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We present an analytic study of the density fluctuation of a Newtonian self-gravity fluid in the expanding
universe with ΩΛ þΩm ¼ 1, which extends our previous work in the static case. By the use of field theory
techniques, we obtain the nonlinear, hyperbolic equation of two-point correlation function ξ of perturbation.
Under the Zel’dolvich approximation the equation becomes an integro-differential equation and contains also
the three-point and four-point correlation functions. By adopting the Groth-Peebles and Fry-Peebles ansatz,
the equation becomes closed, and contains a pressure term and a delta source term which were neglected in
Davis and Peebles’ milestone work. The equation has three parameters of fluid; the particle mass m in the
source, the overdensity γ, and the sound speed cs. We solve only the linear equation in linear approximation
and apply it to the system of galaxies. We assume two models of cs, and take an initial power spectrum at a
redshift z ¼ 7, which inherits the relevant imprint from the spectrum of baryon acoustic oscillations at the
decoupling. The solution ξðr; zÞ is growing during expansion, and contains 100 Mpc periodic bumps at large
scales, and a main mountain (a global maximum with ξ ∝ r−1) at small scales r≲ 50 Mpc. The profile of ξ
agrees with the observed ones from galaxy and quasar surveys. The bump separation is given by the Jeans
length λJ , and is also modified by γ and cs. Using a decomposition we find that the main mountain is largely
generated by the inhomogeneous solution with the source, and the periodic bumps come from the
homogeneous solution with the initial spectrum. λJ is identified as the correlation scale of the system of
galaxies, distinguished from the clustering scale determined by m. The corresponding power spectrum has a
main peak located around k ∼ 2π

λJ
associated with the periodic bumps of ξ, and also contains multiwiggles at

high k > kJ which are developing during evolution even if the initial spectrum has no wiggles. Since the
outcome is affected by the initial condition and the parameters as well, it is hard to infer the imprint of baryon
acoustic oscillations accurately. The difficulties with the sound horizon as a distance ruler are pointed out.
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I. INTRODUCTION

Research on the large scale structure have achieved
great progress, especially on the observational side. Large
surveys for galaxies, such as 6dFGS [1], SDSS [2,3],
WiggleZ [4–6], and surveys for quasars via Lyα, such as
SDSS BOSS [7–10], have provided much of the data of
galaxies and quasar. So far, theoretical studies mostly rely
on numerical computations and simulations. Although
there have been analytic studies of the density perturba-
tion in various models, the comparison between the
theoretical density perturbation with the observational
data from surveys is not straightforward. This is because
the density perturbation is a stochastic field, whereas the
system of galaxies in the Universe can be regarded as a
realization of some statistical ensemble. One needs certain
ensemble-averaged quantities, such as the correlation

functions of the density perturbation, to make a compari-
son. The correlation functions contain information of both
dynamics and statistics. Even if the solution of the density
perturbation is known, to transfer it into the corresponding
correlation functions is not easy, because the probability
function of the stochastic process is not known suffi-
ciently. We only know in general terms that the pertinent
statistic is non-Gaussian due to interaction of long-range
gravity. In this regard, the field equation of the correlation
function has priority over that of the density perturbation,
and is indispensable for a direct comparison of observa-
tions of galaxies.
Davis and Peebles [11] started with the Liouville’s

equation of probability function, and derived a set of
BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) equa-
tions of correlation functions and velocity dispersions of
galaxies. In this scheme, a galaxy is regarded as a point mass
(galaxies are interacting with gravity) and the system of
galaxies is a many-body system which is described by some
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probability distribution. The BBGKY approach is one of
standard methods used to describe the dynamics and
evolution of many-body systems. In this approach, multiple
moments of various orders are involved with multiple
variables, and each moment has an equation. One performs
a cutoff at a certain order by dropping all higher-order
moments, and works only with the several remaining
equations, prescribing appropriate initial conditions for
them. This scheme has worked well for systems, such as
CMB anisotropies and polarization, where only the first
several moments are retained and the outcome still has a high
accuracy. However, for the system of galaxies with long-
range gravity interaction, this approach may not be so
simple. Higher-order terms can be important at small scales
and may not simply be ignored. The remaining equations are
often coupled and nonlinear. Adequate initial conditions may
not be easy to specify consistently for the set of coupled
equations as one usually does not have sufficient information
for them at an early stage. In Ref. [11], Davis and Peebles
arrived at a set of five coupled equations for five unknown
functions, including the two-point correlation function ξ. To
solve these equations, consistent initial conditions are
required for the five unknown functions. In particular, the
equation of ξ is not closed, and contains two unknown
velocity-dispersion functions which in turn are described by
two other equations. Even if the initial conditions were
given, the set of coupled partial differential nonlinear
equations will still not be easy to solve. Due to these points,
the BBGKY equations have not been fully applied in
practical studies of the system of galaxies.
Reference [12] used the model of self-gravitating fluid in

thermal quasiequilibrium to describe the system of galaxies
in the expanding Universe. Macroscopic thermodynamic
variables such as internal energy, entropy, pressure, etc,
were employed to study large-scale structures, and a power-
law correlation function was employed to calculate mod-
ifications to energy and pressure. Reference [12] also
studied the BBGKY equations for a single-particle distri-
bution function. Reference [13] also adopted the model of
self-gravitating gas in thermal equilibrium and the grand
partition function. They focused on the gravitational
potential, instead of the density perturbation, to study a
possible fractal structure in the space distribution of
galaxies. In these studies the equation of correlation
function of density perturbation has not been given.
In our previous work of the static case [14,15], starting

with the hydrodynamic equations of self-gravity fluid and
using the functional derivative method, we derived the
closed, static equation of ξ, and obtained the solution
ξðrÞ ∝ r−1.7 at small scales (with the amplitude being
proportional to the mass of the galaxy). At large scales
the solution ξðrÞ contains periodic bumps with a separation
of ∼100 Mpc which is identified as the Jeans length. When
applied to the system of clusters, ξðrÞ also exhibits the
scaling behavior [16]. In this paper, we study the case in the

expanding Universe. Using a similar method we derive the
nonlinear, partial equation of the correlation function
ξðr; tÞ, which is also an integro-differential equation. We
obtain its solution in the linear approximation and apply it
to the system of galaxies. The solution extends the static
solution and provides an account of the evolution of
correlation. Besides, it also distinguishes the local cluster-
ing from the large scale structure, and reveals the influence
of initial conditions.
Section II presents the nonlinear field equation of ξðr; tÞ,

and compares it with Davis-Peebles’ equations. Section III
studies the linear equation as an approximation, and intro-
duces two working models for the sound speed of the system
of galaxies. Section IV presents the ranges of parameters and
the initial power spectrum at a redshift z ¼ 7, which inherits
the imprint of baryon-acoustic oscillations (BAO) at the
decoupling. Section V gives the solution and compares with
the observed correlation function from surveys of galaxies
and quasars. Section VI analyzes the periodic bumps in ξ and
the multi wiggles in the power spectrum. The difficulties of
the sound horizon as a distance ruler are analyzed.
Section VII analyzes the impact on the solution from the
expansion, the sound speed models, the parameters, and the
initial condition. In particular, a decomposition of the
solution into homogeneous and inhomogeneous solutions
is given. Section VIII gives the conclusion and discussion.
Appendix A lists gives the detailed derivation of the

nonlinear equation of ξ. Appendix B expresses the homo-
geneous and inhomogeneous solutions in terms of the
Green’s function to exhibit the wave nature of the correlation
function. We use the speed of light, c ¼ 1, and the
Boltzmann constant, kB ¼ 1, unless otherwise specified.

II. THE NONLINEAR FIELD EQUATION OF THE
TWO-POINT CORRELATION FUNCTION

The current stage of the expanding Universe is described
by a flat RW (Robertson-Walker) spacetime background,
and the Friedmann equation is

�
_a
a

�
2

¼ 8πG
3

ρc½a−3Ωm þ ΩΛ�;

withΩΛ ≃ 0.7 andΩm ¼ 1 − ΩΛ. The background pressure
is small and can be neglected in the Friedmann equation,
and so is the radiation component. We use the normaliza-
tion a ¼ 1=ð1þ zÞ in this paper. A Newtonian self-gravity
fluid system in the expanding Universe is described by the
mass density ρ, the pressure p, the velocity v, and the
gravitational potential ϕ. In the present study the baryons
and dark matter are coupled by gravity and mixed up. From
the set of hydrodynamical equations of fluid, (A5), (A6),
and (A6) in Appendix A, we obtain the nonlinear field
equation of (rescaled) mass density ψ (see Appendix A for
the derivation),
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ψ̈ þ 2H _ψ −
c2s
a2

∇2ψ − 4πGρ0ðtÞðψ2 − ψÞ − 1

a2
∇ψ ·∇ϕ

−
1

a2
∂2

∂xi∂xj ðψv
ivjÞ ¼ 0; ð1Þ

whereH ¼ _a=a, ρ0ðtÞ is the mean mass density of the fluid,
ψðx; tÞ≡ ρðx; tÞ=ρ0ðtÞ is the rescaled, dimensionless den-
sity, ϕ is the potential satisfying the Poisson equation (A7),
vi is the peculiar velocity of the fluid, and cs is the sound
speed of the fluid defined by c2s ¼ δp=δρ, and is generally
time dependent during the cosmic expansion. Equation (1)
is equivalent to Eq. (9.19) in Ref. [17], and describes the
density of Newtonian self-gravity fluid in the expanding
Universe, and holds for scales inside the horizon of the
Universe. For the dust model in a static universe, ψ̈ ¼ 0 ¼
_ψ and vi ¼ 0, Eq. (1) reduces to the static equation studied
in Refs. [14,15]. (To describe a relativistic fluid in the
expanding Universe one can work with the nonlinear
cosmological perturbations within the framework of gen-
eral relativity; see Ref. [18].)
In the context of cosmology, the density field ψðx; tÞ is a

stochastic field on the three-dimensional space. As men-
tioned in the Introduction, one does not directly compare ψ
with observational data from surveys of the galaxies;
instead, one computes the theoretical correlation function

of ψ in a prescribed statistic, and compares it with the
observed correlation function of the galaxies from the data.
So we seek the equation of the correlation function of ψ that
bears more direct relevance to observations than the
equation of ψ itself. Unlike Davis-Peebles’ scheme, work-
ing with a many-body system of galaxies, we work with ψ
as a continuous field and employ techniques in field theory,
where the equation of the two-point correlation function of
a field can be routinely derived. For the density field ψ , the
two-point connected correlation function is defined as

Gð2Þðx1 − x2; tÞ≡ hδψðx1; tÞδψðx2; tÞi;

where δψ is the perturbation of ψ , and h…i denotes the
ensemble average prescribed by (A13) and (A14) in
Appendix A. Following a standard method in field theory
[19], we derive the equation of Gð2Þ. An external source
JðxÞ which is t-independent is added to Eq. (1), then we
take the ensemble average, and apply functional deriva-
tive δ

a3βδJðxÞ to each term, and then we set J ¼ 0. [For the

detailed calculations, see Eqs. (A15)–(A27) in
Appendix A.] We arrive at the equation of Gð2Þ as the
following:

G̈ð2Þðx−x0; tÞþ 2H _Gð2Þðx−x0; tÞ− c2s
aðtÞ2∇

2Gð2Þðx−x0; tÞ− 4πGρ0ðtÞGð2Þðx−x0; tÞ

þGρ0ðtÞ
Z

∇ ·

�
Gð3Þðx;x0;x00; tÞ ·∇ 1

jx−x00j
�
d3x00

−
1

a2
∂2

∂xi∂xj
δ

ða3βÞδJðx0Þ hψðxÞv
iðxÞvjðxÞi

����
J¼0

¼ 4πGm
a3

δð3Þðx−x0Þ; ð2Þ

where m is the particle mass of fluid and β≡ 1=4πGm. For the system of galaxies under study, m is the mass of a typical
galaxy. The Dirac delta function δð3Þðx − x0Þ is independent of time. So far Eq. (2) is exact. It can be compared with Eq. (47)
of Ref. [11] where the pressure term c2s∇2ξ was neglected. Equation (2) still contains the velocity-dispersion term ψvivj. To
proceed further, we express the velocity in terms of the density perturbation under the Zel’dovich approximation (A28).
After some calculation, Eq. (2) becomes the following:

G̈ð2Þðx−x0;tÞþ2H _Gð2Þðx−x0;tÞ− c2s
aðtÞ2∇

2Gð2Þðx−x0;tÞ−4πGρ0ðtÞGð2Þðx−x0;tÞ

þGρ0ðtÞ
Z

∇ ·

�
Gð3Þðx;x0;x00Þ ·∇ 1

jx−x00j
�
d3x00

−
H2f2ðΩmÞ

16π2
∂2

∂xi∂xj
ZZ

d3yd3z
yi−xi

jy−xj3
zj−xj

jz−xj3 ðG
ð2Þðx−x0;tÞGð2Þðy−z;tÞ

þGð3Þðy;z;x0;tÞþGð4Þðx;y;z;x0;tÞÞ¼4πGm
a3

δð3Þðx−x0Þ; ð3Þ

which contains the three-point and four-point correlation functions, Gð3Þ and Gð4Þ. This hierarchy is expected for a many-
body system with interaction, as well as for a field theory with interaction. Equation (3) is accurate up to a numerical factor
of the term Gð4Þ in the double integration, caused by the Zel’dovich approximation. To make Eq. (3) closed for Gð2Þ, we
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adopt the Kirkwood-Groth-Peebles ansatz [20,21] to Gð3Þ, and the Fry-Peebles ansatz [22] to Gð4Þ. Then Eq. (3) becomes
closed as follows:

̈ξðx − x0; tÞ þ 2H_ξðx − x0; tÞ − c2s
aðtÞ2∇

2ξðx − x0; tÞ − 4πGρ0ðtÞξðx − x0; tÞ

þ Gρ0ðtÞ
Z

∇ ·

�
Q½ξðx;x0Þξðx0; yÞ þ ξðx0; yÞξðy;xÞ þ ξðy;xÞξðx;x0Þ� · ∇ 1

jx − yj
�
d3y

−
H2f2ðΩmÞ

16π2
∂2

∂xi∂xj
ZZ

d3yd3z
yi − xi

jy − xj3
zj − xj

jz − xj3 ðξðx − x0; tÞξðy − z; tÞ

þQ½ξðy; zÞξðz;x0Þ þ ξðz;x0Þξðx0; yÞ þ ξðx0; yÞξðy; zÞ�
þ Ra½ξðx; yÞξðy; zÞξðz;x0Þ þ…ðsym: 12 termsÞ�
þ Rb½ξðx; yÞξðx; zÞξðx;x0Þ þ…ðsym: 4 termsÞ�Þ

¼ 4πGm
a3

δð3Þðx − x0Þ; ð4Þ

where ξ≡Gð2Þ, and the time variable t is skipped from ξ in
the integrations for ease of notation. The undetermined
numerical factor of Gð4Þ can be absorbed into the parameters
Ra and Rb due to the Zel’dovich approximation. Thus,
Eq. (4) is accurate to the order of perturbation as it stands, and
the error would be of the orderGð5Þ which is neglected in this
study. Equation (4) is a hyperbolic, nonlinear, differential-
integro equation of ξ, and is valid on subhorizon scales in an
expanding universe. It can be used to describe the correlation
function of the system of galaxies, or of clusters. It contains
three nonlinearity parameters Q, Ra, and Rb in the nonlinear
terms. Application of Eq. (4) is nontrivial due to the
integration terms that are expected to be important at small
scales. The linear terms of Eq. (4) are simple and will be
dominant at larger scales r≳ 10 Mpc where ξ ≪ 1, as
observations indicate.
It is enlightening to compare our Eq. (4) with the Davis-

Peebles’ result [11], which consists of a set of five equations
(71a), (71b), (72), (76), and (79) for five unknowns (ξ, v21, A,
Π, Σ), where v21 is the proper peculiar velocity dispersion, A
is the rescaled relative peculiar velocity, and Π and Σ are
velocity dispersions. Our Eq. (4) is similar to their Eq. (72),
but there are several differences including the following.

First, our Eq. (4) contains the pressure term c2s
a2 ∇2ξ, which is

crucial in revealing acoustic oscillations in large scale
structures; this term was ignored in Eq. (72) of Ref. [11]
as they considered a pressureless gas. Second, our Eq. (4)
contains the δð3Þ source term, which is standard for an
equation of two-point correlation function. The δð3Þ termwas
dropped in a massless limit in Eq. (72) of Ref. [11]. As we
shall demonstrate, the source term is indispensable, governs
the local clustering at small scale, and predicts the depend-
ence of the clustering amplitude upon the mass of the galaxy.
Third, our Eq. (4) is closed for the two-point correlation
function ξ, whereas Eq. (72) of Ref. [11] still contains two

unknowns (Π and Σ) since the Zel’dovich approximation
was not used.
The statistics of the system of galaxies is non-Gaussian,

and the two-point correlation function does not exhaust the
statistical information of the system. One may go farther to
higher-order correlation functions such as Gð3Þ, etc. Using a
similar procedure, we can get the nonlinear equation of
Gð3Þ which will contain terms like Gð4Þ and Gð5Þ etc. See
Refs. [15] for a simple case of the static, linear equation of
Gð3Þ. Ideally, when the solutions of all the correlation
functions are obtained, they would constitute a complete
description of the system of galaxies. In this paper we work
only with Gð2Þ.

III. THE LINEAR EQUATION OF TWO-POINT
CORRELATION FUNCTION OF GALAXIES

The full content of Eq. (4) is complex, and its solution
will involve much computation. In the following we work
only with its linear approximation. Dropping the nonlinear
ξ2 and ξ3 terms, Eq. (4) reduces to

̈ξðx; tÞ þ 2H_ξðx; tÞ − c2s
aðtÞ2 ∇

2ξðx; tÞ − 4πGρ0ðtÞξðx; tÞ

¼ 4πGm
a3

δð3ÞðxÞ; ð5Þ

which is a linear, hyperbolic equation with a delta source, a
gravity term, and an expansion term—all having time-
dependent coefficients. It will give a description of the
correlation function at large scales—the dropped nonlinear
terms would affect the correlation function only at small
scales—as the static nonlinear solution indicates [15]. When
the time-derivative terms are dropped, Eq. (5) reduces to the
static linear equation that was studied in Ref. [14]. We shall
apply Eq. (5) to the system of galaxies in the expanding
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Universe, and ξ is regarded as the correlation function of
the galaxies, m as the mass of a typical galaxy, and cs as the
sound speed of acoustic waves of the system of galaxies.
The mean mass density of the fluid can be written as

ρ0ðtÞ ¼ ρ0ðt0Þa−3ðtÞ;

where ρ0ðt0Þ is the present mean density of the fluid and can
be written as

ρ0ðt0Þ ¼ γρcΩm; ð6Þ

where ρc is the critical density, and γ is the overdensity
parameter; γ ≥ 1, since the fluid density is generally higher
than the cosmic background density ρcΩm. This will take
into account the fact that the density of the surveyed regions
is generally higher than that of the cosmic background. We
assume cs is of the samemagnitude as the peculiar velocity v
of galaxies, cs ∼ v ∼ 10−3c. This is analogous to the sound
speed in a gas of molecules which is the order of the random
velocity of atoms. However, the magnitude of cs here is
much higher than the sound speed (∼10−6c) in a gas of
molecules. The former is determined by the gravitational
potential between galaxies, cs ∼ v ∼ ðGmr Þ1=2, whereas the
latter is mediated by the collision between molecules.
According to current cosmology, a component of dark
matter should also coexist with galaxies. Although dark
matter is collisionless, it is coupled with galaxies through
gravity, and therefore, it should have the same cs as for
the galaxies. By the energy conservation equation, the
peculiar velocity of galaxies is decreasing in the expand-
ing Universe, v ∝ a−1ðtÞ when galaxies are regarded as
point particles, or v ∝ aðtÞ−3=5 when the two rotational
degrees of freedom of the galaxy are included. (The
circular speed of spiral galaxies is ∼10−3c, roughly equal
to the translational peculiar velocity [23].) So the sound
speed can be written as

cs ¼ cs0aðtÞ−η; ð7Þ

where cs0 is the present value at z ¼ 0, and η ¼ 3
5
when the

rotation of galaxy is included, or η ¼ 1 without galaxy
rotation. Then, (5) is written as

ξ̈ðx;tÞþ2H_ξðx;tÞ− c2s0
a2þ2ηðtÞ∇

2ξðx;tÞ−4πGγρcΩm

a3ðtÞ ξðx;tÞ

¼4πGm
a3

δð3ÞðxÞ: ð8Þ

As we shall see, even the linear equation (8) will reveal rich
content of the correlation function of galaxies. The left-hand
side of Eq. (8) is similar to the equation of density
perturbation. The pressure term −c2s∇2ξ gives rise to
small-scale acoustic oscillations in the fluid, and its role

is against the clustering. The gravity term −4πGγρ0ξ is the
main driving force for clustering of density perturbations.
The term 2H_ξ in (8) is due to the expansion of the Universe,
and has the effect of suppressing the growth of clustering.
The inhomogeneous term 4πGmδð3ÞðxÞ is a source for the
correlation function, as in the static case [14]. Its magnitude
is proportional tom, so that galaxies of higher mass acquire a
higher-clustering amplitude. When the two time-derivative
terms are dropped, Eq. (8) reduces to the static linear
equation [14].
Equation (8) can be solved in the k-space more con-

veniently without specifying the boundary condition. Using
the Fourier transformation,

ξðx; tÞ ¼ 1

ð2πÞ3
Z

d3kPkðtÞeik·x; ð9Þ

where PkðtÞ is the power spectrum of dimension ½L3�,
which is related to Δ2

k ≡ k3

2π2
Pk often used in the literature.

The Fourier transformation is also written as

PkðtÞ ¼ 4π

Z
∞

0

ξðx; tÞ sin kx
kx

x2dx; ð10Þ

ξðx; tÞ ¼ 1

2π2

Z
∞

0

PkðtÞ
sin kx
kx

k2dk; ð11Þ

which are used in concrete computation. Equation (8)
becomes the second-order ordinary differential equation
of the power spectrum

d2

dt2
PkðtÞþ2H

d
dt
PkðtÞþ

4πGρcΩm

a2þ2ηðtÞ
�
k2

k2J
−γa2η−1ðtÞ

�
PkðtÞ

¼4πGm
a3

; ð12Þ

where

kJ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGρcΩm

p
cs0

¼
�
3

2
Ωm

�
1=2H0

cs0
ð13Þ

is the present Jeans wave number (at z ¼ 0), and λJ ¼ 2π=kJ
is the present Jeans length [24–26]. Note that we use the
background density in the definition (13), and keep the
overdensity γ as a separate parameter. In an expanding
universe, using Eq. (7), the Jeans length of the system of
galaxies is actually changing

λJðtÞ ¼
ffiffiffi
π

p
csffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Gρ0ðtÞ
p ¼ a

3
2
−ηλJ: ð14Þ

Note that λJðtÞ generally departs from the comoving (∝ a).
In our paper, λJðtÞ ∝ a1=2 for the model η ¼ 1, and λJðtÞ ∝
a9=10 for the model η ¼ 3

5
. For each fixed k, Eq. (12)
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describes an oscillating mode when k2=k2J > γa2η−1, or a
growing mode when k2=k2J < γa2η−1. It should be noticed
that, during expansion, more and more oscillating k-modes
are turning into growing modes for both η ¼ 1 and η ¼ 3

5
.

The source 4πGm=a3 is k-independent, and appears as an
external force acting equally on all the k-modes. Using a as
the time variable, Eq. (12) is rewritten as

∂2

∂a2 Pk þ
�
3

a
−

3

2a
a−3Ωm

ða−3Ωm þΩΛÞ
� ∂
∂aPk

þ 3

2a4þ2η

Ωm

ða−3Ωm þΩΛÞ
�
k2

k2J
− γa2η−1

�
Pk

¼ A
a5ða−3Ωm þΩΛÞ

; ð15Þ

where the sourcemagnitudeA≡ 4πGm=H2
0 isk-independent

and proportional to the massm of a typical galaxy, or cluster,
under consideration. Beside the cosmological parametersH0

and Ωm, the evolution equation (15) containsm, kJ, and γ as
three independent parameters of the self-gravity fluid that
models the system of galaxies. The present sound speed cs0 is
absorbed into kJ, and will not be regarded as an independent
parameter.

IV. THE INITIAL CONDITION AND THE
PARAMETERS

To solve the differential equation (15), an appropriate
initial spectrum is needed. Currently, we do not know the
correlation function of galaxies at the early stages (z≳ 7)
from observations. (See [27] for a review.) To be specific for
computation, we adopt an analytic initial power spectrum

Pk iniðzÞ ¼
1

2n0ð1þ zÞ3
1

jð kk0Þ2 − aðzÞj ; ð16Þ

where z ¼ 7 will be taken when galaxies, or protogalaxies,
have been formed. Equation (16) is based on an extension of
the analytic solution of the static linear equation [14], and
has a similar profile to the initial linear spectrum used in
simulations [28]. The initial correlation function associated
with (16) contains small seeds of bumps distributed over the
whole space (see Fig. 2 and Fig. 3), and is consistent with the
homogeneity and isotropy of the background spacetime.
The initial amplitude of (16) is given by a range

1=2n0 ≃ ð4–8Þ × 103 h3 Mpc3, where n0 represents the
number density of galaxies. In (16) an absolute value is
used for a positive initial spectrum at small k, and a cutoff of
height ð∼1000 Mpc3Þ is taken to avoid divergence at
k ¼ k0. The characteristic wave number k0 in (16) is very
important, as it determines the peak location of the spectrum
at the initial epoch. To fit with the observed correlation
function of galaxies [4], and of quasars in Ref. [7], we can
take the following range of values

k0 ≃ ð0.23–0.57Þh Mpc−1;

i:e:; λ0 ≃ ð11–27Þ Mpc at z ¼ 7: ð17Þ

Within this broad range, lower values of k0 are used for the
model η ¼ 3=5, and higher values of k0 are used the model
η ¼ 1. The range (17) includes the imprints of BAO at the
decoupling (z ∼ 1020) [29,30] that have survived the Silk
damping [31–34] and comoved up to the epoch z ¼ 7. We

FIG. 1. Solid: the Jeans length λJðtÞ ∝ a0.9 for η ¼ 3
5
; Dashed:

the comoving BAO imprint. They are connected at z ¼ 7, i.e., the
imprint is transferred to λJ at z ¼ 7 as the initial condition.

FIG. 2. The evolution of correlation function ξðr; aÞ from a ¼
1=8 to a ¼ 1 in the model cs ¼ cs0a−3=5.
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give a brief illustration. The BAOs prior to the decoupling
are standing waves of baryon-photon plasma with certain
intrinsic wavelengths, which are allowed to exist above the
scale of the Silk damping [31–34] and well inside the Hubble
radius, 1=H. Consider the spectrum of BAO at the decou-
pling in Fig. 4 of Ref. [30] for a pure baryon model
Ωb ∼ 0.03. It contains four characteristic peaks which
survive the Silk damping. The first two have the comoving
wavelengths 230 Mpc and 540 Mpc which are too large,
beyond the current observations, and we do not consider
here. The last two peaks have the comoving wavelengths
100 Mpc and 140 Mpc approximately, and their imprints at
z ¼ 7 are, respectively

λ ∼ 13 Mpc; 18 Mpc; ð18Þ

which fall into the range (17). When cold dark matter (CDM)
is present, the values of BAO imprints in (18) will be
modified, but they will still fall into the range (17). (See also
Refs. [35–37] for the models with baryons plus CDM.) After
the decoupling, the imprints of characteristic BAOmodes are
influenced by the gravity of small density fluctuation and
their stretching is generally a bit slower than the comoving in
a model-dependent fashion. Its detail is worthy of study in
future. Actually we are not concerned with the precise value
of the characteristic wavelengths of BAO, as long as some of
them fall into the broad range (17). For illustration, Fig. 1
shows a connection of the BAO imprint λ ∼ 13 Mpc of (18)
to the Jeans length of the system of galaxies at z ¼ 7.
Thereby, the imprint is transferred to λJ at z ¼ 7 as the initial
condition. In this way, the initial spectrum (16) with (17) of

the system of galaxies incorporates a relevant part of the
BAO spectrum. During the evolution from z ¼ 7 to z ¼ 0
the Jeans length is relevant and has replaced the BAO
imprint, the final value of Jeans length at z ¼ 0 is ≃83 Mpc,
which is lower than the would-be comoving BAO imprint of
≃100 Mpc at z ¼ 0. We remark that the choice of initial
spectrum (16) is not unique, and other alternative choices are
allowed.
An initial rate is also needed to solve (15). Define the rate

ra by

∂
∂aPkðaÞ ¼ raPkðaÞ: ð19Þ

The conservation of pair (A35) at linear level gives

raðzÞ ¼
fðΩm; zÞ

a
¼ ð1þ zÞfðΩm; zÞ; ð20Þ

where fðΩm; zÞ is given by Eq. (A29). From this, we get an
estimate of the initial rate ra ≃ 7 at z ¼ 7. As it turns out,
the outcomes ξ and Pk are actually not sensitive to the value
of ra within two orders of magnitude.
The parameters appearing in Eq. (15) are given in the

following. The cosmological parameters are taken in the
range Ωm ¼ ð0.25–0.30Þ, and H−1

0 ¼ 3000h−1 Mpc with
h ¼ ð0.69–0.73Þ as default, and the outcome correlation
function does not change much within the range. To fit with
the observed correlation function of galaxies and of
quasars, from surveys [4,7], we take the three parameters
of fluid in the following range

kJ ¼ ð0.045–0.088Þh Mpc−1;

i:e:; λJ ¼ ð139–71Þh−1 Mpc; ð21Þ

A ¼ ð2–5Þ × 103h−2 Mpc3; ð22Þ

γ ¼ 1–6: ð23Þ

By (14), kJ and k0 should be related as follows:

k0 ≃ a−
3
2
þηkJ ¼ ð1þ zÞ32−ηkJ; ð24Þ

which is taken only approximately in our computation. The
range (21) of kJ approximately corresponds to the range
(17) of k0. From these parameters the sound speed is
inferred,

cs0 ¼
�
3

2
Ωm

�
1=2H0

kJ

¼ ð2.3–4.5Þ × 10−3c ∼ ð0.6–1.2Þ × 103
�
km
s

�
; ð25Þ

which is slightly higher than the observed peculiar velocity
of galaxies [27]. The particle mass is inferred as

FIG. 3. Same as Fig. 2. The weighted r2ξðr; aÞ exhibits the
periodic bumps.
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m ¼ H2
0A

4πG
∼ 1014 M⊙; for A ¼ 1000 Mpc3; ð26Þ

which is larger than a typical galaxy mass 1012 M⊙, and
comparable to that of a cluster. The inferredm is expected to
be reduced when the nonlinear terms of Eq. (3) that will
enhance clustering substantially at small scales are included.

V. THE LINEAR SOLUTION AND ITS
COMPARISON WITH OBSERVATIONS

Given the initial conditions and parameters, by solving
Eq. (15) for each k from z ¼ 7 to z ¼ 0, we obtainPkðzÞ as a
function of ðk; zÞ, and by Fourier transformation we also
obtain ξðr; zÞ as a function of ðr; zÞ. They are plotted in
Figs. 2–5, for the sound speed model cs ¼ cs0a−3=5. The
model cs ¼ cs0a−1 has an analogous outcome; its two-
surface graphs are not shown to save room.
During the evolution from z ¼ ð7–0Þ, the profile of PkðzÞ

keeps a shape similar to the initial power spectrum,
increasing in amplitude and developing small wiggles.
For ξðr; zÞ, the separation between periodic bump feature
is stretching to a greater distance; the bumps are getting
higher and the troughs are getting lower. The solution
demonstrates that during z ¼ ð7–0Þ the correlation function
at large scales keeps a similar pattern and there is no abrupt
change. In this sense we may say, that in the expanding
Universe, the distribution of galaxies is in an asymptotically
relaxed state [12].
We compare the solution ξðrÞ with the latest observed

correlation of WiggleZ galaxies [4] in Fig. 6 for the model
cs ¼ cs0=a3=5, and in Fig. 7 for the model cs ¼ cs0=a.

We also compare the solution with the observed NGC and
SGC quasar data (Ref. [7]) in Figs. 8 and 9 for the model
cs ¼ cs0=a3=5, and in Figs. 10 and 11 for the model
cs ¼ cs0=a. It is seen that the weighted correlation function
r2ξðrÞ possesses periodic oscillatory bumps along the
distance r; the height of bumps and the separation between
bumps are close to the observed ones. Generally the galaxy
and quasar surveys cover regions with different physical
environments, so we may choose different values of the
parameters within the range listed in Eqs. (21)–(23).
Equation (8) can also apply to the correlation function of

clusters when the appropriate parameters m and cs0 are used
for the system of clusters. The mathematical structure of
Eq. (8) remains the same for galaxies and for clusters, except

FIG. 5. Same as Fig. 4. The weighted kPkðaÞ exhibits the main
peak at k ∼ kJ .

FIG. 4. Same as Fig. 2. The evolution of power spectrum PkðaÞ.
The main peak is at k≲ kJ , and the multi wiggles are developing
on the main slope at k > kJ .

FIG. 6. r2ξ of the model cs ¼ cs0=a3=5 compared with the data
of WiggleZ galaxies in Ref. [4]. The evolution from z ¼ 7 to
z ¼ 0 are also shown.
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that clusters have a higher source amplitude, A ∝ m. This
explains why the observed correlation functions of clusters
have a similar profile to that of galaxies, but with a higher
amplitude at small scales. These properties were previously
predicted in the static case [14,15], and also hold in the
expanding Universe.
The amplitudes of ξ and Pk are increasing during

evolution z ¼ ð7–0Þ, as seen in Figs. 12 and 13 for the
model cs ¼ cs0a−1. The growth varies with different scales.
For instance, roughly ξðaÞ; PkðaÞ ∝ a0.2 at small scales (ξ at
r ¼ 1h−1 Mpc, Pk at k ¼ 1h Mpc−1), and PkðaÞ ∝ a1.4 at
large scales (k ¼ 0.05h Mpc−1).
The profile of the linear solution ξðrÞ has a global

maximum with a power-law slope, ξ ∝ r−1 at r≲ 10 Mpc,
which is referred to as the main mountain in this paper. The
slope is flatter than the observed [ξ ¼ ðr=r0Þ−1.7] [39–41],
and will not be improved by merely increasing the mass m.

FIG. 7. r2ξ of the model cs ¼ cs0=a compared with the data of
WiggleZ galaxies in Ref. [4].

FIG. 8. r2ξ of the model cs ¼ cs0=a3=5 compared with the data
of NGC quasars in Ref. [7].

FIG. 9. r2ξ of the model cs ¼ cs0=a3=5 compared with the data
of SGC quasars in Ref. [7].

FIG. 10. r2ξ of the model cs ¼ cs0=a compared with the data of
NGC quasars in Ref. [7].

FIG. 11. r2ξ of the model cs ¼ cs0=a compared with the data of
SGC quasars in Ref. [7].
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This reflects the limitation of the linear solution at small
scales. We expect the mountain will get higher and steeper
by nonlinear terms, as has been shown in the static
nonlinear solution [15]. At high k > kJ, the profile of
spectrum Pk ∝ k−2, the same as that of the initial power
spectrum (16). This is referred to as the main slope of Pk
and corresponds to the main mountain of ξ. Note that the
linear spectrum Pk at high k will lead to a divergent
autocorrelation ξð0Þ in (10) at the upper limit k ¼ ∞ of
integration. This UV divergent behavior is analogous to an
inflaton scalar field in the inflationary universe, and can be
removed by adiabatic regularization to an appropriate order
[42,43]. If the nonlinear terms are included, the behavior of
Pk at high k is expected to be modified, deviating from the
linear one.

VI. THE BUMPS AND THE WIGGLES

We analyze the prominent features, i.e., the bumps in ξ
and the wiggles in Pk, in the following.

(1) The most prominent features are the periodic bumps
in the correlation function. At large distance, ξ
consists of the periodic bumps which are approx-
imately located at

r ∼ 100; 180; 270 Mpc;…; ð27Þ

where the separation between two neighboring
bumps is approximately

Δr ∼ ð80–100Þ Mpc: ð28Þ

The bumps are more clearly seen in the weighted
correlation r2ξðrÞ plotted in Fig. 3, and Figs. 6–11.
The data from surveys of galaxies [4] and of
quasars [7] exhibit the first bump at 100 Mpc,
and the negative trough on the interval (130–
160) Mpc, as well as indicating the existence of
a second bump at ∼200 Mpc. This agrees with the
prediction (27). The 100 Mpc periodic bumps were
predicted in the static solution [14,15], and now
also show up in the evolution solution in the
expanding Universe. The bump locations (27)
and the separation Δr (28) are largely determined
by λJ, but are also affected by the overdensity γ, the
sound-speed model, the cosmic expansion, and the
details of the initial spectrum as well, as we shall
analyze in Sec. VII.
Early pencil-beam redshift surveys already

showed the 100 Mpc periodic feature in the
correlation function of galaxies [44–46] and of
clusters [47–51]. Recent surveys have already
shown the existence of two bumps, one at
∼100 Mpc and another at ∼200 Mpc, in the corre-
lation function of galaxy [1–4,6,52], as well as of
quasars [5,7–9,53]. All these observational results
confirm the prediction of a periodic feature (27).
Some simulations also show this phenomenon
[54,55]. Large surveys in the future might have a
chance of detecting the third bump at ∼300 Mpc
in (27).
The 100 Mpc periodic bump feature follows

from Eq. (8) by a qualitative analysis. For simplic-
ity, we let a ¼ 1 and neglect the subdominant
expansion term 2H_ξ as an approximation, then
Eq. (8) reduces to

̈ξ − c2s0∇2ξ − 4πGρ0ξ ¼ 4πGmδð3ÞðrÞ:

Using a time-frequency Fourier transformation
ξðr; tÞ ¼ 1

2π

R
dωξωðr;ωÞe−iωt, we can solve a

Helmholtz equation for each frequency mode ξω,
and get

FIG. 12. The model cs ¼ cs0=a. The growing ξðrÞ from z ¼ 7
to z ¼ 0. The observational data (triangle) is from Ref. [38].

FIG. 13. Same as Fig. 12. The growing power spectrum Pk
from z ¼ 7 to z ¼ 0.
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ξðr;tÞ∼
X
ω

bω
Gm
r

cos

��
k2Jþ

ω2

c2s0

�
1=2

r

�
e−iωt: ð29Þ

The lowest-frequency mode in (29) reduces to the
static solution [14,56]

ξ ∼ b0
Gm cosðkJrÞ

r
; ð30Þ

where cosðkJrÞ gives rise to the periodic bumps with
the separation being the Jeans length λJ ¼ 2π=kJ.
Besides, there are other modes in (29), oscillating at
various higher frequencies, referred to as the sub-
bumps, whose wavelengths are roughly a fraction of
the Jeans length,

λ ≃
λJ
l
; l ¼ 2; 3; 4;…; ð31Þ

and their amplitudes are much lower than that of the
bumps, by orders of magnitude, and thus are barely
noticeable in the graphs. The current observational
data are insufficient to exhibit these sub-bumps either.
These sub-bumps are associated with the wiggles in
Pk, as we shall analyze later.
Since its discovery in 1990s the 100 Mpc periodic

bump feature has been interpreted by various tentative
models [44–51]. More recently it was interpreted as
being caused by the imprint of the sound horizon
[57]. In the following we analyze the issue of sound
horizon and clarify certain statistical concepts in-
volved. The sound horizon was defined as an inte-
gration from z ¼ ∞ to the decoupling epoch [36,37]

s ¼
Z

tðzdÞ

0

cs
aðtÞ dt ¼

Z
tðzdÞ

0

csð1þ zÞdt; ð32Þ

where the sound speed of baryon gas is [29,30,36,37]

cs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þRÞp ; R¼ 3ρb
4ργ

≃ 31.5Ωb h2
�
1000

z

�
:

ð33Þ

For Ωm ¼ 0.30, Ωb ¼ 0.045, and h ¼ 0.70 as the
default in this analysis, the decoupling is zd ≃ 1020,
the integration (32) gives

s ≃ 167 Mpc: ð34Þ

For a ¼ 1=ð1þ zÞ, the value (34) is also the
present proper length [58]. The sound horizon
(32) is sometimes interpreted as the comoving
distance that baryon acoustic sound waves travel.
With the observations of the correlation function of
galaxies, the value (34) is not comparable to the

observed 100 Mpc feature, and is higher by about
60%. Moreover, the sound horizon as a distance
ruler can not give a simple explanation of the
negative trough at (130–160) Mpc, nor the second
bump at ∼200 Mpc. (See Figs. 6–12.) Therefore,
the conventional interpretation of the observed
features in terms of the distance traveled by the
BAO waves is in doubt and needs to be
reexamined. In Ref. [36] on CMB anisotropies
and BAO, the sound horizon (32) together with k,
occurs as the phase

R
ωdτ ¼ R

kcsdτ ¼ ks of k-
modes of BAO, but not as a distance that waves
travel. Waves of small density perturbations in the
baryons and photons around the decoupling can be
described by a homogeneous-Gaussian stochastic
process on the three-dimensional space [59–61].
The important point is that the path of the wave is
unobservable statistically, as is the distance of the
path. For instance, in Ref. [62], the plot of the
potential ϕrðr; tÞ of the baryon-photon density
perturbation in position space is given, for illus-
tration purpose, with a fixed normalized amplitude
and a fixed initial point. But the actual situation is
not deterministic and ϕrðr; tÞ is, in fact, a Gaussian
random field on three-dimensional space. At a
fixed time, the potential ϕrðri; tÞ is a Gaussian
random variable at each point ri, and its n-point
probability distribution is a multivariate Gaussian,
schematically written as [59] Pðr1;…; rnÞ ¼
½ð2πÞn detðχðrÞÞ�−1=2 exp ð− 1

2

P
n
i¼1

ϕ2
rðriÞ
χðriÞ Þ, where n

is an arbitrary integer, and χðrÞ is the covariance
(the correlation function) of the random variable
ϕrðriÞ. When we want to identify a point ri of the
possible path of the wave according to its
amplitude ϕrðriÞ, the observed amplitude at the
point ri may be not what we expect since it is a
random variable, thus we do not know if the
point ri belongs to the path or not. Thus, we are
not able to observe the path of the wave, nor the
distance of the path. Equivalently, the potential ϕr
can be described in k-space as a sum of infi-
nitely many modes [59], ϕrðr; tÞ ¼ 2

P
k ϕrðk; tÞ

cosðk · rþ θkÞ, where each mode ϕrðk; tÞ is a wave
traveling along the k direction with a random
phase θk equally distributed on ½0; 2π�. At a fixed
time, ϕrðk; tÞ is a random variable prescribed by a
Gaussian probability distribution, PðϕrðkÞÞ ¼ exp
ð− 1

2
ϕ2
rðkÞ=pkÞ, where pk is the power spectrum.

When we want to identify a wave of wave number
k according to its amplitude ϕrðkÞ, the observed
amplitude may be not what we expect, thus we do
not know if the observed wave is the one we are
seeking. Moreover, generally we see a number of
waves with wave numbers close to k, and we can
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not distinguish them, due to the limited precision
of the measurement of k. When we have to pick up
one of them arbitrarily, we will face another
problem. These waves with different random
phases may have traveled different distances.
Eventually we do not know the distance the wave
has traveled. From the above discussion we con-
clude that, in both position space and k-space for a
Gaussian random field, the traveled paths of waves
are wiped out statistically, and the traveled distance
is unobservable, as is the sound horizon as a
traveled distance in the baryon plasma. (In contrast
to the Gaussian random process, when a piece of
stone is dropped in a calm pond, we are able to
observe the path of the wave in perturbed water,
and to measure the traveled distance. This is,
nevertheless, a deterministic case, unlike the
baryon acoustic waves at the decoupling.) The
situation of BAO at decoupling is like an instant
snapshot of the sea surface full of random waves,
unlike the calm pond perturbed by a piece of stone.
What we can extract from this photo of ocean
surface is the characteristic wavelengths of ocean
waves, i.e., the power spectrum of ocean waves,
but not the path of waves from an earlier instant.
Just as Sunyaev and Zel’dovich [29] correctly
pointed out, “note that only observations of the
small-scale fluctuations of relic radiation with a
periodic dependence on scale may give informa-
tion on the large-scale density perturbations.”
The sound horizon appears in the spectrum of

BAO that contains several characteristic peaks
[29,30,35,36], and the separation between these
peaks is approximately equal to half of the sound
horizon (32) [62]. In this regard, the sound horizon
encoded in the spectrum is an observable, but not
as a distance traveled by BAO random waves. In
our model, the initial power spectrum (16) of the
system of galaxies includes one pertinent peak of
the BAO spectrum, so the resulting correlation
function contains part of the information of the
BAO spectrum. But the influence of the peak of
BAO spectrum is degenerate with the other param-
eters, such as λJ, γ and the sound speed model. Our
computation tells us that, from the solution ξ, it is
hard to infer the peak of BAO spectrum to a
sufficient accuracy.

(2) Another prominent feature are the multiwiggles in
the spectrum PkðzÞ, which occur at high k > kJ, as
seen in Figs. 4, 5, and 13. Firstly Pk has a smooth
global maximum plateau, which appears as the
sharp peak in the weighted kPk and is located at
k ≃ kJ ∼ 0.1 Mpc−1. We refer to it as the main
peak. By Fourier transformation, the main peak
gives rise to the 100 Mpc periodic bumps in ξ. The

wiggles show up on the main slope at high k > kJ.
By performing Fourier transformation, the wiggles
are not associated with the periodic bumps of ξ, but
rather associated with the sub-bumps in (31), and
are located roughly at

k ∼ lkJ; l ¼ 2; 3; 4…; ð35Þ

and their heights are much lower than the main
peak. Both the main peak and the wiggles are
already observed in galaxy and quasar surveys
[3,7]. Comparing the observations, the overall
profile of the solution Pk agrees with the observed
data, but contains many wiggles at high k, which
are expected to be damped considerably when
nonlinear terms in Eq. (4) are included.
The wiggles are acoustic oscillations of the fluid

with pressure, occurring at large k where gravity is
subdominant. This can be also demonstrated ana-
lytically from Eq. (12), which, by setting a ¼ 1 and
dropping 2H_ξ, becomes approximately the equa-
tion of a forced oscillator

d2

dt2
Pk þ c2s0ðk2 − k2JÞPk ¼ 4πGm:

For k > kJ, its solution is

Pk ∼ b cosðcs0ktÞ þ
4πGm
c2s0k

2
;

where 4πGm=c2s0k
2 determines the main slope at

k > kJ, and b cosðcs0ktÞ gives the wiggles, and the
coefficient b is determined by the initial condition.
The wiggles are oscillating with time—more dras-
tically for higher k—as seen in Figs. 4, 5, and 13.
The separation between two neighboring wiggles
is Δk ¼ 2π

cs0t
at a fixed time t, and is narrowing down

during evolution. Taking into account the evolu-
tion effect, one has an estimate Δk ∼ 0.1 Mpc−1 at
z ¼ 0, which agrees with what we see in the
graphs. Moreover, the wiggles are developing
during evolution even if the given initial spectrum
is smooth without wiggles. The power spectrum of
static solution [14,15] does not contain wiggles
because the static equation does not contain the
term d2

dt2 Pk. Thus, given the wiggles at z ¼ 0, one
can not infer the precise pattern of wiggles at
z ¼ 7, nor the peak of BAO spectrum, because
other factors, such as γ, the details of initial
spectrum, etc., also affect the outcome in a com-
plicated way.
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VII. THE INFLUENCES BY THE EXPANSION, THE
PARAMETERS, AND THE INITIAL CONDITION

We now demonstrate how the solution is influenced by
the expansion, the sound speed model, the three parameters
ðA; kJ; γÞ of the fluid, and two cosmological parame-
ters (Ωm; h).
(1) the influence of expansion;

For the linear equation in the static case [14], the
bump separation Δr is just equal to the Jeans length
λJ. But this will be modified in the expanding
Universe. Note that Δr in ξ is contributed to by
all the growing k-modes via the Fourier transforma-
tion (10). In Eq. (15), the factor ðk2k2J − γa2η−1Þ
determines that the modes with k < ðγa2η−1Þ1=2kJ
will grow. So, the effective Jeans wave number is

kJ eff ¼
γ1=2kJ

ð1þ zÞη−1=2 ; ð36Þ

which is affected by the expansion, and also depends
on γ and η. Given γ ¼ 1, for both models η ¼ 1 and
η ¼ 3=5, one has kJ eff ¼ kJ

ð1þzÞη−1=2 ≤ kJ, so the grow-

ing modes have smaller k than the static case, and
after k-integration, this leads to a separation Δr
which is larger than λJ.

(2) the influence of sound speed model;
The sound speed models (7) affect the outcome.

By ðcs0=a3=5Þ=ðcs0=aÞ ¼ a2=5 < 1, the model
η ¼ 3=5, comparatively, has a smaller effective
sound speed and thus a shorter Jeans length and
shorter bump separations. Figure 14 shows r2ξ in the
two models. In terms of Pk, the model η ¼ 3=5
yields a larger effective Jeans wave number; more
k-modes will fall into the growing modes leading to
a higher peak of Pk and higher bumps. Besides, the

ðk=kJÞ2 term in Eq. (12) acquires greater effective
coefficients, so the wiggles of Pk become bigger. By
choosing the respective kJ appropriately, both mod-
els can give Δr of (28) that agrees with the observed
100 Mpc feature.

(3) The influence of kJ;
By the definition of λJ, a higher density gives a

shorter λJ, and thus yields a smaller separation of
bumps. This explains the simulations result [63,64]
that galaxies residing in dense regions have a shorter
bump separation. A lower λJ also yields a mildly
higher clustering amplitude, as seen in Fig. 15. This
explains the simulation result that galaxies residing
in more dense regions give a higher clustering
amplitude [63–65].

(4) The influence of A;
The source magnitude A is proportional tom. Our

computation shows that a larger m gives a higher
main mountain at r≲ 50 Mpc, but does not affect
the periodic bumps at large distance. In particular,
the solution for A ¼ 0 still contains bumps at large
distance. To explain this novel phenomenon, we
decompose the solution ξ into two parts

ξ ¼ ξ1 þ ξ2; also Pk ¼ Pk1 þ Pk2; ð37Þ

where ξ1 is the inhomogeneous solution with A ≠ 0
and the zero initial condition (Pk ini ¼ ra ¼ 0), and
ξ2 is the homogeneous solution with A ¼ 0 and the
nonzero initial condition.
ξ1 andPk1 reflect the influence ofA, and are shown

in Figs. 16 and 17. ξ1 gives the growing main
mountain, but contains no bumps. At any instance
of time, ξ1 is vanishing beyond the main mountain, so
it describes the local clustering around the galaxy
with mass m. The main mountain is growing radially
at the sound speed. Pk1 is flat and smooth without a

FIG. 14. The model η ¼ 3=5 (red line) yields higher bumps and
shorter separations than the model η ¼ 1 (blue line). The initial
k0 ¼ ð1þ zÞ1=2kJ is taken.

FIG. 15. A greater kJ leads to a higher mountain at small scales,
and shorter bump separations.
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sharp edge at small k, and this explains why there are
no bumps in ξ1. Moreover, Pk1 is developing multiple
wiggles at large k during evolution, even though the
initial spectrum is zero. This tells us that the wiggles
do not give rise to the periodic bumps in ξ.
The homogeneous part ξ2 and Pk2 reflect the

influence of the nonzero initial condition and are
shown in Figs. 18, 19, and 20. ξ2 contains the
periodic bumps at large scales, but forms a flat
plateau on small scales r < 40 Mpc at late times.
Pk2 has the main peak with a sharp edge at k ∼ kJ
which gives rise to the periodic bumps of ξ, but has
little power at large k, corresponding to the flat
plateau in ξ2. This reconfirms that the bumps in ξ
are associated with the main peak of Pk, not with
the wiggles in Pk. Moreover, the evolution of ξ2 in
Fig. 19 also shows that the bumps are distributed

FIG. 17. Same as Fig. 16. The inhomogeneous Pk1 has a flat
main peak at small k which is shrinking to small k during
evolution. Multiple wiggles are developing on the main peak at
large k.

FIG. 16. The inhomogeneous r2ξ1 generates the main mountain
at small rwhich is growing. There are no bumps at large r beyond
the mountain.

FIG. 18. The homogeneous solution ξ2ðr; zÞ forms a plateau on
small scales (r < 40 Mpc) at late times (z ∼ 0).

FIG. 19. Same as Fig. 18. The weighted r2ξ2ðr; zÞ shows the
periodic bumps at large scales.

FIG. 20. Same as Fig. 18. The homogeneous power spectrum
Pk2ðzÞ has a sharp main peak at k≲ kJ , but little power at large k.
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over the whole r axis, and the bumps are getting
higher, the troughs are getting deeper, and the
bump separation is getting larger during evolution.
This behavior of ξ2 for the large scale structure
differs from that of ξ1 for the local clustering. It
should be mentioned that the main mountain of ξ is
a superposition of ξ1 and the first bump of ξ2.
From the decomposition in the above, we

conclude that the main mountain of ξ at r≲
50 Mpc is due to the source A, while the periodic
bumps at large distance are seeded by the nonzero
initial condition (16). Thereby, at the linear level
the small scale clustering and the large scale
structure are separated into are two different
problems. In Appendix B we also express the
decomposed solutions in terms of the Green’s
function, and demonstrate the wave nature of
correlation function.

(5) The influence of density ratio γ;
The ratio γ defined by Eq. (6) is the fluid density

over the cosmic background matter density, and can
be regarded as the region overdensity of survey over
the background density. A larger γ yields higher
bumps and deeper troughs, and simultaneously
shifts the bump locations of ξ to small distance,
as shown in Fig. 21.

(6) The dependence on Ωm;
The matter fraction Ωm of the cosmic background

also affect slightly the correlation and clustering. A
high Ωm enhances slightly the height of the bumps,
but does not change the bumps separation, as seen in
Fig. 22, where kJ and γ are fixed.Ωm actually occurs
in the definition of kJ in Eq. (13). If we would allow
kJ to vary with Ωm, then a larger Ωm will correspond
to a larger kJ and will lead to a shorter bump
separation.

(7) The dependence on h;
The Hubble parameter h occurs in the source

amplitude 4πGm=H2
0 of Eq. (15) and in the defi-

nition of kJ in (13). So a small h amounts to a greater
m and a greater kJ.

We now demonstrate the influence of the initial con-
dition (16) and (20). Beside the parameters, the initial
power spectrum is another important factor that affects the
solution of Eq. (15). To get a smooth solution, the initial
condition should be in a range in accordance with the given
parameters.
(1) the influence of initial Jeans wave number k0;

Our computation shows that it is necessary that
the initial spectrum possess certain sharp peak or
wedge which is located at k0, for the periodic
bumps to develop in ξ. As mentioned in Sec. IV, the
initial peak position k0 can be viewed as an imprint
of the peak of the BAO spectrum, and its value is
related to kJ through the relation (24) by default.
If k0 varies slightly from the relation, then a greater
k0 leads to lower bumps and shorter bump
separations in ξðrÞ, as shown in Fig. 23. We have
seen that the influence of k0 is degenerate with the
parameters γ and η to various extents, on the
outcome ξ and Pk. As our computation shows,
k0 should not be allowed to deviate too much,
otherwise the evolution may be not sufficiently
smooth.

(2) the influence of initial amplitude 1=2n0;
1=2n0 is used to represent the amplitude of the

initial power spectrum in (16). A higher 1=ð2n0Þ
yields a higher amplitude at r≲ 50 Mpc and a
deeper first trough in ξ, but leads to a complicated
pattern for the subsequent bumps and troughs, as
seen in Fig. 24. The main peak of Pk is also slightly
enhanced but the wedge also shifts to large k, and
there is little change at large k≳ 0.2 Mpc−1.

FIG. 21. A greater γ gives higher bumps and deeper troughs and
shifts the bumps to a smaller distance.

FIG. 22. A high Ωm gives slightly higher bumps at z ¼ 0, but
makes no change in the separation between bumps.
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In the limiting case of a vanishing initial power
spectrum, Pk ini ¼ 0, the solution is the inhomo-
geneous ξ1 that has no bumps and has been analyzed
below Eq. (37) and in Appendix B.

(3) the influence of initial rate ra;
The default initial rate is ra ¼ 7.0 by (20). We

find that the evolution pace and outcome are not
sensitive to the initial rate ra within two orders of
magnitude. This is because in Eq. (15) the coef-
ficient of ∂

∂a Pk is given by ∼ 3
2a, which is about three

orders lower than the coefficient of Pk term at z ¼ 7,
so that a small variation of ra gives no substantial
change to the solution. This also means that the
impact of expansion is subdominant to those of
pressure and gravity for the system of galaxies
during the epoch from z ¼ 7 to z ¼ 0.

VIII. CONCLUSION AND DISCUSSION

Based on the hydrodynamical equations of a Newtonian
self-gravity fluid, we derived the nonlinear equation of the
correlation function of density perturbation in a flat expand-
ing universe. This extends our previous work in the static
universe [14,15]. Our nonlinear equation is compared with
Davis and Peebles’ equation [11] in the following.
Like Davis and Peebles, we use a self-gravity fluid model

to describe the system of galaxies in the expanding universe.
Starting from statistical distribution, Davis and Peebles start
with the Liouville’s equation and derive a series of BBGKY
equations of two-point correlation functions with cutoff.
This is a standard method for many-body systems. We
describe the system of galaxies by the density ψ which is a
stochastic field, apply functional differentiation on the
ensemble average of the density field equation (1), perform
expansion in terms of density perturbation, and obtain
Eq. (2) of the two-point correlation function. Our method
is commonly used in field theory, and the derivation involves
less algebraic calculations. Our Eq. (2) is analogous to Davis
and Peebles’ Eq. (47), except there is a factor of two for the
gravity term [11]. From the outcome, the BBGKY series is
effectively equivalent to the expansion of density perturba-
tions that we have used. We have assumed the generating
functional (A13) for the density field, which is also a
prescription of the statistic of the field. The resulting
evolution of the correlation function is smooth, and the
large-scale structure keeps a similar pattern during evolution
z ¼ ð7–0Þ. In this sense, the system is in an asymptotically
relaxed state [12].
There are several differences. To deal with the velocity

terms that occur in Eq. (2), we have used the Zel’dovich
approximation to replace the velocity by an integration of
the density field, and arrived at Eq. (3) which contains
three-point and four-point correlation functions. This
hierarchy is generally anticipated for a many-body system
with interaction and also for a nonlinear field. To deal with
three-point and four-point correlation functions, we adopt
the Kirkwood-Groth-Peebles ansatz and the Fry-Peebles
ansatz, and obtain the main Eq. (4), which is a closed
equation for the two-point correlation function as a single
unknown function. Davis and Peebles [11], without using
the Zel’dovich approximation, derived the differential
equations of the velocity and of velocity dispersions,
and arrived at a set of five equations (71a), (71b), (72),
(76), and (79) for five unknowns. For practical applica-
tion, one needs to specify an initial condition which
should be consistent for the five unknowns. This would
not be easy since one generally lacks sufficient informa-
tion of these quantities at early epoch. Moreover, the
pressure term c2s∇2ξ and the δð3Þ source term were ignored
in Davis and Peebles’ final equations, so that the acoustic
properties (the periodic bumps and wiggles) and the local
clustering at small scales (the main mountain) would not
appear.

FIG. 24. The influence of 1=2n0 upon r2ξ. A higher 1=ð2n0Þ
yields a higher amplitude at r≲ 50 Mpc. In particular, when the
initial power spectrum is vanishing, Pk ini ¼ 0, the solution is
contributed to only by the inhomogeneous ξ1. There are no
oscillatory bumps in ξ at large r, but the main mountain still exists
at small scales.

FIG. 23. A greater k0 leads to lower bumps and shorter bump
separations.
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Our Eq. (4) is nonlinear, also integro-differential. In this
paper we only solve its linear version, i.e., the linear
equation (5), apply it to the system of galaxies. For specific
computation, we adopt two models of cs in (7). The initial
power spectrum (16) at z ¼ 7 is taken from that of the static
solution, and inherits a portion of the imprints of the BAO
spectrum that has survived the Silk damping around the
decoupling. The initial rate ra is specified by (20) based on
the pair conservation.
The linear solution ξ contains a power-law main

mountain at small scales and the periodic bumps at large
scales. These were previously predicted in the static
solution and confirmed by the observations. Taking
advantage of the linearity, we also decompose the solution
into homogeneous and inhomogeneous solutions,
ξ ¼ ξ1 þ ξ2, and analyze these solutions in terms of
Green’s function. ξ1 is proportional to m, and generates
the growing main mountain, and ξ2 gives rise to the
growing periodic bumps which are unaffected by m.
Thereby, the local clustering and the large-scale structure
are naturally separated as two problems. The bump
separation Δr ∼ 100 Mpc is largely determined by the
Jeans length λJ but also modified by γ, the sound speed
model, and the initial condition.
The corresponding power spectrum Pk contains a main

peak which is associated with the periodic bumps, as Fourier
transformation shows. Pk also contains the multiwiggles
which are caused by the acoustic oscillations of the system of
galaxies. The wiggles are absent in the static solution, and,
nevertheless, are developing during evolution even if the
initial spectrum has no wiggles. The wiggles do not generate
the 100 Mpc periodic bumps, but rather generate the tiny
sub-bumps in ξ which are barely visible. In this perspective,
Pk gives information of acoustic oscillations more than ξ
does. Given the pattern of wiggles at the present stage, we
are not able to accurately infer the wiggle pattern at z ¼ 7,
because other factors also affect the outcome in a compli-
cated way.
The sound horizon, when interpreted as a distance that

baryon acoustic waves traveled, is not directly observable
from the plasma. This is because the waves form a
Gaussian random field, and the paths of waves are wiped
out statistically. Indeed, the predicted value of the sound
horizon as a distance ruler is higher than the observed
100 Mpc feature, and can not give a simple account of the
negative trough at (130–160) Mpc, nor the second bump at
∼200 Mpc. Therefore, the conventional picture of the
comoving imprint of the sound horizon has a difficulty.
The sound horizon actually occurs in the phase of BAO
modes—one half of sound horizon is approximately equal
to the separation between the characteristic peaks of the
BAO spectrum. In our present model, the imprint of BAO
is transferred to the initial power spectrum of the system of
galaxies, say, at z ¼ 7. Subsequently the pertinent quan-
tity is the Jeans wavelength which departures from the

comoving imprint. The separation between the observed
100 Mpc bumps is attributed to the Jeans length, and is
also modified by the parameters γ and cs, so it is hard to
accurately infer the BAO spectrum from the outcome ξ
and Pk at z ¼ 0. When future surveys provide more
precise measurement of the second bump at ∼200 Mpc,
or even observe the third bump at ∼300 Mpc, it would be
possible to infer information of the BAO spectrum. It
should be noticed that the measurement of the Hubble
constant using the CMB without using the sound horizon
[66,67] has yielded the result h ∼ 0.72 which is consistent
with the local measurements [68–70], while those, using
the sound horizon, lead to an underestimate h ∼ 0.67
[71,72], in sharp contrast to the local measurements.
Therefore, the conventional use of the sound horizon as
a ruler for cosmological distances should be reexamined
for BAO and for CMB as well. Given the Hubble tension
between the local measurements and the sound-horizon-
based CMBþ BAO, this scrutiny is necessary.
Another important lesson from the linear solution is that

the Jeans length is the correlation scale of the system of
galaxies, and is distinguished from the mass scale of a
galaxy or cluster. Since the pioneering studies of BAO
around the decoupling [29–33], the Jeans length [29] and
the characteristic peaks in the spectrum [30], were often
thought to be associated with a Jeans mass enclosed by the
associated volume, such as 1017 M⊙ or 105 M⊙, in hope
for an interpretation of the origin of galaxies and clusters.
This is a longstanding problem in cosmology and galaxy
formation. According to our linear solution, the imprint of
BAO at the decoupling evolves into the present Jeans length
λJ which is roughly equal to the bump separation Δr, and
the mass enclosed in a sphere of radius 1

2
Δr is given by

π
6
ρcΩmðΔrÞ3 ∼ 1017 M⊙, just comparable to the Jeans mass

predicted by Refs. [29–33]. Obviously, this Jeans mass
does not correspond to the mass scale of a galaxy, nor of a
cluster. The decomposition (37) of the solution reveals that
the mass scale of a galaxy is described by m which is
responsible for the local clustering, and that λJ occurs not
as a (virilized) galactic object, but as the correlation length
of galaxies, which is responsible for the large scale
structure. The two parameters λJ andm reflect two different
aspects of the system of galaxies in the Universe. Thereby,
one realizes that, in the fitting formula of observed
correlation function ξ ¼ ðr=r0Þ−1.7, the constant r0 is really
not a correlation length, but a phenomenological parameter
which reflects the effects of m and nonlinearity at small
scales.
Obviously the linear solution has shortcomings on small

scales. The slope of main mountain of ξ is too flat, leading
to an overestimated mass m for a galaxy. The predicted
wiggles in Pk at high k are undamped. These are due to the
absence of nonlinear terms from Eq. (8), which are
dominant at small scales. In future, we shall study the
nonlinear effects.
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APPENDIX A: DERIVATION OF THE
NONLINEAR EQUATION OF
CORRELATION FUNCTION

We first list the field equation of mass density which is
the basis for the equation of correlation of density pertur-
bations. The system of galaxies is described by a
Newtonian self-gravity fluid whose hydrodynamical equa-
tions consist of the following [17,73]

∂ρ
∂t þ∇r · ðρVÞ ¼ 0; ðA1Þ

∂V
∂t þ ðV ·∇rÞV ¼ −

1

ρ
∇rp −∇rΦ; ðA2Þ

∇2
rΦ ¼ 4πGρ − Λ; ðA3Þ

where r is the proper distance from some chosen origin, V
is the proper velocity, and Φ is the gravitational potential.
The pressure p is comparatively small and its contribution
to the potential is neglected, but the pressure gradient is
included in the Euler equation to show the acoustic
behavior of the fluid. These equations are valid for a static
universe within the framework of Newtonian gravity. To
pass to the expanding Universe, we write r as r ¼ aðtÞx
where x is the comoving coordinate. (We choose
a ¼ 1=ð1þ zÞ, so that r ¼ x at z ¼ 0.) Then one has
the following

∇r ¼
1

a
∇x;

� ∂
∂t
�

r
¼

� ∂
∂t
�

x
− V0 ·∇r;

V ¼ _r ¼ V0 þ v;

where v≡ a _x is the peculiar velocity field, and V0 ¼ Hr is
the Hubble flow velocity. We introduce a new potential

ϕ≡Φþ 1

2
aäx2: ðA4Þ

Then, Eqs. (A1), (A2), and (A3) become [17]

∂ρ
∂t þ 3ρH þ 1

a
∇xρ · v þ

1

a
ρð∇x · vÞ ¼ 0; ðA5Þ

∂v
∂t þHv þ 1

a
ðv · ∇Þv ¼ −

1

aρ
∇p −

1

a
∇ϕ; ðA6Þ

∇2ϕ ¼ 4πGa2ðρ − ρ0ðtÞÞ; ðA7Þ

where ρ0ðtÞ is the mean mass density of the fluid, and ϕ is
contributed to only by the matter density fluctuation. We
denote∇≡∇x. From (A5), (A6), and (A7), one obtains the
nonlinear field equation of mass density

ρ̈þ8H _ρþð15H2þ3 _HÞρ¼ 1

a2
∇2pþ 1

a2
∇ · ðρ∇ϕÞ

þ 1

a2
∂2

∂xβ∂xα ðρv
αvβÞ; ðA8Þ

which holds a flat expanding universe. Notice that Eq. (A8)
has been derived without using the Friedmann equations
explicitly, and the fluid mass density ρ in Eq. (A8) can be
generally higher than the background density of the
expanding Universe. Introducing the dimensionless mass
density ψ as the following

ρðt;xÞ≡ ρ0ðtÞψðt;xÞ; ðA9Þ

then Eq. (A8) is written as Eq. (1). Defining the density
contrast δ as

δðx; tÞ ¼ ψðx; tÞ − 1; ðA10Þ

Eq. (A8) can be also expressed

∂2δ

∂t2 þ 2H
∂δ
∂t ¼

1

a2ρ0
∇2pþ 4πGρ0ðδ2 þ δÞ þ 1

a2
∇δ · ∇ϕ

þ 1

a2
∂2

∂xβ∂xα ðð1þ δÞvαvβÞ; ðA11Þ

which is Eq. (9.19) in Ref. [17]. When the three nonlinear
terms are neglected, (A11) reduces to

∂2δ

∂t2 þ 2H
∂δ
∂t −

1

a2ρ0
∇2p − 4πGρ0δ ¼ 0; ðA12Þ

which is the Jeans linear equation in the expanding
Universe.
The field equation of the two-point correlation function in

the expanding Universe can be derived by the functional
derivative method, in a similar procedure to the static case
[14,15]. The method is commonly used to get the equation of
the two-point correlation function in field theory, such as
particle physics and condensed matter [19,74,75]. The
system of galaxies in the expanding Universe is not too
far from equilibrium. The cosmic expansion time scale
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te ¼ 1
H0

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=8πGρ0

p
, the dynamic time for galaxies mov-

ing in the background td ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=16πGρ0

p
[23], and the two

time scales are of the same order of magnitude. So, the
system of galaxies is said to be in an asymptotically relaxed
state [12]. In statistical mechanics, given the Hamiltonian of
a self-gravitating many-body system, the grand partition
function is commonly constructed with the temperature T
[12]. By the Hubbard-Stratonovich transformation [75], the
grand partition function of the discrete many-body system is
cast into a path-integral generating functional, either for the
gravitational potential field [13] or for the density field ψ
[14,15]. The generating functional facilitates the derivation
of the correlation functions of the field. We assume that, in
the expanding Universe, the generating functional of the
density field ψ has the following form

Z½J� ¼
Z

Dψ exp

�
−β

Z
d3xðLðψÞ − a3JψÞ

�
; ðA13Þ

and the ensemble average of the field ψ is given by

hψiJ ¼
1

Z½J�
Z

Dψψ exp

�
−β

Z
d3xðLðψÞ − a3JψÞ

�
;

ðA14Þ

where L is the effective Lagrangian density whose
variation with respect to ψ leads to Eq. (1), J is the
external source introduced as an apparatus for functional
differentiation, and β≡ 1=4πGmwithm being the particle
mass. Although β formally plays a role of an “effective”
temperature in Z½J� of (A13), it is not actually the
temperature T; the latter has been absorbed into the sound
speed cs. The notation β here is different from that in
Refs. [14,15], and c2s is put into L here. In the static case
the explicit expression of L is known [13–15,75]. In the
expansion case the linear part of L is given by

Llin ¼ a3
�
1

2
a−1ð _ψÞ2 − 1

2
a−1

�
cs
a
∇ψ

�
2

þ 4πGρ0a−1
�
1

2
ψ − 1

�
ψ

�
;

which corresponds to the part of Eq. (1) without the
potential and velocity terms. The nonlinear part of L gives
rise to the potential and velocity terms in (1) and will be
more involved, and we do not need its explicit expression
in this paper. Generally speaking, knowing the exact
expression of L in terms of ψ would amount to knowing
the exact nonlinear equation and the non-Gaussian sta-
tistic of the field ψ . In particular, the non-Gaussian
statistic can be represented by various correlation func-
tions of ψ to a sufficient order. Therefore, we want to

know the equations of these correlation functions which
contain both statistical and dynamical information of the
field. The prescription (A13) with (A14) of the generating
functional is sufficient for our purpose to derive the
equations of various correlation functions. In the follow-
ing we derive the equation of the two-point correlation
function.
Adding the external source J to Eq. (1) and taking the

ensemble average, we get

hψ̈iJ þ 2Hh _ψiJ −
c2s
a2

h∇2ψiJ − 4πGρ0hðψ2 − ψÞiJ

−
1

a2
h∇ψ ·∇ϕiJ −

1

a2

� ∂2

∂xi∂xj ðψv
ivjÞ

	
J
− hJiJ

¼ 0: ðA15Þ

Applying the functional derivative δ
a3βδJðx0Þ to each term in

the above equation and then setting J ¼ 0, we obtain
Eq. (2), where the following have been used. The connected
two-point correlation function of the field ψ is defined by
the ensemble average

Gð2Þðx1;x2; tÞ≡ hδψðx1; tÞδψðx2; tÞi

¼ δ

ða3βÞδJðx2Þ
hψðx1; tÞiJ

����
J¼0

¼ δ2

ða3βÞ2δJðx2ÞδJðx1Þ
lnZ½J�

����
J¼0

; ðA16Þ

where δψðxÞ ¼ ψðxÞ − hψðxÞi is the dimensionless den-
sity fluctuation. One has hδψðrÞi ¼ 0, hψðxÞijJ¼0 ¼ 1,
and δψðxÞ ¼ δðxÞ. Gð2Þ is dimensionless by the defini-
tion, and is assumed to have the following stationary
property

Gð2Þðx1;x2; tÞ ¼ Gð2Þðx1 − x2; tÞ ¼ Gð2Þðjx1 − x2j; tÞ;
ðA17Þ

which is consistent with the isotropy of the background
Universe. The connected n-point correlation function is

GðnÞðr1;…; rnÞ≡ hδψðr1Þ…δψðrnÞi ðA18Þ

¼ δn lnZ½J�
ða3βÞnδJðr1Þ…δJðrnÞ

����
J¼0

ðA19Þ

¼ δn−1hψðrnÞiJ
ða3βÞn−1δJðr1Þ…δJðrn−1Þ

����
J¼0

; for n≥2: ðA20Þ

Other terms are calculated in the same manner,
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δ

ða3βÞδJðx0Þ h∇
2ψðx; tÞi

����
J¼0

¼ ∇2Gð2Þðx − x0; tÞ;

δ

ða3βÞδJðx0Þ h _ψðx; tÞiJ
����
J¼0

¼ _Gð2Þðx;x0; tÞ;

δ

ða3βÞδJðx0Þ hψ̈ðx; tÞiJ
����
J¼0

¼ G̈ð2Þðx;x0; tÞ;

δ

ða3βÞδJðx0; tÞ hψ
2ðxÞi

����
J¼0

¼ δ

a3βδJðx0Þ ðhψðxÞihψðxÞi þ hδðxÞδðxÞiÞ
����
J¼0

¼ 2Gð2Þðx − x0; tÞ þ Gð3Þðx;x;x0; tÞ; ðA21Þ

where hψiJ¼0 ¼ 1 is used. The external source term gives

δ

ða3βÞδJðx0Þ hJðxÞiJ
����
J¼0

¼ 1

a3β
δð3Þðx − x0Þ: ðA22Þ

From these, we get

G̈ð2Þðx − x0; tÞ þ 2H _Gð2Þðx − x0; tÞ − c2s
a2

∇2Gð2Þðx − x0; tÞ − 4πGρ0ðtÞðGð2Þðx − x0; tÞ þGð3Þðx;x;x0; tÞÞ

−
1

a2
δ

ða3βÞδJðx0Þ h∇ψðxÞ ·∇ϕðxÞi
����
J¼0

−
1

a2
∂2

∂xi∂xj
δ

ða3βÞδJðx0Þ hðψðxÞv
iðxÞvjðxÞÞi

����
J¼0

¼ 1

a3β
δð3Þðx − x0Þ: ðA23Þ

To deal with the potential term∇ψ ·∇ϕ in (A23), we use
the solution of the Poisson equation (A7)

ϕðx; tÞ ¼ −a2Gρ0ðtÞ
Z

ψðx0; tÞ − 1

jx − x0j d3x0; ðA24Þ

∇ϕðx; tÞ ¼ −a2Gρ0ðtÞ
Z

ðψðx0; tÞ − 1Þ∇ 1

jx − x0j d
3x0;

ðA25Þ

where ∇≡∇x. So we have

∇ψ ·∇ϕ ¼ −a2Gρ0ðtÞ
Z

ðψðx0; tÞ∇ψðx; tÞ −∇ψðx; tÞÞ

·∇ 1

jx − x0j d
3x0: ðA26Þ

Applying functional differentiation on the ensemble aver-
age of (A26) we get

−
δ

a3βδJðx0Þ
1

a2
h∇ψ ·∇ϕi

����
J¼0

¼ 4πGρ0ðtÞGð3Þðx;x;x0Þ þ Gρ0ðtÞ

×
Z

∇ ·

�
Gð3Þðx;x0;x00Þ · ∇ 1

jx − x00j
�
d3x00: ðA27Þ

Substituting (A27) into (A23), noting that 4πGρ0Gð3Þ in
Eq. (A27) will cancel the −4πGρ0Gð3Þ term in Eq. (A23),
we obtain Eq. (2) of the two-point correlation function.
The velocity dispersion term ψvivj in (2) can be treated

as the following. Under the Zel’dovich approximation [17],
the peculiar velocity vi can be expressed in terms of the
density field ψ

v ¼ −
1

4πGρ0a

_D
D
∇ϕ

¼ HfðΩmÞ
4π

a
Z

ðψðx0; tÞ − 1Þ∇ 1

jx0 − xjd
3x0 þOðδ2Þ;

ðA28Þ

where
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fðΩm; tÞ≡ −
d lnD

d lnð1þ zÞ ¼
a
D
dD
da

; ðA29Þ

and DðtÞ is a growing mode of the linear part of
equation (A11) without pressure [17]. For a flat RW
spacetime, it can be approximately fitted by the following
formula [76],

fðΩm; tÞ ¼ Ω0.6 þ 1

70

�
1 −

1

2
Ωð1þ ΩÞ

�
; with

Ω≡Ωm
ð1þ zÞ3

ðΩmð1þ zÞ3 þ ΩΛÞ2
: ðA30Þ

Substituting (A28) into the velocity dispersion term of
(A23), we calculate

δ

a3βδJðx0Þ
h
hψðxÞihδðyÞδðzÞi þ hδðxÞδðyÞδðzÞi

i����
J¼0

¼ Gð2Þðx − x0ÞGð2Þðy − zÞ þ Gð3Þðy; z;x0Þ
þ Gð4Þðx; y; z;x0Þ; ðA31Þ

where the definition (A18) has been used, and get the
following

δ

a3βδJðx0Þ hψv
ivji

����
J¼0

¼ H2a2f2ðΩmÞ
16π2

ZZ
d3yd3z

yi − xi

jy − xj3
zj − xj

jz − xj3
× ðGð2Þðx − x0; tÞGð2Þðy − z; tÞ þ Gð3Þðy; z;x0; tÞ þ Gð4Þðx; y; z;x0; tÞÞ: ðA32Þ

Substituting (A32) into Eq. (2) yields the nonlinear equation (3) which contains Gð3Þ and Gð4Þ. By comparison, Davies and
Peebles [11] did not use the Zel’dovich approximation, so that their Eq. (72) contains the unknown velocity dispersions. The
Zel’dovich approximation will cause an error of the order δ3 in vivj, which would bring about extra terms like Gð4Þ and
Gð2ÞGð3Þ in (A32). We shall drop these terms. Therefore, (A32) is accurate up to a numerical factor of the term Gð4Þ.
To make Eq. (3) closed for Gð2Þ, we adopt the Kirkwood-Groth-Peebles ansatz on the three-point correlation function

[20,21],

Gð3Þ
123 ¼ Q½Gð2Þ

12 G
ð2Þ
23 þ Gð2Þ

23 G
ð2Þ
31 þGð2Þ

31 G
ð2Þ
12 �; Q ¼ 1.0� 0.2; ðA33Þ

where Gð2Þ
12 denotes Gð2Þðx1;x2; tÞ and Gð3Þ

123 denotes G
ð3Þðx1;x2;x3; tÞ for notational simplicity, and Q is a dimensionless

constant to be determined by observation. [We remark that the ansatz (A33) with Q ¼ 1 holds exactly as a solution of Gð3Þ
123

in the Gaussian approximation for the static case [15].] For the four-point correlation function, we adopt the Fry-Peebles
ansatz [22]

Gð4Þ
1234 ¼ Ra

�
Gð2Þ

12 G
ð2Þ
23 G

ð2Þ
34 þ Gð2Þ

23 G
ð2Þ
34 G

ð2Þ
41 þ Gð2Þ

34 G
ð2Þ
41 G

ð2Þ
12 þGð2Þ

41 G
ð2Þ
12 G

ð2Þ
23

þGð2Þ
13 G

ð2Þ
34 G

ð2Þ
42 þ Gð2Þ

34 G
ð2Þ
42 G

ð2Þ
21 þGð2Þ

42 G
ð2Þ
23 G

ð2Þ
31 þGð2Þ

21 G
ð2Þ
13 G

ð2Þ
34

þGð2Þ
14 G

ð2Þ
42 G

ð2Þ
23 þ Gð2Þ

31 G
ð2Þ
14 G

ð2Þ
42 þGð2Þ

31 G
ð2Þ
12 G

ð2Þ
24 þGð2Þ

23 G
ð2Þ
31 G

ð2Þ
14

�

þ Rb

�
Gð2Þ

12 G
ð2Þ
13 G

ð2Þ
14 þGð2Þ

21 G
ð2Þ
23 G

ð2Þ
24 þ Gð2Þ

31 G
ð2Þ
32 G

ð2Þ
34 þ Gð2Þ

41 G
ð2Þ
42 G

ð2Þ
43

�
; ðA34Þ

where Gð4Þ
1234 denotes Gð4Þðx1;x2;x3;x4; tÞ, Ra and Rb are

two parameters and observations indicate 3Ra þ Rb ≃ 10�
2 {see (19.23) in Ref. [27]}. The undetermined numerical
factor of Gð4Þ due to the Zel’dovich approximation can be
absorbed into the parameters Ra and Rb. Substituting (A33)
and (A34) into (3), using the conventional notation
ξðx; tÞ ¼ Gð2Þðx; tÞ, we arrive at the nonlinear Eq. (4) in
the context.
By similar calculations, taking functional derivative of

the ensemble average of the continuity equation (A5) and

using the Zel’dovich approximation (A28), we obtain the
continuity equation in terms of correlation function

∂
∂t ξðx − x0; tÞ −HfðΩmÞξðx − x0; tÞ

þHfðΩmÞ
4π

Z
∇ ·

�
Gð3Þðx;x0;x00Þ∇ 1

jx00 − xj
�
d3x00

¼ 0: ðA35Þ
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This is closed when the Groth-Peebles ansatz (A33) is used.
Equation (A35) should be compared with the conservation
of particle pair {Eq. (41) or Eq. (71b) in Ref. [11]} which
still contains the relative velocity of a pair of galaxies. We
have made use of (A35) to give an estimate of the change
rate (20) in the context.

APPENDIX B: THE LINEAR SOLUTION IN
TERMS OF THE GREEN’S FUNCTION

Although we have obtained the numerical linear solution
Pk and ξ, it is revealing to analyze the solution using the
Green’s function method. To isolate the influences of the
source A and the initial conditions, in accordance with (37)
we write

ξðx; tÞ ¼ wðx; tÞ
aðtÞ ¼ 1

a
ðw1ðx; tÞ þ w2ðx; tÞÞ; ðB1Þ

where w1 satisfies the following

8>>><
>>>:

ẅ1ðx;tÞ−c2ðtÞ∇2w1ðx;tÞ−m2ðtÞw1ðx;tÞ¼ A
aðtÞ2δ

ð3ÞðxÞ
w1jt¼ti ¼0

_w1jt¼ti ¼0;

ðB2Þ

with

c2ðtÞ≡ c2s0
a2þ2ηðtÞ ; ðB3Þ

m2ðtÞ≡ 4πGρc

�
2

3

�
−
1

2
a−3Ωm þ ΩΛ

�
þ γΩm

a3ðtÞ
�
; ðB4Þ

where theFriedmannequation ä
a ¼ 8πGρc

3

�
− 1

2
a−3Ωm þ ΩΛ

�

has been used. w1 is contributed by the source A. In (B1),
w2 satisfies the following

8>>><
>>>:

ẅ2ðx; tÞ − c2ðtÞ∇2w2ðx; tÞ −m2ðtÞw2ðx; tÞ ¼ 0;

w2jt¼ti ¼ aðtiÞξðx; tiÞ;
_w2jt¼ti ¼ aðtiÞðHðtiÞξðx; tiÞ þ _ξðx; tiÞÞ;

ðB5Þ

where the initial time ti corresponds to the redshift z ¼ 7, and
theξðx; tiÞand _ξðx; tiÞaregivenbythe initial spectrumPk ini of
(16) and the initial ratera of (20).w2 is contributedby the initial
condition. Corresponding to (B1), the power spectrum is also
split into two parts

Pk ¼
1

a

Z
d3xðw1ðx; tÞ þ w2ðx; tÞÞe−ik·x

¼ Pk1 þ Pk2: ðB6Þ

We obtain numerically the solutions Pk1 and ξ1 shown in
Figs. 16 and 17, as well as Pk2 and ξ2 in Figs. 18, 19, and 20.
We now express these the solutions in terms of the

Green’s function. It can be checked that the principle of
homogeneity also applies to the inhomogeneous
equation (B2) with the time-dependent coefficients. So,
by Duhamel’s principle, Eq. (B2) of w1 reduces to a
homogeneous equation with a nonzero initial velocity,
the solution is given by

w1ðx; tÞ ¼
Z

t

ti

�Z
A

a2ðτÞ δ
ð3Þðx0ÞGðx;x0; tÞd3x0

�
dτ

¼
Z

t

ti

A
a2ðτÞGðx; tÞdτ; ðB7Þ

where Gðx;x0; tÞ is the Green’s function satisfying the
following

8>>>><
>>>>:

G̈ðx;x0;tÞ−c2ðtÞ∇2uðx;x0;tÞ−m2ðtÞGðx;x0;tÞ¼0

ðt> tiÞ
Gjt¼ti ¼0

_Gjt¼ti ¼δð3Þðx−x0Þ;

ðB8Þ

which describes the field at x that is generated by a point
source located at x0, and is propagating at a speed cðtÞ. In
the simple case cðtÞ ¼ cs and mðtÞ ¼ 0, one would get the
well-known expression

Gðx;x0; tÞ ¼
1

4πc
δðjx − x0j − cstÞ

jx − x0j
; ðB9Þ

which is the field propagating at a speed cs. In our case with
the time-dependent coefficients cðtÞ and mðtÞ, the analyti-
cal expression of Gðx;x0; tÞ is hard to get. Nevertheless,
the numerical solution is obtained, and shows a behavior
analogous to (B9), as plotted in Figs. 25 and 26. One sees
that Gðx;x0; tÞ is a sharp spike located at ðx − x0Þ at
instance t, like δðjx − x0j − cðtÞtÞ, and is propagating
forward at finite speed cðtÞ, which is quite similar to
(B9) in the simple case. After the dτ integration in (B7), w1

receives contributions from all the spherical surfaces of the
radius ≤ cðtÞt, analogous to a step function, nonvanishing
only within a region r < cðtÞt. The inhomogeneous sol-
ution ξ1 ¼ w1=a is the major part of the main mountain of ξ
at small scales, and is growing with time. This “retarded
potential” behavior of ξ1 is demonstrated in Fig. 16.
The solution w2 of (B5) also can be expressed in terms of

Green’s function. We decompose it into two parts,

w2ðx; tÞ ¼ uðx; tÞ þ vðx; tÞ; ðB10Þ
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where u satisfies the following homogeneous equation with
the initial velocity

8>>><
>>>:

üðx; tÞ − c2ðtÞ∇2uðx; tÞ −m2ðtÞuðx; tÞ ¼ 0

ujt¼ti ¼ 0

_ujt¼ti ¼ aðtiÞðHðtiÞξðx; tiÞ þ _ξðx; tiÞÞ;
ðB11Þ

which has the same structure as (B8) and the solution is

uðx; tÞ ¼
Z

aðtiÞðHðtiÞξðx0; tiÞþ _ξðx0; tiÞÞGðx;x0; tÞd3x0;

ðB12Þ

where Gðx;x0; tÞ is the Green’s function of (B8). u
represents the contribution of the initial rate. Due to the
property of Gðx;x0; tÞ, the d3x0 integration receives most
of contributions from a region around a spherical surface of
radius cðtÞt centered at x. v in (B10) satisfies the following
equation with the initial value

8>>><
>>>:

v̈ðx; tÞ − c2ðtÞ∇2vðx; tÞ −m2ðtÞvðx; tÞ ¼ 0

vðx; tÞjt¼ti ¼ aðtiÞξðx; tiÞ
_vðx; tÞjt¼ti ¼ 0:

ðB13Þ

By Duhamel’s principle, the solution is

vðx; tÞ ¼ vðx; tiÞ þ
Z

t

ti

�Z
ðc2ðτÞ∇2

x0vðx0; tiÞ

þm2ðτÞvðx0; tiÞÞGðx;x0; tÞd3x0
�
dτ; ðB14Þ

where Gðx;x0; tÞ is the Greens’ function of (B8). The
homogeneous solution ξ2 ¼ ðuþ vÞ=a gives rise to
the periodic bumps of ξ, whose amplitudes are growing
during evolution, as seen in Figs. 18, 19, and 20. v is
dominant over u because the rates H0 and ra are small.
The sum of (B7), (B12), and (B14) is the solution ξ of
Eq. (8) in terms of the Green’s function.

[1] F. Beutler, C. Blake, M. Colless, D. H. Jones, L. Staveley-
Smith, L. Campbell, Q. Parker, W. Saunders, and F. Watson,
Mon. Not. R. Astron. Soc. 416, 3017 (2011).

[2] A. G. Sanchez et al., Mon. Not. R. Astron. Soc. 464, 1640
(2017).

[3] L. Anderson et al., Mon. Not. R. Astron. Soc. 441, 24
(2014).

[4] R. Ruggeri and C. Blake, Mon. Not. R. Astron. Soc. 498,
3744 (2020).

[5] C. Blake et al., Mon. Not. R. Astron. Soc. 418, 1707
(2011).

[6] E. A. Kazin et al., Mon. Not. R. Astron. Soc. 441, 3524
(2014).

[7] M. Ata et al., Mon. Not. R. Astron. Soc. 473, 4773
(2018).

[8] N. G. Busca et al., Astron. Astrophys. 552, A96 (2013).
[9] J. E. Bautista et al., Astron. Astrophys. 603, A12 (2017).

[10] A. Slosar et al., J. Cosmol. Astropart. Phys. 04 (2013) 026.

FIG. 25. The Green’s function Gðr; tÞ as the solution of (B8) is
a spike at each instant, analogous to a delta function δðr − cðtÞtÞ,
and is propagating forward at a speed cðtÞ. The weighted
r2Gðr; tÞ is shown.

FIG. 26. Same as Fig. 25. The power spectrum PkðtÞ associated
with Gðr; tÞ.

NONLINEAR EQUATION OF CORRELATION FUNCTION OF … PHYS. REV. D 104, 123513 (2021)

123513-23

https://doi.org/10.1111/j.1365-2966.2011.19250.x
https://doi.org/10.1093/mnras/stw2443
https://doi.org/10.1093/mnras/stw2443
https://doi.org/10.1093/mnras/stu523
https://doi.org/10.1093/mnras/stu523
https://doi.org/10.1093/mnras/staa2540
https://doi.org/10.1093/mnras/staa2540
https://doi.org/10.1111/j.1365-2966.2011.19592.x
https://doi.org/10.1111/j.1365-2966.2011.19592.x
https://doi.org/10.1093/mnras/stu778
https://doi.org/10.1093/mnras/stu778
https://doi.org/10.1093/mnras/stx2630
https://doi.org/10.1093/mnras/stx2630
https://doi.org/10.1051/0004-6361/201220724
https://doi.org/10.1051/0004-6361/201730533
https://doi.org/10.1088/1475-7516/2013/04/026


[11] M. Davis and P. J. E. Peebles, Astrophys. J. Suppl. Ser. 34,
425 (1977).

[12] W. C. Saslaw, Gravitational Physics of Stellar and Galactic
Systems (Cambridge University Press, Cambridge, England,
1985); The Distribution of the Galaxies: Gravitational
Clustering in Cosmology (Cambridge University Press,
Cambridge, England, 2000).

[13] H. J. de Vega, N. Sanchez, and F. Combes, Phys. Rev. D 54,
6008 (1996); Nature (London) 383, 56 (1996); Astrophys. J.
500, 8 (1998).

[14] Y. Zhang, Astron. Astrophys. 464, 811 (2007).
[15] Y. Zhang and H. X. Miao, Res. Astron. Astrophys. 9, 501

(2009); Y. Zhang and Q. Chen, Astron. Astrophys. 581, A53
(2015); Y. Zhang, Q. Chen, and S. W. Wu, Res. Astron.
Astrophys. 19, 53 (2019).

[16] N. A. Bahcall, in Unsolved Problems in Astrophysics, edited
by J. P. Bahcall and J. P. Ostriker (Princeton University Press,
Princeton, NJ, 1996); N. A. Bahcall, F. Dong, L. Hao, P. Bode,
J. Annis, J. E. Gunn, and D. P. Schneider, Astrophys. J. 599,
814 (2003).

[17] P. J. E. Peebles, The Large-scale Structure of the Universe
(Princeton University Press, Princeton, NJ, 1980).

[18] B. Wang and Y. Zhang, Phys. Rev. D 96, 103522 (2017); Y.
Zhang, F. Qin, and B. Wang, Phys. Rev. D 96, 103523
(2017); B. Wang and Y. Zhang, Phys. Rev. D 98, 123019
(2018); 99, 123008 (2019).

[19] N. Goldenfeld, Lectures on Phase Transitions and the
Renormalization Group (Addison-Wesley, Reading, MA,
1992).

[20] J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).
[21] E. J. Groth and P. J. E. Peebles, Astrophys. J. 217, 385

(1977).
[22] J. N. Fry and P. J. E. Peebles, Astrophys. J. 221, 19 (1978).
[23] J. Binney and S. Tremaine, Galactic Dynamics (Princeton

University Press, Princeton, NJ, 1987).
[24] J. Jeans, Phil. Trans. R. Soc. A 119, 49 (1902).
[25] G. Gamow and E. Teller, Phys. Rev. 55, 654 (1939).
[26] W. Bonnor, Mon. Not. R. Astron. Soc. 117, 104 (1957).
[27] P. J. E. Peebles, Principles of Physical Cosmology (Prince-

ton University Press, Princeton, NJ, 1993).
[28] V. Springel et al., Mon. Not. R. Astron. Soc. 475, 676

(2018).
[29] R. A. Sunyaev and Ya. B. Zel’dovich, Astrophys. Space.

Sci. 7, 3 (1970).
[30] P. J. E. Peebles and T. J. Yu, Astrophys. J. 162, 815 (1970).
[31] J. Silk, Astrophys. J. 151, 459 (1968).
[32] G. B. Field, Astrophys. J. 165, 29 (1971).
[33] S. Weinberg, Astrophys. J. 168, 175 (1971).
[34] S. Weinberg, Gravitation and Cosmology (John Wiley &

Sons, New York, 1972).
[35] J. A. Holtzman, Astrophys. J. 71, 1 (1989).
[36] W. Hu and N. Sujiyama, Astrophys. J. 444, 489 (1995); 471,

542 (1996).
[37] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605

(1998).
[38] E. Hawkins et al., Mon. Not. R. Astron. Soc. 346, 78

(2003).
[39] H. Totsuji and T. Kihara, Publ. Astron. Soc. Jpn. 21, 221

(1969).
[40] P. J. E. Peebles, Astrophys. J. 189, L51 (1974).

[41] P. J. E. Peebles, Astron. Astrophys. 32, 197 (1974).
[42] Y. Zhang, X. Ye, and B. Wang, Sci. Chin. Phys. Mech.

Astron. 63, 250411 (2020).
[43] Y. Zhang, B. Wang, and X. Ye, Chin. Phys. C 44, 095104

(2020).
[44] T. J. Broadhurst, R. S. Ellis, D. C. Koo, and A. S. Szalay,

Nature (London) 343, 726 (1990).
[45] T. J. Broadhurst et al., in Wide Field Spectroscopy and the

Distant Universe, edited by S. J. Maddox and A. Aragón-
Salamanca (World Scientific Publishing, Singapore,
1995).

[46] D. L. Tucker, A. Oemler, R. P. Kirshner, H. Lin, S. A.
Shectman, S. D. Landy, P. L. Schechter, V. Muller, S.
Gottlober, and J. Einasto, Mon. Not. R. Astron. Soc. 285,
L5 (1997).

[47] J. Einasto, M. Einasto, S. Gottlöber, V. Müller, V. Saar,
A. A. Starobinsky, E. Tago, D. Tucker, H. Andernach, and P.
Frisch, Nature (London) 385, 139 (1997).

[48] J. Einasto, M. Einasto, P. Frisch, S. Gottlober, V. Müller, V.
Saar, A. A. Starobinsky, E. Tago, D. Tucker, and H.
Andernach, Mon. Not. R. Astron. Soc. 289, 801 (1997).

[49] J. Einasto, in The Ninth Marcel Grossmann Meeting,
Proceedings of the MGIXMM Meeting, edited by V. G.
Gurzadyan, R. T. Jantzen, and R. Ruffini (World Scientific
Publishing, Singapore, 2002).

[50] M. Einasto, J. Einasto, E. Tago, H. Andernach, G. B. Dalton,
and V. Müller, Astron. J. 123, 51 (2002).

[51] E. Tago, E. Saar, J. Einasto, M. Einasto, V. Müller, and H.
Andernach, Astron. J. 123, 37 (2002).

[52] L. Anderson et al., Mon. Not. R. Astron. Soc. 427, 3435
(2012).

[53] V. d. S. Agathe, Astron. Astrophys. 629, A85 (2019).
[54] K. Yahata et al., Publ. Astron. Soc. Jpn. 57, 529 (2005).
[55] J. Einasto, G. Htsi, T. Kuutma, and M. Einasto, Astron.

Astrophys. 640, A47 (2002).
[56] P. H. Chavanis, Physica A 361, 55 (2006).
[57] D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005).
[58] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C. Hirata,

A. G. Riess, and E. Rozo, Phys. Rep. 530, 87 (2013).
[59] J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay,

Astrophys. J. 304, 15 (1986).
[60] B. Allen, in Proceedings of the Les Houches School of

Physics, arXiv:gr-qc/9604033; B. Allen and J. D. Romano,
Phys. Rev. D 59, 102001 (1999).

[61] Bo Wang and Yang Zhang, Res. Astron. Astrophys. 19, 24
(2019).

[62] S. Bashinsky and E. Bertschinger, Phys. Rev. D 65, 123008
(2002).

[63] C. Hernandez-Aguayo, M. Cautun, A. Smith, C. M. Baugh,
and B. Li, Mon. Not. R. Astron. Soc. 494, 3120 (2020).

[64] M. C. Neyrinck, I. Szapudi, N. McCullagh, A. S. Szalay, B.
Falck, and J. Wang, Mon. Not. R. Astron. Soc. 478, 2495
(2018).

[65] B. D. Sherwin and M. Zaldarriaga, Phys. Rev. D 85, 103523
(2012).

[66] N. D. Spergel et al., Astrophys. J. Suppl. 170, 377
(2007).

[67] J. Dunkey et al., Astrophys. J. Suppl. 180, 306 (2009).
[68] M. Reid, D. Pesce, and A. Riess, Astrophys. J. Lett. 886,

L27 (2019).

YANG ZHANG and BICHU LI PHYS. REV. D 104, 123513 (2021)

123513-24

https://doi.org/10.1086/190456
https://doi.org/10.1086/190456
https://doi.org/10.1103/PhysRevD.54.6008
https://doi.org/10.1103/PhysRevD.54.6008
https://doi.org/10.1038/383056a0
https://doi.org/10.1086/305700
https://doi.org/10.1086/305700
https://doi.org/10.1051/0004-6361:20066436
https://doi.org/10.1088/1674-4527/9/5/001
https://doi.org/10.1088/1674-4527/9/5/001
https://doi.org/10.1051/0004-6361/201425431
https://doi.org/10.1051/0004-6361/201425431
https://doi.org/10.1088/1674-4527/19/4/53
https://doi.org/10.1088/1674-4527/19/4/53
https://doi.org/10.1086/379599
https://doi.org/10.1086/379599
https://doi.org/10.1103/PhysRevD.96.103522
https://doi.org/10.1103/PhysRevD.96.103523
https://doi.org/10.1103/PhysRevD.96.103523
https://doi.org/10.1103/PhysRevD.98.123019
https://doi.org/10.1103/PhysRevD.98.123019
https://doi.org/10.1103/PhysRevD.99.123008
https://doi.org/10.1063/1.1749657
https://doi.org/10.1086/155588
https://doi.org/10.1086/155588
https://doi.org/10.1086/156001
https://doi.org/10.1103/PhysRev.55.654
https://doi.org/10.1093/mnras/117.1.104
https://doi.org/10.1093/mnras/stx3304
https://doi.org/10.1093/mnras/stx3304
https://doi.org/10.1086/150713
https://doi.org/10.1086/149449
https://doi.org/10.1086/150873
https://doi.org/10.1086/151073
https://doi.org/10.1086/191362
https://doi.org/10.1086/175624
https://doi.org/10.1086/177989
https://doi.org/10.1086/177989
https://doi.org/10.1086/305424
https://doi.org/10.1086/305424
https://doi.org/10.1046/j.1365-2966.2003.07063.x
https://doi.org/10.1046/j.1365-2966.2003.07063.x
https://doi.org/10.1086/181462
https://doi.org/10.1007/s11433-019-1451-1
https://doi.org/10.1007/s11433-019-1451-1
https://doi.org/10.1088/1674-1137/44/9/095104
https://doi.org/10.1088/1674-1137/44/9/095104
https://doi.org/10.1038/343726a0
https://doi.org/10.1093/mnras/285.1.L5
https://doi.org/10.1093/mnras/285.1.L5
https://doi.org/10.1038/385139a0
https://doi.org/10.1093/mnras/289.4.801
https://doi.org/10.1086/323912
https://doi.org/10.1086/338086
https://doi.org/10.1111/j.1365-2966.2012.22066.x
https://doi.org/10.1111/j.1365-2966.2012.22066.x
https://doi.org/10.1051/0004-6361/201935638
https://doi.org/10.1093/pasj/57.4.529
https://doi.org/10.1051/0004-6361/202037683
https://doi.org/10.1051/0004-6361/202037683
https://doi.org/10.1016/j.physa.2005.06.087
https://doi.org/10.1086/466512
https://doi.org/10.1016/j.physrep.2013.05.001
https://doi.org/10.1086/164143
https://arXiv.org/abs/gr-qc/9604033
https://doi.org/10.1103/PhysRevD.59.102001
https://doi.org/10.1088/1674-4527/19/2/24
https://doi.org/10.1088/1674-4527/19/2/24
https://doi.org/10.1103/PhysRevD.65.123008
https://doi.org/10.1103/PhysRevD.65.123008
https://doi.org/10.1093/mnras/staa973
https://doi.org/10.1093/mnras/sty1074
https://doi.org/10.1093/mnras/sty1074
https://doi.org/10.1103/PhysRevD.85.103523
https://doi.org/10.1103/PhysRevD.85.103523
https://doi.org/10.1086/513700
https://doi.org/10.1086/513700
https://doi.org/10.1088/0067-0049/180/2/306
https://doi.org/10.3847/2041-8213/ab552d
https://doi.org/10.3847/2041-8213/ab552d


[69] D. Pesce et al., Astrophys. J. Lett. 891, L1 (2020).
[70] K. C. Wong et al., Mon. Not. R. Astron. Soc. 498, 1420

(2020).
[71] P. A. R. Ade et al. (Planck Collaboration), Astron. Astrophys.

594, A13 (2016).
[72] N. Aghanim et al. (Planck Collaboration), Astron. Astrophys.

641, A6 (2020).
[73] L. D. Landau and E.M. Lifshitz, Fluid Mechanics (Pergamon

Press, New York, 1987).

[74] J. J. Binney, N. Dowrick, A. Fisher, and M. Newman, The
Theory of Critical Phenomena (Oxford University Press,
New York, 1992).

[75] J. Zinn-Justin, Quantum Field Theory and Critical
Phenomena (Oxford University Press, New York,
1996).

[76] O. Lahav, P. B. Lilje, J. R. Primack, and M. J. Rees, Mon.
Not. R. Astron. Soc. 251, 128 (1991).

NONLINEAR EQUATION OF CORRELATION FUNCTION OF … PHYS. REV. D 104, 123513 (2021)

123513-25

https://doi.org/10.1093/mnras/stz3094
https://doi.org/10.1093/mnras/stz3094
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1093/mnras/251.1.128
https://doi.org/10.1093/mnras/251.1.128

