ

fmin
0 jpeak ¼ 1.3

�
1 ℏc
GeV

w

�1
2

Hz: ð38Þ

These predictions for the peak amplitude and its peak
frequency are shown in Fig. 10 together with sensitivities of
current and proposed detectors of GWs. The main differ-
ence between our results and the typical assumption of a
scaling network comes from the impact of the short lifetime
ηdec in Eq. (34). It is common in the literature to assume the
network decays just before dominating the expansion
which gives the largest possible abundance and much
lower peak frequency. In our results we can see instead
that only a very energetic network is capable of producing a
strong signal. This very energetic network, however, has to
be created at an appropriately high energy scale and the
corresponding peak frequency is also very high.
Detection of GWs emitted from domain walls in models

with asymmetric potentials is a daunting task. Frequencies
below 1 kHz in which interferometer based detectors are
sensitive correspond to domain walls with energy below
106 GeV which produce an extremely weak signal. A
stronger signal can come from domain walls at a much
higher energy scale, for example, theGUT scale∼1015 GeV.
However, then the signal is characterized by a much higher
peak frequency around 1 MHz–1 GHz. Even though certain
mechanisms for detectingGWsat veryhigh frequencieswere
proposed [80], their predicted reach in terms of abundance is
still above the current lower bounds coming from CMB and
Big Bang Nucleosynthesis (BBN) observations making
detection of GWs produced by domain walls extremely
difficult

VII. CONCLUSIONS

In this paper we investigated the dependence of the
stability of cosmological domain wall networks on the
shape of the potential and the initial probability distribution
of the field strength. Our main aim was to determine how
the following four factors influenced the evolution of the
networks:

(i) difference of values of the potential at minima,
(ii) asymmetry of potential around local maximum

separating minima,
(iii) width of the initial distribution of the field strength,
(iv) bias (shift with respect to position of the local

maximum) of the initial distribution.
We identified the relative importance of these factors on the
lifetime of the networks. The effects of some of these
factors were studied in the past [5–8,81]; however, broad
analysis was performed for the first time. Moreover, the
shape of the potential around the local maximum was

mentioned as a factor that can influence the stability of the
network [6], but this hypothesis was not verified until now.
In order to study the influence of the shape of the

potential on the dynamics of the network, we extended the
typically used toy quartic potential. We constructed a
family of potentials whose shape around the potential
barrier and the level of degeneracy of minima can be set
independently. We parametrized these features as the value
of the third derivative at the local maximum separating
minima denoted as d3V and the difference of values of the
potential at minima denoted as δV. The width of walls
which determines the energy scale of the problem is
constant in this family; thus, the evolution of networks
for all the potentials in the family can be directly compared.
We studied the evolution of networks of domain walls in

models given by potentials from the constructed family
using lattice simulations based on the constant width PRS
algorithm. After preforming thousands of simulations we
were able to determine how the above mentioned factors
influence the evolution of the networks. Results of our
simulations allowed us to estimate the relative importance
of these factors.
We found that the final state of the decay of the network

is determined by the bias of the initial probability distri-
bution. Even though other factors can shorten or enlarge the
lifetime of the network, the excess of lattice points
belonging to one of the basins of attraction of minima
of the potential drive the evolution of domain walls into the
corresponding vacuum.
When the initial distribution is symmetric with respect to

the position of the local maximum, the fate of the network
is determined mainly by the difference of values of the
potential in the minima. We observed decay into the
vacuum corresponding to the minimum with the higher
value of the potential, only for potentials with nearly
degenerated minima. As one may expect, asymmetry of
the potential around local maximum which pushed the
evolution of these networks toward an unstable vacuum has
a stronger effect for narrower, more condensed around the
local maximum, initial distributions. On the other hand,
when minima of the potential are nearly degenerate,
asymmetry around its local maximum toward a higher
energy minimum may stabilize networks decaying into this
vacuum for weakly biased initial distributions.
Even with the bias of initial distribution, the difference of

values of the potential at minima and asymmetry of
potential around the local maximum are listed together
in the literature as factors affecting the stability of net-
works, they are not equally important. Our numerical
simulations prove that a hierarchy of the strength of the
influence produced by these factors does exist. In the past
the importance of the asymmetry of initial distribution was
recognized. However, the strength of its influence on the
stability of domain walls in comparison to the difference of
the values of potential in minima was underestimated, since
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nearly symmetric potentials were considered in early
studies. We have shown that initial bias can trigger decay
into the local minimum of the potential, even when it is
highly disfavored by the shape of the potential. Moreover,
the details of the shape turned out to affect the stability of
networks weaker than expected, and it is the energy
difference between the minima that determines the leading
effect.
In order to better understand the issue of the metasta-

bility of networks of domain walls, we extended our studies
by searching for signs of so called scaling regime which
was recognized as an attractor solution of the evolution of a
network of topological defects early in the history of
studies of these objects [82]. It is characterized by the
simple scaling of averaged statistical variables such as the
surface area of domain walls averaged over volume with
respect to expansion of the Universe. During this regime
domain walls interact frequently with each other preserving
the scaling behavior, leaving nearly constant the number of
walls in each Hubble horizon. Long-living networks are
expected to enter this regime. Metastable networks may
stay in it for a very long time, until they rapidly, com-
pletely decay.
Our numerical procedure for finding the simple power-

law scaling of the conformal surface area of walls in the
function of the conformal time has revealed that only a
small fraction of simulated networks entered the scaling
regime. We have found that the bias of the initial proba-
bility distribution of the field strength prevents scaling.
Moreover, only models with potentials with nearly degen-
erated minima allow the evolution of the network in the
scaling regime.
We have computed the exponent ν of the power law

describing the evolution of networks in the scaling regime.
For performed simulations it ranges from ν ¼ 0.8 up to
ν ¼ 1. Obtained values are consistent with those men-
tioned in the literature [2,5,54,55]. Moreover, we have
determined the scaling parameter A describing scaling of
the averaged domain walls’ energy density. From data
gathered in our simulations we estimated A to be in the
range 0.08–0.34. These values are smaller than the one
obtained by the authors of [58]. The possible source of the
discrepancy is the instability of domain walls in models
studied in this paper. In [58] stable domain walls in the
model with exactly symmetric potentials and initial
distributions were simulated.
Using semianalytical expressions for amplitude and

location of the peak in the spectrum of GWs emitted from
domain walls we have estimated these quantities using A
computed from data gathered in our numerical simulations.
We have found that domain walls in models with asym-
metric potentials would produce extremely weak signals at
frequencies below 1 kHz which is an upper bound on the
sensitivity of current and planned interferometer detectors.

It is well known that in order to produce the signal
observable in currently running detectors domain walls
have to be metastable with a long decay time of the order
≳106 − 107 w

c in the units of walls’ width w [58]. As we
have shown, asymmetry of the potential destabilizes the
networks of domain walls; thus, such long lifetime is
excluded when asymmetry of the potential is not fine tuned
to be extremely small.
Producing long-living networks of domain walls may

seem not too problematic because the symmetry of the
potential can be naturally protected by the symmetry of the
model. However, it was realized in the past [2,6,55,81] (and
we have confirmed this observation) that the bias of the
initial distribution of the field strength toward one of
minima of the potential destabilize the network. Forcing
the initial distribution of the field to be centered at the local
maximum separating the minima is far less obvious and
depends on the processes responsible for fluctuations of
the field.
For example, it is well known that inflation produces

superhorizon fluctuations which are nearly Gaussian.
However, the mean value of the distribution is not affected
by the process and is determined by the preinflationary
evolution of the field. Thus, producing the metastable
network of domain walls living long enough to produce
GWs signal in sensitivity range for interferometer detectors
can be much more unnatural than is commonly believed.
On the other hand, even short living networks can

produce a GW signal with appreciable abundance if their
energy scale is high enough (or in other words width w is
small enough). However, then the frequency of the peak of
the spectrum is 107 Hz or more, well above the sensitivity
range of current and planned detectors making detection of
GWs produced by domain walls at very high frequencies
also a very difficult prospect.
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APPENDIX A: ANALYTICAL SOLUTION OF
DOMAIN WALL PROFILE AND ITS WIDTH

In this Appendix we will describe our general setup in a
simple model (4). The eom derived from (4) in the
Minkowski gravitational background takes the form:
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∂2ϕ

∂t2 − Δϕ ¼ −
∂V
∂ϕ ¼ 4V0

�
ϕ2

ϕ0
2
− 1

�
ϕ

ϕ0
2
: ðA1Þ

We are interested in a time independent solution (soliton
solution). We will consider planar walls, i.e., solutions with
the translational symmetry in two space dimensions.
Assuming ϕðt; x; y; zÞ ¼ φðxÞ, our Lagrangian density
(4) simplifies to

L ¼ −
1

2
φ02 − VðφÞ ¼ −

1

2
φ02 − V0

�
φ2

ϕ0
2
− 1

�
2

; ðA2Þ

where the prime is a derivative with respect to x. This
Lagrangian density has the translational symmetry in x and
the corresponding conservation law. The associated con-
served quantity is

E ¼ 1

2
φ02 − VðφÞ ¼ 1

2
φ02 − V0

�
φ2

ϕ0
2
− 1

�
2

: ðA3Þ

Using conservation of E we get first-order differential
equation:

φ0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEþ VðφÞÞ

p
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
Eþ V0

�
φ2

ϕ0
2
− 1

�
2
�s
; ðA4Þ

which can be easily integrated,

xðφ2Þ−xðφ1Þ¼�
Z

φ2

φ1

dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEþVðφÞÞp

¼�
Z

φ2

φ1

dφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
EþV0

�
φ2

ϕ0
2−1

�
2
�s ; ðA5Þ

for appropriate values of ϕ1 and ϕ2. Choosing x1 ¼ ϕ1 ¼ 0
we get our soliton solution

φðxÞ ¼ ϕ0 tanh

� ffiffiffiffiffiffiffiffi
2V0

p
ϕ0

x

�
¼ ϕ0 tanh

�
πx
w0

�
; ðA6Þ

where w0 ¼ πϕ0ffiffiffiffiffiffi
2V0

p is a width of the wall. We can also

calculate surface potential energy, using

σðx1; x2Þ ≔
Z

x2

x1

VðφðxÞÞdx

¼
Z

φðx2Þ

φðx1Þ

VðφÞdφffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEþ VðφÞÞp : ðA7Þ

Most of the energy of the wall is concentrated at distances
of the order of w0 from the center of the wall,

σð− w0

2
; w0

2
Þ

σð−∞;∞Þ ≈ 97%: ðA8Þ

This justifies the estimation of the domain wall thickness
by the quantity w0.

APPENDIX B: PARAMETERS OF MODEL OF
ASYMMETRIC POTENTIALS

Table I contains parameters b, d, and V0 of potentials of
the form given by the Eq. (9) determined as a solution of the
set of Eqs. (15). Potentials with parameters specified by
Table I were used in our lattice simulations in order to
model generic asymmetric potentials.

TABLE I. Numerical solutions to the set of equations (15).

d3V δV b d V0

−0.00625 0.015625 1.04147 0.016248 0.40925
0.00625 0.015625 1.04634 0.025830 0.40663
−0.00625 0.0625 1.17135 0.069358 0.32248
0.00625 0.0625 1.17694 0.079796 0.32011
−0.00625 0.25 1.53108 0.17416 0.22488
0.00625 0.25 1.53817 0.18552 0.22294
−0.00625 0.0 0.997988 −0.0040296 0.51818
−0.00625 0.0 0.997988 −0.0040296 0.51818
−0.00625 1.0 2.17968 0.28832 0.14973
0.00625 1.0 2.18968 0.30110 0.14819
−0.025 0.015625 1.03424 0.0019283 0.41318
0.025 0.015625 1.05372 0.040261 0.40269
−0.025 0.0625 1.16309 0.053830 0.32602
0.025 0.0625 1.18545 0.095588 0.31654
−0.025 0.25 1.52066 0.15739 0.22777
0.025 0.25 1.54904 0.20285 0.21999
−0.025 0.0 0.991992 −0.016099 0.52237
−0.025 0.0 0.991992 −0.016099 0.52237
−0.025 1.0 2.16513 0.26964 0.15200
0.025 1.0 2.20516 0.32082 0.14585
−0.1 0.015625 1.00623 −0.054847 0.42873
0.1 0.015625 1.08424 0.098838 0.38681
−0.1 0.0625 1.13134 −0.0069446 0.33999
0.1 0.0625 1.221 0.16062 0.30207
−0.1 0.25 1.48133 0.093279 0.23905
0.1 0.25 1.59554 0.27625 0.20786
−0.1 0.0 0.968597 −0.064163 0.53900
−0.1 0.0 0.968597 −0.064163 0.53900
−0.1 1.0 2.11155 0.20006 0.16068
0.1 1.0 2.27404 0.40755 0.13590
0.0 0.015625 1.0439 0.021035 0.40794
0.0 0.0625 1.1741 0.074568 0.32129
0.0 0.25 1.5346 0.17982 0.22391
0.0 1.0 2.1847 0.29467 0.14896
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