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Inspired by the recent conjecture originated from graduated dark energy that the Universe has recently
transitioned from anti–de Sitter vacua to de Sitter vacua, we extend the standard ΛCDM model by a
cosmological constant (Λs) that switches sign at a certain redshift z†, and we call this model ΛsCDM. We
discuss the construction and theoretical features of this model in detail and find out that, when the
consistency of the ΛsCDM model with the cosmic microwave background (CMB) data is ensured,
(i) z† ≳ 1.1 is implied by the condition that the Universe monotonically expands, (ii) H0 and MB (type Ia
supernovae absolute magnitude) values are inversely correlated with z† and reachH0 ≈ 74.5 km s−1 Mpc−1
andMB ≈ −19.2 mag for z† ¼ 1.5, in agreement with the SH0ES measurements, and (iii)HðzÞ presents an
excellent fit to the Ly-αmeasurements provided that z† ≲ 2.34. We further investigate the model constraints
by using the full Planck CMB data set, with and without baryon acoustic oscillation (BAO) data. We find
that the CMB data alone does not constrain z†, but the CMBþ BAO data set favors the sign switch of Λs,
providing the constraint z† ¼ 2.44� 0.29 (68% C.L.). Our analysis reveals that the lower and upper limits
of z† are controlled by the Galaxy and Ly-α BAO measurements, respectively, and the larger z† values
imposed by the Galaxy BAO data prevent the model from achieving the highest localH0 measurements. In
general, the ΛsCDM model (i) relaxes the H0 tension while being fully consistent with the tip of the red
giant branch measurements, (ii) relaxes the MB tension, (iii) removes the discrepancy with the Ly-α
measurements, (iv) relaxes the S8 tension, and (v) finds a better agreement with the big bang
nucleosynthesis constraints on the physical baryon density. We find no strong statistical evidence to
discriminate between the ΛsCDM and ΛCDM models. However, interesting and promising features of the
ΛsCDM model, which we describe in our study, provide an advantage over ΛCDM.
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I. INTRODUCTION

Over the last few years, there has been a growing con-
sensus that the standard cosmological model—the so-called
Lambda cold dark matter (ΛCDM) model—could in fact
be an approximation to a more realistic one that still needs
to be fully understood [1]. Phenomenologically, this new
model is not expected to deviate drastically from ΛCDM,
which is in excellent agreement with most of the currently
available data [2–6]; however, it could be conceptually very
different, and its deviations could be nontrivial. The recent
developments, both theoretical (e.g., the de Sitter swamp-
land conjecture [7–14]) and observational (e.g., the ten-
sions hint at some unexpected and/or nontrivial deviations

from ΛCDM; see Refs. [15–66], and Refs. [67–70] for
more references), along with the cosmological constant
problems [71,72], suggest that attaining it would be an
elusive task. These tensions are of great interest, not only in
cosmology, but also in theoretical physics, as they could
imply new physics beyond the well-established fundamen-
tal theories that underpin, and even extend, the ΛCDM
model. The so-called H0 tension—the deficit in the Hubble
constant (H0) predicted by the Planck cosmic microwave
background (CMB) data within the ΛCDMmodel [6] when
compared to its model-independent determinations from
local measurements of distances and redshifts [73–79]—
among others, is now described by many as a crisis. See
Ref. [67] for a comprehensive list of references on the H0

tension, and Ref. [80] for a recent comprehensive review,
including a discussion of recent H0 estimates and a
summary of the proposed theoretical solutions. It has
turned out to be a more challenging problem than originally
thought as it worsens when the cosmological constant (Λ)
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is replaced by generic quintessence models of dark energy
(DE), and is only partially relaxed when it is replaced by the
simplest phantom (or quintom) models [32–36]. Notably, it
was reported that the H0 tension—as well as a number of
other low-redshift discrepancies—could be alleviated by a
dynamical DE that assumes negative or rapidly vanishing
energy density values at high redshifts [16,37–61]. The fact
that the Planck CMB data alone favors positive spatial
curvature (Ωk0 < 0), on top of the ΛCDM model, suggests
that curvature might be the simplest explanation for a
negative energy density source (effectively); however, the
drastic exacerbation of theH0 tension for theΛCDMmodel
with spatial curvature, and the favoring of spatial flatness
(Ωk0 ¼ 0) with extremely high precision by the Planck
CMB data in combination with other astrophysical data
such as baryon acoustic oscillations (BAO) and cosmic
chronometers, indicate that the negative energy source
cannot be spatial curvature, but a nontrivially evolving
DE [6,22–28].
The CMB power spectrum by itself, for a given

cosmological model, provides powerful constraints on
the Hubble parameter HðzÞ at the background level once
the comoving sound horizon at CMB last scattering, r�, is
given [80–82]. The comoving sound horizon at last
scattering is determined entirely by the pre-recombination
Universe, and is given by r� ¼

R
∞
z�
csH−1dz, where cs is

the sound speed in the plasma and z� ≈ 1100 is the red-
shift of last scattering. The acoustic angular scale on the
sky, θ�, which is measured almost model independently
with a precision of 0.03% [6], determines the comoving
angular diameter distance to last scattering DMðz�Þ
through the relation DMðz�Þ ¼ r�=θ�. The measured
CMB monopole temperature determines the radiation
energy density, and the positions and heights of the
angular peaks determine ρcðz�Þ and ρbðz�Þ, where ρ is
the energy density and the indices stand for CDM and
baryonic matter, respectively. Assuming a flat space,
DMðz�Þ ¼ c

R z�
0 H−1dz, where c is the speed of light

(unless it is mentioned explicitly, we will use c ¼ 1);
for ΛCDM, the constraints from the CMB along with this
integral are enough to infer the value of Λ and hence the
complete evolution ofHðzÞ. These steps make it clear how
phantom/quintom extensions of ΛCDM, for which Λ is
replaced by a DE density typically decreasing and
approaching zero with increasing redshift, increase H0.
The decreased DE density at high redshifts corresponds to
a lower HðzÞ at those redshifts compared to ΛCDM. Since
DMðz�Þ is the same to very high precision for different DE
models, the decreased HðzÞ at higher redshifts should be
compensated by an increased HðzÞ at lower redshifts (and
hence an increased H0) in order to keep the integral
describing DMðz�Þ unaltered. This also explains why
quintessence models exacerbate the H0 tension: these
models have a DE density that increases with redshift, so
the above mechanism is reversed. Note that the DE density

is negligible in these models for z > z� as in ΛCDM, so r�
is not affected by the dynamical nature of the DE.
Nevertheless, the simplest phantom/quintom models can
only partially relieve the H0 tension [32–36]; however, a
DE density that attains negative values at high redshifts
can amplify this mechanism to enhance H0 even further.
We recall that the above discussion relies on r� being fixed
among different models, in contrast to models that modify
the sound horizon to alter DMðz�Þ and hence H0, e.g.,
early dark energy (EDE) models [83].
On top of increasingHðzÞ at low redshifts and hence the

H0 value, a lower HðzÞ at large redshifts compared to
the ΛCDM model can provide better agreement with the
Ly-α BAO measurements at the effective redshift z ∼ 2.34
[84,85], if the drop in the DE density is large enough at
that redshift. Also, if the drop is rapid enough, it can cause
a nonmonotonic behavior ofHðzÞwhich is hard to achieve
without relying on a negative DE density. Such a non-
monotonic behavior can provide an even better descrip-
tion of the Ly-α data, and was initially suggested by the
BOSS Collaboration after the BOSS DR11 data [37]
presented an approximately 2.5σ discrepancy with the
best-fit ΛCDM model of Planck 2015 [5]. They have also
reported, in a companion paper [16], that a positive
cosmological constant is consistent with their data set
for z < 1, while a negative DE density is preferred for
z > 1.6, which led them to suggest a nonmonotonic
behavior of HðzÞ at z ∼ 2. The Planck Collaboration
(2018) [6] does not include the Ly-α measurements in
their default BAO data compilation since for the ΛCDM
model and its simple extensions, they do not provide
significant constraints once the CMB and Galaxy BAO
data are used, and they do not conform well with the rest
of the data set within the framework of these models. They
also quote from Ref. [37] that well-motivated extensions
of ΛCDM that could provide a resolution to this discrep-
ancy are hard to construct. Currently, the discrepancy of
the Ly-α measurements with the Planck 2015 best-fit
ΛCDM is reduced to a mild ∼1.7σ when the combination
of the BOSS survey and its extended version eBOSS in the
SDSS DR14 [84,85] is considered, and reduced even
further to a ∼1.5σ tension when the final eBOSS (SDSS
DR16) measurement, which combines all of the data from
eBOSS and BOSS [86,87], is considered. We note,
however, that since H0 values predicted by ΛCDM are
lower than the local measurements of H0 while HðzÞ
values predicted by ΛCDM at z ∼ 2.34 are greater than
the Ly-α measurements of HðzÞ, simple and/or well-
motivated extensions of ΛCDM addressing either one
of these discrepancies typically tend to exacerbate the
other. Therefore, it is conceivable that such models
relaxing the H0 tension will also typically suffer from a
greater tension with the Ly-α measurements. It is in-
triguing to note that the Ly-α discrepancy has certain
parallelisms with the so-called S8 discrepancy (quantify-
ing a discordance between the CMB and low-redshift
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probes, which will be further elaborated in Sec. III), e.g.,
S8 constraints based on Ly-α measurements are in agree-
ment with the low-redshift probes [88], simple extensions
of ΛCDM that reduce the H0 tension typically worsen the
S8 discrepancy and vice versa [68], and the S8 discrepancy
has also weakened with the latest observations [89,90].
These facts seem to hint that a model addressing the H0

and Ly-α tensions simultaneously may also address the S8
tension. With all of these in hand, a DE density that is
consistent with a positive cosmological constant today but
assumes negative values in the past is not indispensable,
and yet it is worth further investigation as it has the
potential to result in a better agreement with the existing
observational data, including Ly-α, while addressing the
H0 tension too.
In this paper, we study a simple extension of the ΛCDM

model for which a cosmological constant that yields a
negative value in the past switches sign at a certain redshift
z† to attain its current positive value and drives the observed
acceleration; it will be dubbed ΛsCDM. Although this sign
switch results in discontinuities in various fundamental
functions, e.g., in HðzÞ, it can be considered as an approxi-
mation to a rapid transition in the (possibly effective) DE
density. In fact, the sign-switching feature of the ΛsCDM
model was first suggested in Ref. [44] when their graduated
dark energy (gDE) model appeared to prefer a very rapid
transition in the DE density resembling a step function
whose absolute value is almost constant away from the
transition point. In Sec. II, we first motivate the ΛsCDM
model starting from the gDE, and then study its theoretical
features. In Sec. III, we conduct a robust observational
analysis of the model with the latest data, and we conclude
in Sec. IV.

II. ΛsCDM MODEL: SIGN-SWITCHING Λ

The positive cosmological constant assumption of the
ΛCDM model was investigated via the gDE characterized
by a minimal dynamical deviation from the null inertial
mass density ϱ ¼ 0 (where ϱ≡ ρþ p) of the cosmo-
logical constant—or, the usual vacuum energy of the
quantum field theory (QFT). This deviation is in the form
ϱ ∝ ρλ < 0, for which, provided that the parameter λ < 1
is the ratio of two odd integers, the energy density ρ
dynamically takes negative values in the past [44]. During
the transition from negative to positive energy density,
there comes a redshift for which the energy density is null;
this redshift will be denoted by z† in the present work, but
note that it was denoted by z� in Ref. [44]. gDE exhibits a
wide variety of behaviors depending on λ, but it is of
particular interest to us that for large negative values of λ,
it establishes a phenomenological model characterized by
a smooth function that approximately describes a Λ that
switches sign in the late Universe to become positive
today. It was shown via the gDE that the joint

observational data, including but not limited to the
Planck CMB and Ly-α BAO (BOSS DR11) data, suggest
that the cosmological constant changed its sign at z ≈ 2.32
and triggered the late-time acceleration, the behavior of
which alleviates the H0 tension and the discrepancy with
the Ly-α BAO measurements simultaneously. For large
negative values of λ, it turns out that ρgDE=3H2

0 ≈ 0.70 for
0 ≤ z≲ 2.32, but its energy density switches sign rapidly
at z† ≈ 2.32 (this z† value is quite stable for λ≲ −4) and
settles into a value ρgDE=3H2

0 ∼ −0.70 and remains there
for z† ≳ 2.32; moreover, the larger the negative values of
λ, the more ρgDE resembles a step function, and the better
fit to the data. For arbitrarily large negative values of λ,
ρgDE indeed transforms into a step function centred at z†
with two branches yielding opposite values about zero.
It is easy to check that λ is responsible from the rapidity of
the sign change of the energy density, and for the
constraint λ ¼ −17.9� 5.8 obtained on it, the function
ρgDEðzÞ already closely resembles a step function.
Thus, the gDE suggesting large negative values of λ
when confronted with the observations can be interpreted
as a hint at a cosmological constant that achieved its
present-day positive value by switching sign at z† ∼ 2.3,
but was negative in the earlier Universe.
Some general constraints that are typically applied to

classical sources, irrespective of a detailed description,
give further confidence to the interpretation of the gDE as
a hint at a sign-switching cosmological constant [91,92].
Let us consider the gDE as an actual barotropic fluid,
p ¼ pðρÞ. In this case, although it behaves almost like a
cosmological constant (in spite of the fact that its value
switches sign at z ≈ 2.32) throughout the history of the
Universe, strictly speaking, it violates the weak energy
condition, namely, the non-negativity conditions on the
energy density, ρ ≥ 0, for z > z†, and on the inertial mass
density, ϱ ≥ 0, at any given time. Moreover, there are
phases during which c2s ≫ 1 and c2s < 0, i.e., gDE violates
the condition 0 ≤ c2s ≤ 1 on the speed of sound of a
barotropic fluid given by the adiabatic formula
c2s ¼ dp=dρ. The upper limit (causality limit) is a rigorous
limit, and its violation means the abandonment of the
theory of relativity. The lower limit applies to a stable
situation, and if violated, the fluid is classically unstable
against small perturbations of its background energy
density—the so-called Laplacian (or gradient) instability.
Indeed, phenomenological fluid models of DE are difficult
to motivate, and adiabatic fluid models are typically
unstable against perturbations, since c2s is usually negative
for w ¼ p=ρ < 0. It is possible to evade this constraint
in nonadiabatic fluids—such as canonical scalar field
(quintessence or phantom fields) and string-theory-
inspired tachyon fields, for which the effective speed of
sound cs eff (which governs the growth of inhomogeneities
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in the fluid) remains consistent with 0 ≤ c2s eff ≤ 1—in
adiabatic fluids if w decreases sufficiently fast as the
Universe expands (e.g., Chaplygin gas), and in multifluid
models of DE (e.g., quintom field) constructed from the
combination of such fluids [93]. However, unlike such
sources, it seems unlikely to evade this constraint in gDE,
especially given the observationally preferred values of its
free parameters. On the other hand, whether it is positive
or negative, a cosmological constant, which corresponds
to the λ → −∞ limit of the gDE, is well behaved: ϱ ¼ 0

and c2s ¼ 0 (it has no speed of sound, and thereby does not
support classical fluctuations). Regarding the negativity of
the corresponding energy density (when z > z†), a neg-
ative cosmological constant is not only ubiquitous in the
fundamental theoretical physics without any complica-
tion, but also a theoretical sweet spot; an anti–de Sitter
(AdS) background (provided by Λ < 0) is welcome due to
the celebrated AdS=CFT correspondence [94] and is
preferred by string theory and string-theory-motivated
supergravities [95]. It is the positive cosmological con-
stant that in fact suffers from theoretical challenges:
getting a vacuum solution with a positive cosmological
constant within string theory or formulating QFT on the
background of a dS space (provided by Λ > 0) has been a
notoriously difficult task [see Refs. [7,96–102]; addition-
ally, see Refs. [11,103] for a recent review on models of
the accelerating Universe (viz., for different mechanisms
to obtain dS space/vacua and building models of quintes-
sence) in supergravity and string theory]. Therefore, an
approach that asserts that a positive-valued cosmological
constant exists only in the late Universe (say, when
z≲ 2.3) would enjoy limiting such difficulties to the late
Universe. Of course, it is necessary to further study
whether such an approach—say, transitions from an
AdS background to a dS one—would be viable both
theoretically and observationally (we further comment on
such transitions in Sec. IV). Besides, studies considering
the presence of a negative cosmological constant in
various contexts are already plentiful in the cosmology
literature. In the context of the inflationary Universe, see,
e.g., Refs. [104–106] which considered inflation with
multiple AdS vacua, and Ref. [107] which considered a
cosmological constant that slowly varies from a positive
value to a negative value and becomes vanishingly small
at the end of inflation. In the context of EDE models,
see, e.g, Ref. [55] which suggested the presence of AdS
vacua around recombination to alleviate the H0 tension,
and the follow-up study in Ref. [56] which presented an
α-attractor AdS model of EDE for which the AdS vacua
originate from UV-complete theories in the cosmological
setup with varying AdS depth. In the context of post-
recombination modifications to the ΛCDM model, see,
e.g., Refs. [38,40–47] which suggested that the cosmo-
logical data prefer or are fully consistent with the pre-
sence of a negative-valued cosmological constant at high

redshifts; some of these works explicitly pronounce
the redshift scales z≳ 2.3. Let us also mention that a
negative (but not necessarily constant) effective energy
component appears and finds applications in the cos-
mology literature [see, e.g., scalar-tensor theories of
gravity such as Brans-Dicke theory [108–112], as well
as modified theories of gravity such as fðR;LmÞ [113],
fðR; TÞ [114], fðR; TμνTμνÞ [115–120], Rastall gravity
[59], and quadratic bimetric gravity [40]; theories in
which Λ relaxes from a large initial value via an adjust-
ment mechanism [121–123]; cosmological models
based on Gauss-Bonnet gravity [124]; braneworld models
[125,126]; higher-dimensional cosmologies that accom-
modate dynamical reduction of the internal space
[127–131]; a negative dark radiation component [132];
missing matter [29]; a dynamical ΛðtÞ term [133]; phe-
nomenological generalizations of the null inertial mass
density of the usual vacuum energy [28,44,134–136]; a
negative matter action [137–139]; and ghost-matter cos-
mologies [140]].
Thus, bringing all of these points together, it is

tempting to consider the possibility that the cosmological
constant switched sign and became positive in the late
Universe, which then eventually started the acceleration.
Accordingly, we introduce the ΛsCDM model phenom-
enologically, constructed simply by replacing the usual
cosmological constant (Λ) of the standard ΛCDM model
with a cosmological constant (Λs) that switches its sign
from negative to positive when the Universe reaches a
certain energy scale (redshift z†) during its expansion,

Λ → Λs ≡ Λs0sgn½z† − z�; ð1Þ

where Λs0 > 0. Here “sgn” is the signum function that
reads sgn½x� ¼ −1; 0; 1 for x < 0, x ¼ 0, and x > 0,
respectively. Accordingly, the Friedmann equation for the
ΛsCDM model reads

H2

H2
0

¼ Ωr0ð1þ zÞ4 þΩm0ð1þ zÞ3 þ ΩΛs0
sgn½z† − z�; ð2Þ

where we consider the usual cosmological fluids [CDM (c)
and baryons (b) described by the equations of state
wc ¼ wb ¼ 0, and radiation (r), consisting of photons (γ)
and neutrinos (ν), described by wr ¼ 1

3
] and Ωm0 þ Ωr0 þ

ΩΛs0
¼ 1, with Ωm0 ¼ Ωc0 þ Ωb0. We define the

present-day density parameters as Ωr0 ¼ 8πGρr0=ð3H2
0Þ,

Ωm0 ¼ 8πGρm0=ð3H2
0Þ, and ΩΛs0

¼ Λs0=ð3H2
0Þ. Note that

the index 0 stands for the present-day values, but we
will drop it from the indices of the density para-
meters in the next section to avoid cluttered notation.
Accordingly, the corresponding energy density and pres-
sure for the dark energy read ρDE ¼ Λs0sgn½z† − z�=ð8πGÞ
and pDE ¼ −Λs0sgn½z† − z�=ð8πGÞ, respectively, satisfy-
ing the equation of state pDE ¼ −ρDE like the usual
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vacuum energy.1 The radiation density parameter today is
given by Ωr0 ¼ 2.469 × 10−5h−2ð1þ 0.2271NeffÞ, where
h ¼ H0=100 km s−1 Mpc−1 is the dimensionless reduced
Hubble constant and Neff ¼ 3.046 is the standard number
of effective neutrino species with minimum allowed mass
mν ¼ 0.06 eV, as the present-day photon energy density
is already extremely well constrained by the absolute
CMB monopole temperature measured by FIRAS, T0 ¼
2.7255� 0.0006 K [141].
To better understand the behavior of the ΛsCDM model

described by the Friedmann equation in Eq. (2), we
proceed with giving the evolution of the scale factor in
cosmic (proper) time t, i.e., aðtÞ, under the assumption that
while the cosmological constant is positive (Λs > 0) the
Universe always expands.2 When radiation dominates
the Friedmann equation (2), i.e., at redshifts larger than
the matter-radiation equality, z > zeq, like ΛCDM, ΛsCDM

is also well described by the Tolman model, viz., aðtÞ ∝ t
1
2.

On the other hand, when the radiation is negligible, i.e.,
for z > zeq, like ΛCDM, ΛsCDM is also the Friedmann-
Lemaître model (see, e.g., Ref. [142]), but with the
exception that the cosmological constant switches
sign at a certain time t†. For both of the models, the
redshift of the matter-radiation equality is given by
1þ zeq ¼ 2.38 × 104Ωm0h2. For the ΛCDM model,
aeq=a0∼3×10−4 (as zeq ∼ 3450 [6]), which corresponds
to teq ¼

R aeq
0. ðaHÞ−1da ∼ 5 × 104 yr. Note that these are

negligibly small compared to the present age (t0∼
13.8 Gyr [6]) and size (a0) of the Universe, and it is
conceivable that this would not change in a viable cosmo-
logical model based on ΛsCDM. Therefore, for our
purposes in this section, it will suffice to proceed below
by ignoring radiation, namely, by constructing the scale
factor of the ΛsCDM model by gluing (at t ¼ t†) the scale
factor of the Friedmann-Lemaître model, whose cosmo-
logical constant is negative (for t < t†), to the one whose
cosmological constant is positive (for t > t†). Accordingly,
the evolution of the scale factor in the ΛsCDMmodel reads

aðtÞ ¼

8>><
>>:

A
1
3sin

2
3

�
3
2

ffiffiffiffiffi
Λs0
3

q
t
�

for t ≤ t†;

A
1
3sinh

2
3

h
3
2
ð

ffiffiffiffiffi
Λs0
3

q
tþ BÞ

i
for t ≥ t†;

ð3Þ

where

A ¼ sinh−2
�
3

2

� ffiffiffiffiffiffiffi
Λs0

3

r
t0 þ B

��
;

B ¼ arcsinh

�
sin

�
3

2

ffiffiffiffiffiffiffi
Λs0

3

r
t†

�
−
3

2

ffiffiffiffiffiffiffi
Λs0

3

r
t†

�
; ð4Þ

and t† < 2π=
ffiffiffiffiffiffiffiffiffiffi
3Λs0

p
to ensure aðtÞ > 0 for t > 0. To derive

this solution, we have normalized the scale factor such that
aðt0Þ ¼ 1 (with t0 being the cosmic time today), and
introduced the initial condition að0Þ ¼ 0 (i.e., assumed
that the Universe started with a big bang, and used a time
parametrization such that the big bang was at t ¼ 0, which
also results in t0 being the age of the Universe today). Note
that, under these boundary conditions, general relativity
implies, through the Friedmann equations, that this solution
satisfies A ¼ 8πGρm0=Λs0, which also determines the age
of the Universe today for a given ρm0 and Λs0 using Eq. (4).
The assumption of an ever-expanding Universe (H > 0)
implies the condition t† < π=

ffiffiffiffiffiffiffiffiffiffi
3Λs0

p
, as the cosmological

constant must switch to its present-day positive value
before (in time) the maximum of the sine function is
reached. Figure 1 illustrates five qualitatively different
scenarios that vary based on t†. The condition for the
ever-expanding Universe, after being used in Eq. (3) to find
the maximum value possible for aðt†Þ ¼ 1=ð1þ z†Þ, trans-
lates into the following condition on z†:

z† >

�
ΩΛs0

1 −ΩΛs0

�1
3

− 1: ð5Þ

Note that Eq. (5) can also be easily obtained from Eq. (2) by
enforcing H > 0 for all redshift values once the radiation
density parameter is neglected. If this condition is violated,
the Universe enters a contracting phase due to the negative
cosmological constant until it switches sign to become
positive, which then either restarts the expansion and
eventually results in the accelerated expansion of the
Universe (dark yellow curve in Fig. 1) or further assists
the contraction and causes the Universe to recollapse (not
present in Fig. 1). An effect worth noting for the dark
yellow curve in Fig. 1 is that the one-to-one correspondence
between redshift and cosmic time is broken; hence,
observations from the same redshift can correspond to
signals coming from two different times. We do not
elaborate on the possibility of these interesting scenarios
in the present work. Therefore, in what follows we proceed
under the condition of an ever-expanding Universe, which,
for instance, gives z† > 0.33 for ΩΛs0

¼ 0.7.

1Note that the signum function impliespDEðz†Þ¼−ρDEðz†Þ¼0;
however, this is an artifact of using the signum function to
describe the sign switch, and is not fundamental to the model.
We could instead make use of, e.g., the Heaviside step function
which is devoid of this artifact, but this would make no
meaningful contribution to our discussions, and would crowd
the equations; for this reason, we stick with the familiar signum
function. Furthermore, ΛsCDM can also be extended by
modeling the sign switch with smooth sigmoid functions which
would allow one to also study the rapidity of the transition, but
we leave this possibility to future works.

2In the case where the Universe starts contracting before the
cosmological constant switches sign to become positive, one
naturally expects the positive cosmological constant to cause an
expansion after the switch; however, the resumption of the
contraction after the sign switch is a mathematically viable
alternative that we do not investigate in this paper due to the
clear evidence in favor of the present-day expansion.
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The deceleration parameter (q≡ − ä
aH2, where a dot

denotes d=dt) for the ΛsCDM model can simply be written
as

q ¼ −1þ 3

2

�
ΩΛs0

sgn½z† − z�
1 −ΩΛs0

sgn½z† − z� ð1þ zÞ−3 þ 1

�−1
; ð6Þ

where we have neglected radiation. For z > z†, it evolves
from q ¼ 1

2
during the matter-dominated epoch toward

q ¼ 2 as the negative cosmological constant dominates
with the expansion of the Universe. This equation is solved
for qðzcÞ ¼ 0 only when z < z†, and the solution reads

zc ¼ 2
1
3

�
ΩΛs0

1 −ΩΛs0

�1
3

− 1; ð7Þ

provided that zc < z†. For the ΛCDM model, zc is the
redshift at which the Universe enters its accelerated
phase since its smoothly varying deceleration parameter
should pass through the point qðzcÞ ¼ 0 before becoming
negative. For ΛsCDM, however, due to the discontinuous
features of the model, its deceleration parameter does not
need to attain the value q ¼ 0 in order to transit to the
accelerated phase from the decelerated phase. While zc
defines the redshift at the beginning of the acceleration
if zc < z†, if z† < zc, q ¼ 0 is never satisfied and the
deceleration parameter jumps from positive to negative
values at z† which marks the beginning of acceleration in

this case (see the dotted gray curve in Fig. 6 for an example,
and see Sec. II A for relevant definitions). For example, for
ΩΛs0

¼ 0.7, in the very extreme case z† ¼ 0.33 allowed by
Eq. (5), q jumps from ≈0.82 to ≈ − 0.25 at z†, and the

acceleration begins. Also, the jerk parameter
�
j≡ a

…

aH3

�
is

undefined at the single point z ¼ z†; however, one may
check that, when radiation is neglected, both the ΛCDM
and ΛsCDM models yield j ¼ 1 everywhere that it is
defined throughout the history of the Universe. Note that if
one considers the sign-switch feature of ΛsCDM as an
approximation to a DE density that very rapidly yet
smoothly transitions from negative to positive, q is not
discontinuous and j is not undefined at any point; instead,
q goes through a smooth but very sharp transition [e.g.,
from qð0.35Þ ≈ 0.8 to qð0.33Þ ≈ −0.25], and j ≫ 1 during
this short transition period while it is again unity (or almost
unity) anywhere else.

A. Analyzing the parameter z†, and its effects
on some cosmological tensions

The deviations of the ΛsCDM model from the ΛCDM
model are controlled by its additional parameter z†. Before
directly confronting the model with observational data
in the next section, here we attempt to assess the range
and effects of z†. We notice that ΛsCDM is exactly
the same as ΛCDM at redshifts lower than z† given
that ðΩm0h2ÞΛsCDM ¼ ðΩm0h2ÞΛCDM and Λs0 ¼ Λ, while
these two models differ at redshifts larger than z† as
Λsðz > z†Þ ¼ −Λs0 in ΛsCDM, yet this difference
disappears once again at even larger redshifts, as the
corresponding density parameters, ΩΛs

¼ Λs=ð3H2Þ and
ΩΛ ¼ Λ=ð3H2Þ, regardless of whether they yield positive
or negative values, rapidly become negligible with increas-
ing redshift in both models. Thus, ΛsCDM differs from
ΛCDM for z† < z ≪ z�; hence, it is, in practice, a
post-recombination modification to ΛCDM. However, note
that the abrupt-change feature of HðzÞ in ΛsCDM (or the
models that are well approximated by ΛsCDM, such as the
gDE) would not be captured by the spline reconstruction of
the Hubble parameter in Refs. [82,143,144]; hence, it
evades their arguments against post-recombination devia-
tions from ΛCDM, and furthermore, since jðzÞ ¼ 1
(neglecting radiation) and we expect q0 ∼ −0.55 at z ∼ 0
for ΛsCDM as in ΛCDM, a direct comparison of its H0

value with the SH0ES Collaboration measurements of H0

[73,75] should not be an issue, unlike in models with
rapidly changing HðzÞ values for z≲ 0.1 [145,146]. The
SH0ES H0 determination is a two-step process: first,
anchors, Cepheids, and calibrators are combined to produce
a constraint on the type Ia supernovae (SnIa) absolute
magnitude MB, and second, Hubble-flow SnIa data are
used to probe the luminosity distance–redshift relation in
order to determine H0 by adopting a cosmography with

FIG. 1. Evolution of the scale factor for various scenarios under
the constraints að0Þ ¼ 0 and aðt0Þ ¼ 1. The dashed gray curves
are the edge cases t† ¼ 0 and t† → ∞, i.e., the standard
Friedmann-Lemaître models for a positive cosmological constant
(which expands forever) and for a negative cosmological constant
(which recollapses), respectively. The red curve corresponds to an
ever-expanding Universe, i.e., t† < π=

ffiffiffiffiffiffiffiffiffiffi
3Λs0

p
, and is the most

relevant case for this paper. The dark yellow curve is for
t† > π=

ffiffiffiffiffiffiffiffiffiffi
3Λs0

p
, and the dotted gray curve is the critical case

t† ¼ π=
ffiffiffiffiffiffiffiffiffiffi
3Λs0

p
. Note that radiation is neglected in the figure, but

since teq=t0 ≈ 0 and aðteqÞ ≈ 0, its inclusion would not result in
visible changes.
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q0 ¼ −0.55 and j0 ¼ 1 [73] (small deviations from q0 ¼
−0.55 have an insignificant effect on the determined H0

value [76,146]). These suggest that, as ΛsCDM yields q0 ∼
−0.55 (see Fig. 6) and j0 ¼ 1, it respects the methodology
used by the SH0ES Collaboration to obtain MB and H0;
thus, if ΛsCDM is to resolve the SH0ES H0 tension, it is
conceivable that it will also be in good agreement with the
SH0ES MB measurement [146,147].
We now analyze the parameter z† with respect to the H0,

Ly-α, andGalaxy BAOmeasurements while the consistency
with theCMBdata is ensured. To do so,we fix the comoving
angular diameter distance to last scattering, DMðz�Þ, to
that of ΛCDM for ΛsCDM (we assume z� ¼ 1100
for both models). This is a good guiding principle since
once the sound horizon at CMB last scattering, r�, is
given, DMðz�Þ is very strictly constrained in an almost
model-independent way by the measurement of the angular
acoustic scale θ� since DMðz�Þ ¼ r�=θ�. And, for ΛsCDM,
we expect almost no deviations in the pre-recombination
dynamics of the Universe, and hence in r�, once we fix its
ρmðz�Þ and ρrðz�Þ values to those of ΛCDM. Fixing ρmðz�Þ
in this way is well justified as this value is very well
constrained by the relative heights of the CMB power
spectra peaks, and its corresponding baryon density is in
good agreement with standard big bang nucleosynthesis
(BBN), providing evenmore confidence. Since ρrðz�Þ is also
fixed by theCMBmonopole temperaturemeasurements, the
only difference regarding the pre-recombination dynamics
would be due to the difference between the values of Λs in
ΛsCDM and Λ in ΛCDM, but, since these have negligible
corresponding energy densities for z ≥ z�, r� is not signifi-
cantly affected. We fix z� ¼ 1100 simply because it is a
reasonable choice and we do not expect it to affect our
argumentation since the relevant integrals are not substan-
tially affected by its sensible deviations. After we fix
DMðz�Þ in this way, we can calculate Λs0 using the equality
DMðzÞ ¼ c

R
z
0 H

−1ðz0Þdz0 for the comoving angular dia-
meter distance at z, which is satisfied for the spatially flat
Robertson-Walker (RW)metric. KnowingΛs0, ρm, and ρr at
a single point allows us to construct HðzÞ at all times and
discuss how z† modifies HðzÞ and H0 with respect to
observations using visualization methods similar to those
of Ref. [16].
This construction is done in Figs. 2 and 3 based on the

results of Planck 2018 [6] (see the figure captions for more
details) but neglecting the radiation energy density. It is
seen from Fig. 2 that ΛsCDM attains greater values of H0

compared toΛCDM, and z† is inversely correlated withH0.
Such greater values are a direct consequence of the sudden
drop in HðzÞ due to the negative cosmological constant for
z > z†, as explained in the Introduction. Additionally, as
seen in the top panel of Fig. 3, the drop in HðzÞ due to the
sign switch allows ΛsCDM to better agree with the Ly-α
data; however, this amelioration of the Ly-α discrepancy
disappears immediately for z† ≳ 2.4. Moreover, as z†

increases, H0 decreases, approaching the value of
ΛCDM as z† → ∞. This is for two reasons: first, as z†
increases, the portion of the DMðz�Þ integral that is
over negative values of Λs decreases and hence requires
less compensation from the positive Λs portion including
H0; second, as z† increases, the sign-switching feature of
Λs becomes rapidly less effective since, for large z†, matter
is the dominant energy component of the Universe at the
time of the sign switch and the effect of a negative Λs
on the evolution of HðzÞ is negligible. If we consider
z† ¼ 3, just before the cosmological constant becomes
negative (z → z−† ), the matter is already by far the domi-
nant component of the Universe, viz., Ωmðz ¼ 3Þ ≈ 0.96,
corresponding to only jΩΛs

=Ωmj ≈ 0.04. It is intriguing
that, for z† ¼ 2.3, which is almost as high as z† can get
without losing the improved agreement with the Ly-α
data, the H0 value is in excellent agreement with H0 ¼
69.8� 0.8 km s−1 Mpc−1 [77] (revised as H0 ¼ 69.6�
0.8 km s−1 Mpc−1 in Ref. [79]) from a recent calibration
of the tip of the red giant branch (TRGB) applied to type Ia
supernovae. Both of these effects on H0 and Hðz ≈ 2.34Þ
suggest that ΛsCDM might be most effective for z† ≲ 2.34.
In line with this, as Fig. 2 demonstrates, H0 is greater
for smaller values of z†; for z† ¼ 1.5, H0 goes up to
≈74.5 km s−1Mpc−1, so z† > 1.5 covers all of the recent

TRGB

Riess19

FIG. 2. H0 versus z† for the ΛsCDM model (solid curve) and
the ΛCDM model (dashed line). The values are calculated by
fixing DMðz�Þ and ρmðz�Þ (and hence ρm0) to that of ΛCDM
using the mean values of the Planck 2018 TT;TE;EEþ lowEþ
lensing results [6]. The gray band is the model-independent
TRGB measurement H0 ¼ 69.8� 0.8 km s−1 Mpc−1 [77] and
the blue band is the Cepheid measurement H0 ¼ 74.03�
1.42 km s−1 Mpc−1 [75].
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local measurements of H0, including the largest H0

estimations by the SH0ES Collaboration (see Refs. [73–
79]). However, looking at the bottom panel of Fig. 3, we see
that as z† gets smaller, a greater tension with the comoving
angular diameter distance measurements from Galaxy BAO
data is generated. In fact, Fig. 3 seems to suggest that the
smaller the value of z†, the greater the tension with the
Galaxy BAO data, and the extent of this effect in limiting
the increase in H0 is not clear without a robust observa-
tional analysis.
The discrepancy of the latest SH0ES H0 determination

HR20
0 ¼ 73.2� 1.3 km s−1 Mpc−1 [76] and ΛCDM Planck

2018 constraint H0 ¼ 67.36� 0.54 km s−1 Mpc−1 [6] is
equivalent to the discrepancy of the Pantheon SnIa absolute
magnitudes, which have a value MPlanck

B ¼ −19.401�
0.027 mag [149] when calibrated using the CMB sound
horizon and propagated via BAO measurements to low z
(inverse distance ladder, z ≃ 1100), which is in significant
tension (3.4σ) with the valueMR20

B ¼ −19.244� 0.037 mag
[146] (using Pantheon SnIa data set [150]) when the

calibration is done using Cepheid stars at z < 0.01.
This tension is reflected in the inferred SnIa absolute

magnitudes from MB;i ¼ mB;i − μðziÞ [where μðziÞ ¼
5 log10

h
1þzi
10 pc

R zi
0

cdz
HðzÞ

i
is the distance modulus for the spatially

flat RW metric andmB;i is the measured apparent magnitude
of the supernovae at redshift zi (zi > 0.01)] using the distance
modulus corresponding to the ΛCDM Planck 2018 curve in
Fig. 3, which are in tension with MR20

B from Cepheid
calibrators (see black error bars in Fig. 4 and the caption
of the figure for information about themB;i data that we used).
On the other hand, we see from the figure that for z† ¼ 2.3
(red bars) (i.e., when ΛsCDM agrees with the TRGB H0

measurement) the inferred MB;i values are systematically
shifted upwards, relaxing the tension with MR20

B , and for
z† ¼ 1.5 (blue bars) (i.e., when ΛsCDM agrees with the
SH0ESH0 measurement) the estimated absolute magnitudes
from ΛsCDM are in excellent agreement withMR20

B . It is no
surprise thatΛsCDM results in greaterMB;i values compared
toΛCDM for z < z†, because it is guaranteed that, compared
toΛCDMwith the sameDMðz�Þ andΩm0h2 values,ΛsCDM
has greater Hðz < z†Þ values, making its μðz < z†Þ smaller.
A subtler point is that, although Hðz > z†Þ is smaller for
ΛsCDM, it will keep resulting in greater MB;i values up to
z ∼ z� since the smaller value of the μðzÞ of ΛsCDM catches
up to that ofΛCDMonly at the redshift towhich their angular
diameter distance is equal, i.e., at last scattering for which
DMðz�Þ is the same among these models. In addition, since
smaller z† values amplify the above-mentioned deviance of
ΛsCDM, MB;i are inversely correlated with z† just as H0 is.
An important point is that ΛsCDM not only systematically

FIG. 3. Comoving Hubble parameter and the comoving angular
diameter distance versus redshift for various z† values for the
ΛsCDM model. All of the plots are drawn by fixing DMðz�Þ and
ρmðz�Þ (and hence fixing ρm0) to that of the ΛCDM model using
mean values of the Planck 2018 TT;TE;EEþ lowEþ lensing
results. We consider the observational HðzÞ values (blue error
bars), H0 ¼ 69.8� 0.8 km s−1 Mpc−1 from the TRGB [77],
BAO Galaxy consensus (from zeff ¼ 0.38, 0.51, 0.61), and
DR14 Ly-α BAO (from zeff ¼ 2.34, 2.35) [84,85,148].

FIG. 4. Inferred SnIa absolute magnitudes MB;i ¼ mB;i − μðziÞ
of the binned Pantheon sample containing SnIa apparent magni-
tudes mB;i (with 68% C.L. error bars) [150] for the distance
moduli μðziÞ assuming z† ¼ 1.5 (blue) (which is in excellent
agreement with the SH0ES H0 value), z† ¼ 2.3 (red) (which is in
excellent agreement with the TRGB H0 value), and ΛCDM
Planck 2018 (black), all calculated using the corresponding HðzÞ
functions given in Fig. 3 with matching colors. The grey bar is the
68% C.L. constraint from Cepheid calibrations [146].
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results in higher MB;i values, but also respects the internal
consistency of the SH0ES measurements by simultaneously
matching theirH0 andMB constraints [73–76,146,147]. This
is not true in general for models with deviations fromΛCDM
at low redshifts, e.g., models with a dynamical DE equation-
of-state parameter, or models of smoothly nonminimally
interacting DE [145,146,151–154]; however, see Ref. [155]
for an analysis in this context excluding CMB data, and
Ref. [156–159] for astrophysical (rather than cosmological)
approaches addressing the MB tension.
As a final remark for this section, we notice that the

condition for an ever-expanding Universe given in Eq. (5)
implies

zðminÞ
† ¼

�h2ðmaxÞ
ωm

− 1

�1
3

− 1; ð8Þ

where ωm ≡Ωm0h2 ∝ ρm0 and h2ðmaxÞ is the maximum h
value attainable while satisfying the constraint on DMðz�Þ
by the ever-expanding ΛsCDM Universe for a given ωm.

This also determines ΩðminÞ
m , and thereby ΩðmaxÞ

Λ as well. We

solve numerically that zðminÞ
† ≈ 1.1 for ωm ¼ 0.1444 (this

value is chosen based on Planck 2018 [6], as in Fig. 3); see
Fig. 5. We plot the deceleration parameter in Fig. 6 for z†
values, including z† ≈ zðminÞ

† for which the acceleration
starts at z† and not zc. It is astonishing that even for this
extreme value z† ¼ 1.115, which is approximately the limit
of the ever-expanding Universe condition we obtained
while ensuring the consistency with the Planck CMB data,

the good representation of the Ly-α data remains, as seen in
Fig. 3. This shows that it is an intrinsic feature of the
ΛsCDM scenario, which provides an AdS background for
z > z†, to be consistent with the available cosmological
data from z≳ 1.
To summarize, the ΛsCDM model has the potential to

resolve both the H0 and MB tensions while remaining
consistent with the CMB data; the pre-recombination
physics were practically untouched in this analysis. The
model comes with the additional benefit of better agree-
ment with the Ly-α measurements for z† ≲ 2.34. However,
the comoving angular diameter distance measurements
from Galaxy BAO oppose the amelioration in H0 and
MB;i by insisting that z† does not attain very small values.
This opposition may permit a partial alleviation of
the H0 tension rather than its resolution when, e.g., H0 ¼
74.03� 1.42 km s−1 Mpc−1 from the Cepheid measure-
ment of H0 [75] is considered; however, it may allow
for a full resolution if one considers H0 ¼ 69.8�
0.8 km s−1 Mpc−1 from the TRGB measurement of
H0 [77], which might prove to be sufficient with forth-
coming observations. There appears to be an interval
1.5≲ z† ≲ 2.34 where the comoving angular diameter
distance data of Galaxy BAO can reconcile with the Ly-
α BAO and H0 measurements within ΛsCDM. The
observational analysis in the next section will reveal
how efficiently the features of the ΛsCDM model can
work to alleviate the tensions prevailing in the standard
cosmological model when confronted with data.

III. OBSERVATIONAL CONSTRAINTS
AND RESULTS

Considering the background and perturbation dynamics,
in what follows we explore the full parameter space of the
ΛsCDM model and, for comparison, that of the standard
ΛCDM model. The baseline seven free parameters of the
ΛsCDM model are

FIG. 5. We solve numerically that zðminÞ
† ≈ 1.1. The point of

intersection of the straight line (orange) and the curve (blue), is
the solution of Eq. (8).

FIG. 6. Evolution of the deceleration parameter qðzÞ for various
z† values, including z† ≈ zðminÞ

† , corresponding to Fig. 3.
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P ¼ fωb;ωc; θs; As; ns; τreio; z†g; ð9Þ

where the first six parameters are the baseline parameters of
the standardΛCDMmodel: ωb ¼ Ωbh2 and ωc ¼ Ωch2 are
the physical density parameters of baryons and cold dark
matter today, respectively, θs is the ratio of the sound
horizon to the angular diameter distance at decoupling, As
is the power of the primordial curvature perturbations
at k ¼ 0.05 Mpc−1, ns is the power-law index of the
scalar spectrum, and τreio is the Thomson scattering optical
depth due to reionization. We use uniform priors ωb ∈
½0.018; 0.024�, ωc ∈ ½0.10; 0.14�, 100θs ∈ ½1.03; 1.05�,
lnð1010AsÞ∈ ½3.0;3.18�, ns ∈ ½0.9; 1.1�, and τreio ∈ ½0.04;
0.125� for the common free parameters of the models and
z† ∈ ½1; 3� for the additional free parameter of ΛsCDM,
which is determined in accordance with the discussions
regarding z† in Sec. II A.
In order to constrain the models, we use the latest Planck

CMB and BAO data: we use the recently released full
Planck (2018) [6] CMB temperature and polarization data
which consist of the low-l temperature and polarization
likelihoods at l ≤ 29, temperature (TT) at l ≥ 30, polari-
zation (EE) power spectra, and cross correlation of temper-
ature and polarization (TE). The Planck (2018) CMB
lensing power spectrum likelihood [160] is also included.
Along with the Planck CMB data, we consider the high-
precision BAO measurements at different redshifts up to
z ¼ 2.36, viz., Ly-α DR14, BAO-Galaxy consensus, MGS,
and 6dFGS as presented in Refs. [3,84,85,148,161,162].
It is worth noting that we include Ly-αmeasurements in our
BAO compilation as they have a substantial impact on the
parameters of ΛsCDM, whereas they have a minor impact
on the parameters of ΛCDM, which is why they were

excluded from the default BAO compilation by the Planck
(2018) Collaboration [6]. We do not include BBN con-
straints on ωb so that we can compare the constraints on ωb
predicted from our analysis for different models with those
from BBN without bias. We have implemented the model
in a modified version of the CosmoMC [163] code to
sample over the parameter space and produce posterior
distributions, and used the MCEvidence [164] algorithm
to compute the Bayesian evidence used to perform a
model comparison through the Jeffreys’ scale [165]. See
Ref. [166], and references therein, for an extended review
of the cosmological parameter inference and model selec-
tion procedure. We obtain the observational constraints on
all of the parameters of the models—ΛsCDM, ΛsCDMþ
z† ¼ 2.32 (a particular case of ΛsCDM), and ΛCDM (for
comparison purposes)—by using first only the CMB data
and then the combined CMBþ BAO data.
Table I displays the constraints at the 68% C.L. on the

free parameters—102ωb, ωc, 100θs, lnð1010AsÞ, ns, τreio,
and z†—as well as some derived parameters—the dust
density parameter today Ωm, the Hubble constant H0, the
amplitude of matter fluctuation on 8h−1 Mpc comoving
scale σ8, and the combination S8 ≡ σ8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ωm=0.3

p
—from

CMB and CMBþ BAO data sets separately. We notice
tight constraints on all of the model parameters from the
combined CMBþ BAO data, as expected. The additional
parameter z† in ΛsCDM is not constrained by the CMB
data alone, as may also be seen from Fig. 7 where the one-
dimensional marginalized distributions of z† are shown
from the CMB and CMBþ BAO data.
In Fig. 7, we see that the one-dimensional marginalized

distribution for z† is quite flat for the CMB-only analysis
(the green curve). The CMB data is insensitive to the value

TABLE I. Constraints (68% C.L.) on the free and some derived parameters of the ΛsCDM and standard ΛCDM models for CMB and
CMBþ BAO data. The parameter H0 is measured in units of km s−1 Mpc−1. In the last three rows, the best fit (−2 lnLmax), the log-
Bayesian evidence (lnZ), and the relative log-Bayesian evidence Δ lnZ ¼ lnZreference − lnZ are listed.

Data set CMB CMBþBAO

ΛCDM ΛsCDM ΛsCDMþz† ¼ 2.32 ΛCDM ΛsCDM ΛsCDMþz† ¼ 2.32

102ωb 2.235� 0.015 2.238� 0.015 2.238� 0.015 2.244� 0.013 2.231� 0.014 2.230� 0.013
ωc 0.1201� 0.0014 0.1197� 0.0013 0.1199� 0.0013 0.1189� 0.0009 0.1208� 0.0011 0.1209� 0.0009
100θs 1.04090� 0.00031 1.04093� 0.00030 1.04091� 0.00031 1.04102� 0.00029 1.04081� 0.00029 1.04080� 0.00029
lnð1010AsÞ 3.044� 0.016 3.043� 0.016 3.043� 0.016 3.045� 0.016 3.043� 0.016 3.043� 0.016
ns 0.9646� 0.0043 0.9657� 0.0044 0.9655� 0.0044 0.9673� 0.0037 0.9633� 0.0039 0.9632� 0.0036
τreio 0.0543� 0.0078 0.0542� 0.0078 0.0541� 0.0078 0.0559� 0.0078 0.0530� 0.0077 0.0526� 0.0075
z† � � � unconstrained ½2.32� � � � 2.44� 0.29 ½2.32�
Ωm 0.3162� 0.0084 0.2900� 0.0160 0.2967� 0.0086 0.3090� 0.0059 0.3035� 0.0062 0.3029� 0.0060
H0 67.29� 0.60 70.22� 1.78 69.42� 0.71 67.81� 0.44 68.82� 0.55 68.91� 0.48
σ8 0.8117� 0.0076 0.8223� 0.0098 0.8186� 0.0074 0.8090� 0.0073 0.8207� 0.0080 0.8215� 0.0071
S8 0.8332� 0.0163 0.8071� 0.0210 0.8138� 0.0166 0.8219� 0.0127 0.8255� 0.0128 0.8264� 0.0126

−2 lnLmax 1386.52 1385.73 1386.56 1394.32 1393.77 1393.54
lnZ −1424.19 −1424.22 −1423.50 −1431.46 −1432.77 −1431.89
Δ lnZ 0.69 0.72 0 0 1.31 0.43
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of z† and cannot constrain it, as mentioned in Table I,
because for any z† ∈ ½1.5; 3� with ωb þ ωc ∼ 0.14 there
exists a Λs0 value for which the comoving angular diameter
distance to last scattering fits the CMB measurements.
When the BAO data are included in the analysis (the red
curve), however, the shape of the distribution changes
dramatically, and we see a clear peak at z† ≈ 2.3. This is in
line with the discussions in the previous section regarding
the Ly-α and Galaxy BAO (SDSS DR14) data. We read off
from Fig. 7 that z† must be larger than approximately 1.75.
The existence of a robust lower bound for z† is no surprise,
as we anticipated in the previous section from Fig. 3 that
smaller z† values correspond to higher tension with respect
to the Galaxy BAO measurements. This behavior, in turn,
decreases the probability of z† for values smaller than z† ≈
2.3 just before (in redshift) the redshift of the Ly-α
measurements from z ≈ 2.34. On the other hand, we also
see that there is a strong preference for z† ≲ 2.4 since for
these z† values the ΛsCDM model has substantially better
agreement with the Ly-α measurements, which is immedi-
ately lost for z† ≳ 2.4; just after (in redshift) the redshift of
the Ly-α measurements from z ≈ 2.34, there is still a
plateau-like tail for z† ≳ 2.4 that is reminiscent of the
green curve with the addition of a noticeable but insig-
nificant trend towards larger z† values. We refer readers to
Ref. [44] for a similar but more pronounced behavior
caused by the Ly-α data (BOSS DR11) in gDE. Once z† is
restricted to this interval, the fit to the Ly-α data is
essentially unaffected by the value of z† and the data set
is insensitive to z†, similar to the CMB-only analysis,
except for the slight preference of the larger z† values due to
the presence of the Galaxy BAO data. In summary, the Ly-α
data prefers z† < 2.34 and the Galaxy BAO data pushes z†
to large values as much as possible; Fig. 7 reflects the
competition between the two results in the peak at z† ≈ 2.3.

The asymmetric shape of the posterior for z† that is not
suitable to be approximated by a Gaussian or another
standard distribution renders it not easily interpretable. For
this reason, we also study a restriction of the ΛsCDM
model denoted by “ΛsCDMþ z† ¼ 2.32” for which the
only difference compared to ΛsCDM is that z† is fixed to
2.32, leaving six free parameters behind as in ΛCDM. The
justification for our choice z† ¼ 2.32 is as follows. In
Ref. [44], it was the mean value of the constraints on z†
(denoted by z� there) both when λ was free and was chosen
with a large negative value making the gDE density behave
like a step function imitating a sign-switching cosmological
constant. Also, z† ¼ 2.32 is just slightly smaller than the
redshift of the Ly-α measurements z ≈ 2.34, and is sup-
posed to provide better agreement with the Ly-α measure-
ments; this value is also very close to both the peak and the
mean of the red posterior in Fig. 7. The constraints on the
ΛsCDMþ z† ¼ 2.32 model parameters are given in
Table I.
In Fig. 8 we show the two-dimensional (68% and

95% C.L.) marginalized distributions of H0 versus z† from
the CMB-only data set (green contours) and the combined
CMBþ BAO data set (red contours). We notice a negative
correlation between these two parameters, as expected (see
Sec. II A). Since z† is not constrained by the CMB-only
data set, the green contours scan the whole range of z†; also,
as we anticipated from Fig. 2, they encompass even the
largest model-independent measurements of H0 up to
∼74 km s−1 Mpc−1. Due to their strong correlation, the
constraints on z† are also directly reflected in H0, and the
exclusion of low z† values by the Galaxy BAO data
corresponds to the exclusion of the highest H0 values.
For the CMBþ BAO data set, 2.15 < z† < 2.73 at

FIG. 7. One-dimensional marginalized distributions of the
additional free parameter z† of the ΛsCDM model.

FIG. 8. Two-dimensional (68% and 95% C.L.) marginalized
distributions of H0 versus z† for the ΛsCDM model, showing a
negative correlation between the two parameters, which implies
that smaller values of z† correspond to larger values of H0.
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68% C.L., as can be read from Table I, and this prevents the
red contours from containingH0 values as high as the green
one, yet H0 ¼ 68.82� 0.55 km s−1 Mpc−1 (H0 ¼ 68.91�
0.48 km s−1 Mpc−1 for the ΛsCDM þ z† ¼ 2.32) at
68% C.L., is larger than H0¼67.81�0.4 kms−1Mpc−1

(68% C.L.) of the ΛCDM prediction, and is in good
agreement with the model-independent TRGB measure-
ment H0 ¼ 69.8� 0.8 km s−1 Mpc−1 (68% C.L.) [77].
Since the impact of the sign-switch feature becomes less
effective for larger z† values, both contours approach the
ΛCDM interval of H0 for large z†, but the error margin is
larger for ΛsCDM due to the additional errors contributed
by the uncertainty of the extra free parameter z†.
Complimentary to the discussion in this paragraph, in
Fig. 9 we show the two-dimensional (68% and
95% C.L.) marginalized distributions of H0 versus Ωm
from CMBþ BAO data, which shows how the H0 tension
is relaxed in ΛsCDM compared to ΛCDM. There is a
negative correlation between H0 and Ωm for all three
models. ΛsCDM does not overlap with ΛCDM even at
95% C.L.; this separation is even more pronounced when
the z† ¼ 2.32 restriction is considered. Unsurprisingly,
ΛsCDMþ z† ¼ 2.32 is contained within ΛsCDM and is
tightly constrained just like ΛCDM which has the same
number of free parameters.
We have discussed in Sec. II A that, within the ΛsCDM

model, the amelioration of the SH0ES H0 tension is
accompanied by an amelioration of the MB tension

respecting the internal consistency of the SH0ES measure-
ments of these parameters. We have shown with a prelimi-
nary analysis that MB;i values calculated by subtracting the
distance modulus from the apparent magnitudes of the
binned Pantheon sample [150] should be greater for
ΛsCDM compared to the standard model. In this section,
we do the sameMB;i calculations, but now we compute the
distance modulus values directly from our data analysis;
indeed, we see in Fig. 10 (the observational counterpart of
Fig. 4) that the ΛsCDM models result in MB;i values that
are systematically higher than those of ΛCDM (as they do
for H0 values) and have better agreement with the MR20

B
value (as they do with local measurements of H0). For the
CMB-only analysis in the top panel, the unrestricted
ΛsCDM, which has the highest H0 value agreeing the
best with the SH0ES value, has also the best agreement
with theMR20

B value among the three models. When BAO is
included in the data set, the restrictedΛsCDM, compared to
the other two models, has better agreement with the SH0ES
H0 value and thus (as seen in the bottom panel of Fig. 10)
also with MR20

B . ΛCDM, on the other hand, performs

FIG. 9. Two-dimensional (68% and 95% C.L.) marginalized
distributions of H0 versus Ωm from CMBþ BAO data, showing
how the H0 tension is relaxed in the ΛsCDM model compared
to the ΛCDM model wherein the horizontal gray band is
for the model independent TRGB H0 measurement H0 ¼ 69.8�
0.8 km s−1 Mpc−1 [77].

CMB

CMB+BAO

FIG. 10. Observational counterpart of Fig. 4 for the CMB-only
(top panel) and combined CMBþ BAO (bottom panel) analyses.
The constraints on the absolute magnitudes (MB;i) are obtained
from MB;i ¼ mB;i − μðziÞ by using the apparent magnitudes
(mB;i) of the binned Pantheon SnIa sample [150] and the
constraints we obtained at 68% C.L. on the distance modulus
values μðziÞ for the corresponding SnIa data points.
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substantially worse for both the CMB-only and combined
CMBþ BAO analyses. As theMB and SH0ESH0 tensions
are almost equivalent for ΛsCDM, just like they are for
ΛCDM, the Galaxy BAO data (which effectively puts an
upper bound on the H0 values ΛsCDM can achieve), in
parallel, also puts an upper bound on its MB;i predictions,
limiting the success of the model in alleviating these
tensions.
We see that there are certain distinctions between the

CMB and CMBþ BAO analyses when parameters related
to matter densities are considered. As seen in Table I, the
CMB-only analysis puts very similar constraints (within
∼1σ of each other) on ωb, ωc, and hence ωm ≡ ωb þ ωc for
all three models, while the constraints on Ωm vary among
the models. In this case, all three ωb values present similar
discrepancies compared to the BBN constraint 102ωb ¼
2.166� 0.019 (namely, 102ωb ¼ 2.166� 0.015� 0.011,
where the first error term is due to the uncertainty in the
measurement of the primordial deuterium abundance and
the second error term is due to the uncertainty in the BBN
calculations) [167]. Note that this BBN constraint is based
on the dðp; γÞ3He reaction rate computed in Ref. [168].
Interestingly, including the BAO data in the analysis puts
similar constraints on Ωm (within ∼1σ of each other) for all
three models while letting ωb and ωc vary among the
models. This has some important consequences. First, the

BAO data pull ωm ¼ Ωmh2 towards smaller values for
ΛCDM but towards greater values for both of the ΛsCDM
models; given the similar Ωm values for all three, this
results in higher H0 values for the ΛsCDM models
compared to ΛCDM. Second, ωb follows a reverse trend
for all models compared to ωm, i.e., the BAO data pull ωb
towards greater values for ΛCDMwhile it is pulled towards
smaller values for both of the ΛsCDM models. Thus,
with the inclusion of the BAO data, the discrepancy
with the BBN constraint for ωb worsens for ΛCDM
while relaxes for the ΛsCDM models. We wonder if this
amelioration for the ΛsCDM model could be
improved if the Galaxy BAO data were not present in
the analysis. Note that in Ref. [167] they also presented the
value 102ωb ¼ 2.235� 0.037 (namely, 102ωb ¼ 2.235�
0.016� 0.033) when the empirical dðp; γÞ3He reaction rate
in Ref. [169] was used; even in this case, the ΛsCDM
models are in better agreement with the BBN constraint for
ωb when the CMBþ BAO data set is considered.
In Fig. 11 (the observational counterpart of the top panel

of Fig. 3), obtained using the fgivenx PYTHON package
[170], we show HðzÞ=ð1þ zÞ versus z with probability
regions up to 95% C.L. (the darker implies more probable,
as shown in the color bar) for CMB (left panel) and CMBþ
BAO (right panel) data sets, showing how the discrepancy
with the Ly-α measurements disappears completely in

FIG. 11. HðzÞ=ð1þ zÞ versus z with 68% and 95% error regions in the case of CMB (left panel) and CMBþ BAO (right panel) data,
showing how the Ly-α data tension is relaxed in the ΛsCDM model compared to the ΛCDM model, wherein the red curve stands
for the ΛCDM model corresponding to the mean values of the parameters. We show the observational HðzÞ values (error bars):
H0 ¼ 69.8� 0.8 km s−1 Mpc−1 from the TRGB H0 [77], H0 ¼ 74.03� 1.42 km s−1 Mpc−1 from the Cepheid measurement H0 [75],
BAO Galaxy consensus (from zeff ¼ 0.38, 0.51, 0.61), and Ly-α DR14 (from zeff ¼ 2.34, 2.35) [85,148].
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ΛsCDM compared to the ΛCDM model, wherein we
show the observational HðzÞ values H0 ¼ 69.8�
0.8 km s−1 Mpc−1 from the TRGB H0 [77], H0 ¼ 74.03�
1.42 km s−1 Mpc−1 from the local measurements using
Cepheid calibrators [75], BAO Galaxy consensus (from
effective redshifts zeff ¼ 0.38, 0.51, 0.61), and Ly-α DR14
(from effective redshifts zeff ¼ 2.34, 2.35) [85,148]. The
inclusion of the BAO data in the analysis substantially
tightens the constraints on HðzÞ for both models. This also
lowers the maximum H0 value contained within the 2σ
contours for both models, and this effect is more pro-
nounced in the unrestricted ΛsCDM due to the truncation
of the smaller z† values by the Galaxy BAO data. Indeed,
while the unrestricted model is in partial agreement with the
H0 value from the Cepheid measurements for the CMB-
only analysis, for the CMBþ BAO data set a significant
tension appears, but the model is still in very good agree-
ment with theH0 value from the TRGB measurements. For
z≲ 2.3, the mean HðzÞ curve of ΛCDM is below both of
the ΛsCDM models, and for z≲ 1.5 it (including H0) is
even excluded in the 95% C.L. For z≳ 3, both ΛsCDM
models strongly exclude the meanHðzÞ curve ofΛCDM by
preferring lower values, but the unrestricted ΛsCDM has an
interval of compatibility with ΛCDM for 2.3≲ z≲ 3
at the cost of losing its improved fit to the Ly-α data.
It is not clear from this figure how ΛsCDM, compared
to the ΛCDM model, responds to the Galaxy BAO data; as

we have discussed in the previous sections, the opposition
of the Galaxy BAO data to the smaller z† values is based
on the comoving angular diameter distance DMðzÞ
measurements.
In Fig. 12 (the observational counterpart of the bottom

panel of Fig. 3) we showDðzÞ≡ c lnð1þ zÞ=DMðzÞ versus
z with probability regions up to 95% C.L. for both ΛsCDM
models, and the mean DðzÞ curve for the ΛCDM model.
We see from the top left panel that the distribution for the
unrestricted ΛsCDM for the CMB-only analysis diffuses to
substantially higher values compared to ΛCDM, and is
almost always above ΛCDM; in fact, the mean curve for
ΛCDM acts almost as a lower bound for the 2σ contours of
ΛsCDM. Note that the lowest parts of the contours
correspond to the highest redshifts for the sign switch,
i.e., to z† ∼ 3. This behavior of elevatedDðzÞ translates into
the preference for higherH0 values at z ¼ 0 in the presence
of the sign switch. When the BAO data is included in the
analysis, the posterior changes very slightly around the Ly-
α data and the improved agreement is present for both data
sets; in contrast, the inclusion of the BAO data strictly
reduces the spread of the distribution at lower z values and
excludes H0 ≳ 70 km s−1 Mpc−1 in the 2σ C.L., but the
mean curve for ΛCDM still acts almost as a lower bound.
This shows that higherDðzÞ values compared toΛCDM are
characteristic of the ΛsCDM model. For the ΛsCDMþ
z† ¼ 2.32 model, the story is very similar but less

FIG. 12. c lnð1þ zÞ1=DMðzÞ≡DðzÞ versus z with 68% and 95% error regions in the case of CMB (left panel) and CMBþ BAO
(right panel) data. We show the observational HðzÞ values (error bars): H0 ¼ 69.8� 0.8 km s−1 Mpc−1 from the TRGB H0 [77],
H0 ¼ 74.03� 1.42 km s−1 Mpc−1 from the Cepheid measurementH0 [75], BAO Galaxy consensus (from zeff ¼ 0.38, 0.51, 0.61), and
Ly-α DR14 (from zeff ¼ 2.34, 2.35) [85,148].
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emphasized. The spread of the posterior is thinner due to
the absence of the uncertainty contributed by z†, and
including the BAO data in the data set does not have
substantial effects since the constraints from the BAO data
on ΛsCDM are mostly due to the exclusion of the smaller
z† by the Galaxy BAO data, as it was in Fig. 11. Although
the Galaxy BAO data does not prefer the lowest z† values
for which the DðzÞ plot is substantially elevated, this effect
cannot be rephrased as “the larger the z†, the better
agreement with the Galaxy BAO data” as we anticipated
in the preliminary investigation in the previous section,
because it seems from Fig. 12 that DðzÞ values that are
slightly elevated compared to ΛCDM would have better
agreement with it. Indeed, including the BAO data in the
analysis slightly elevates the plots of the ΛCDM model.
Table I also presents the values for the matter fluctuation

amplitude parameter, σ8. In the CMB-only analysis, the σ8
value for the ΛsCDM model is slightly higher than that of
the ΛCDM model. Including BAO data in our analysis
increases the σ8 value for ΛsCDM and decreases it for
ΛCDM, resulting in an increased difference between the
two models. It is important to includeΩm in the discussions
of σ8 since there is a discordance among various observa-
tional data in the σ8 − Ωm plane within ΛCDM that is
usually quantified using S8. Predictions of S8 based on the
CMB alone are in 2 − 3σ tension with the measurements
from dynamical low-redshift cosmological probes (weak
lensing, cluster counts, redshift-space distortion) within the
ΛCDM model. This is reflected in the CMB-only analysis
in Table I, in which the value for ΛCDM reads S8 ¼
0.8332� 0.0163 compared to S8 ¼ 0.766þ0.020

−0.014 (KiDS-
1000 weak lensing) [171]. Note that the measurement S8 ¼
0.804þ0.032

−0.029 from the first-year data of HSC SSP [90] and
also S8 ¼ 0.800þ0.029

−0.027 from KiDS-450+GAMA [89]
remove this discrepancy; nonetheless, recent surveys still
predict lower values, e.g., S8 ¼ 0.776þ0.017

−0.017 (DES weak
lensing and galaxy clustering) [172]. Similar to the sit-
uation with the Ly-α measurements, alleviating the S8
discrepancy within the ΛCDM model and its minimal
extensions tends to exacerbate the H0 tension [68]; more-
over, constraints on S8 based on the Ly-α data are in
agreement with the weak lensing surveys which probe
similar late-time redshift scales as the Ly-α measurements
[88]. So, it is conceivable that the ΛsCDM model provides
a remedy for the S8 discrepancy while retaining the better
fit to the local measurements of H0, as is the case for the
Ly-α discrepancy. Indeed, Table I presents the S8 values for
the ΛsCDM models which are lower than those for ΛCDM
in the CMB-only analysis, i.e., S8 ¼ 0.8071� 0.0210
for the unrestricted and S8 ¼ 0.8138� 0.0166 for the
restricted model; see also Fig. 13, which shows the 68%
and 95% C.L. contours in the S8 − Ωm plane (notice that
ΛCDM barely overlaps with ΛsCDM and does not overlap
with ΛsCDMþ z† ¼ 2.32 at 68% C.L.). We see from the

table that, although σ8 is the smallest for the ΛCDM among
the three models, its Ωm value greater than 0.3 results in an
increased S8 value compared to its σ8 value. In contrast, the
ΛsCDM models have Ωm values lower than 0.3 which
result in decreased S8 values compared to their σ8 values.
This results in the lower values of S8 for ΛsCDM compared
to the ΛCDM model. Note that lower z† values correspond
to lower Ωm values; this explains why the restricted
ΛsCDMmodel exhibits a higher S8 value. All three models
have similar S8 values when the BAO data is also included
in the analysis; as before, this is due to the preference for
higher z† values by the Galaxy BAO data, since ΛsCDM
approaches the ΛCDM model for larger z† values and the
Ωm values of the extended models are no longer less than
0.3. Thus, it appears that the ΛsCDM model partially
reconciles the CMB data with the low-redshift cosmologi-
cal probes when S8 is considered, and could potentially
resolve the discrepancy in the absence of the Galaxy BAO
data; however, for a robust conclusion on this matter, the
constraints on S8 from low-redshift probes should also be
investigated within the ΛsCDM model.
The constraints on the scalar spectral index ns do not

differ substantially depending on the data sets and models.
However, it is worth mentioning that ns in ΛCDM is
slightly smaller than the ones in the ΛsCDMmodels for the
CMB-only analysis, while the situation is the opposite for
the combined CMBþ BAO analysis. We notice that, in
ΛCDM, the inclusion of the BAO data decreases
(increases) the marginalized value of ωc (102ωb) obtained
in the CMB-only analysis, and this effect is compensated
by a shift in ns towards slightly larger values (see Ref. [173]
for a similar result). Interestingly, it is the other way around
and relatively more substantial for ΛsCDM: the inclusion
of BAO data increases (decreases) the marginalized value
of ωc (102ωb) obtained in the CMB-only analysis, and this

FIG. 13. Two-dimensional (68% and 95% C.L.) marginalized
distributions of S8 versus Ωm from CMB data.
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effect is compensated by a shift in ns towards smaller
values.
We found no significant deviations in the constraints on

the rest of the free parameters in Table I. θs is constrained
robustly and almost the same in all cases, as expected. τreio
and lnð1010AsÞ are almost the same for all three models in
the CMB-only analysis. Including BAO in the analysis
causes both τreio and lnð1010AsÞ to go up, resulting in a
slight decrease in the scaling of subhorizon anisotropies,
i.e., in Ase−2τreio , for ΛCDM; in contrast, it causes
both τreio and lnð1010AsÞ to go down, resulting in a slight
increase in the Ase−2τreio value for the ΛsCDM models.
This behavior of τreio may be explained as follows. The

reionization optical depth can be calculated using τreio ¼
nHð0ÞcσT

R zmax
0 dzxeðzÞ ð1þzÞ2

HðzÞ (see, e.g., Ref. [6]), where σT
is the Thomson scattering cross section, nHð0Þ is the
present-day total number of hydrogen nuclei, xeðzÞ is
the ratio of the number density at z of the free electrons
from reionization to the number of total hydrogen nuclei at
z, and zmax is the integration bound that should be chosen
high enough to allow the entire reionization to be captured
(i.e., zmax ≥ 50). Although the shape of xeðzÞ is not strictly
constrained, it is expected to resemble a sigmoid function
which is approximately zero for z ≥ 10 and slightly greater
than unity for z ≤ 6; it is modeled based on the hyperbolic
tangent function by the Planck Collaboration (2018) [6].
Assuming DMðz�Þ is the same for all three models in our
analysis—which is closely related to the above integral—
we expect lower τreio values for the ΛsCDM models as a
consequence of the suppression of the z≳ 10 portion of the
integral by xeðzÞ. This is because the z≳ 10 portion
constitutes a lower percentage of the total integral for
ΛCDM compared to the other two since Hðz > z†Þ is
greater for the ΛCDM model (so its contribution to the
integral is smaller) in the CMB-only analysis. The results of
the CMB-only analysis (see Table I) are in line with this
argument. Following this logic, we expect the inclusion of
the BAO data in the analysis to slightly increase τreio for
ΛsCDM for two reasons: first, the inclusion of the BAO
data increases its ωm value, which implies a greater r� and
hence greater DMðz�Þ compared to the CMB-only analysis;
second, this inclusion results in larger z† values compared
to the CMB-only analysis, making the model approach
ΛCDM which we expect to have a higher τreio value.
Similar logic based on ωm (and r�) may be used to expect a
higher τreio value for ΛsCDMþ z† ¼ 2.32 and a lower
value for ΛCDM. Surprisingly, the results in Table I are the
opposite for all three models. This can be explained by
changes in nHð0Þ and xeðzÞ with the inclusion of the BAO
data, which are powerful enough to win over the effects
explained above. Indeed, we see that the physical baryon
density ωb, which should naturally correlate positively with
the total number of hydrogen nuclei nHð0Þ and hence τreio,
decreases for theΛsCDMmodels and increases for ΛCDM.

Finally, to quantify which model performs better, we
compute the Bayesian evidence used to perform a
model comparison through the Jeffreys’ scale [174,175].
In Table I, regarding the goodness of fit, we list
−2 lnLmax and the log-Bayesian evidence (lnZ) for
each of the models along with the Bayes’ factor
(Δ lnZ ¼ lnZreference − lnZ)—the log-Bayesian evidence
for each of the models relative to the reference model, viz.,
the model with the lowest j lnZj value. The interpretation
of the Bayes’ factor according to the Jeffreys’ scale is as
follows: 0 < Δ lnZ ≤ 1 implies that the strength of the
evidence against the model compared to the reference
model is weak/inconclusive, while the evidence is definite
for 1 ≤ Δ lnZ < 3, strong for 3 ≤ Δ lnZ < 5, and very
strong for Δ lnZ > 5 [176]. We see from Table I that all of
the models fit equally well to the data for both the CMB-
only and combined CMBþ BAO analyses. For the CMB-
only analysis, the restricted ΛsCDM model is the reference
model and there is weak evidence against the other two
models. In the case of the combined CMBþ BAO data
analysis, ΛCDM is the reference model, and the unre-
stricted ΛsCDM model departs from it with definite
evidence due to the presence of the additional free
parameter z†. However, we note that ΛsCDM agrees better
with the model-independent measurements of H0 and MB,
the constraints on ωb from BBN, and the constraints on S8
from low-redshift probes, which are excluded in the
observational analyses in the current work.

IV. CONCLUSIONS

In this paper, we first discussed the possibility that
dark energy models with energy densities that attain
negative values in the past can alleviate the H0 tension,
as well as the discrepancy with the Ly-α BAO measure-
ments, both of which prevail within the ΛCDMmodel. The
so-called graduated dark energy [44], having this feature,
when restricted to its parameter space constrained by
observations, is phenomenologically well approximated
by a cosmological constant which switches sign at redshift
z ≈ 2.32 to become positive today. It, however, accom-
modates the weak energy condition and the bounds on the
speed of sound at its limit of cosmological constant, which
comes with a sign-switching feature in contrast to the usual
cosmological constant (Λ). This led the authors of Ref. [44]
to conjecture that the Universe transitioned from AdS vacua
to dS vacua at z ≈ 2.3. Inspired by this, we have introduced
theΛsCDMmodel, which promotes the usual cosmological
constant assumption of the standard ΛCDM model to a
sign-switching cosmological constant (Λs).
The ΛsCDMmodel, neglecting radiation, corresponds to

gluing two Friedmann-Lemaître models at z ¼ z†: one with
a cosmological constant that yields a negative value of
Λ ¼ −Λs0 < 0, which is superseded by the other with a
cosmological constant that yields a positive value of
Λ ¼ Λs0 > 0. The deviation of this model from ΛCDM
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is controlled by its only additional parameter z†, the redshift
at which the cosmological constant switches sign, for
which the limit z† → ∞ gives the ΛCDM model. Before
directly confronting the model with observational data, we
carried out a preliminary investigation to assess the
reasonable range of z†, and its effects on the dynamics
of the Universe. We fixed the physical matter density at the
CMB last scattering and the comoving angular diameter
distance to last scattering to those of ΛCDM to ensure good
consistency with the CMB data. We then found that H0 is
inversely correlated with z†, and for z† ¼ 1.5 it reaches
≈74.5 km s−1Mpc−1. It is comforting that this value is
already consistent with even the highest values of model-
independent local measurements of H0 by the SH0ES
Collaboration, because the values of z† less than about 1.5
are strongly disfavored by the Galaxy BAO measurements.
Next, we showed that, unlike many other models with late-
time modifications to ΛCDM suggested to address
the H0 tension, the ΛsCDM model respects the internal
consistency of the methodology used by the SH0ES
Collaboration to estimate H0 and MB (SnIa absolute
magnitude), and therefore, within the ΛsCDM model,
the amelioration of the SH0ES H0 tension should be
accompanied by an amelioration of the MB tension.
Also, it is interesting to observe that, as long as
z† ≲ 2.34, the model remains in excellent agreement with
the Ly-α measurements even for z† ∼ 1.1, which barely
satisfies the condition that we live in an ever-expanding
Universe; a good agreement with the Ly-α data is an
intrinsic feature of the ΛsCDM model as long as z† ≲ 2.34.
In light of these discussions, we came to the conclusion that
the Galaxy and Ly-α BAO measurements would determine
the lower and upper bounds of z†, respectively. We
leave the interesting possibility of violating the condition
z† ≳ 1.1 to future works. In this case, the Universe passes
through a contraction phase, which in turn breaks the one-
to-one correspondence between cosmic time and redshift,
resulting in signals from the same redshift but two different
ages of the Universe.
We carried out a robust observational analysis first

with the full CMB data, and then with the combined
CMBþ BAO data set, to constrain the parameters of the
ΛsCDMmodel, its particular case having z† ¼ 2.32, and the
ΛCDM model. We found that the CMB data alone do
not constrain z†, but the combined CMBþ BAO data set
predicts z† ¼ 2.44� 0.29 (68% C.L.) with a peak at
z† ≈ 2.33 in the posterior. We found slightly positive
evidence (Bayesian) in favor of ΛCDM over the ΛsCDM
model for the CMBþ BAO data set, while all of the models
fit the data equally well. However, the ΛsCDM model still
stands in a privileged position as it removes the discrepancy
with the Ly-α measurements, has better agreement with the
BBN constraints on the physical baryon density (ωb),
provides a lower S8 value based on the Planck data
which alleviates its discordance with some low-redshift

cosmological probes, predicts a higher absolute magnitude
MB value for SnIa which is in better agreement with its
locally determined constraints obtained by Cepheid cali-
brators, and also alleviates the H0 tension, especially when
the TRGB H0 measurement is considered. Also, it is
important to note that the amelioration in the last four is
not captured by the Bayesian evidence as the data/priors on
ωb from BBN, onH0 from local measurements, on S8 from
dynamical cosmological probes (weak lensing, cluster
counts, redshift-space distortion), and onMB from its local
determinations obtained by Cepheid calibrators are not
included in our observational analyses. These improvements
come at the expense of worsening in describing the
comoving angular diameter distance measurements from
theGalaxyBAO; in fact, the preference of larger z† values by
the Galaxy BAO data prevents the ΛsCDM model from
reaching its full potential of having an excellent agreement
with even the highest localH0 measurements in consistency
with the constraints onMB fromCepheid calibrators, and the
lowest S8 measurements. In this regard, when BAO data is
considered, the ΛCDM model is in conflict with the Ly-α
measurements, while the ΛsCDM model is in conflict with
the Galaxy BAO measurements; forthcoming observations
will be crucial in determining which model is preferred by
nature. However, there is an asymmetry between the two
models in the sense that, if new observations are able to
remove the conflict ofΛCDMwith the Ly-αmeasurements,
the discrepancy with the BBN constraints on ωb, the S8
discrepancy, and the unnervingH0 andMB tensions remain;
in contrast, if new observations are able to remove the
conflict of ΛsCDM with the Galaxy BAO measurements, it
can work even better in alleviating the H0 andMB tensions
while retaining its superior agreement with the BBN con-
straints on ωb, the Ly-α measurements, and the constraints
on S8 from dynamical probes. Confronting the ΛsCDM
model by considering BBN and/orMB priors and additional
observational data from weak lensing, cluster counts, SnIa,
cosmic chronometers, etc., along with the CMB and BAO
data used in this study, would allow a more extensive
evaluation of the model, and a better assessment of the
importance of the Galaxy BAO data with regard to the
ΛsCDM model.
The assumptions of the ΛsCDM model—that the sign

transition of Λs happens instantaneously and that the value
of Λs is exactly the opposite of its present-day value before
the transition—might be too restrictive both phenomeno-
logically and (bearing in mind that such phenomena should
eventually be realized via a mechanism from fundamental
theories of physics) theoretically. Accordingly, it is possible
to think of two natural phenomenological extensions to the
ΛsCDM model: first, the sign-switching cosmological
constant described here by a step function can be extended
via smooth sigmoid functions so that the rapidity of the
switch can also be controlled; second, one can consider a
scenario in which the cosmological constant reaches its
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present-day positive value by an arbitrary shift in its value
rather than a sign switch, and constrain the amount of
change in its value as an extra parameter (in this case,
additional scenarios with a vanishing or positive-valued
cosmological constant in the past are also possible, and the
shift in the cosmological constant need not be positive, but
obviously a negative shift is not expected considering what
we have learned from this current study); a third model can
be constructed by combining these two, which would be
the most natural one. From the perspective of theoretical
physics constructions that would underlie the sign switch
(or the value transition) feature, these extensions will
be more reasonable and expand the space of possible
theoretical mechanisms.
One such mechanism can be straightforwardly realized

in unimodular gravity (UG) [177,178] if the usual vacuum
energy of QFT suddenly or gradually diffuses to the
cosmological constant (which could be negative in the
past) and uplifts it to its present-day observed value. Since
the usual vacuum energy of QFT does not gravitate in UG,
the change in its energy density has no effect on the
dynamics of the Universe, but the change in the value of the
cosmological constant (which arises naturally as an inte-
gration constant in UG and contributes to the field
equations as a geometrical component) does affect the
dynamics; thus, this mechanism can produce the exact
phenomenology of ΛsCDM and all three of its extensions
depending on the functional form and amount of the
diffusion. Recently, such a mechanism within UG—for
which the diffusion, instead of happening from the usual
vacuum energy of the QFT, happens from the matter sector
to the cosmological constant—was studied both theoreti-
cally and phenomenologically to address the H0 tension
[57,58,179–182]; however, note that this scenario is differ-
ent from ΛsCDM and its above-mentioned extensions, as
this mechanism uses some energy budget from the energy
density of the matter sector. The sign switch feature of the
ΛsCDM model is reminiscent of the so-called Everpresent
Λ model [183,184], which was suggested for addressing
the H0 and Ly-α tensions, in which the observed Λ
fluctuates between positive and negative values with a
magnitude comparable to the cosmological critical energy
density about a vanishing mean, hΛi ¼ 0, in any epoch of
the Universe, in accordance with a long-standing heuristic
prediction of the causal set approach to quantum gravity
[185]. Nevertheless, the ΛsCDM model suggests that the
sign switch of the cosmological constant is a single event
that happens in the late Universe at z ∼ 2. If we stick to this,
namely, a very rapid single transition or its limiting case a
single instantaneous (discontinuous) transition in the value
of the cosmological constant, then it would be more
reasonable to look for a potential origin of this phenomenon
in a theory of fundamental physics by considering it as a
first-order phase transition. See Ref. [186] for a recent
review on well-known cosmic phase transitions. Recently,

the phase transition approach has been used to address the
H0 tension; see, e.g., Refs. [50–52], which considered that
the DE density behaves like the magnetization of the Ising
model and presented a realization of this behavior within
the Ginzburg-Landau framework—which is an effective
field theory (EFT) describing the physics of phase tran-
sitions without any dependence on the details of relevant
microstructures—and Ref. [53], which considered a gravi-
tational phase transition that is justified from the EFT point
of view. The model studied in Ref. [50] is phenomeno-
logically similar but not equivalent to the one-parameter
extension of ΛsCDM with an arbitrary shift in the value of
the cosmological constant, as (in contrast to our approach
in this work) the cosmological constant is not allowed to
take negative values (and thereby the model addresses the
H0 tension with a shift in the value of the cosmological
constant at very low redshifts, viz., zt ¼ 0.092þ0.009

−0.062 , signal-
ing that it could suffer from the MB tension; see Sec. II A).
Given the promising advantages of having a negative
cosmological constant for z≳ 2 regarding the cosmological
tensions, as discussed in this work, and that negative
cosmological constant is a theoretical sweet spot—AdS
space/vacuum is welcome due to the AdS=CFT correspon-
dence [94] and is preferred by string theory and string theory
motivated supergravities [95]—, it would be most natural to
associate this phenomena with a possible phase transition
from AdS to dS that is derived in string theory, string theory
motivated supergravities, and theories that find motivation
from them. The phase transitions from AdS to dS (most
compatible with our approach and findings), Minkowski
(corresponding to Λ ¼ 0) to dS, and dS to dS pertain to
active area of research in theoretical physics, but finding
four-dimensional dS spacetime solutions has been a vexing
quest and so far the AdS to dS transition has rarely been
directly linked to physical cosmology and particularly dark
energy in the literature, see, e.g., Ref. [11,103,187–217].
Finally, both of the above-mentioned extensions of

ΛsCDM introduce two extra free parameters on top of
ΛCDM, and their combination introduces three. Despite
their excess number of free parameters (subject to obser-
vational constraints), both the promising features of the
ΛsCDM model, and the fact that these phenomenological
models could act as a guide and a cosmological testing
ground for the fundamental physics theories giving rise to
their phenomena, suggest that these extensions are worth
further studying. Regarding the rapidity of the AdS-to-dS
transition in a string theory setup, note the comments
against continuous variation of the cosmological constant,
which could necessitate an instantaneous transition as in
ΛsCDM [193]. In this sense, a two-parameter extension of
ΛCDM with an instantaneous arbitrary shift in the value of
the cosmological constant could be the most natural next
phenomenological step of our work presented in this paper.
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