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We go forward in completing the Standard Model of the Universe back in time with Planckian and trans-
Planckian physics before inflation in agreement with observations, classical-quantum gravity duality, and
quantum space-time. The quantum vacuum energy bends the space-time and produces a constant curvature
de Sitter background. We link the de Sitter Universe and the cosmological constant to the (classical and
quantum) harmonic oscillator. We find the quantum discrete cosmological levels: size, time, vacuum
energy, Hubble constant, and gravitational (Gibbons-Hawking) entropy and temperature from the very
early trans-Planckian vacuum to the classical vacuum energy today. For each level n ¼ 0; 1; 2;…, the two
post- and pre-(trans)-Planckian phases are covered: In the post-Planckian Universe tplanck ≡ tP ≤
t ≤ 1061tP, the levels (in Planck units) are Hubble constant Hn ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp
, vacuum energy

Λn ¼ 1=ð2nþ 1Þ, and entropy Sn ¼ ð2nþ 1Þ. As n increases, radius, mass, and Sn increase, Hn and
Λn decrease, and consistently the Universe classicalizes. In the pre-Planckian (trans-Planckian) phase

10−61tP ≤ t ≤ tP, the quantum levels are HQn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp
, ΛQn ¼ ð2nþ 1Þ, and SQn ¼ 1=ð2nþ 1Þ, Q

denoting quantum. The n levels cover all scales from the far past highest excited trans-Planckian level
n ¼ 10122 with finite curvature, ΛQ ¼ 10122, and minimum entropy SQ ¼ 10−122; n decreases till the
Planck level (n ¼ 0) with Hplanck ¼ 1 ¼ Λplanck ¼ Splanck and enters the post-Planckian phase, e.g.,

n ¼ 1; 2;…, ninflation ¼ 1012;…, ncmb ¼ 10114;…, nreoin ¼ 10118;…, and ntoday ¼ 10122, with the most

classical value Htoday ¼ 10−61, Λtoday ¼ 10−122, and Stoday ¼ 10122. We implement the Snyder-Yang
algebra in this context, yielding a consistent group-theory realization of quantum discrete de Sitter space-
time, classical-quantum gravity duality symmetry, and a clarifying unifying picture.

DOI: 10.1103/PhysRevD.104.123517

I. INTRODUCTION AND RESULTS

Planckian and trans-Planckian energies are theoretically
allowed and physically motivated, too; the Universe and its
very early stages have all the quantum conditions for such
extreme quantum gravitational regimes and energies, and
black hole interiors, too. The truly quantum gravity domain
is not reduced to be fixed at the Planck scale or the
neighborhoods of it but extends deep beyond the Planck
scale in the highly quantum trans-Planckian range.
In this paper, we go forward in completing the Standard

Model of the Universe back in time with Planckian and
trans-Planckian physics before inflation, in agreement with
observations, classical-quantum gravity duality, and quan-
tum space-time in this context.
Quantum theory is more complete than classical theory

and tells us what value a classical observable should have.
The classical-quantum (or wave-particle) duality is a robust

and universal concept (it does not depend on the nature or
number of space-time dimensions, compactified or not, nor
on particular space-time geometries, topologies, or sym-
metries, nor on other a priori conditions). Moreover, the
quantum trans-Planckian eras in the far past Universe
determine the post-Planckian eras, e.g., the inflation and
the cosmological vacuum energy until dark energy today,
namely, the evolution from the quantum very early phases
to the semiclassical and classical phases and the arrow of
time as determined by gravitational entropy.
The complete Universe is composed of two main phases,

the Planck scale being the transition scale: the quantum
pre-Planckian or trans-Planckian phase 0 < 10−61tP ≤
t ≤ tP and the semiclassical and mostly classical post-
Planckian Universe tP ≤ t ≤ ttoday ¼ 1061tP, tP being the
Planck time. The pre-Planckian era could be tested indi-
rectly through its post-Planckian observables, e.g., primor-
dial graviton signals, inflation, and the cosmic microwave
background (CMB) till dark energy today. This framework
provides, in particular, the gravitational entropy and*https://chalonge-devega.fr/sanchez.
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temperature (classical, semiclassical, and quantum) in dif-
ferent cosmological regimes and eras [1,2], in particular,
the Gibbons-Hawking entropy and temperature. Interesting
too (and related) are the classical and quantum cosmologi-
cal vacuum energy values ðΛ;ΛQÞ dual of each other: For
instance, the quantum ΛQ obtained from the classical-
quantum (or wave-particle) duality approach turns out to be
the saddle point obtained from the quantum gravity path
integral Euclidean approach, which action is the well-
known Gibbons-Hawking de Sitter entropy, showing the
consistency of the results [1,2].
The huge difference between the observed value of

the cosmological classical vacuum energy Λ today and
the theoretically evaluated value of the quantum particle
physics vacuum ΛQ must correctly and physically be like
that, because the two values correspond to two huge different
physical vacua and eras. The observed Λ value today
corresponds to the classical, large, and dilute (mostly empty)
Universe today (termed voids and supervoids in cosmologi-
cal observations and termed vacuum space-time in classical
gravitation), and this is consistent with the very low observed
Λ vacuum value (10−122 in Planck units), while the com-
puted quantum value ΛQ corresponds to the quantum, small,
and highly dense energetic Universe in its far (trans-
Planckian) past, and this is consistent with its extremely
high, trans-Planckian, value (10122 in Planck units). As is
well known, the theoretical valueΛQ ≃ 10122 is clearly trans-
Planckian; this value corresponds to and fits correctly the
value of ΛQ in the far past trans-Planckian era and its phy-
sical properties: quantum size and time 10−61, quantum
(Gibbons-Hawking) temperature 1061, and entropy 10−122.
Consistently too, the trans-Planckian era provides the
quantum precursor of inflation from which the known classi-
cal and semiclassical inflation era, and its CMB observables
and quantum corrections are recovered in agreement with the
set of well-established cosmological observations.
Starting from quantum theory to reach the Planck scale

and trans-Planckian domain (instead of starting from
classical gravity by quantizing general relativity) reveals
successful novel results, “quantum relativity” and quantum
space-time structure [1–3]. Beyond the classical-quantum
duality of the space-time, the space-time coordinates
can be promoted to quantum noncommuting operators.
Comparison to the harmonic oscillator and global phase
space is enlightening. The hyperbolic quantum space-time
structure generates the quantum light cone. The classical
space-time null generators X ¼ �T disappear at the
quantum level due to the relevant ½X; T� commutator, which
is always nonzero, and a new quantum vacuum region
beyond the Planck scale emerges.
In this paper, we analyze the new vacuum quantum

region inside the Planck-scale hyperbolas which delimitate
the quantum light cone. The effect of the zero-point
(vacuum) quantum energy bends the space-time and
produces a constant curvature de Sitter background. We

find the quantum discrete levels in the cosmological
vacuum trans-Planckian region and in the post-Planckian
one. The quantum light cone is generated by the quantum
Planck hyperbolas X2 − T2 ¼ �½X; T� due to the quantum
uncertainty ΔXΔT or nonzero commutator ½X; T�, the
classical light cone generators X ¼ �T being a particular
case of it. This generalizes the classical known space-time
structure and reduces to it in the classical case (zero
quantum commutators). In higher D space-time dimen-
sions, the quantum noncommuting space and time coor-
dinates ðX; TÞ and the transverse commuting spatial
coordinates X⊥j generate the quantum two-sheet hyper-

boloid X2 − T2 þ X⊥jX
j
⊥ ¼ �1; j ¼ 2;…ðD − 2Þ.

Interestingly enough, the quantum space-time structure
turns out to be discretized in quantum hyperbolic levels.
For times and lengths larger than the Planck time and length
ðtP; lPÞ, the levels are ðX2

n; T2
nÞ ¼ ð2nþ 1Þ, n ¼ 0; 1; 2;…

(in Planck units), (Xn, Tn) and the mass levels beingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp
. The discrete allowed levels from the quantum

Planck scale ðXn; TnÞ ¼ 1 (n ¼ 0) and the quantum levels
(low n) until the quasiclassical and classical ones (inter-
mediate and large n) tend asymptotically (very large n) to a
continuum classical space-time. In the trans-Planckian
domain—times and lengths smaller than the Planck
scale—the ðXn; TnÞ levels are 1=ð2nþ 1Þ1=2, the most high
n being the more excited quantum and trans-Planckian ones.
For each level n ¼ 0; 1; 2;…, the two post- and pre-

(trans-)Planckian phases are covered: In the post-Planckian
Universe tP ≡ tplanck < t ≤ ttoday ¼ 1061tP, the levels (in
Planck units) for the Hubble constant Hn, vacuum energy
Λn, and gravitational (Gibbons-Hawking) entropy Sn are,
respectively,

Hn ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
; Λn ¼ 1=ð2nþ 1Þ;

Sn ¼ ð2nþ 1Þ; n ¼ 0; 1; 2;…: ð1:1Þ

As n increases, the radius and mass increase, Hn and Λn
decrease, Sn increases, and consistently the universe clas-
sicalizes. In the pre-Planckian (trans-Planckian) phase
10−61tP ≤ t ≤ tP, the quantum trans-Planckian levels (Q
denoting quantum) are

HQn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
; ΛQn ¼ ð2nþ 1Þ;

SQn ¼ 1=ð2nþ 1Þ; n ¼ 0; 1; 2;…: ð1:2Þ

The scalar curvature levels in the respective phases
are RQn ¼ ð2nþ 1Þ and Rn ¼ 1=ð2nþ 1Þ. The n levels
cover all scales from the remote past highly excited trans-
Planckian level n ¼ 10122 with maximum curvature
RQ ¼ 10122, vacuum ΛQ ¼ 10122, and minimum entropy
SQ ¼ 10−122; n decreases, passing the Planck level
n ¼ 0—Hplanck ¼ 1 ¼ Λplanck ¼ Splanck—and enters the
post-Planckian phase—n ¼ 1; 2;…, ninfl ¼ 1012;…,
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ncmb ¼ 10114;…, nreion ¼ 10118;…, ntoday ¼ 10122—with
the most classical value Htoday ¼ 10−61, Λtoday ¼ 10−122,
and Stoday ¼ 10122.
The space-time (the arena of events) in the quantum

domain is described by a quantum algebra of space-time
position and momenta. We implement the Snyder-Yang
algebra in the cosmological context, thus yielding a con-
sistent group-theory realization of quantum discrete de
Sitter space-time, classical-quantum gravity duality, and its
symmetry with a clarifying unifying picture: Our complete
(classical and quantum) length LQHðlP; LHÞ ¼ LQ þ LH ¼
lPðLH=lP þ lP=LHÞ, where LH is the classical Universe
radius and LQ ¼ l2P=LH is its quantum size (the Compton
length), turns out to be the appropriate length for the two-
parameter Snyder-Yang algebra, thus providing a quantum
operator realization of the complete de Sitter Universe
including the quantum trans-Planckian and classical late de
Sitter phases.
This paper is organized as follows: In Sec. II, we describe

the Standard Model of the Universe extended back in
time before inflation, thus covering its different phases:
classical, semiclassical, and quantum—Planckian and trans-
Planckian—domains and their properties including the
gravitational entropy and temperature. Section III summa-
rizes our arguments, clarifying the cosmological constant
problem as a vacuum energy and the gravitational entropy
precisely covering the quantum (trans-Planckian and
Planckian), the semiclassical, and the classical gravitational
regimes. Sections VI–X include genuinely new material and
the new results of the current manuscript: In Secs. IVand V,
we describe the classical, quantum dual, and complete de
Sitter Universe covering the different de Sitter regimes.
Sections VI and VII show the link of the de Sitter Universe
and the cosmological constant to the harmonic oscillator.
Section VIII shows the link of the space-time structure to the
phase space (classical and quantum) harmonic oscillator
and describes the quantum space-time discrete levels. In
Secs. VIII and IX, we find the quantum discrete levels of
the Universe: size, time, vacuum energy, Hubble constant,
entropy, and their properties from the very early trans-
Planckian phase to dark energy today. In Sec. X, we describe
the Snyder-Yang algebra as a group-theory realization of
quantum discrete de Sitter space-time and of classical-
quantum gravity duality symmetry. Section XI provides
discussion and clarification on the results of this approach, in
particular, the time discrete levels and those of the vacuum
energy, varying cosmological constant, and the cosmic
evolution in the context of quantum field theory (QFT).
Section XII summarizes remarks and conclusions and the
clarifying unifying picture we obtained.

II. THE STANDARD MODEL OF THE UNIVERSE
BEFORE INFLATION

The set of robust cosmological data (cosmic microwave
background, large-scale structure and deep galaxy surveys,

supernovae observations, measurements of the Hubble-
Lemaître constant, and other data) support the standard
(concordance) model of the Universe and place de Sitter
(and quasi–de Sitter) stages as a real part of it [4–10].
Moreover, the physical classical, semiclassical, and quan-
tum Planckian and trans-Planckian de Sitter regimes are
particularly important for several reasons:

(i) the classical, present time accelerated expansion of
the Universe and its associated dark energy or
cosmological constant in the era today: classical
cosmological de Sitter regime;

(ii) the semiclassical early accelerated expansion of the
Universe and its associated inflation era: semiclass-
ical cosmological de Sitter (or quasi–de Sitter)
regime (classical general relativity plus quantum
field fluctuations);

(iii) the quantum, very early stage preceding the inflation
era: Planckian and super-Planckian quantum era.
Besides its high conceptual and fundamental physics
interest, this era could be of realistic cosmological
interest for the test of quantum theory itself at such
extreme scales, as well as for the search of gravi-
tational wave signals from quantum gravity for
e-LISA [11], for instance, after the success of LIGO
[12,13]. In addition, this quantum stage should be
relevant in providing quantum precursors and con-
sistent initial states for the semiclassical (fast-roll
and slow-roll) inflation and their imprint on the
observable primordial fluctuation spectra, for in-
stance. Moreover, a novel result is that this quantum
era allows a clarification of dark energy as thevacuum
cosmological energy or cosmological constant.

(iv) de Sitter is a simple and smooth constant curvature
vacuum background without any physical singular-
ity; it is maximally symmetric and can be described
as a hyperboloid embedded in Minkowski space-
time with one more spatial dimension. Its radius,
curvature, and equivalent density are described in
terms of only one physical parameter: the cosmo-
logical constant.

The lack of a complete theory of quantum gravity (in
field and in string theory) does not preclude exploring and
describing quantum Planckian and trans-Planckian
regimes. Instead of going from classical gravity to quantum
gravity by quantizing general relativity (it is not our aim
here to review it), we start from quantum physics and its
foundational milestone—the classical-quantum (wave-
particle) duality—and extend it to include gravity and the
Planck-scale domain, namely, wave-particle-gravity duality
(or classical-quantum gravity duality) [1,14]. As a conse-
quence, the different gravity regimes are covered: classical,
semiclassical, and quantum, together with the Planckian
and trans-Planckian domain and the elementary particle
mass range as well. This duality is universal, as the wave-
particle duality does not rely on the number of space-time
dimensions (compactified or not) nor on any symmetry,

QUANTUM DISCRETE LEVELS OF THE UNIVERSE FROM THE … PHYS. REV. D 104, 123517 (2021)

123517-3



isometry, nor any other a priori condition. It includes the
known classical-quantum duality as a special case and
allows a general clarification from which physical under-
standing and cosmological results can be extracted. This is
not an assumed or conjectured duality.
The Standard Model of the Universe extended to earlier

trans-Planckian eras. The gravitational history of the
Universe before the inflation era and the current picture
can be extended by including the quantum precursor phase
within the Standard Model of the Universe in agreement
with observations. Quantum physics is more complete than
classical physics and contains it as a particular case: It adds
a new quantum Planckian and trans-Planckian phase of the
Universe from the Planck time tP until the extreme past
10−61tP, which is an upper bound for the origin of the
Universe, with energy HQ ¼ 1061hP; in a similar manner,
the present age is a lower bound to the (unknown)
future age.
The classical large dilute Universe today and the highly

dense very early quantum trans-Planckian Universe are
classical-quantum duals of each other in the precise mean-
ing of the classical-quantum duality. This means the
following: The classical Universe today UΛ is clearly
characterized by the set of physical gravitational magni-
tudes or observables (age or size, mass, density, temper-
ature, and entropy) ≡ðLΛ;MΛ; ρΛ; TΛ; SΛÞ:

UΛ ¼ ðLΛ;MΛ; ρΛ; TΛ; SΛÞ: ð2:1Þ

The highly dense very early quantum Universe UQ is
characterized by the corresponding set of quantum dual
physical quantities ðLQ;MQ; ρQ; TQ; SQÞ in the precise
meaning of the classical-quantum duality:

UQ ¼ ðLQ;MQ; ρQ; TQ; SQÞ; ð2:2Þ

UQ ¼ u2P
UΛ

; uP ¼ ðlP; mP; ρP; tP; sPÞ; ð2:3Þ

uP standing for the corresponding quantities at the funda-
mental constant Planck scale, the crossing scale between
the two main (classical and quantum) gravity domains. The
classical UΛ and quantum UQ Universe eras or regimes
(classical and semiclassical eras of the known Universe and
its quantum Planckian and trans-Planckian very early
phases) satisfy Eqs. (2.1)–(2.3). The total Universe UQΛ
is composed by their classical or semiclassical and quantum
phases:

UQΛ ¼ ðUQ þ UΛ þ uPÞ: ð2:4Þ

Subscript Λ—or, equivalently, H for Hubble Lemaître—
stands for the classical magnitudes, Q for quantum, and P
for the fundamental Planck-scale constant values.

In particular, the quantum dual de Sitter Universe UQ is
generated from the classical de Sitter Universe UΛ through
Eqs. (2.1)–(2.4): classical-quantum de Sitter duality. The
total (classical plus quantum dual) de Sitter Universe UQΛ
endows automatically a classical-quantum de Sitter sym-
metry. This includes, in particular, the classical, quantum,
and total de Sitter temperatures and entropies and allows
one to characterize in a complete and precise way the
different classical, semiclassical, quantum Planckian, and
super-Planckian de Sitter regimes.H stands for the classical
Hubble-Lemaître constant or its equivalent Λ ¼ 3ðH=cÞ2.
HQ (or ΛQ) stands for quantum dual and QΛ (or QH) for
the total or complete quantities including both.
The size of the Universe is the gravitational length LΛ ¼ffiffiffiffiffiffiffiffiffi
3=Λ

p
in the classical regime, it is the quantum Compton

length LQ in the quantum dual regime (which is the full
quantum Planckian and super-Planckian regime), and it is
the Planck length lP at the fundamental Planck scale: the
crossing scale. The total (or complete) size LQΛ is the sum
of the two components. Similarly, the horizon acceleration
(surface gravity) KΛ of the Universe in its classical gravity
regime becomes the quantum acceleration KQ in the
quantum dual gravity regime. The temperature TΛ, measure
of the classical gravitational length or mass, becomes the
quantum temperature TQ (measure of the quantum size or
Compton length) in the quantum regime. Consistently,
the Gibbons-Hawking temperature is precisely the quan-
tum temperature TQ. Similarly, the classical or semiclass-
ical gravitational area or entropy SΛ (Gibbons-Hawking
entropy) has its quantum dual SQ in the quantum gravity
(Planckian and trans-Planckian) regime. In Secs. III and
VIII, we discuss the concept of gravitational entropy and its
expressions in the different gravity regimes. The concept of
gravitational entropy is the same for any of the gravity
regimes: area=4l2P in units of kB. For a classical object of
size LΛ, this is the classical area AΛ ¼ 4πL2

Λ. For a
quantum object of quantum size LQ, this is the area
AQ ¼ 4πL2

Q:

AΛ ¼ aP

�
LΛ

λP

�
2

; AQ ¼ aP

�
λP
LΛ

�
2

¼ a2P
AΛ

; aP ¼ 4πl2P;

ð2:5Þ

aP being the Planck area. The corresponding gravitational
entropies SΛ and SQ are, respectively,

SΛ ¼ κB
4

AΛ

l2P
; SQ ¼ κB

4

AQ

l2P
; ð2:6Þ

and the total (classical and quantum) gravitational entropy
SQΛ is given by
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SQΛ ¼ 2

�
sP þ 1

2
ðSΛ þ SQÞ

�
; sP ¼ κB

4

aP
l2P

¼ πκB;

ð2:7Þ

sP being the Planck entropy.

III. CLASSICAL, SEMICLASSICAL,
AND QUANTUM VACUUM ENERGY

OF THE UNIVERSE

The classical Universe today UΛ is precisely a classical
dilute gravity vacuum dominated by voids and supervoids
as shown by observations [15–17] whose observed ρΛ or Λ
value today [6–10] is precisely the classical dual of its
quantum precursor values ρQ and ΛQ in the quantum very
early precursor vacuumUQ as determined by Eqs. (2.1) and
(2.2). The high density ρQ and cosmological constant ΛQ

are precisely the quantum particle physics trans-Planckian
value 10122. This is precisely expressed by Eqs. (2.1) and
(2.2) applied to this case:

Λ ¼ 3H2 ¼ λP

�
H
hP

�
2

¼ λP

�
lP
LH

�
2

¼ ð2.846� 0.076Þ × 10−122m2
P; ð3:1Þ

ΛQ ¼ 3H2
Q ¼ λP

�
hP
H

�
2

¼ λP

�
LH

lP

�
2

¼ ð0.3516� 0.094Þ × 10122h2P; ð3:2Þ

ΛQ ¼ λ2P
Λ
; λP ¼ 3h2P: ð3:3Þ

The quantum dual value ΛQ is precisely the quantum
vacuum value ρQ ¼ 10122ρP obtained from particle
physics:

ρQ ¼ ρP

�
ΛQ

λP

�
¼ ρ2P

ρΛ
¼ 10122ρP: ð3:4Þ

In the last rhs of Eqs. (3.1)–(3.3), the data from
Refs. [6–10] have been used, which we also link to the
gravitational entropy and temperature of the Universe.
The complete total vacuum energy density ρQΛ or ΛQΛ is
the sum of its classical and quantum components (corre-
sponding to the classical era today and its quantum
Planckian and trans-Planckian precursor):

ΛQΛ ¼ λP

�
Λ
λP

þ λP
Λ

þ 1

�
¼ λPð10−122 þ 10þ122 þ 1Þ:

ð3:5Þ

The observed Λ or ρΛ today is the classical gravity
vacuum value in the classical Universe UΛ today. Such an

observed value must be consistent in such a way because of
the large classical size of the Universe today LΛ ¼ ffiffiffiffiffiffiffiffiffi

3=Λ
p

and of the empty or vacuum dilute state today dominated by
voids and supervoids as shown by the set of large structure
observations [15–17]. This is one main physical reason for
such a low Λ value at the present age today 1061tP. Its
precursor value and density ΛQ and ρQ have a high super-
Planckian value precisely because this is a high density
very early quantum cosmological vacuum in the extreme
past 10−61tP of the quantum trans-Planckian precursor
phase UQ.
The quantum vacuum density ΛQ ¼ ρQ ¼ 10122 (in

Planck units) in the precursor trans-Planckian phase UQ

at 10−61tP (the extreme past) became the classical vacuum
density Λ ¼ ρΛ ¼ 10−122 in the classical Universe UΛ
today at 1061tP. The trans-Planckian value is consistent
in such a way because is an extreme quantum gravity
(trans-Planckian) vacuum in the extreme quantum past
10−61tP with minimal entropy SQ ¼ 10−122 ¼ Λ ¼ ρΛ.
Equations (3.1)–(3.5) concisely explain why the classical
gravitational vacuum Λ or ρΛ coincides with such an
observed low value 10−122 in Planck units and why their
corresponding quantum gravity precursor vacuum has such
an extremely high trans-Planckian value 10122. The
classical gravitational entropy SΛ today has precisely such
a high value:

SΛ ¼ sP

�
ρQ
ρP

�
¼ sP

�
λP
Λ

�
¼ sP × 10þ122; ð3:6Þ

SQ ¼ sP

�
ρΛ
ρP

�
¼ sP

�
Λ
λP

�
¼ sP × 10−122: ð3:7Þ

The total QΛ (classical and quantum) gravitational entropy
SQΛ derives from the general expression

SQΛ ¼ ðAQΛ=4l2lPÞkB;

where the total area

AQΛ ¼ 4πL2
QΛ ¼ 4πðLQ þ LΛÞ2

is expressed as AQΛ ¼ AQ þ AΛ þ 2aP. Recall that LQ ¼
l2P=LΛ and aP ¼ 4πl2P.
As a consequence,

SQΛ ¼ 2sP þ SΛ þ SQ ¼ 2sP

�
1þ 1

2
ð10þ122 þ 10−122Þ

�
;

ð3:8Þ

sP being the Planck entropy. The total QΛ gravitational
entropy turns out to be the sum of the three components as
it must be: classical (subscript Λ), quantum (subscript Q),
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and Planck value (subscript P) corresponding to the three
gravity regimes. The term 2sP arises from the duality
between the quantum and classical lengths LQ and LΛ
across the Planck scale. The factor 2 reflects the complete
QΛ covering, the Planck scale being the bordering or
crossing scale common to the two (classical and quantum)
Q and Λ domains.
The gravitational entropy SΛ of the present time large

classical Universe is a very huge number, consistent with
the fact that the Universe today contains a very huge
amount of information. Moreover, to reach such a huge
size and entropy today 10þ122, the Universe in its very
beginning should have been in a hugely energetic initial
vacuum 10þ122.
A whole picture.—Overall, a consistent unifying picture

of the gravitational cosmic history through its vacuum
energy does emerge from the extreme past quantum trans-
Planckian, Planckian, and post-Planckian phases—
semiclassical (inflation) and classical phases today and
their relevant physical magnitudes: size, age, gravita-
tional entropy, and temperature, all in terms of the vacuum
energy. This sheds light on inflation and dark energy.
The whole duration (of the trans-Planckian plus post-
Planckian eras) is precisely 10−61 ≤ t ≤ 10þ61 (in Planck
units tP ¼ 10−44 s). That is to say, each time component
naturally dominates in each phase: classical time compo-
nent 10þ61 in the classical era and quantum Planck time tP
in the quantum preceding era. The present time of the
Universe at 10þ61tP is a lower bound for the future (if any)
age of the Universe; the remote past quantum precursor
equal to 10−61tP is an upper bound for the origin of the
Universe. The known classical and semiclassical inflation
era which occurred at about 10þ6tP, H ¼ 10−6hP has a
preceding quantum era at 10−6tP, H ¼ 106hP which is, in
fact, a semiquantum era (“low H” with respect to the
extreme past trans-Planckian state H ¼ 1061hP) and, sim-
ilarly, for any of the other known eras in the classical post-
Planckian Universe: They have a corresponding quantum
precursor era in the trans-Planckian phase. This appears to
be the way in which the Universe has evolved.
The total or complete (classical plus quantum) physical

quantities are invariant under the classical-quantum duality:
H ↔ Q (or Λ ↔ Q) as it must be: This means physically
that (i) what occurred in the quantum phase before tP
determines through Eqs. (2.1)–(2.4) what occurred in the
classical phase after tP, and (ii) what occurred in the
quantum phase before the Planck time tP is the same
observable which occurred after tP but in a different
physical state in the precise meaning of Eqs. (2.1)–(2.4).
That is to say, the quantum quantities in the phase before tP
are the quantum precursors of the classical and semi-
classical quantities after tP. As the wave-particle duality
at the basis of quantum mechanics, the wave-particle-
gravity duality is reflected in all cosmological eras
and its associated quantities, temperatures, and entropies.

Cosmological evolution goes from a quantum trans-
Planckian vacuum energy phase to a semiclassical accel-
erated era (de Sitter inflation) and then to the classical
known eras until the present classical de Sitter phase.
The classical-quantum or wave-particle-gravity duality
specifically manifests in this evolution, between the differ-
ent gravity regimes, and could be viewed as a mapping
between asymptotic (in and out) states characterized by sets
UQ and UΛ and, thus, as a scattering-matrix description.

IV. CLASSICAL AND QUANTUM DUAL
DE SITTER UNIVERSES

de Sitter space-time in D space-time dimensions is the
hyperboloid embedded in (Dþ 1)-dimensional Minkowski
space-time:

X2−T2þXjXjþZ2 ¼ L2
H; j¼ 2;3;…ðD− 2Þ: ð4:1Þ

LH is the classical radius or characteristic length of the
de Sitter Universe. The scalar curvature R is constant.
Classically,

LH ¼ c=H; R ¼ H2DðD − 1Þ ¼ 2D
ðD − 2ÞΛ;

Λ ¼ H2

2
ðD − 1ÞðD − 2Þ:

A mass MH can be associated to LH or H, such that
(D ¼ 4 for simplicity)

LH ¼ GMH=c2 ≡ LG; MH ¼ c3=ðGHÞ: ð4:2Þ

The corresponding quantum dual magnitudes LQ and MQ

are, respectively,

LQ ¼ ℏ
MHc

¼ ℏGH
c3

¼ l2P
LH

; MQ ¼ ℏH
c2

¼ m2
P

MH
; ð4:3Þ

i:e:; LQ ¼ l2P
LH

; MQ ¼ m2
P

MH
; ð4:4Þ

lP and mP being the Planck length and Planck mass,
respectively:

lP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏG=c3

q
; mP ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
cℏ=G

p
: ð4:5Þ

The quantum dual Hubble constant HQ and the quantum
curvature RQ are, respectively,

HQ ¼ h2P=H; RQ ¼ r2P=R; ΛQ ¼ λ2P=Λ; ð4:6Þ

where hP, rP, and λP are the Planck-scale values of the
Hubble constant, scalar curvature, and cosmological con-
stant, respectively:
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hP ¼ c=lP; rP ¼ h2PDðD− 1Þ; λP ¼ h2P
2
ðD− 1ÞðD− 2Þ;

ð4:7Þ

hP ¼ c2
ffiffiffiffiffiffiffiffiffiffiffiffi
c=ℏG

p
; rP ¼ 12h2P ¼ 4λP;

λP ¼ 3ðc5=ℏGÞðD ¼ 4Þ: ð4:8Þ

V. TOTAL DE SITTER UNIVERSE AND ITS
DUALITY SYMMETRY

The classical and quantum lengths LH and LQ can be
extended to a more complete length LQH which contains
both the Q and H lengths:

LQH ¼ ðLH þ LQÞ ¼ lP

�
LH

lP
þ lP
LH

�
; ð5:1Þ

and we have then

X2 − T2 þ XjXj þ Z2 ¼ L2
QH

¼ 2l2P

�
1þ 1

2

��
LH

lP

�
2

þ
�
lP
LH

�
2
��

ð5:2Þ

with j ¼ 2; 3;…ðD − 2Þ. Z is the extra coordinate for
the embedding of de Sitter space-time in Minkowski
space-time.
Equation (5.2) quantum generalizes de Sitter space-time

including the classical, semiclassical, and quantum
Planckian and trans-Planckian de Sitter regimes as well. It
contains two nonzero lengths ðLH; LQÞ or two relevant scales
(H, lP), enlarging the possibilities for the space-time phases.

(i) For LH ≫ lP, i.e., LQ ≪ LH, Eq. (5.2) yields the
classical de Sitter space-time. For intermediate LH
values between lP and LQ, it yields the semiclassical
de Sitter space-time.

(ii) For LH ¼ lP, i.e., LQ ¼ lP ¼ LQH, Eq. (5.2) yields
the Planck-scale de Sitter hyperboloid.

(iii) For LH ≪ lP, i.e., LQ ≫ LH, it yields the highly
quantum de Sitter regime, deep inside the Planck
domain.

H ¼ c=LH is (c−1Þ times the surface gravity (or gravity
acceleration) of the classical de Sitter space-time. Similarly,
HQ ¼ c=LQ and HQH ¼ c=LQH are the surface gravity in
the quantum and whole QH de Sitter phases, respectively.
Similarly, Eqs. (5.1) and (4.2)–(4.4) yield for the mass

MQH ¼ ðMH þMQÞ ¼ mP

�
MH

mP
þ mP

MH

�
; ð5:3Þ

MQH

mP
¼ mP

�
LH

lP
þ lP
LH

�
¼ LQH

lP
: ð5:4Þ

MQH=mP and LQH=lP both have the same expression
with respect to their respective Planck values.

A. The complete QH Hubble constant HQH,
curvature RQH, and ΛQH

The total (classical and quantum) QH Hubble constant
HQH, curvature RQH, and ΛQH follow from the QH de
Sitter length LQH [Eq. (5.1)]:

HQH ¼ c
LQH

; RQH ¼ H2
QHDðD − 1Þ;

ΛQH ¼ H2
QH

2
ðD − 1ÞðD − 2Þ; ð5:5Þ

where from Eqs. (5.1) and (4.6)

HQH ¼ H
½1þ ðlPH=cÞ2� ; HQH=hP ¼ ðH=hPÞ

½1þ ðH=hPÞ2�
;

hP ¼ c=lP; ð5:6Þ

which exhibit the symmetry of HQH=hP under ðH=hPÞ →
ðhP=HÞ, i.e., under H → HQ ¼ ðh2P=HÞ:

HQHðH=hPÞ ¼ HQHðhP=HÞ: ð5:7Þ

The classical H and quantum HQ are classical-quantum
duals of each other through the Planck scale hP, but the
total HQH is invariant. And similarly, for the total quantum
curvature RQH and cosmological constant ΛQH [Eq. (5.5)],

RQHðH=hPÞ ¼ RQHðhP=HÞ;
ΛQHðH=hPÞ ¼ ΛQHðhP=HÞ; ð5:8Þ

where

RQH ¼ RH

½1þ RH=rP�2
¼ RQ

½1þ RQ=rP�2
; rP ¼ 12h2P;

ð5:9Þ

ΛQH ¼ ΛH

½1þ ΛH=λP�2
¼ ΛQ

½1þ ΛQ=λP�2
; λP ¼ 3h2P:

ð5:10Þ
The classical H=hP ≪ 1, quantum H=hP ≫ 1, and

Planck H=hP ¼ 1 regimes are clearly exhibited in the
QH expressions Eqs. (5.5) and (5.6):

HQHðH≪hPÞ ¼ H½1 − ðH=hPÞ2� þOðH=hPÞ4; ð5:11Þ

HQHðH ¼ hPÞ ¼
hP
2
; hP ¼ c=lP; ð5:12Þ

HQHðH≫hPÞ ¼ ðh2P=HÞ½1−ðhP=HÞ2�þOðhP=HÞ4: ð5:13Þ
The three above equations show, respectively, the three

different de Sitter phases:
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(i) the classical gravity de Sitter Universe (with lower
curvature than the Planck scale rP) outside the
Planck domain ðlP < LH < ∞Þ,

(ii) the Planck curvature de Sitter state ðRH ¼ rP;
LH ¼ lPÞ, and

(iii) the highly quantum or high curvature (RH ≫ rP) de
Sitter phase inside the quantum gravity Planck
domain (0 < LH ≤ lP).

It is natural here to define the dimensionless magnitudes:

L≡ LQH=lP; M≡MQH=mP; H≡HQG=hP;

l≡ LH=lP; h≡H=hP ¼ l−1; ð5:14Þ

in terms of which Eqs. (5.1), (5.3), and (5.6) and their
duality symmetry Eqs. (5.7) and (5.8) simply read

L ¼
�
lþ 1

l

�
¼ M; H ¼ 1

ðlþ 1
lÞ
¼ L−1; ð5:15Þ

Lðl−1Þ ¼ LðlÞ; Mðl−1Þ ¼ MðlÞ; ð5:16Þ

Hðl−1Þ ¼ HðlÞ; Rðl−1Þ ¼ RðlÞ; Λðl−1Þ ¼ ΛðlÞ:
ð5:17Þ

The QH magnitudes are complete variables covering
both classical and quantum, Planckian and trans-Planckian,
domains. Similarly, for the classical, quantum, and QH de
Sitter densities (ρH, ρQ, and ρQH), ρP being the Planck
density scale,

ρH ¼ ρPðH=hPÞ2 ¼ ρPðΛ=λPÞ;
ρP ¼ 3h2P=8πG; λP ¼ 3h2P=c

4; ð5:18Þ

ρQ ¼ ρPðHQ=hPÞ2 ¼ ρPðΛQ=λPÞ ¼ ρ2P=ρH

¼ ρPðhP=HÞ2 ¼ ρPðλP=ΛÞ; ð5:19Þ

ρHQ ¼ ρH þ ρQ ¼ ρPðHHQ=hPÞ2 ¼ ρPðΛHQ=λPÞ; ð5:20Þ

from which it follows that

ρHQ ¼ ρH
½1þ ρH=ρP�2

¼ ρQ
½1þ ρQ=ρP�2

; ð5:21Þ

which satisfies

ρHQðρHÞ ¼ ρHQðρQÞ ¼ ρHQðρ2P=ρHÞ:

For small and high densities with respect to the Planck
density ρP, the QH density ρQH behaves as

ρQHðρH ≪ ρPÞ ¼ ρH½1− 2ðρH=ρPÞ�þOðρH=ρPÞ2; ð5:22Þ

ρQHðρH ¼ ρQ ¼ ρPÞ ¼
1

4
ρP∶ ðPlanck-scale densityÞ;

ð5:23Þ

ρQHðρH ≫ ρPÞ ¼ ρQ½1 − 2ðρP=ρHÞ� þOðρP=ρHÞ2;
ð5:24Þ

corresponding to the classical and semiclassical de Sitter
regime (and its quantum corrections), Planck-scale de Sitter
state, and highly quantum trans-Planckian de Sitter density,
respectively. The complete QH de Sitter magnitudes ðLQH,
HQH, and MQHÞ [and their constant Planck-scale values
(lP, hP, and mP) depending only on ðc;ℏ; GÞ� allow one
to characterize in a precise way the classical, semiclas-
sical, Planckian, and quantum (super-Planckian) de Sitter
regimes.

(i) LQH ¼ LQHðLH;LQÞ≡LQHðH;ℏÞ yields the whole
(classical and semiclassical, Planck-scale, and quan-
tum (super-Planckian) de Sitter Universe.

(ii) LQH ¼ LH ¼ LQ yields the Planckian de Sitter state
(Planck length de Sitter radius, Planckian vacuum
density, and Planckian scalar curvature): LH ¼ lP,
H ¼ hP, λP ¼ 3h2P, R ¼ rP ¼ 4λP, and lP ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðℏG=c3Þ

p
.

(iii) LQH ¼ LH ≫ LQ, i.e., LH ≫ lP and H ≪ hP,
yields the classical de Sitter space-time.

(iv) LQH ¼ LQ ≫ LH, i.e., LH ≪ lP and H ≫ hP (high
curvature R ≫ rP ¼ 4ΛP), yields a full quantum
gravity trans-Planckian de Sitter phase (inside the
Planck domain 0 < LH ≤ lP).

(v) LQH ≫ LQ, i.e., LQH → ∞ for LH → ∞, i.e.,
H → 0, i.e., Λ → 0 (zero curvature), yields consis-
tently the classical Minkowski space-time, equiva-
lent to the limit LQ → 0, i.e., lP → 0 (ℏ → 0).

The three de Sitter regimes are characterized in a complete
and precise way.

(i) Classical and semiclassical de Sitter regimes (in-
flation and, more generally, the whole known—
classical and semiclassical—Universe is within
this regime): lp < LH < ∞, i.e., 0 < LQ < lP,
0 < H < hP, and mP < MH < ∞.

(ii) Planck-scale de Sitter statewithPlanck curvature and
Planck radius: LH ¼ lP, LQ ¼ lP, H ¼ hP ¼ c=lP,
and MH ¼ mP.

(iii) Quantum Planckian and trans-Planckian de Sitter
regimes: 0 < LH ≤ lP, i.e., lP ≤ LQ < ∞,
hP ≤ H < ∞, and 0 < MH < mP.

VI. DE SITTER UNIVERSE AND THE
HARMONIC OSCILLATOR

As is known, the Einstein equations in the presence of a
constant vacuum energy (cosmological constant) are
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Gμν þ Λgμν ¼ 8πGTμν; ð6:1Þ

and the energy-momentum tensor corresponding to the
vacuum energy density ρ and pressure p is

Tμν ¼ pgμν ¼ −ρgμν ðp ¼ wρ; w≡ −1Þ; ð6:2Þ

the vacuum energy being equivalent to a cosmological
constant: ρΛ ¼ Λc4=ð8πGÞ.
As known, de Sitter space-time has constant scalar

space-time curvature:

R ¼ 12H2 ¼ 4Λ; Λ ¼ 3H2ðD ¼ 4Þ:

We restrict to D ¼ 4. Recall that the energy-momentum
tensor for massive particles of density ρ plus vacuum
constant energy (or cosmological constant) Λ is

Tμ
ν ¼ ρΛδ

μ
ν þ ρδμ0δν0; T ≡ Tμ

μ ¼ 4ρΛ þ ρ; ð6:3Þ

where we neglected the pressure to better illustrate our
purpose. The corresponding Einstein equations are

Rμ
ν ¼ 8πG

�
Tμ
ν −

δμν
2
T

�
; 0 ≤ μ; ν ≤ 3; ð6:4Þ

and for nonrelativistic matter its pressure is neglected with
respect to its rest mass.
In the weak field limit

g00 ¼ 1þ 2V; gik ¼ −δik; R0
0 ¼ ∇2V;

V being the gravitational potential, Einstein’s Eqs. (6.4)
become

∇2V ¼ 4πGρ − 8πGρΛ; ð6:5Þ

VðX⃗Þ ¼ VρðXÞ −
4πGρΛ

3
X2: ð6:6Þ

For a distribution of rest particles of mass m, ρðX⃗Þ ¼
m
P

i δðX⃗ − X⃗iÞ, the gravitational potential VðX⃗Þ, gravita-
tional field G, and potential energy U of the system are,
respectively,

VðX⃗Þ ¼ VðX⃗Þm −
4πGρΛ

3
X2;

VðX⃗Þρ ≡ VðX⃗Þm ¼ −G
X
i

m

jX⃗ − X⃗ij
;

G⃗ðX⃗Þ ¼ −∇VðX⃗Þ ¼ G⃗m þ 8πGρΛ
3

X⃗; ð6:7Þ

U ¼ Um −
4πGρΛ

3
m
X
i

X2
i : ð6:8Þ

Therefore, the Hamiltonian is equal to

PiPi

m2
þ U ¼ PiPi

m2
−
4πGρΛ

3
mX2

i : ð6:9Þ

For a relativistic perfect fluid with Tμν ¼ ðpþ ρÞuμuν þ
pgμν and continuity equationDνTμν ¼ 0, the 00 component
of the Einstein equations yields a relativistic Poisson
equation similar to Eq. (6.5) sourced with the addition
of the fluid pressure p to the density and to the Λ term
which remains unchanged. In this case, the potential is
coupled to the Euler fluid equations, which linearized
perturbations for each component can be reduced to an
equation of the form δ̈þ fδ ¼ 0, f depending of the
unperturbed background fluid components and on the Λ
term, which has always opposite sign to the other compo-
nent terms. Our interest in this paper not being in the
structure formation and evolution but in the vacuum Λ
energy, we will not discuss more here on this case.
The cosmological constant energy contribution to the

potential energy U Eq. (6.9) decreases for increasing values
of the particle distances ri to the center of mass. The
gravitational effect of the vacuum zero-point energy or
cosmological constant push particles outward, and, equiv-
alently, the last term of the gravitational field Eq. (6.7)
points outward (the repulsive cosmological constant effect).
The Hamiltonian Eq. (6.9) is like that of a harmonic
oscillator for a particle of mass m and oscillator constant
ω2m. We analyze it in Sec. VII below.
The nonrelativistic particle motion and the relativistic

geodesics both exhibit the same runaway behavior. The
nonrelativistic approximation reflects well the relativistic
particle motion in the de Sitter space-time and its connection
to the harmonic oscillator. In the relativistic situation, g00
determined by the Einstein equations for the de Sitter metric
entails the harmonic oscillator potential, e.g.,

d=drðrg00Þ ¼ 1 − ð8πGρ00 þ ΛÞr2:

Parametrization of the de Sitter hyperboloid in terms of the
coordinates ðt; r; θ;ϕÞ:

T ¼ H−1ð1 −H2r2Þ1=2 sinhHt;

X ¼ H−1ð1 −H2r2Þ1=2 coshHt;

X2 ¼ r cos θ; X3 ¼ r sinϕ cos θ; Z ¼ r sinϕ;

yields

ds2 ¼ −ð1 −H2r2Þdt2 þ ð1 −H2r2Þ−1dr2 þ r2dΩ2

and X2 − T2 ¼ H−2ð1 −H2r2Þ, containing the (inverted)
harmonic oscillator potential.
Our purpose in this paper is to show within a minimal

setting the essential features relating de Sitter space-time,
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e.g., the cosmological constant or vacuum energy density,
to the harmonic oscillator. We are interested in the vacuum
energy density, and so we do not include all other particle
interactions. Self-gravitation interaction among the particles
is described by the parameter ðGm2NÞ, while the interaction
with Λ is through the parameter ðΛmÞ. Their quotient,
namely, η ¼ ðvacuum energy=massÞ ¼ Λ=ðmGNÞ,N being
the number of particles, determines the condition onwhether
one dominates over the other, and clearly our interest in this
paper is in the regimes where the vacuum energy Λ
dominates over the self-particle interactions, i.e., η ≤ 1,
which is the condition for interactions to be neglected. Of
course, virialization occurs too for larger η for self-gravitat-
ing particles in the presence of Λ.
In a QFT description, particle production from the

vacuum or inflation driven by Λ are within this situation
of Λ we consider, in the pre-Planckian and in the post-
Planckian eras. Particle interactions at the Planck scale
considered mainly in the context of particle physics,
perturbatively and nonperturbatively, as string collisions
or as point particle QFT [18–21] yield to the conclusion
that the resulting collisional and particle interacting effect
can be well described by the field felt by one particle in the
effective gravitational curved background produced by all
the others. Here, we consider the (nonperturbative) curved
space-time background from the beginning. This can be,
thus, viewed as the effective background field felt by one
particle produced by the particle interactions of all the
others.
In the early Planckian and trans-Planckian phases,

namely, the nearest possible ones to the Universe origin,
it is natural to consider the Λ or vacuum dominance
background as we consider which is also motivated by a
description of the origin of the Universe “from nothing.”
Indeed, the Λ or vacuum dominance background in the
early phases could be considered as formed as a condensate
from such particle interactions. In summary, the effective
result of such particle interactions is to produce the curved
background.

VII. THE HARMONIC OSCILLATOR AND THE
COSMOLOGICAL CONSTANT

For simplicity and physical insight, we consider the case
of just one particle; Eqs. (6.5) and (6.6) yield

̈X⃗ ¼ Λ
3
X⃗: ð7:1Þ

This is an harmonic oscillator equation with imaginary
frequency and oscillator constant κoscill:

̈X⃗ ¼ −κoscillX⃗; κoscill ¼ ω2m; ω ¼
ffiffiffiffiffiffiffi
Λ
3m

r
; ð7:2Þ

with the solution

X⃗ðtÞ ¼ X⃗ð0Þ coshHtþ 1

H
_X⃗ð0Þ sinhHt; ð7:3Þ

where

H ≡ ffiffiffiffiffiffiffiffiffi
Λ=3

p
:

The particle runs away exponentially fast in time. The
Hubble constant H2 is the constant of the oscillator

κosc ¼ H2; H ¼ ω
ffiffiffiffi
m

p
; ð7:4Þ

the oscillator length losc being

losc ¼
ffiffiffiffiffiffiffiffiffi
3=Λ

p
; H ¼ c=losc ¼ κ ≡ surface gravity:

The length of the oscillator is the Hubble radius, and the
Hubble constant is the surface gravity of the Universe
(similar to the black hole surface gravity, the inverse of the
black hole radius).
The nonrelativistic or weak field Newtonian results

reproduce very well the full space-time relativistic effects
in the presence of the cosmological constant. The exact
solution of the Einstein equations for the energy-momentum
tensor Eq. (6.3) with ρ ¼ 0 is the de Sitter Universe. It must
be stressed that the nonrelativistic trajectories Eq. (7.3)
exhibit the same exponential runaway behavior of the exact
relativistic geodesics in de Sitter space-time. The nonrela-
tivistic approximation keeps the essential features of the
particle motion in de Sitter space-time [22–24].
The description of de Sitter space-time as an (inverted)

harmonic oscillator appears either in a relativistic or in a
nonrelativistic consideration. This stems from its geomet-
rical hyperbolic description: −T2 þ X2 þ X2

i þ Z2 ¼ L2 as
a hyperboloid embedded in a flat Minkowski space-time
with one more spatial dimension. The propagation equa-
tions of particles, waves, fields, and strings in de Sitter
space-time all reflect the de Sitter space-time connection
to the inverted harmonic oscillator; namely, in all these
cases, a term of the form and sign of the inverted oscillator
[Eqs. (6.9) and (7.1)] does appear; e.g., see [24–27]. In
particular, in several regimes, e.g., asymptotically for
t → �∞ or for Λ dominance with respect to other field
parameters (as masses and couplings), the propagation
equations in de Sitter space-time (cosmic time, for instance)
reduce to

χ̈ − ν2H2χ ¼ 0; ν2 ≡ ν2ðm2; H2; ξÞ:

In general, ν2 ≡ ν2ðm2; H2; ξÞ, and its sign depends on the
relationship betweenH,m, and the couplings ξ. For instance,
for inflation, H2 dominates over m2 and the couplings,
and ν2 is positive. Squeezed states are characteristic of
this propagation, e.g., for quantum fields; see for example
Refs. [25,26].
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We summarize in the following our main results allowing
one to describe de Sitter (and anti–de Sitter) space-time as a
classical and quantum harmonic oscillator.

(i) The motion of a particle in a harmonic oscillator
potential corresponds to the particle motion in the
nonrelativistic limit of a constant curvature space-
time. The harmonic oscillator with an imaginary
frequency, namely, the inverted oscillator for Λ > 0,
corresponds to de Sitter space-time; the real fre-
quency normal oscillator Λ < 0 describes anti–de
Sitter space-time; and the free motion is flat Min-
kowski space-time Λ ¼ 0.

(ii) The constant of the oscillator is the cosmological
constant, as shown by Eq. (7.2), which is the Hubble
constant H2 or surface gravity squared [Eq. (7.4)].

(iii) For the classical harmonic oscillator, the phase space
is the classical one, and the algebra of the ðX;PÞ
variables or ðX; TÞ variables is commuting. The classi-
cal Hamiltonian is 2Hosc¼X2þP2 or 2Hinv-osc ¼
X2 − P2 for the inverted oscillator, in light-cone
variables 2UV ¼ 2VU. The light-cone structureX2 −
T2 is the classical known one; there is no difference
with the Minkowski light-cone structure of special
relativity. Upon the identification P ¼ T, the classical
commuting ðX; TÞ variables ofMinkowski space-time
and its invariant distance s2 ¼ X2 − T2 correspond to
a classical phase space ðX;PÞ and Hamiltonian
s2 ¼ 2Hinv-osc ¼ X2 − P2, which is the (inverted)
harmonic oscillator Hamiltonian.

(iv) The nonrelativistic approximation describes verywell
the essential properties of the constant curvature—de
Sitter or anti–de Sitter—geometries and captures its
physics. Thus, the classical nonrelativistic de Sitter
invariant space-time, or the anti–de Sitter space-time,
and the Minkowski Poincaré-invariant space-time all
three describe special relativity. We see that this
reaches from another approach and motivation, the
fact that a constant curvature space-time describes
special relativity, as in Refs. [28,29], or the so-called
“triple relativity” Λ > 0, Λ < 0, and Λ ¼ 0.

(v) For the quantum harmonic oscillator, the quantum
zero-point energy bends the light hyperbolic cone
generators X2 − T2 ¼ 1, and, therefore, the space-
time is curved: de Sitter (or anti–de Sitter) space-
time. And, as is known, the nonrelativistic and
relativistic de Sitter space-times are very similar.

(vi) Upon the identification T ¼ P, the quantum non-
commuting coordinates ðX; TÞ of Minkowski space-
time and its distance s2 ¼ X2 − T2 are the non-
commuting phase space ðX;PÞ and quadratic form
2Hinv-osc ¼ X2 − P2 → s2, which is the harmonic
oscillator Hamiltonian. And this is also the Hamil-
tonian of a particle in a constant curvature (cosmo-
logical constant) de Sitter or anti–de Sitter space (in
its nonrelativistic limit).

(vii) Explicitly, the ða; aþÞ creation and annihilation
operators are the light-cone-type quantum coordi-
nates of the phase space ðX;PÞ: a ¼ ðX þ iPÞ= ffiffiffi

2
p

and aþ ¼ ðX − iPÞ= ffiffiffi
2

p
. The temporal variable T in

the space-time configuration ðX; TÞ is like the
momentum in phase space ðX;PÞ. The identification
P ¼ T yields

X ¼ ðaþ aþÞ=
ffiffiffi
2

p
; T ¼ ða − aþÞ=i

ffiffiffi
2

p
;

½a; aþ� ¼ 1; ð7:5Þ

2X2 ¼ ½ð2aþaþ 1Þ þ ða2 þ aþ2Þ�;
2T2 ¼ ½ð2aþaþ 1Þ − ða2 þ aþ2Þ�

with the algebra

Hosc ¼ ðX2 þ T2Þ ¼ ð2aþaþ 1Þ;
Hinv-osc ¼ ðX2 − T2Þ ¼ ða2 þ aþ2Þ;
½X; T� ¼ i; ½Hinv-osc; X� ¼ 2iT;

½Hinv-osc; T� ¼ 2iX; ð7:6Þ

aþa ¼ N being the number operator.
(viii) In other words, the nonrelativistic cosmological

constant (de Sitter or anti–de Sitter) space-time,
the harmonic oscillator phase space, and Minkowski
space-time are in correspondence one to another.
The line element in Minkowski space-time in D
space-time dimensions s2 ¼ X2 − T2 þ X2

j is equal
to the (nonrelativistic) harmonic oscillator Hamil-
tonian 2Hinv-osc ¼ X2 − P2 þ X2

j . Thus, there are
three possibilities for special relativity. The interest-
ing point in our studies is that the quantum harmonic
oscillator algebra describes the quantum noncom-
muting space-time structure.

(ix) Upon the identification T ¼ P, the de Sitter hyper-
boloid Eq. (4.1) yields

X2 − P2 þ X2
j þ Z2 ¼ L2

QH; j ¼ 2; 3;…ðD − 2Þ;
ð7:7Þ

corresponding to a (inverted) harmonic oscillator
ðX;PÞ embedded in a Minkowski space of ðD −
2þ 2Þ ¼ D spatial dimensions, i.e., a Minkowski
space-time of (Dþ 1) space-time dimensions.

VIII. QUANTUM DISCRETE LEVELS
OF THE UNIVERSE

Let us go beyond the classical-quantum duality of the
space-time recently discussed and promote the space-time
coordinates to quantum noncommuting operators. As we
have seen, comparison to the harmonic oscillator ðX;PÞ
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variables and global phase space is enlightening: The
hyperbolic phase space here ðX;P ¼ TÞ describes the
hyperbolic quantum space-time structure and generates
the quantum light cone. The classical Minkowski space-
time null generators X ¼ �T disappear at the quantum
level due to the relevant ½X; T� commutator which is always
nonzero. A new quantum Planck-scale vacuum region
emerges. In the case of the Rindler and Schwarzschild-
Kruskal space-time structures, the four Kruskal regions
merge inside a single quantum Planck-scale region [1,3].
The quantum space-time structure consists of discrete

levels of odd numbers:

X2
n ¼ ð2nþ 1Þ; T2

n ¼ ð2nþ 1Þðin Planck unitsÞ;
n ¼ 0; 1; 2…; ð8:1Þ

ðXn; TnÞ and the mass levels being
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp

,
n ¼ 0; 1; 2….
The Planck-scale level ðX; TÞðn ¼ 0Þ ¼ 1 is the funda-

mental (n ¼ 0) level from which the space-time levels
ðXn; TnÞ go to the quantum (low n) levels and to the
semiclassical and classical (large n) levels. Asymptotically,
for very large n, the space-time becomes continuum.
In terms of variables ðxn�; tn�Þ, covering only one—the

pre-Planckian or the post-Planckian phase—the space-time
discrete levels read

xn� ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p �
ffiffiffiffiffiffi
2n

p
�; ð8:2Þ

tn� ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ þ 1=2

p
�; ð8:3Þ

xn¼0ðþÞ ¼ xn¼0ð−Þ ¼ 1∶Planck scale:

The low-n, intermediate, and large-n levels describe,
respectively, the quantum, semiclassical, and classical
behaviors; interestingly enough, the (�) branches consis-
tently reflect the classical-quantum duality properties.
ðXn; TnÞ and ðxn; tnÞ are given in Planck (length and

time) units. In terms of the global quantum gravity dimen-
sionless length L ¼ LQH=lP and mass M ¼ MQH=mP,
Eqs. (5.14) or the local ones x ¼ m=mp translate into the
discrete mass levels:

Ln ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ

p
¼ Mn; n ¼ 0; 1; 2;…; ð8:4Þ

LQHnn≫1 ¼ lP

� ffiffiffiffiffiffi
2n

p
þ 1

2
ffiffiffiffiffiffi
2n

p þOð1=n3=2Þ
�
; ð8:5Þ

MQHnn≫1 ¼ mP

� ffiffiffiffiffiffi
2n

p
þ 1

2
ffiffiffiffiffiffi
2n

p þOð1=n3=2Þ
�
: ð8:6Þ

The above equations for LQHn and MQHn yield the levels
for LHn� and MHn�, respectively:

LHn� ¼
h
LQHn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
QHn − l2P

q i
; ð8:7Þ

MHn� ¼
h
MQHn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

QHn −m2
P

q i
: ð8:8Þ

The condition LQHn ≥ lP, MQHn ≥ mP consistently corre-
sponds to the whole spectrum n ≥ 0, the lowest level n ¼ 0
being the Planck mass and length:

LHn� ¼ lP½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p �
ffiffiffiffiffiffi
2n

p
� for all n ¼ 0; 1; 2;…;

ð8:9Þ

MHn� ¼ mP½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p �
ffiffiffiffiffiffi
2n

p
� for all n ¼ 0; 1; 2;…:

ð8:10Þ

The mass and radius of the Universe MH and LH have
discrete levels LHn� andMHn�, respectively, from the most
fundamental one (n ¼ 0), going to the semiclassical (inter-
mediate n), to the classical ones (large n) which yield a
continuum classical Universe as it must be. This is clearly
seen from the mass level MHn� expressions (and similarly
for the radius levels). Explicitly,

MHðn¼0Þþ ¼ MHðn¼0Þ− ¼ MQHðn¼0Þ ¼ mP;

n ¼ 0∶Planckmass; ð8:11Þ

MHnþ ¼ mP

�
2

ffiffiffiffiffiffi
2n

p
−

1

2
ffiffiffiffiffiffi
2n

p þOð1=n3=2Þ
�
;

largen∶branchðþÞ∶masses > mP; ð8:12Þ

MHn− ¼ mP

2
ffiffiffiffiffiffi
2n

p þOð1=n3=2Þ;

largen∶branchð−Þ∶masses < mP: ð8:13Þ

Large n levels are semiclassical, tending toward a
classical continuum space-time. Low n are quantum,
the lowest mode (n ¼ 0) being the Planck scale. Two
dual (�) branches are present in the local variables
(

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p � ffiffiffiffiffiffi
2n

p
) reflecting the duality of the large- and

small-n behaviors and covering the whole spectrum: from
the largest cosmological masses and scales in branch (þ) to
the quantum smallest masses and scales in branch (−)
passing by the Planck mass and length.

IX. QUANTUM DISCRETE LEVELS OF THE
HUBBLE CONSTANT

Equations (8.4) yield the (dimensionless) quantum levels
for the total, Hubble constant, vacuum energy, and constant
curvature:
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Hn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp ; Λn ¼

1

ð2nþ 1Þ ;

Rn ¼
1

ð2nþ 1Þ ; n ¼ 0; 1; 2;…; ð9:1Þ

n ¼ 0∶H0 ¼ 1; Λ0 ¼ 1; R0 ¼ 1∶

Planck scale ðdimensionlessÞ; ð9:2Þ

HQHðn¼0Þ ¼
c
lP

¼ hP; ΛQHðn¼0Þ ¼ λP;

RQHðn¼0Þ ¼ 4λP∶ Planck-scale values: ð9:3Þ

And for the gravitational entropy,

Sn ¼ ð2nþ 1Þ in Planck units sP ¼ 4π:

The lowest n ¼ 0 level corresponds to the fundamental
Planck-scale values ðhP; λP; 4λP; sPÞ for the Hubble con-
stant, cosmological constant, constant curvature, and gravi-
tational entropy, respectively. Let us analyze now the
implications of these results and the general picture which
they arise.
In the post-Planckian Universe tP ≤ t ≤ ttoday ¼ 1061tP,

we see that the physical magnitudes as the Hubble radius,
vacuum energy density, constant curvature, and entropy
start at the Planck scale: the zero level (n ¼ 0). As n
increases, the Universe radius, mass, and entropy increase;
the Hubble constant, curvature, and vacuum energy
consistently decrease; and the Universe classicalizes.

The decreasing with n of these quantities is given by
Eq. (9.1) and for large n, Hn, Λn, and Rn classicalize as

Hn≫1 ¼
c

lP
ffiffiffiffiffiffi
2n

p
�
1 −O

�
1

2n

��
≪ 1; ð9:4Þ

Λn≫1 ¼
3c2

l2Pð2nÞ
�
1 −O

�
1

2n

��
≪ 1; ð9:5Þ

Rn≫1 ¼
12c2

l2Pð2nÞ
�
1 −O

�
1

2n

��
≪ 1; ð9:6Þ

precisely accounting for the low classical values of H and
Λ in the Universe today, which is a classical, large, and
dilute Universe. The present Universe values Htoday ¼
10−61 and ρΛ ¼ 10−122 correspond to a large n level
n ¼ 10122 ≡ ntoday.
More generally, in the post-Planckian Universe tP ≤ t ≤

ttoday ¼ 1061tP, Eq. (9.1) yields the quantum n levels:

n ¼ 1

2
ðH−2

n − 1Þ∶ tðn¼0Þ ¼ tP ≤ tn ≤ tn today ¼ 1061tP:

ð9:7Þ
Thus, the more characteristic evolution values from the
Planck time tP till today:

hP;…; Hinf ;…; Hcmb;…; Hreion;…; Htoday ð9:8Þ
corresponds to the n levels:

n ¼ 0; 1; 2;…ninf ¼ 1012;…ncmb ¼ 10114;…nreoin ¼ 10118;…ntoday ¼ 10122 ð9:9Þ

and the discrete Hn, Λn, and Sn values:

Hn ¼ 1; 0.577;…Hn;inf ¼ 10−6;…Hn;cmb ¼ 10−57;…Hn;reoin ¼ 10−59;…Hn;today ¼ 10−61; ð9:10Þ

Λn ¼ 1; 0.333;…Λn;inf ¼ 10−12;…Λn;cmb ¼ 10−114;…Λn;reoin ¼ 10−118;…Λn;today ¼ 10−122; ð9:11Þ

Sn ¼ 1; 3;…Sn;inf ¼ 1012;…Sn;cmb ¼ 10114;…Sn;reoin ¼ 10118;…Sn;today ¼ 10122: ð9:12Þ

In the pre-Planckian or precursor phase, namely, the trans-Planckian phase:

10−61tP ≤ tn ≤ tPðn ¼ 0Þ; ð9:13Þ

the quantum n levels for HQn, ΛQn, and SQn [Eqs. (4.6)] are, respectively,

HQn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
; ΛQn ¼ ð2nþ 1Þ; SQn ¼

1

ð2nþ 1Þ ; n ¼ 0; 1; 2;…: ð9:14Þ

Thus,

n ¼ 1

2
ðH2

Qn − 1Þ; 10−61tP ≤ tn ≤ tP ðn ¼ 0Þ; ð9:15Þ
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and the more characteristic values in this phase, namely,

hP;…HQ inf ;…HQcmb;…HQreion;…HQtoday ≡Hfar past; ð9:16Þ

correspond to the n-level values:

n ¼ 0; 1;…nQ inf ¼ 1012;…nQcmb ¼ 10114;…nQreoin ¼ 10118;…nQtoday ≡ nfar past ¼ 10122: ð9:17Þ
And the HQn, ΛQn, and SQn levels have the values

HQn ¼ 1; 1.732;…HQ inf ¼ 106;…HQcmb ¼ 1057;…HQreoin ¼ 1059;…HQtoday ¼ 1061; ð9:18Þ
ΛQn ¼ 1; 3;…ΛQ inf ¼ 1012;…ΛQcmb ¼ 10114;…ΛQreoin ¼ 10118;…ΛQtoday ¼ 10122; ð9:19Þ

SQn ¼ 1; 0.333;…SQ inf ¼ 10−12;…SQcmb ¼ 10−114;…SQreoin ¼ 10−118;…SQtoday ¼ 10−122: ð9:20Þ

The whole picture is described at the end of Sec. X
including both the pre-Planckian and post-Planckian
phases and the complete discrete spectrum of levels from
the far past to today level. The Universe pre-Planckian
phase, namely, the quantum precursor phase, is the setting
of the physically meaningful quantum trans-Planckian
energies. In the post-Planckian (semiclassical and classical)
eras, no trans-Planckian energies are present: Only math-
ematically or artificially (nonphysical) trans-Planckian
energies could be generated in the present Universe.
This is a direct consequence of the classical-quantum
gravity dual relations Eqs. (2.2)–(2.4), which apply to
any physical relevant magnitude, and in the respective
domains as discussed in Sec. II and Refs. [1–3]. The trans-
Planckian energy domain remains in the phase of the
Universe totally before the Planck time tP, e.g., in a totally
quantum gravity domain, while the energies in the Universe
after the Planck time turn out smaller than the Planck
energy (semiclassical or semiquantum gravity and classical
gravity) as determined by the classical-quantum gravity
duality relations. However, signals or observables from the
quantum precursor phase are present in the classical and
semiclassical Universe, the most known being inflation and
the present dark (vacuum) energy.
Consistently, the pre-Planckian phase covering

10−61tP ≤ t ≤ tP provides too the two dual (þ) and (−)
branches, as it must be:

Hn� ¼ hP½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p �
ffiffiffiffiffiffi
2n

p
�; n ¼ 0; 1; 2…; ð9:21Þ

Hn¼0 ¼ hP∶ Planck-scale value; ð9:22Þ

Hnþ;n≫1 ¼ hP

�
2

ffiffiffiffiffiffi
2n

p
−

1

2
ffiffiffiffiffiffi
2n

p þOð1=n3=2Þ
�
≫ 1;

largen∶branchðþÞ; ð9:23Þ

Hn−;n≫1 ¼
hP

2
ffiffiffiffiffiffi
2n

p þOð1=n3=2Þ ≪ 1; largen∶branchð−Þ:

ð9:24Þ

And for the Universe radius levels LHn:

LHðn¼0Þþ ¼ LHðn¼0Þ− ¼ LQHðn¼0Þ ¼ lP;

n ¼ 0∶Planck length; ð9:25Þ

LHnþ;n≫1 ¼ lP

�
2

ffiffiffiffiffiffi
2n

p
−

1

2
ffiffiffiffiffiffi
2n

p þOð1=n3=2Þ
�
≫ 1;

large n∶branchðþÞ; ð9:26Þ

LHn−;n≫1 ¼
lP

2
ffiffiffiffiffiffi
2n

p þOð1=n3=2Þ≪ 1; largen∶branchð−Þ:

ð9:27Þ

The same expressions hold for the mass levels MHnð�Þ;
the vacuum levels Λnð�Þ and the gravitational entropy
Snð�Þ levels follow from them.
The quantum levels cover all the range of scales from

the largest cosmological scales and time 1061tP today to the
smallest one 10−61lP in the extreme past 10−61tP of the
precursor or trans-Planckian phase, passing through the
Planck scale ðlP; tPÞ, covering the two phases: post- and
pre-Planckian phases, respectively. The quantum mass
levels are associated to the quantum space-time structure.
Quantum mass levels here cover all masses 10−61mP ≤
Mn ≤ 1061mP of the Universe phases. The two dual mass
branches (�) correspond to the larger and smaller masses
with respect to the Planck mass mP, respectively; they
cover the whole mass range from the Planck mass in branch
(þ) until the largest cosmological masses and from the
smallest masses in branch (−), the pre-Planckian phase,
until near the Planck mass. As n increases, masses in the
branch (þ) increase (as 2

ffiffiffiffiffiffi
2n

p
). Masses in the branch (−),

the very quantum one, decrease in the large n behavior,
precisely as 1=ð2 ffiffiffiffiffiffi

2n
p Þ; large n are very excited levels in

this branch, consistently with the fact that this branch is the
dual of branch (þ).
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X. THE SNYDER-YANG ALGEBRA AND
QUANTUM DE SITTER SPACE-TIME

The space-time coordinates in the Planckian and super-
Planckian domain are no longer commuting, but they obey
nonzero commutation relations: The concept of space-
time is replaced by a quantum algebra. The classical
space-time is recovered from the quantum algebra as a
particular case in which the quantum space and time
coordinate operators become the classical space-time
continuum coordinates (c numbers) with all commutators
vanishing and the discrete spectrum becomes the classical
continuum space-time.
Here, the quantum space-time description is reached

directly from the quantum noncommuting space-time
coordinates and not through the quantization procedure
of the classical gravitational field. This is so because the
gravity field is itself a classical concept which loses
meaning at the Planck scale. The space-time (the arena
of events) is a classical concept which is more direct to
extend to, or to replace by, a quantum algebra of space-
time position and momenta:

½Xi; Xj� ¼ iMij:

The Snyder algebra is a Lorentz-covariant deformation
of the Heisenberg algebra, where the position operators
are noncommuting and have discrete spectra [30] soon
extended by Yang [31] to include one more length
parameter. It describes a noncommutative discrete space-
time compatible with Lorentz-Poincaré symmetry. The
discrete position spectra, representations of the algebra,
imply a discrete space description of space.

(i) The Snyder algebra is precisely a description of a 4D
constant curvature space of momenta; this corre-
sponds to a de Sitter hyperboloid embedded in a 5D
Minkowski momentum space. In the space of 5D
momenta pA, this includes precisely the motion of a
particle of mass m and momentum on the de Sitter
momentum hyperboloid ηABpApB ¼ m2.

(ii) In geometric terms, the Snyder quantized space-time
is a projective geometry approach to the phase space
or momentum de Sitter space in which the space-
time coordinates are identified with the 4-translation
generators of the SOð1; 4Þ de Sitter group (and are,
therefore, noncommutative) and with other operators
as the angular momentum in SOð1; 3Þ.

(iii) In projective or Beltrami coordinates, the Euclid,
Riemann, and Lobachevsky spaces [32] correspond-
ing to zero, positive, and negative spatial curvature,
respectively, are upon Wick rotation the Minkowski,
de Sitter, and anti–de Sitter space-times with the
invariance groups ISOð1; 3Þ, SOð1; 4Þ, and SOð2; 3Þ
respectively.

In D dimensions, the Lorentz-covariant Snyder-Yang
quantum algebra follows from the Inonu-Wigner [33]

group contraction of the SOðD − 1; 1Þ algebra with the
generators:

ΣAB ¼ iðqA∂qB − qB∂qAÞ: ð10:1Þ
ΣAB live on the (Dþ 2) parameter space qA (hyperboloid)
which satisfies

−q20 þ q21 þ � � � þ q2D−1 þ q2a þ q2b ¼ L2; ð10:2Þ
A ¼ ðμ; a; bÞ; ðμ ¼ 1; 2;…DÞ;

ða; bÞ being extra space dimensions; andq0 ≡ qD:

ð10:3Þ

The D-dimensional operators ðXμ; Pμ;MμνÞ—space-time
operator Xμ, momentum operator Pμ, angular momentum
operators Mμν, and the completing operator Nab—are all
defined by the generators Σμa [Eq. (10.1)] as follows:

Xμ ≡ lPΣμa; Pμ ≡ ðℏ=LÞΣμb;
Mμν ≡ ℏΣμν; Nab ≡ ðlP=LÞΣab: ð10:4Þ

This set of operators (Xμ; Pμ;Mμν; N) satisfies the con-
tracted algebra of SOðDþ 1; 1Þ, namely, the quantum
Yang-Snyder space-time algebra:

½Xμ; Xν� ¼ −iðl2P=ℏÞMμν; ½Pμ; Pν� ¼ −iðℏ=L2ÞMμν;

ð10:5Þ

½Xμ; Pν� ¼ −iℏNδμν; ½Xμ; N� ¼ iðl2P=ℏÞPμ;

½Pμ; N� ¼ −iðℏ=L2ÞXμ: ð10:6Þ

And the operators Mμν satisfy angular-momentum-type
relations:

½Mμ;Mν� ¼ −iðl2P=ℏÞMμν: ð10:7Þ

A. Classical-quantum duality in the
Snyder-Yang algebra

The Snyder-Yang algebra contains two parameters ða; LÞ:
small-scale parameter a and large-scale parameter L which
in our context are naturally the Planck length lP and the
Universe radius LH. Our complete (classical and quantum)
radius LQH [Eq. (5.1)] contains intrinsically both lengths,
the classical length LH and its quantum dual LQ (Compton
radius of the Universe) and provides a basis for a framework
naturally free of infrared and ultraviolet divergences:

a≡ lP; L≡ LQH ¼ LH þ LQ ¼ lP

�
LH

lP
þ lP
LH

�
:

ð10:8Þ
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We see that the Snyder-Yang algebra with the complete
length LQHðlP; LHÞ as a parameter provides a quantum
operator realization of the complete (classical and quantum)
de Sitter Universe, including the quantum early and classical
late de Sitter phases duals of each other. This provides
further description of the pre-Planckian and post-Planckian
de Sitter phases, within a group-theory realization of the
quantum discrete de Sitter space-time and of classical-
quantum gravity duality.
Finally, let us mention as an example of the different

classical and quantum de Sitter phases the cosmological
vacuum energy, the most direct candidate to the dark
energy today [4–10], for which the observed value is

ρΛ ¼ ΩΛρc ¼ 3.28 × 10−11 ðeVÞ4 ¼ ð2.39 meVÞ4;
meV ¼ 10−3 eV; ð10:9Þ

corresponding to h ¼ 0.73, ΩΛ ¼ 0.76, and H ¼ 1.558×
10−33 eV. The CMB data yield the values [10]

H ¼ 67.4� 0.5 Kmsec−1Mpc−1;
ΩΛh2 ¼ 0.0224� 10−4 ð10:10Þ

and

ΩΛ ¼ 0.6847� 0.0073; ΩΛh2 ¼ 0.3107� 0.0082;

ð10:11Þ
which implies for the cosmological vacuum today:

Λ ¼ ð4.24� 0.11Þ × 10−66 ðeVÞ2
¼ ð2.846� 0.076Þ × 10−122m2

P: ð10:12Þ

The density ρΛ associated to Λ [Eq. (10.9)] is precisely

ρΛ ¼ Λ=8πG ¼ ρPðΛ=λPÞ; ð10:13Þ

where the Planck-scale values ρP and λP are ρP ¼ λP=8πG
and λP ¼ 3h2P, respectively. The quantum vacuum value
expected from microscopic particle physics is evaluated to
be ΛQ ≈ 10122.

B. Crossing the Planck scale

The two values ðΛ;ΛQÞ refer to the same concept of
vacuum energy, but they are in two huge different vacuum
states and two huge different cosmological epochs:
classical state and classical dilute epoch today for Λ
observed today with the most classical levels and quantum
state and quantum very early epoch with the most excited
levels for the quantum mechanical trans-Planckian value
ΛQ. The classical value today Λ ¼ 3H2 corresponds to the
classical Universe today of classical rate H and classical
cosmological radius LH ¼ c=H. The quantum mechanical
value ΛQ ¼ 3H2

Q corresponds to the early quantum

Universe of quantum rate HQ and quantum radius LQ ¼
l2P=LH ¼ ℏ=MHc, which is exactly the quantum dual of the
classical horizon radius LH: LQ is precisely the quantum
Compton length of the Universe for the gravitational
mass MH ¼ LHc2=G.

C. Two extremely different physical conditions
and gravity regimes

This is a realistic, clear, and precise illustration of
the physical classical-quantum duality between the two
extreme Universe scales and gravity regimes or phases
through the Planck scale: the dilute state and horizon size
of the Universe today on the one largest known side and
the trans-Planckian scales and highest density state on the
smallest side: The size, mass, and their associated time
(Hubble rate) and vacuum energy density (Λ; ρΛ) of the
Universe today are truly classical, while its extreme past at
10−61tP ¼ 10−105 s deep inside the trans-Planckian domain
of extremely small size and high vacuum density value
(ΛQ, ρQ) are truly quantum and trans-Planckian. This
manifests the classical-quantum or wave-particle duality
between the classical macroscopic (cosmological) gravity
physical phase and the quantum microscopic particle
physics and trans-Planckian phase through the crossing
of the Planck scale, Planck scale duality in short.

D. A unifying picture

Starting from the earliest past quantum era from 10−61tP
to tP, with the quantum excited level n ¼ 10122, the entropy
SQn increases in discrete levels sP=ð2nþ 1Þ from its
extreme small value SQ ¼ 10−122sP at the earliest time
10−61tP till, for instance, its quantum inflation value
10−12sP ðnQinfl ¼ 1012Þ, at time 10−6tP, to its Planck
value (n ¼ 0): SQ ¼ sP ¼ πκB at the Planck time tP, the
crossing scale, after which it goes to its semiclassical
and classical levels ð2nþ 1ÞsP, e.g., inflationary value
SΛinflation ¼ 1012sP ðn ¼ 1012Þ at the classical inflationary
stage at 106tP, and it follows increasing and classicalizes
till the most classical level today n ¼ 10122: SΛ ¼ 10122sP
at the present time 1061tP. And as far as the Universe will
continue expanding its horizon as lP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp
, SΛn will

continue increasing as (2nþ 1).
The total QΛ gravitational entropy (for the whole

history) is the sum of the three values above discussed
corresponding to the three regimes: classical Λ, quantum
Q, and Planck values (subscript P). In the past remote and
more quantum (Q) eras: 10−61tP ≤ t ≤ tP, the Planck
entropy value (n ¼ 0): sP ¼ πκB dominates SQ. In the
classical eras tP ≤ t ≤ 1061tP, the entropy value today
ðn ¼ 10þ122Þ∶SΛ ¼ 10þ122sP dominates.
The whole picture is depicted in Fig. 1, where Λ refers to

the cosmological constant (or associated Hubble-Lemaître
constant H) in the classical gravity phase. Q means
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quantum, Pmeans Planck scale, and Planck’s units, natural
to the system, greatly simplify the history. (The com-
plete history is a theory of pure numbers.) Each stage is
characterized by the set of main physical gravitational
quantities (Λ, density ρΛ, size LΛ, and gravitational entropy
SΛ). In the quantum trans-Planckian phase, levels are
labeled with the subscriptQ. Total means the whole history
including the two phases or regimes. The present age of
the Universe 1061 (with Λ ¼ ρΛ ¼ 10−122 ¼ 1=SΛ) is a
lower bound to the future Universe age and similarly
for the present entropy level SΛ. The past 10−61 (with

ΛQ ¼ 10122 ¼ ρQ ¼ 1=SQ) is an upper bound to the
extreme past (origin) of the Universe and quantum initial
entropy (arrow of time). [Similarly, the values given in
Fig. 1 (in Planck units) for the CMB are the classical CMB
age (3.8 × 105 yr ¼ 1057tP) and the set of gravitational
properties of the Universe at this age and their correspond-
ing precursors in the quantum preceding era at 10−57tP. SΛ
constitute also an upper bound to the entropy of the CMB
photon radiation.]
Shown in Fig. 1 are the quantum discrete levels of the

Universe from its early trans-Planckian era to classical

FIG. 1. The quantum discrete levels of the Universe from its early trans-Planckian era to dark energy today. In the pre-Planckian (trans-
Planckian) phase 10−61tP ≤ t ≤ tP ≡ tplanck, the quantum levels are (in Planck units) HQn ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp

, ΛQn ¼ ð2nþ 1Þ,
SQn ¼ 1=ð2nþ 1Þ, n ¼ 0; 1; 2;…, Q denoting quantum. The n levels cover all scales from the past highest excited trans-Planckian
level n ¼ 10122, passing the Planck level (n ¼ 0) and entering the post-Planckian phase, e.g., n ¼ 1; 2;…; ninflation ¼
1012;…; ncmb ¼ 10114;…; nreoin ¼ 10118;…; ntoday ¼ 10122. In the post-Planckian Universe tP ≤ t ≤ 1061tP, levels are Hn ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp
, Λn ¼ 1=ð2nþ 1Þ, and Sn ¼ ð2nþ 1Þ: As n increases, radius, mass, and Sn increase and consistently the Universe

classicalizes. See the text at the end of Sec. X.
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vacuum energy today (dark energy), namely, the Standard
Model of the Universe completed back in timewith quantum
physics in terms of its vacuum history. The Universe
is composed of two main phases: after and before the
Planck scale (Planck time tP and Planck units). The complete
history goes from 10−61tP to 1061tP: In the pre-Planckian
(trans-Planckian) phase 10−61tP ≤ t ≤ tP ≡ tplanck, the quan-

tum levels are HQn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp

, ΛQn ¼ ð2nþ 1Þ, and
SQn ¼ 1=ð2nþ 1Þ, n ¼ 0; 1; 2;…, Q denoting quantum.
The n levels cover all scales starting from the past highest
excited trans-Planckian level n¼ 10122 with finite curvature
RQ¼10122,ΛQ¼10122, and minimum entropy SQ¼10−122,
as n decreases: SQn increases and ðHQn;ΛQnÞ decrease,
passing the Planck level (n ¼ 0): Hplanck ¼ 1 ¼ Λplanck ¼
Splanck and entering the post-Planckian phase, e.g., n¼
1;2;…; ninflation ¼ 1012;…; ncmb ¼ 10114;…; nreoin ¼ 10118;
…; ntoday ¼ 10122. In the post-Planckian Universe tP ≤
t ≤ 1061tP, the levels are Hn ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2nþ 1Þp
, Λn ¼ 1=

ð2nþ 1Þ, and Sn ¼ ð2nþ 1Þ: As n increases, the radius,
mass, and Sn increase, ðHn;ΛnÞ decrease, and consistently
the universe classicalizes. The present age of the Universe
1061tP with its most classical valueHtoday ¼ 10−61,Λtoday ¼
10−122 ¼ 1=Stoday is a lower bound to the futureUniverse age
and similarly for the present entropy level Sn. The far past
10−61tP (withΛQ ¼ 10122 ¼ 1=SQ) is an upper bound to the
extreme known past (“origin”) of the Universe and quantum
initial entropy (arrow of time).

XI. DISCUSSION AND CLARIFICATIONS

A full quantum cosmology dynamics including the full
trans-Planckian quantum phase and the discrete time levels
is not yet fully accomplished, but that does not mean that
this approach does not allow time dependence dynamics,
on the contrary. Classical-quantum gravity duality here,
quantum discrete levels in cosmology, and its connection to
the observational values are a first (nonperturbative) step
toward the completion of a quantum cosmology dynamics
including the trans-Planckian domain.
Recall that, in the foundation of quantum theory, the

quantum dynamical equations were written well after that
classical-quantum duality, wave-particle duality, and its
implied quantum uncertainty were formulated, and they
were also motivated by experimental results.
As stated in Sec. IX, after Eqs (9.18)–(9.20), a direct

consequence of the classical-quantum gravity duality
(CQGD) relations, e.g., Eqs (2.2)–(2.4) and Refs. [1–3],
is that in the post-Planckian (semiclassical and classical)
eras, no trans-Planckian energies are present: Only math-
ematically or artificially (nonphysical) trans-Planckian
energies could be generated in the present Universe. The
trans-Planckian energy domain necessarily remains in the
phase totally before the Planck time tP, i.e., in a totally
quantum gravity domain.

A recent trans-Planckian censorship conjecture (TCC) in
string theory, e.g., Ref. [34], says that no (low-energy)
effective field theory emerging from superstring theory
could lead to a regime where fluctuation modes which were
initially trans-Planckian ever exit the Hubble radius. Or,
equivalently, no modes with four-momenta higher than the
Planck scale can enter in the low-energy effective action
[thereby promoting the role of the Planck mass scale as an
ultraviolet (UV) momentum cutoff]. One could say, there-
fore, that a part of such TCC finds support in the CQG
duality, even if we have not formulated CQG duality for
such a TCC at all (and TCC was formulated later than
CQGD). On the other hand, the CQG duality refers to an
ultimate finite quantum theory of gravity. In the CQG
duality, the Planck scale is not an ultimate UV cutoff but a
transition scale [between the dual quantum gravity (trans-
Planckian) and the classical gravity (non-trans-Planckian)].
The CQG duality implies a precursor new phase (a whole
domain) before the Planck time, smaller than the Planck
size, which is full trans-Planckian, and the post-Planckian
Universe is necessarily non-trans-Planckian.
The classical-quantum gravity duality here and its

quantum levels imply a varying vacuum energy, i.e., a
varying Λn at each discrete level n, and yield support to it:
Hn varies and Λn varies, too, even if, of course, this
variation is mild. After all, inflation also needs such a
vacuum or Λ variation. It is known that what it is called
Hubble constant is, in fact, a Hubble rate; it should be
admitted also that what is called Λ cosmological constant
would be, in fact, a Λ rate.
Recall that the purpose of this approach is the extension

of the semiclassical and classical cosmological phases to
the quantum Planckian and trans-Planckian domain, mainly
the de Sitter (and quasi–de Sitter) early and late phases, as
these are relevant in this problem. By no means is this
to disregard the other expanding intermediate phases,
although this paper is not particularly devoted to them.
In the introduction, Eq. (1.1) refers to the magnitudes in

the post-Planckian (classical and semiclassical) Universe.
Equation (1.2) (and the subscript Q) refers to the magni-
tudes in the pre-Planckian (quantum trans-Planckian and
Planckian) Universe. n ¼ 0 yields the Planckian (zero-
point) level (in Planck units). The magnitudes at the
Planck scale (the crossing scale) as explained in the paper
are just a constant: Their corresponding expressions (sub-
script P) are totally in terms of the Planck constant, as in
Eq. (2.3) and, for example, in the case of the gravitational
entropy Eq. (2.7) [Eq. (3.8)]. When we refer to the total or
“complete” magnitudes (also when we stand them with the
subscript total or QG), we refer to the total (QG) magni-
tudes which are the sum of the magnitudes in the three
regimes: Q, G, and P, and, automatically, the additive
constant magnitude in terms of the Planck constant does
appear (mP or other Planck constant magnitude according
to the physical magnitude considered), as, for example, in
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Eqs (2.5), (2.6), (3.5), and (3.8), e.g., ΛP, ρP, and similarly
in the other magnitudes. This applies to all physical
magnitudes, as described in Secs. II–V.
The discrete levels refer to the quantum space-time levels

and in the post-Planckian time eras become continuous for
the classical and semiclassical gravity, but this by no means
at all that the QFT of all propagating fields and their
interactions (not considered here) became classical:
Semiclassical gravity is precisely QFT in curved continu-
ous space-time. In the post-Planckian epochs, the discrete
levels become classical for the space-time and gravity, but
the genuine QFT of different matter and spins is perfectly
valid, which is precisely what semiclassical or semiquan-
tum (non-Planckian) gravity does mean. In semiclassical or
semiquantum gravity (e.g., without the QG variables,
without the trans-Planckian domain), quantum fields propa-
gate in the classical or semiclassical continuous curved
space-time and background fields. Here we are not con-
sidering all the different quantum interactions and contri-
butions to the vacuum, although it is possible to consider
and separate them, but this is not the purpose of this paper.
This approach provides the results of QFT in curved

space-time in its own range of validity. Semiclassical
gravity, e.g., QFT, in curved space-times and an effective
theory of gravity are valid in the post-Planckian time
nonquantum gravity Universe. In particular, in the semi-
classical or semiquantum gravity and classical gravity
regimes, e.g., H ≪ hP, L ≪ lP, and ρ ≪ ρP, the expres-
sions from theQG variables provide the series in powers of
ðH=mPÞ2 plus the constant Planckian terms, hP, lP, or ρP,
respectively, according to the physical magnitude consid-
ered: Equations (5.6) for HHQ, Eqs. (5.10) for ΛΛQ, and
Eq. (5.21) for ρHQ of this paper. The additive constant
Planck terms are always present.
This approach does not replace QFT, but it brings an

extension to it; the QG variables (and classical-quantum
gravity duality) are a first step to such (nonperturbative)
extension. The classical-quantum gravity duality, thus,
appears as a guiding property toward the construction of
a complete theory beyond Planck scale. A full complete
quantum gravity theory would be, thus, a finite theory
(which is more than a renormalizable theory): In the sense
of the physical renormalization idea, the renormalization
procedure applies for the noncomplete theories, because
they are valid in their own limited range of validity, and this
is so because such known QFTs are not complete at the
Planck scale and beyond it. The extension of QFT in this
case is by using the completeQG variables which provide a
finite theory. This is so because of the classical-quantum
gravity duality through the Planck scale. Or the nonzero
½X; T� space-time commutators due to the related quantum
uncertainty, which generate the quantum light cone, and the
zero distance or UV singularities are smeared out or
eliminated. (And this is not just extending a cutoff beyond
the Planck constant value.) The whole quantum dynamics

linking the total evolution from the early trans-Planckian
phase to the present phase is not yet fully known.
Well after the Planck time, during inflation and after it,

and in the late Universe, the semiclassical gravity descrip-
tion does apply, e.g., QFT in curved space-time and its
backreaction. References [35–38] well account for such a
description. But is important to keep in mind that such QFT
gravity and its renormalization is an effective theory; e.g., it
is not the final theory: It does not include the Planckian and
trans-Planckian domain, and in this sense such QFT even if
very useful cannot be considered a full quantum cosmology
theory. Behind and beyond such effective QFT theory and
its renormalized effects, it should be a more complete
quantum theory from which such an effective theory is a
sector or approximation.
In Ref. [35], we computed dark energy as the vacuum

energy fromQFT in the expanding FLRWuniverse and find
a dark energy equation of state p ¼ wðzÞρ in which wðzÞ <
−1 asymptotically, reaching the value −1 from below. Of
course, the time dependence comes from the expanding
background, and the quantum effects (after renormaliza-
tion) depend on time. Also, in Refs. [39–41], we computed
the various quantum-type corrections to inflation and to the
local renormalized magnitudes (e.g., effective potential,
correlation functions, and energy-momentum tensor) from
which we found the quantum corrections to the power
inflationary spectra.
The present nonperturbative approach with the QG

variables extends to the quantum higher trans-Planckian
phase and goes beyond the perturbative corrections in the
power spectra. The QG extension and its HQG variables
are a first step to cover nonperturbatively both the non-
Planckian and the quantum (Planckian and trans-Planckian)
gravity domains. They extend (and, in particular, are in
agreement with) the QFT perturbative results of the
classical and semiclassical (non-Planckian) domains which
express themselves as a series in powers of H2. For
instance, the quantum QG extension of inflation we
computed in Ref. [3] and further discuss here below
[Eqs (11.1) and (11.2)] agrees, in particular, with the
quantum corrections to inflation computed in the frame-
work of perturbative QFT in the classical and semiclassical
(e.g., non-Planckian) cosmological domains [39–42].
We discuss the effective field theory of inflation in the
Ginzburg-Landau approach, which is a powerful theoretical
scheme for predictions, confrontation to observations, and
analysis of real data; see, e.g., Refs. [39]–, and references
therein. This covers a wide class of inflation models (small
field or symmetry-breaking families, as well as large field
or non-symmetry-breaking inflation), not just one model.
The (QG) extended inflationary power spectra are given by

½ΔS
k;QH� ¼

½ΔS
k;H�

½1þ ðH=hPÞ2�ð1 − δϵQHÞ1=2
; ð11:1Þ
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½ΔT
k;QH� ¼

½ΔT
k;H�

½1þ ðH=hPÞ2�
: ð11:2Þ

QH stands for the total inflation phase including the
known classical and semiclassical inflation and its precursor:
the quantum inflation era (in the Planckian and trans-
Planckian) phase. ½ΔS

k;H� and ½ΔT
k;H� are the known standard

spectra of scalar curvature and tensor perturbations, respec-
tively, in classical H inflation, and δϵQH is the first-order
QH slow-roll parameter which contains, in particular, the
classical knownslow-roll parameter ϵH. The totalQH spectra
contain both the standard known spectra of the classical and
semiclassical inflation including its quantum corrections of
the order of ðH=hPÞ2 ¼ 10−12 in the classical and semi-
classical gravity phase H ¼ 10−6hP, at t ¼ 106tP (or
10−5MP for the reduced Planck mass MP ¼ mP=

ffiffiffiffiffiffi
8π

p Þ
and their quantum dual spectra in the quantum precursor
inflation era HQ ¼ 106hP at t ¼ 10−6tP.
This description gives support to dynamical vacuum

energy, e.g., dynamical dark energy, as computed from
QFT in a classical FLRW expanding universe [35] and the
running vacuum [36–38]. The vacuum expectation value of
the renormalized energy-momentum tensor of quantum
fields in a FLRW space-time (see Refs. [35–38]) yields the
vacuum energy density and pressure, e.g., the dark energy
equation of state p ¼ wðzÞρ. The results can be expressed
in terms of different parametrizations, but the different
magnitudes for the vacuum density, vacuum pressure, and
dark energy equation of state, as well as the inflation
fluctuation spectra, all yield to quantum terms which can be
recast as a series in powers of H2.
Vacuum dominance at the trans-Planckian era (e.g., the

Universe arises from vacuum) implies that this is the de
Sitter or quasi–de Sitter phase in the very earliest stage. In
the quantum trans-Planckian era, from the most initial
higher excited levels, namely, nmax with the smallest
entropies SQn ¼ 1=ð2nmax þ 1Þ (Sec. IX), the decreasing
or deexcitation of the levels through nmax; nmax − 1;…; 1,
till n ¼ 0 (Planck scale), yields the decreasing of HQn

and ΛQn, the increasing of the size LQn, and the increasing
of the entropy SQn passing by its Planck value at n ¼ 0

and entering the semiclassical and classical phase
Sn ¼ ð2nþ 1Þ, Ln, Hn, and Λn till its most high values
in the late Universe. The time levels tn and associated
physical magnitudes are accounting for evolution. These
are not the full dynamical wave function equations, but the
discrete space-time levels and the associated physical
magnitude levels HðtnÞ, ΛðtnÞ, n ¼ 0; 1; 2;…, consistently
account for evolution.
At each level n, the physical magnitudes, e.g.,

ðLn;Hn;Λn; SnÞ, take the corresponding value at that
time level tn. In the post-Planckian time era t > tP,
e.g., (n ¼ 0)—that is, energies smaller than the Planck
energy—the levels n ¼ 1; 2;… yield increasing times tn

and increasing sizes Ln, together with increasing entropy
Sn and smaller Hubble values Hn and Λn, and the system
becomes more and more classical. In such classical and
semiclassical evolution, the known QFT semiclassical
gravity and classical gravity regimes hold, as well as the
known QFT in curved space-time dynamics, its back-
reaction effects, and its quantum corrections.
The connection between the cosmological constant and

the (inverted) harmonic oscillator is derived from the
Einstein equations in Secs. VI and VII. The space-time
discrete n levels and their expressions Xn and Tn
[Eqs. (8.1)] are not a “hypothesis” nor a “conjecture”
but derived expressions. They are general and apply to
black holes, too, as derived in Ref. [2], also supported by
Refs. [1,3]. ðXn; TnÞ is the notation for the (space, time)
coordinate levels. The expressions for Xn and Tn are given
by Eq. (8.1) and the line below it.
This paper does not treat the cosmic coincidence

problem. As is known, a part of the so-called cosmological
constant problem is connected with the mismatch between
the quantum vacuum particle physics estimated value
(10122) and the low observed value (10−122) in Planck
units. That is not the total CC problem, but we are mainly
interested here in the problem connected with the Planckian
and trans-Planckian (that is to say, fully quantum gravity)
domains. The problem is to know too which is (or are) the
main particle(s) associated to this vacuum and the detection
of such particles, as well as the whole evolution and, of
course, to test such quantum evolution with the most
complete cosmological dataset. This is important, too, in
clarifying or resolving the present H0 problem or tension,
as discussed in Refs. [36–38] with the running vacuum
energy.
The cosmological constant (CC) is not really constant

along the cosmic history in this approach. This is a
difference with a rigid CC but not with dark energy as a
vacuum energy. Here the cosmological term appears to be
like a “running” vacuum energy with the value of n as
1=ð2nþ 1Þ (in Planck units) and ultimately with t. We are
not using a renormalization group approach; n is a space-
time level. n ¼ 0 corresponds to the Planckian constant
(or zero-point) level. It could be thought by analogy as an
effective running, although we have not used nor thought n
in this way. In addition, and independently, in Ref. [35] we
have found varying time vacuum energy from QFT in a
curved expanding FLRW universe, and we have not used
analogy with “running,” but such time varying could be
compared to, or interpreted as, a running.
In the process of the classicalization as n increases and

tn ¼ ð2nþ 1Þ1=2 increases, the huge value of the initial Λn
diminishes as Λn ¼ 1=ð2nþ 1Þ, and when n is huge, say,
n ¼ 102x with large x ≫ 1, the Λn value is 10−2x smaller
than the highly quantum initial one and, hence, in the
desired range of the classical measurement at time
tn ¼ ð2nþ 1Þ1=2 ¼ 10x. This is coherently accompanied
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by the decreasing Hubble constant Hn ¼ 1=ð2nþ 1Þ1=2,
the increasing size Ln ¼ ð2nþ 1Þ1=2, and increasing gravi-
tational entropy Sn ¼ ð2nþ 1Þ ¼ 102x from the early eras
to the present time.
As explained in the above points and Sec. VIII, Eq. (8.1),

and Sec. IX, n ¼ 0; 1; 2;… is determined by the time levels
tn ¼ ð2nþ 1Þ1=2 and its dual branch tQn ¼ 1=ð2nþ 1Þ1=2,
and conversely. The time, in particular, the present time
1061 (in Planck units tP), determines n ¼ 10122, and,
therefore, the values today for Λn ¼ 1=ð2nþ 1Þ and Sn ¼
ð2nþ 1Þ correspond to such n. That is to say, n ¼ 10122 is
not an arbitrary choice. Of course, any other similar high n
corresponding to a time near such an era, n ¼ 10100 say,
explains as well the huge difference between the very early
and late Λn values due to the classical-quantum duality
relations between the trans-Planckian and the classical
(late) eras.
On the other hand, if we would start from the extreme

early past Universe, it is not known what is the most
early past remote time, except that it should be a very
small fraction of Planck time: If 10−x is such an a priori
unknown number, x > 0 to be determined, then, starting
from tQ ¼ 10−xtP, the results of Secs. VIII and IX, e.g.,
tQn ¼ 1=ð2nþ 1Þ1=2, yield the quantum level n ¼ 102x, the
most early quantum ΛQn ¼ 102x, and most early quantum
entropy (in Planck units) SQn ¼ 10−2x. The classical-
quantum gravity duality relations yield then for the most
late future phase observables tH ¼ 10xtP, H ¼ 10−x,
LH ¼ 10x, and SH ¼ 102x for the (dimensionless) gravity
entropy. In particular, today tH ¼ 1061tP yields x > 61,
tQ ¼ 10−61tP, and SQ ¼ 10−122 as the upper bounds for the
most early remote time and quantum gravitational entropy;
n ¼ 10122 and ΛQ ¼ 10122 (in Planck units) are, respec-
tively, the lower bounds for the corresponding quantum
level and energy. Such quantum huge energies and sizes
LQ ¼ 10−122 ≪ lP are truly typical of the trans-Planckian
domain and appear in other quantum gravity problems, too
(as black holes, for instance). Thus, the early quantum
trans-Planckian magnitudes can be connected to the late
time measurements through the classical-quantum duality
relations. They provide the most stringent upper bounds to
the most early remote time and early quantum entropy and
the most stringent lower bounds for the most early quantum
level and energy.
Let us comment now about the value of n at a given

time of the cosmological expansion such that the value
of Λn does not perturb any segment of the thermal history
of the Universe, e.g., big bang nucleosynthesis (BBN)
or other known period: Recall that tn ¼ ð2nþ 1Þ1=2,
n ¼ 0; 1; 2;…, and Λn ¼ 1=ð2nþ 1Þ hold for all the
post-Planckian cosmic history: t > tP, that is, in all
classical and semiclassical eras, as well as all the other
gravitational levels Ln ¼ ð2nþ 1Þ1=2, Hn ¼ 1=ð2nþ 1Þ1=2,
and Sn ¼ ð2nþ 1Þ in such eras. In the radiation and matter

eras, that is, in the classical and/or semiclassical gravity
regimes, the vacuum-dominated expressions for Hn, Λn,
and Sn represent the upper bounds (maximum values) to
the values of these magnitudes in such radiation and matter
eras when the vacuum energy is not the dominant one, that
are computed from the semiclassical and classical dynam-
ics (QFT and Einstein equations). Recall that Sn is the
gravitational cosmological entropy or Bekenstein-Gibbons-
Hawking entropy, and, thus, this is always un upper bound
to the entropies of the different content parts: radiation, or
matter or other partial entropies. Therefore, these values
will not alter the cosmic history, BBN, or other part. This
does not excludes the existence of an early vacuum energy
which could explain the H0 tensions or even a recently
discussed BBN tension [43], but we do not discuss such
tensions here.
This is not an alternative description to standard cosmol-

ogy but a quantum extension of it, and doing that the
vacuum energy appears as time evolving. In the QFT
description in curved FLRW space-time, vacuum energy
turns out to be time dependent, even if such time variation is
mild in the late Universe. Quantum discrete levels of the
space-time are neither an alternative description to space-
time but a more complete description of it. A time-evolving
vacuum energy density is not only a prediction of QFT
in curved space-time, but it may provide a better des-
cription to the cosmological data than merely the constant
Λ vacuum in the so-called ΛCDM model; see, e.g.,
Refs. [36–38]. And as has been discussed in the literature,
phenomenological models proposing a time-evolving Λ
(and, hence, a dynamical ρΛ) help in alleviating the several
cosmological parameter problems or tensions; see, e.g.,
Refs. [44,45] and particularly for H0 Refs. [46,47].
The Standard Model of the Universe in fundamental

grounds is based on general relativity and classical fields
and quantum field theory for the description of matter, and,
having dark matter and dark energy in its major compo-
nents, this last described by a vacuum energy. The fact that
the vacuum energy is time varying or time running is
compatible with semiclassical gravity, general relativity,
and QFT and is not an alternative to it; it is neither a
modified gravity theory in the sense of “modified classical
Newton gravity” nor modified classical Einstein nor other
proposed alternative gravities.
We treat the area gravitational (Gibbons-Hawking [48]

and Bekenstein [49]) entropy in terms of the relevant size
of the system (or object) considered and its extension
to the quantum gravity trans-Planckian domain. In the
pre-Planckian time phase (fully quantum gravity trans-
Planckian phase), the relevant appropriate size of the
quantum system is the Compton length. In the post-
Planckian Universe, the relevant size is the gravitational
size, the Hubble horizon, the apparent horizon, as de Sitter
gravitational entropy or Gibbons-Hawking entropy. The
entropies in the two different phases are classical-quantum
gravity duals of each other. The total gravitational entropy
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is the sum of the entropies in the three main gravity
regimes: quantum gravity, Planckian, and classical and
semiclassical gravity regimes [Eq. (2.7) of this paper]. The
complete (or QG) variables entail precisely those three
regimes and provide the additive constant, too, that is the
pure Planckian scale term (a constant). This is discussed
in Sec. II [Eq. (2.7)]. In Sec. II, the general physical
magnitudes in each of the three gravity regimes are
explained, e.g., Eqs. (2.1)–(2.3). Equation (2.4) gives the
total QG gravitational magnitudes, sum of the quantum
trans-Planckian (Q), classical, and Planckian ones. This
paper is not discussing already known entropy aspects nor
the entropy generation mechanisms or their thermodynam-
ics, e.g., Ref. [50] and references therein. The total entropy
in Ref. [50] refers to the sum of the area plus the volume
entropy in the post-Planckian time Universe (e.g., in the
semiclassical and classical gravity phases), but the quantum
gravity trans-Planckian dual entropy in the pre-Planckian
time phase is not included.

XII. CONCLUSIONS

We have accounted in the introduction and along the
paper the main results and will not include all of them here.
We summarize below with some conclusions and remarks.

(i) The Standard Model of the Universe is extended
back in time with Planckian and trans-Planckian
physics before inflation in agreement with observa-
tions, classical-quantum gravity duality, and quan-
tum space-time. The quantum vacuum energy bends
the space-time and produces a constant curvature de
Sitter background. We find the quantum discrete
cosmological levels: size, time, vacuum energy,
Hubble constant, and gravitational (Gibbons-Hawk-
ing) entropy and temperature from the very early
trans-Planckian vacuum to the classical vacuum
energy today. The n levels cover all scales from
the far past highest excited trans-Planckian level n ¼
10122 with finite curvature, ΛQ ¼ 10122 and mini-
mum entropy SQ ¼ 10−122; n decreases till the
Planck level (n ¼ 0) with Hplanck ¼ 1 ¼ Λplanck ¼
Splanck and enters the post-Planckian phase, e.g., n¼
1;2;…; ninflation ¼ 1012;…; ncmb ¼ 10114;…; nreoin ¼
10118;…;ntoday ¼ 10122 with the most classical value
Htoday ¼ 10−61, Λtoday ¼ 10−122, and Stoday ¼ 10122.
We implement the Snyder-Yang algebra in this
context, yielding a consistent group-theory realiza-
tion of quantum discrete de Sitter space-time,
classical-quantum gravity duality symmetry, and a
clarifying unifying picture.

(ii) A picture for the de Sitter background and the Uni-
verse epochs emerges, for both its classical (post-
Planckian) and quantum (pre-Planckian) regimes,
depicted in Fig. 1. This is achieved by considering
classical-quantum gravity duality, trans-Planckian

physics, quantum space-time, and quantum algebra
to describe it. Concepts such as the Hawking
temperature and the usual (mass) temperature
are precisely the same concept in the different
classical gravity (post-Planckian) and quantum grav-
ity regimes, respectively. Similarly, it holds for the
Bekenstein-Gibbons and Hawking entropy. A uni-
fying clarifying picture emerges in terms of the main
physical gravitational intrinsic magnitudes of the
Universe: age, size, mass, vacuum energy, temper-
ature, and entropy, covering the relevant gravity
regimes and cosmological stages—classical, semi-
classical, quantum Planckian, and trans-Planckian
eras. The total or global mass levels are Mn ¼
mP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
for all n ¼ 0; 1; 2;…. Two dual

branches mn� ¼ mP½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p � ffiffiffiffiffiffi
2n

p � do appear
for the usual mass variables, covering the whole
mass range: from the Planck mass (n ¼ 0) until the
largest cosmological ones in the post-Planckian
branch (þ) and from the smallest masses till near
the Planck mass in the pre-Planckian branch (−).

(iii) The quantum space-time structure arises from the
relevant nonzero space-time commutator ½X; T� or
nonzero quantum uncertainty ΔXΔT. The quantum
light cone due to the quantum nonzero uncertainty
½X; T� allows a new quantum region which is purely
quantum vacuum or zero-point Planckian and trans-
Planckian energy and constant curvature. The quan-
tum de Sitter space-time is described through the
relevant quantum noncommutative coordinates and
the quantum hyperbolic structure. They generalize
the classical de Sitter space-time and reduce to it
in the classical zero quantum commutator coordi-
nates. Interestingly enough, de Sitter space-time
turns out to be discretized in quantum levels, e.g.,
ðXn; TnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1

p
, n ¼ 0; 1; 2;….

(iv) In the post-Planckian domain, the quantum de Sitter
space-time extends in discrete levels from the
Planck-scale level (n ¼ 0) and the quantum (low
n) levels to the quasiclassical and classical levels
(intermediate and large n), tending asymptotically
for the very large n to a classical continuum
space-time. Consistently, these levels have larger
gravitational (Gibbons-Hawking) entropy Sn, lower
vacuum densityΛn, and lower Hubble rateHn. In the
pre-Planckian trans-Planckian domain, quantum de
Sitter extends from the Planck-scale level (n ¼ 0) to
the lengths and time smaller than the Planck scale,
the quasiquantum trans-Planckian levels (small and
medium n), until the deep extreme highly excited
trans-Planckian levels (very large n) which are those
of smaller entropy SQn, higher vacuum density ΛQn,
and higher HQn.

(v) Cosmological evolution goes from the pre-Planckian
or trans-Planckian quantum phase to the Planck
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scale and then to the post-Planckian Universe—
semiclassical accelerated de Sitter era (field theory
inflation)—then to the classical phase until the
present diluted de Sitter era. This evolution between
the different gravity regimes could be viewed as a
mapping between asymptotic (in and out) states
characterized by the sets UΛ and UQ and, thus, as a
scattering-matrix description: the most early quan-
tum trans-Planckian state in the remote past being
the “in state” and the very late classical dilute state
being the far future or today “out state.”

(vi) The classical-quantum gravity duality relations are
not “abstract” relations: Observational values allow
one to verify them. In the item below, we include the
implications of the trans-Planckian phase for infla-
tion and its effects, which are testable by the CMB
and gravitational-wave observations. Inflation and
the fluctuations are derived with this model: It yields
(i) the known (classical and semiclassical) inflation
and its primordial scalar and tensor fluctuation
spectra and their predicted numbers tested by the
CMB and other cosmological observations, (ii) the
quantum corrections and the numbers for these
corrections which are in agreement with other
independent computations of quantum corrections
to inflation (as quantum inflaton decay and inflaton-
fermion interactions, for instance), and (iii) the
resummation for them. All them can be confronted
or constrained by the CMB and large-scale structure
data, as well as in the future by gravitational-wave
observations in the primordial gravitational wave
frequency range.
The classical-quantum gravity duality relations

through the Planck scale are well-motivated ones;
e.g., as shown in Ref. [1], they reduce, in particular,
to the well-known classical-quantum (de Broglie,
Compton) duality without gravity. They are sup-
ported by the dynamics of quantum fields and
strings in curved space-times [14,51,52]. They are
not purely conjectured relations or hypotheses.

(vii) QFT in an expanding universe allows one to con-
sider particle creation, cosmological perturbations,
inflation, and its nearly scale-invariant spectra. In
this context, QFT in the complete (with HQH) de
Sitter space-time yields that the total or complete
QH inflationary spectra turn out expressed by
Eqs. (11.1) and (11.2) as shown in Ref. [3] and
discussed in Sec. XI. The features the pre-Planckian
phase and those the quantum discrete levels could
imprint in the inflationary spectra deserve to be
explored and are beyond the scope of the present
paper. A full quantum description including the
quantum space-time algebra, its discrete levels,
and coherent states in the complete QH de Sitter
group within a group-theory quantization approach
deserve more investigation.

(viii) Inflation is part of the standard cosmological model
and is supported by the CMB data of temperature
and temperature-E polarization anisotropies. This
points to 10−6mP, (or 10−5MP for the reduced mass
MP ¼ mP=

ffiffiffiffiffiffi
8π

p
) as the energy scale of inflation

[41,42,53] safely below the Planck energy scale mP
of the onset of quantum gravity. This implies that
known post-Planckian inflation is consistently in the
semiclassical gravity regime. This, in turn, implies
that the preceding phase of inflation corresponds to a
Planckian and pre-Planckian quantum phase. Infla-
tion being a de Sitter (or quasi–de Sitter) stage, it has
a smooth space-time curvature without any physical
space-time singularity.

(ix) Integrating the above results, and because the ear-
liest stages of the Universe are de Sitter (or quasi–de
Sitter) eras, it appears that there is no singularity at
the Universe’s origin. First, the so-called t ¼ 0
Friedmann-Robertson-Walker mathematical singu-
larity is not physical: It is the result of extrapolation
of the purely classical (nonquantum) general rela-
tivity theory, out of its domain of physical validity.
The Planck scale is not merely a useful system of
units but a physically meaningful scale: The onset of
quantum gravity, this scale precludes the extrapola-
tion until zero time or length. This is precisely what
is expected from quantum trans-Planckian physics in
gravity: the smoothness of the classical gravitational
singularities. Second, inflation (classical or quan-
tum) in the very past (106tP or 10−6tP) is mainly a de
Sitter or quasi–de Sitter smooth constant curvature
era without any curvature singularity. Third, the
extreme past (at 10−61tP) is a trans-Planckian de
Sitter state of high bounded trans-Planckian constant
curvature and, therefore, without singularity. This
paper is not devoted to the singularity issue, but our
results here and the whole picture emerging from
this paper and Ref. [2] indicate the trend and insight
into the problem.

(x) Further couplings, interactions, and background
fields can be added. The conceptual results here
will not change by adding further couplings or
interactions or further background fields to the
background here. Of course, this is just a first input
in the construction of a complete physical theory
and understanding in agreement with observations.
Besides its conceptual and fundamental physics
interest, this framework reveals deep and useful
clarification for relevant cosmological eras and its
quantum precursors and for the cosmological vac-
uum. This could provide realist insights and science
directions where to place the theoretical effort for
cosmological missions and future surveys such as
Euclid, DESI, WFIRST, LSST-Vera C. Rubin
Observatory, and Simons Observatory, for instance
[54–58] and for the searching of cosmological
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quantum gravitational signals for e-LISA [11], for
instance, after the success of LIGO [12,13].

(xi) The exhibit of ðc; G; hÞ helps in recognizing the
different relevant scales and physical regimes. Even
if a hypothetical underlying “theory of everything”
could require only pure numbers (option three in
Ref. [59]), physical touch at some level asks for the
use of fundamental constants [60,61]. Here we used
three fundamental constants (tension being c2=G). It
appears from our study here and in Ref. [1] that a
complete quantum theory of gravity would be a
theory of pure numbers.

(xii) We can similarly think in quantum string coordinates
(collection of point oscillators) to describe the
quantum space-time structure (which is different
from strings propagating on a fixed space-time
background). This yields similar results for the
string expectation values X2 and T2 and other related
operators and yields also a quantum hyperbolic
space-time width bending for the characteristic lines
and light-cone generators or for the space-time
horizons [1,3,62]. In string theory, the width appears
as due to the nonzero size (of the order of the Planck
scale) of the quantum string. Moreover, the

ffiffiffi
n

p
quantization we found in this paper is like the string
mass quantization Mn ¼ ms

ffiffiffi
n

p
, n ¼ 0; 1;…, with

the Planck mass mP instead of the string mass ms,
that is to say, with the gravitational constant G=c2

instead of the string constant α0.
(xiii) Our results on conceptual unification [52] and

QFT and string quantization in a wide class of
curved space-times, e.g., Refs. [14,52], support
the classical-quantum gravity relations, irrespective
of the number and nature of the space-time dimen-
sions and of whether dimensions are or are not
compactified. The classical-quantum gravity duality
here does not require the existence of any isometry
or symmetry in the curved background, neither any
other a priori condition. Several types of relativistic
operations, e.g., L → α0=L, appear in string theory
due to the existence of the dimensional constant α0
(for example, T duality, the duality symmetry
between the winding and propagating modes in
orbifold compactifications). However, the duality
we are considering is the classical-quantum (or
wave-particle) duality (de Broglie or Compton type)
relating classical or semiclassical and quantum
behaviors extended to include the quantum Planck-
ian and trans-Planckian regime. The de Broglie
Lq ¼ h=p or Compton Lq ¼ h=mc relation is not
the expression of a symmetry transform between

physically equivalent theories but a link, through h,
of two different behaviors and regimes. This duality
and our results on QFT and quantum strings in
curved backgrounds inspired our classical-quantum
gravity relations. In a similar spirit, LQ ¼ l2pl=LG

and, more generically, for a general observable O:
OQ ¼ o2Pl=OG relates two different classical and
quantum gravity regimes of nature through the
Planck scale (the crossing scale). The complete
(classical and quantum) magnitudes OQG ¼ OQ þ
OG ¼ oPlðOG=oPl þ oPl=OGÞ are invariant under
the exchange Q ↔ G.

(xiv) The quantum uncertainty or noncommutativity
among the space and time coordinates acts as a
quantum dressing or quantum width for the quantum
light cone or “dressed light cone.” In a complete
covering of the space-time causal regions, a whole
quantum vacuum region emerges. In our comments
in the item above on string theory, the width appears
as due to the noncommuting quantum string coor-
dinates and the nonzero size of the string. In the
context of QFT gravity, perturbative corrections to
the dispersion relation, e.g., for a scalar field near the
light cone, is of the form X2 − T2 ¼ G=ð30πÞ [63],
again as a shifted or quantum-corrected light-cone
relation. Recall that quantum backreaction effects,
gravitational scattering near a event horizon struc-
ture, produces a quantum shift too (the shifted
horizon) [64–66]. QFT in curved space-times and
their backreaction using the complete QG variables
(as QH and its associated variables) is a step to
describe QFT effects including the trans-Planckian
domain and to go beyond the literature in the field. A
full QFT description including quantum space-time,
its discrete levels, and coherent states of the QH de
Sitter group within a group-theory approach quan-
tization deserves investigation and is beyond the
scope of this paper.
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