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The constraint of trans-Planckian censorship conjecture on the brane inflation model is considered. The
conjectures put an upper bound on the main parameter including temperature, inflation time, potential, and
the tensor-to-scalar ratio parameter r. It is determined that the resulting constraint could be stronger than
what we have for the standard inflationary models. The constraint, in general, depends on the brane tension
and it is concluded that the conjecture also confined the value of brane tension to have consistency for the
model. Confining the brane tension turns into a determining value for the five-dimensional Planck mass.
The case of slowly varying Hubble parameter gives more interesting results for the ϵ and r, which indicates
that the value of the tensor-to-scalar perturbation is not required to be extremely small.
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I. INTRODUCTION

Understanding the origin of the initial condition of the
universe is one of the main purposes of the cosmology.
Inflationary scenario not only solves the problems of the
standard big-bang theory, it also predicts the quantum
perturbations which are the main seeds for large-scale
structure of the universe [1–4]. The scenario has received
huge interest since its introduction [5–9] and it has been
generalized in many differential ways [10–19].
The scenario of inflation has been extremely supported

by the observational data [20–22], and many of different
inflationary models could successfully pass the observa-
tional test [23–39]. Besides, there are some other con-
jectures that it is expected that they should be satisfied by
an inflationary model. The story is that the general theory
of relativity is a low-energy effective-field theory where the
scale of energy is the Planck mass. Based on string theory,
which is known as the best candidate for quantum gravity,
every effective-field theory should possess some features
and meet some conjecture. One series of these conjectures
for dividing the consistent effective-field theory from the
inconsistent ones is the swampland conjectures proposed

by [40–42] which has been the topic of many research
works [43–57]. The swampland conjectures concern field
distance and de Sitter vacuum. An effective-field theory
that has a de Sitter vacuum is not consistent with quantum
gravity and stands in the swampland zone. The swampland
criteria have been considered for different inflationary
models, and it seems that the standard inflationary model
with a canonical scalar field is in direct tension with these
conjectures. However, modified models of inflation, e.g.,
k-essence model [58], and warm inflation [59] have the
chance to successfully pass the test.
At the time of inflation, the universe is dominated by a

scalar field, named inflaton, which produces a quasi–de
Sitter expansion. Then, the universe undergoes an extreme
expansion in a short time. As inflation expands the space-
time, the quantum fluctuations are also stretched out and
their wavelengths grow and cross the Hubble horizon, while
the Hubble horizon remains almost unchanged. At the time
that the quantum fluctuations cross the horizon, they freeze
and lose their quantum nature. Standing on the same logic as
the last paragraph, the trans-Planckian censorship conjec-
ture (TCC) has been proposed by Bedroya and Vafa [60]
stating that no quantum fluctuation with a wavelength
shorter than the Planck length is allowed to cross the
Hubble horizon, freezes and become classical. The con-
jecture could be formulated as

eNlp < H−1
e ; ð1Þ

where lp is the Planck length andH−1
e is the Hubble horizon

at the end of inflation.
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The TCC imposes a constraint on the model which
includes spacetime expansion, like inflation, and it implies
no limit on the cosmological evolution of standard big-bang
cosmology where the fluctuations never cross the horizon.
For the inflationary model, the TCC leads to some severe
constraints [61,62] which will challenge many of the
current models of inflation. In [61], it is shown that the
consequence of TCC on the energy scale of inflation is

Ve < 1010 GeV;

which results in an upper bound on the tensor-to-scalar
parameter r [61],

r < 10−30;

which anticipates an extremely small amplitude for the
primordial gravitational waves. Note that the result has been
obtained by taking an almost constant Hubble parameter
during inflation and it is assumed that right after inflation we
have a radiation dominant phase and reheating occurs very
fast. For the k-essence model, a generalized version of TCC
is proposed which involves the sound speed of the model
[58] in which for cs < 1 the constraint gets even stronger.
The TCC is studied inwarm inflation aswell [59], where it is
determined that, in contrast to the canonical cold inflation,
the warm inflation in a strong dissipative regime could
properly pass all three. The conjecture has been the topic of
some other researches such as [63–70].
Here, we are going to consider the constraint of TCC on

bran inflation. The obtained bound on the energy scale and
r depends on the Friedmann equation of the model. The
equation is modified in higher-dimension models of cos-
mology, in which in Randall-Sundrum (RS) brane world
and extra quadratic terms of energy density also appears in
the Friedmann equation which dominates the linear term
in high-energy regime. Due to this, the TCC imposes a
stronger constraint on the parameter of brane inflation than
the standard inflation.

II. BRIEF REVIEW ON BRANE GRAVITY

The action of the Randall-Sundrum II brane gravity is
given by

S5¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
M3

5

2
R−Λ5

�
þ
Z

d4x
ffiffiffiffiffiffi
−q

p ðLb−λÞ; ð2Þ

where R indicates the Ricci scalar related to the five-
dimensionalmetric gAB.Λ5 is known as the five-dimensional
cosmological constantwhich fills the bulk, andM5 stands for
five-dimensional Planck mass. The induced metric on the
brane is given by qμν, related to the five-dimensional metric
gAB by the relation gAB ¼ qAB þ nAnB, where nA is a unit
normal vector.Lb describes the Lagrangian ofmatter that has
confined on the brane and λ is the brane tension. Taking
variation of the acton with respect to the metric gAB leads to
the following field equations:

Gμν ¼ −Λ4gμν þ
�
8π

M2
4

�
τμν þ

�
8π

M3
5

�
2

Πμν − Eμν; ð3Þ

in which the tensors on the right-hand side are defined as

Λ4 ¼
4π

M3
5

�
Λ5 þ

4π

3M3
5

λ2
�
;

M2
4 ¼

3

4π

M6
5

λ;

Eμν ¼ CMRNSnMnNqRμqSν;

τμν ¼ −2
δLb

δgμν
þ gμνLb;

Πμν ¼ −
1

4
τματν

α þ 1

12
ττμν þ

qμν
8

ταβτ
αβ −

qμν
24

τ2:

The cosmological constant on the brane is indicated by
Λ4, which is a combination of five-dimensional cosmo-
logical constant and brane tension. The parameter M4

stands for the effective four-dimensional Planck mass.
The projection of the 5D Weyl tensor CMRNS on the brane
is given by the tensor Eμν, and τμν is the energy-momentum
tensor of the brane.
Including the homogeneity and isotropy assumptions,

and taking a spatially flat 5D Friedmann-Lemaitre-
Robertson-Walker metric as the geometry, the Friedmann
equation is obtained as (refer to [71–74] for more detail and
explanation)

H2 ¼ Λ4

3
þ
�

8π

3M2
4

�
ρþ

�
4π

3M3
5

�
2

ρ2 þ C
a4

:

Since C is a constant, the last term behaves the same as
the radiation, and the term is known as dark radiation which
arises from the tensor Eμν. This term determines the
influence of the bulk graviton on the brane evolution.
However, due to the rapid expansion and increasing of the
scale factor during inflation, this term is not much in our
interest. Moreover, following the original RS model, the 4D
cosmological constant will also be ignored. Then, the
Friedmann equation is read as

H2 ¼ 8π

3M2
4

ρ

�
1þ ρ

2λ

�
: ð4Þ

Here, the main difference with the standard Friedmann
equation is the presence of the quadratic of the energy
density. This term dominates over the linear term in the high-
energy regime, i.e., where ρ ≫ λ. On the other hand, in the
low-energy regime, i.e., ρ ≪ λ, the linear term dominates
and the equations come back to the standard one. It is known
that the standard cosmology very successfully describes the
universe from the time of the nucleosynthesis. It limits the
brane tension as λ ≥ 1 MeV4, resulting in a lower limit on
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5D Planck mass as M5 ≥ 10 TeV [75,76]. Studying the
corrections to the Newtonian law of gravity reveals stronger
limit forM5, asM5 ≥ 105 TeV [76]. Another constraint on
the brane tension comes from the astrophysical implication,
stating that λ ≥ 5 × 108 MeV4 (see [76]).
The matter confined on the brane obeys the usual

conservation equation,

_ρþ 3Hðρþ pÞ ¼ 0: ð5Þ

III. TCC IN BRANE INFLATION

This conjecture could be stated in the following form:

ae
ai

lp ≤ H−1
e ; ð6Þ

where the subscribes e and i stand for end and beginning of
inflation, respectively, and lp indicates the Planck length;
l−1p ¼ mp. Following [61], this condition could take a
stronger form. Suppose that there is an expanding phase
for the universe in the preinflationary phase. Then, it is
reasonable to assume that there might be some modes with
a physical wavelength equal to or shorter than the Planck
length, lp, between the time tp (Planck time)and ti. This
leads one to a stronger version of the above conjecture as

ae
ap

lp ≤ H−1
e : ð7Þ

Because of having an inverse relationship between the
scale factor and the temperature in the radiation dominant
phase, the above condition is expressed in terms of the
temperature as well:

Tp

Ti
eNlp ≤ H−1

e ; ð8Þ

in which Tp is the temperature at the Planck time and Ti is
the temperature at the beginning of inflation.
Same as [61], it is assumed that the preinflationary phase

is a radiation dominant era where the scale factor behaves
as aðtÞ ∝ t1=2. On the other hand, there is another condition
related to the possibility of producing a causal mechanism
for the observed structure of the universe. It states that the
current comoving Hubble radius must be originated inside
the comoving Hubble radius at the onset of inflation. In a
mathematical language, it means

ða0H0Þ−1 ≤ ðaiHiÞ−1;
which after some manipulation could be rewritten as

H−1
0 e−N

T0

Te
≤ H−1

i ¼ H−1
e : ð9Þ

The last equality on the right-hand side of the equation is
based on our assumption for this section that the Hubble

parameter remains constant during inflation.1 T0 and Te
are, respectively, the temperature at the present time and at
the end of inflation. And, H0 is the present Hubble
parameter.
Combining the two conditions, Eqs. (8) and (9), results in

He

H0

T0

Te
≤

1

Hilp

Ti

Tp
: ð11Þ

Just before and right after inflation, there is an inflationary
phase. Then, the energy density in the Friedmann equation
is a thermal bath of radiation, so

H2 ¼ 8π

3m2
p
ρr

�
1þ ρr

2λ

�
; ð12Þ

where ρr is the energy density of the thermal bath given by

ρr ¼
π2

30
g⋆ðTÞT4: ð13Þ

We restrict the situation to the high-energy regime where
ρr ≫ λ. In this case, the Friedmann equation is simplified to

H ¼
ffiffiffiffiffiffiffiffiffiffiffi
4π

3m2
pλ

s
π2

30
g⋆ðTÞT4: ð14Þ

Evaluating Hi and He from the above equation and
substituting the result in Eq. (11), there is

T3
i T

3
e ≤

2.7 × 103

4π5
m2

pλ

g⋆ðTiÞg⋆ðTeÞ
H0

T0

: ð15Þ

Taking a matter dominant phase for the present time, the
current Hubble parameter is read as

H2
0 ¼

Teq

3m2
p
T3
0; ð16Þ

where Teq is the temperature at the time when energy
density of matter and radiation are equal. Also, in the late
time, the universe is in the low-energy regime, and the
modified Friedmann equation (12) comes back to the
standard form. Applying this equation on Eq. (15) leads to

1If one considers the reheating phase, there will be a little
modification to Eq. (9) of the text as

H−1
0 e−ðNþNreÞ T0

Tre
≤ H−1

i ¼ H−1
e ; ð10Þ

where Nre is the number of e-folds for the phase of reheating
which is expected to be small compared to the number of e-folds
of inflation, N [64]. And, Tre is the reheating temperature. The
difference between this equation and Eq. (9) is the term e−Nre ,
which could be ignored with good approximation [64].
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T6
e ≤

2.7 × 103

4π5
ffiffiffi
3

p mpλ

g⋆ðTiÞg⋆ðTeÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
TeqT0

p
; ð17Þ

where it is assumed that Ti ¼ Te. Taking g⋆ðTiÞ ¼
g⋆ðTeÞ ≃ 102, it turns to

T6
e ≤ 2.6 × 104λ GeV2; ð18Þ

which depends on the values of the brane tension; note that
the brane tension λ has the dimension M4, so the dimension
of temperature is right. The brane tension has not been
determined accurately but there are some estimations about
it. To reproduce the nucleosynthesis as in standard cosmol-
ogy λ ≥ 1 MeV4 and also various astrophysical applica-
tions imply that λ ≥ 5 × 108 GeV4.
There is some understanding about the reheating temper-

ature, which here is shown by Te. After inflation, the
universe is very cold and almost empty of any particle. The
reheating phase is an explanation (and a possible scenario)
for creating particles warming up the universe after
inflation. However, there are some restrictions about the
final temperature of the universe at the end of reheating.
The reheating temperature should be high enough to
recover the hot big-bang nucleosynthesis, and on the other
hand, it should be small enough to prevent the creation of
unwanted particles. These conditions are combined as
10−3 GeV < Tr ¼ Te < 1010 GeV. To satisfy the condi-
tion, the brane tension should stand in the range
10−22 GeV4 < λ < 1055 GeV4, which is a very wide range.
The upper bound on temperature Te also implies an

upper bound for the potential of the inflation as

Ve < ð2.465 × 104 GeV4=3Þ λ2=3; ð19Þ

in which for λ ¼ 5 × 1013 GeV4 the potential should
satisfy the upper bound Ve < 3.3 × 1013 GeV4, meaning
that the potential could have the same order as the brane
tension or it should be lower. The important point is that it
was assumed that the whole process of inflation occurs at
the high-energy limit where λ ≪ V. From Eq. (32) it is
realized that as the brane tension gets bigger the high-
energy regime assumptions are more likely to be violated,
for example for λ ¼ 1015 GeV4 the potential should satisfy
the condition Ve < 2.4 × 1014 GeV4, which clearly vio-
lated the high-energy assumption. However, there is a
chance for preserving the high-energy regime assumption
for lower magnitude of the brane tension. For instance, by
taking λ ¼ 106 GeV4 there is Ve < 2.46 × 108 GeV4,
which is consistent with the assumption. Therefore, it
seems that Eq. (32) applies a condition for the magnitude
of brane tension as well.
How much expansion do we have in the inflationary

phase? Substituting Eq. (32) in the TCC condition (6), one
finds a bound for the number of e-fold as

eN <
2.85 × 1033 GeV2=3

λ1=6
: ð20Þ

Based on the wide studies of inflation, it is expected to
have about 55–65 number of e-fold expansion. Also,
Eq. (27) implies that lower brane tension leads to a bigger
upper bound, in which for λ ¼ 106 GeV4 we have
eN < 2.8 × 1032, meaning that N < 74 clearly satisfies
the aforementioned e-folding assumption.
The result for the temperature determines the values of

the Hubble parameterHi which appears in the amplitude of
the scalar perturbations as [18,77]

Ps ¼
3

25π2

ffiffiffiffiffiffiffiffiffiffiffi
4π

3m2
pλ

s
H3

i

ϵ
; ð21Þ

where ϵ is the first slow-roll parameter. According to the
Planck data, the amplitude of the scalar perturbation is of
the order of Ps ∝ 10−9. To satisfy this observational
constraint and at the same time hold the condition (17),
the slow-roll parameter should be about

ϵ ≤ 1.277 × 10−55: ð22Þ

The above constraint on the slow-roll parameter ϵ has a
direct impact on the tensor-to-scalar parameter r which is
related to ϵ as [78–80]

r ≤ 2.043 × 10−54: ð23Þ

which states that r is extremely small.
The obtained result could be utilized to have some

understanding about the start time of inflation. Suppose
that after Planck time and before inflation the universe
stands in radiation dominant phase. In this phase, the scale
factor depends on time as aðtÞ ∝ t1=4, and since the scale
factor is written as the inverse of the temperature, the
beginning time of inflation is achieved as

ti ¼
T4
p

T4
i
tp ≥

2.94 × 1073 GeV8=3

λ2=3
tp: ð24Þ

It means that if one wants to have inflation started at the time
about10−36 s, then the brane tension should take a hugevalue
as λ ∼ 1098 GeV4. This value of the brane tension clearly
violates the discussed high-energy regime assumption.
Preserving the assumption restricts the brane tension to
almost be of the order of λ ≤ 1010 GeV4. By inserting this
value in Eq. (24), the start point of inflation is obtained to be
about ti > 1023 s, which is absolutely unacceptable.

IV. TCC FOR VARYING HUBBLE PARAMETER

In this section, we relax the assumption of having a
constant Hubble parameter during inflation. The Hubble
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parameter is assumed to vary slowly as Eq. (25), which
appears in the power-law models [58]:

HðNÞ ¼ HieαN; ð25Þ

where N ¼ 0 is associated with the start point of inflation
and α is taken as constant.2 The TCC condition (7) remains
unchanged and it is extracted that

eð1þαÞN ≤
Ti

Tp

mp

Hi
: ð27Þ

The condition regarding the causal mechanism of the
universe structure is read as

He

H0

T0

Te
≤ eð1þαÞN: ð28Þ

Utilizing Eq. (27), one arrives at

He

H0

T0

Te
≤

1

Hilp

Ti

Tp
; ð29Þ

The same condition as we had in the previous case for
constant H. Using the Friedmann equation (14), the above
condition is given by Eq. (15). The temperature Ti is the
radiation temperature at the start time of inflation. After
inflation, we assumed that the reheating occurs fast and the
universe is warming up to the temperature Treh and we
take this temperature as the temperature of the universe at
the end of inflation, Te ¼ Treh. In the previous section, it
was assumed that the temperatures at the end and beginning
of inflation are the same. Here we suppose the relation Ti ¼
βTe for these two temperatures where β is a constant.
For the current Hubble parameter, Eq. (16) is applied.
Therefore, one arrives at

T6
e ≤

2.7 × 103

4π5
ffiffiffi
3

p mpλ

g⋆ðTiÞg⋆ðTeÞβ3
ffiffiffiffiffiffiffiffiffiffiffiffi
TeqT0

p
: ð30Þ

or

T6
e ≤ ð2.6 × 104 GeV2Þ λ

β3
: ð31Þ

which depends on the brane tension and the constant β. In
comparison to Eq. (18), one could get bigger values of
temperature when β < 1 resulting in Ti < Te, which
means that the temperature after inflation (provided by
the reheating phase) is bigger than the temperature just
before inflation. If β > 1 (i.e., Ti > Te), the temperature
receives a smaller value.
The upper bound (31) leads to the following condition

for the brane inflation:

Ve < ð2.465 × 104 GeV4=3Þ λ2=3

β2
; ð32Þ

which leads to the initial potential

Vi < ð2.465 × 104 GeV4=3Þ β2 λ2=3: ð33Þ

From the Friedmann equation (12) and Eq. (25), one
finds that VðNÞ ¼ VieαN . Comparing it with the above
relation, it is realized that the parameters α and β are related
via β2 ¼ e−αN .
Although higher values of brane tension λ lead to the

bigger inflation potential, it could weaken the high-energy
assumption. The difference with the previous case is the
constant β which could play an essential role for preserving
the condition V ≪ λ. Equation (33) is reflected in the
Hubble parameter Hi, which appears in the amplitude of
the scalar perturbations. To come to an agreement with
observational data there should be Ps ∝ 10−9; the first
slow-roll parameter ϵ should satisfy the following con-
dition:

ϵ ≤ 1.277 × 10−55 β6; ð34Þ

and this condition is reflected in the parameter r as

r ≤ 2.043 × 10−54 β6: ð35Þ

Again, the large value of the constant β could assuage the
strong condition that we have for the previous case. The
constant β could lead to some interesting results. For
instance, taking λ ¼ 2 × 1030 GeV4 and β ¼ 5 × 108 indi-
cates that the reheating temperature and the inflation
energy scale are, respectively, about Te ¼ 26.26 GeV
and Vi ¼ 9.78 × 1041 GeV4. The reheating temperature
stands in the acceptable range and the magnitude of the
potential perfectly satisfies the high-energy assumption. On
the other hand, for these values of β, the slow-roll parameter
ϵ and tensor-to-scalar ratio are estimated as ϵ ¼ 0.00199
and r ¼ 0.0319, which states that to satisfy the TCC, the
parameter r is not required to be extremely small.

V. CONCLUSION

The recently proposed trans-Planckian censorship con-
jecture seems to impose a strong constraint on standard

2In the inflationary scenario, it is assumed that the Hubble
parameter changes slowly, which is described by the smallness of
the first slow-roll parameter, i.e., ϵ ¼ − _H=H2. In other words, the
slow-roll condition ϵ ≪ 1 states that the rate of the Hubble
parameter during a Hubble time is small. In the text, the Hubble
parameter is taken as H ¼ H0eαN , so one has

ϵ ¼ − _H
H2

¼ α: ð26Þ

Then, the varying of the Hubble parameter is small as long as α
is small.
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inflation. The conjecture has been considered in brane
inflation where there is an extra infinite spatial dimensional
leading to a modified Friedmann equation. The Friedmann
evolution equation of the model shows that there is an extra
quadratic term of the energy density which dominates the
linear term in the high-energy regime.
It was assumed that there is a radiation-dominated epoch

in the preinflationary phase and after inflation, we have
again another reheating epoch. The reheating phase was
assumed to occur very fast. The conjecture was considered
for two cases first by taking the Hubble parameter as a
constant during inflation and in the second case, it was
taken as a slowly varying function. The TCC forbids any
mode with an initial wavelength smaller than or equal to the
Planck length to cross the Hubble horizon and be classical.
Applying the condition led to an upper bound for the
temperature Te, which in general depends on the brane
tension. The temperature Te is also recognized as the
reheating temperature, and due to our understanding of
the reheating temperature, we found an acceptable range for
the brane tension λ. The parameter affects the value of the
potential as well, and preserving the high-energy condition
restricts the obtained range of the brane tension. Comparing
the results with the case of the standard inflation, there are
stronger constraints on ϵ and r as r < 10−54. However, a

problem was encountered regarding the beginning time of
inflation. Selecting λ ¼ 1010 GeV4 implies a beginning
time about ti ¼ 1023 s, which is unacceptable. Note that
higher values of λ indicate smaller ti, but it violates the
high-energy condition assumption, and smaller λ predicts
bigger ti.
Next, we consider the case of slowly varying Hubble

parameter. The results for the case were more interesting in
which for the obtained range of the brane tension, the high-
energy condition is preserved and at the same time having a
small initial time, about 10−8 s. The interesting point is that
the tensor-to-scalar ratio parameter is not required to be
extremely high, and it could be of the order of 10−2.
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